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We present a calculation of the differential cross section for plasmon excitation in Si based on a dielectric
matrix which takes into account the electronic band structure of the solid. This result is compared with simple
free-electron theory. The differential cross sections are then applied to calculate energy unfiltered convergent
beam electron-diffraction patterns for Si for cases where experimental data exist. The simple model for
multiple scattering due to plasmon excitation used here gives good overall agreement with experiment, the
dielectric matrix calculation more so than that using free-electron theory.@S0163-1829~96!05841-9#

I. INTRODUCTION

The effects of single-particle or collective electronic
~plasmon! excitations play a significant role in quantitative
electron diffraction and microscopy. These excitations of
states in the electron band structure of the solid are generally
associated with energy losses of the order of 1–50 eV and
relatively small momentum transfer.1 This compares with the
relatively small energy losses~of the order of meV!,2,3 and
large momentum transfers involved in phonon excitation
leading to thermal-diffuse scattering~TDS!. Energy filters
may therefore be used to exclude scattered electrons that
have induced electronic excitations. However, in energy un-
filtered experiments these electrons often~in all but the thin-
nest of crystals! contribute the majority of the scattered elec-
tron intensity. Dielectric response theory is a formalism
convenient for describing the interaction between the inci-
dent electron and electronic states in the solid leading to
plasmon excitations, and has been used to calculate the cross
section for plasmon excitation using various
approximations.4 Because of the highly delocalized nature of
the crystal states involved in plasmon excitations, simple
free-electron theory was often used successfully.4 In this
work we present a model for the differential cross section for
plasmon excitation in terms of the dielectric response matrix
of the solid. We calculate the differential cross section for
plasmon excitation in Si using this model. The random-phase
approximation dielectric matrix is based on a realistic elec-
tronic band structure~calculated using a nonlocal empirical
pseudopotential!, and has been used successfully to calculate
inelastic mean free paths.5,6

Electron-diffraction and microscopy experiments employ-
ing energy filtering can yield an abundance of structural in-
formation about various crystals.7–9 In particular, quantita-
tive analysis of energy filtered convergent beam electron-
diffraction ~CBED! patterns is used to determine crystal
structure factors, specimen thicknesses, unit-cell parameters,
charge-density distributions, and symmetries.7,8,10 However,
in some situations the use of energy filters is neither
desirable11,12nor convenient.13,14The effects of plasmon ex-
citation in energy unfiltered electron-diffraction and micros-
copy experiments, although known to be significant, are dif-

ficult to model quantitatively. This is due to both the
kinematics of the plasmon excitation process and the domi-
nance of multiple-scattering processes over single events, the
more so the thicker the crystal. A number of models exist to
simulate the effects of multiple scattering due to plasmon
excitation in crystals, all of which require in effect some
knowledge of the differential cross section for plasmon ex-
citation. The method outlined in Ref. 15~see also, Refs. 4
and 16! considers the effect of multiple scattering due to
plasmon excitation via a simple convolution with the elastic
intensity. We will use this model here to consider the effect
of the differential cross section for plasmon excitation on the
final intensity. A recently formulated multiple-scattering
theory based on the kinetic equation~KE! for the one-
particle density matrix17 has shown that plasmon excitation
leads both to the expected damping of coherence by small-
angle scattering, and the asymmetry observed in certain en-
ergy unfiltered CBED intensity profiles.11 However this
theory, while being in good agreement with experiment is
somewhat more complex to implement. In this work we
compare the energy unfiltered Si CBED patterns and the KE
calculation in Ref. 17 with the simple and computationally
convenient multiple-scattering convolution method, which
nevertheless utilizes no open parameters.

In Sec. II we outline the relationship between the differ-
ential cross section for plasmon excitation and the dielectric
response matrix for a crystal. The differential cross sections
calculated both from dielectric response theory and from
free-electron theory are discussed. These cross sections are
then used in the multiple-scattering convolution method to
calculate Si CBED intensity patterns in Sec. III. We discuss
the CBED intensity profile as calculated in this model, com-
paring the results with experiment and the more sophisti-
cated multiple-scattering model based on the KE.

II. DIFFERENTIAL CROSS SECTION
FOR PLASMON EXCITATION IN SILICON

A realistic representation of the cross section for plasmon
excitation requires detailed consideration of the electronic
structure of the solid. The valence electronic structure of a
crystalline material consists of many electron energy states
whose wave functions are associated with chemical bonding
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effects,9 making it difficult to treat individually the excitation
of each state within the band. It is more convenient to intro-
duce a dielectric response functione(q,v) whereq is the
wave vector of the field andv is the frequency, characteriz-
ing the statistical properties of valence and conduction
electrons.18 It follows trivially from Maxwell’s equations
that the existence of nonzero longitudinal fields correspond-
ing to longitudinal charge-density oscillations~volume-
plasmon excitations! in the bulk solid of wave vectorq and
frequencyv(q) requires «(q,v)50. Because«(q,v) is
complex this criterion is observed experimentally by maxima
in the dielectric loss function4 2Im@1/«(q,v)#. However,
due to the discrete translational symmetry of the crystal lat-
tice, an external field of frequencyv and wave vectorq
gives rise to many rapidly oscillating microscopic fields of
frequencyv and wave vectorq1g, whereg is a reciprocal-
lattice vector. This results in a matrix formulation of the
dielectric function, relating the displacement field and the
microscopic fields by D(q1g,v)5(h«g,h(q,v)E(q
1h,v). The existence of nonzero microscopic longitudinal
fields now requires detu«g,h(q,v)u50. The observable mac-
roscopic dielectric function is then obtained from the recip-
rocal of the first element in the inverse microscopic dielectric
matrix e(q,v)51/@e0,0

21(q,v)#. This allows a realistic repre-
sentation of the dielectric response over a large range of
frequencies and wave vectors to be obtained. The inclusion
of these microscopic or local field effects is well known to
have a dramatic effect on«(q,v) and in particular the loss
function.5,6

In the dielectric response formalism, the total cross sec-

tion ~per unit volume! for plasmon excitation may be written
as5
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for an incident electron of energyE0 ~with wave vectorK)
and velocityv. The integration is over all possible momen-
tum transfers\q consistent with an energy loss of\v. As-
suming dielectric isotropy~a good approximation for most
solids!, e(q,v)'e(q,v) and transformation to polar coordi-
natesdV5sinududf enables us to obtain the differential
cross section~per unit volume! for plasmon excitation as
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The mean free pathL (51/s) can then easily be shown to
reduce to the well-known Pines19 and Howie20 result for an
isotropic crystal.

In order to calculate the differential cross section we re-
quire the dielectric loss function obtained from the inversion
of the dielectric matrix. In the random-phase approximation
the dielectric matrix may be written as21,22

eg,h~q,v!5dh,g2
4pe2
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Here f 0(E) is the Fermi distribution for the energyE, while
a is the inverse lifetime of a single-particle excitation and
NVc is the volume of the crystal. The Brillouin-zone sum-
mation (k,n,n8 is over all possible transitions between the
states uk,n& of energy En(k) and uk1q,n8& of energy
En8(k1q). In order to evaluate the dielectric matrix for Si a
nonlocal empirical psuedopotential band structure23–25 was
used to calculate the four highest valence and 30 lowest con-
duction states as required in the summation over crystal
states. The simple psuedopotential method lends itself to fast
and efficient calculations of an accurate band structure and is
therefore well suited for this application. The Brillouin-zone
summation extended over a minimum of 182k points ~se-
lected via the special-points scheme of Ref. 26! in the irre-
ducible Brillouin zone, using the analytic integration tech-
nique of Ref. 27. Great care was taken to ensure numerical
convergence25,28,29 before the full 59359 dielectric matrix
was inverted for each frequencyv andq point to obtain the
loss function.6

In Fig. 1 we show the differential cross section for plas-
mon excitation in Si as a function of incident energy calcu-

lated according to dielectric response theory@using Eq.
~2.2!#. The results are shown on a linear scale in Fig. 1~a!
and on a log-log plot in Fig. 1~b! due to the wide variation in
the differential cross section as a function of angle and inci-
dent energy. Because of the widespread use of the simple
free-electron model~and variations thereof4,30,31!, it is in-
structive to compare the dielectric matrix results with those
obtained from a free-electron model. In free-electron theory
the differential cross section is Lorentzian as a function of
scattering angleu,

]s~u!

]V
}

1

uE
21u2

. ~2.4!

The full width at half maximum~FWHM! of the free-
electron cross section is given by 2uE5\vp /E0 and the
plasmon energy by\vp5A\2e2n0 /m0e, where n0 is the
electron plasma density. Because the free-electron result is
Lorentzian, we may expect that the differential cross section
as calculated from Eq.~2.2! is also approximately Lorentzian

12 874 54T. W. JOSEFSSON, R. L. COBAL, AND L. J. ALLEN



as a function of scattering angleu. This is indeed the case, as
can be seen in Figs. 2~a! and 2~b! for an energy~chosen to
facilitate comparison with experiment in the next section! of
80 keV. The dielectric response matrix calculation of the
differential cross section falls off more rapidly than a Lorent-
zian at high angles. This effect has been seen
experimentally4 for Al and is due to the dominance of single-
electron excitations over collective energy losses, as high
momentum plasmons become poorly defined elementary ex-
citations in the solid.16

The free-electron FWHM ofG50.207 mrad at 80.0 keV
yields L51140 Å. This compares with the dielectric re-
sponse matrix calculation which yieldsG50.201 mrad and
L5894 Å. The experimentally determined values of the
mean free path vary over a sizeable range. For an incident
electron of energy 80 keV in Si, the experimentally observed
result is approximately 60021000 Å.4,5 The dielectric ma-
trix based result lies within this range, but the free-electron
result slightly overestimates the mean free path.

FIG. 1. ~a! The differential cross section~per unit volume! for
plasmon excitation in Si as a function of incident electron energy.
~b! The results in~a! on a log-log plot. The results are obtained
from inversion of dielectric matrices of order 59359, based on a
nonlocal empirical psuedopotential band structure.

FIG. 2. ~a! The differential cross section~per unit volume! for
plasmon excitation in Si for 80 keV incident electrons. Results cal-
culated from dielectric matrix theory are compared with the best fit
Lorentzian distribution ~with FWHM50.201 mrad! and free-
electron results.~b! The differential cross section over a greater
range shown on a log-log plot.~c! The FWHM of the differential
cross section calculated for a range of incident energies on a log-log
plot.
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The calculated results have been fitted with Lorentzian
distributions whose FWHM (G) as a function of incident
energy are shown in Table I, along with the mean free path
obtained from integration of the differential cross sections.
The results obtained from free-electron theory are also
shown in the table. The FWHM decreases with electron en-
ergy as scattering due to plasmon excitation becomes in-
creasingly concentrated over a small angular range. This be-
havior of the FWHM is linear as a function of incident
energy when represented on a log-log plot, as in Fig. 2~c!.

III. ENERGY UNFILTERED CBED INTENSITY PROFILES
FOR SILICON

In many high-energy electron-diffraction and microscopy
experiments, fast electrons propagate through the crystal for
distances comparable to or greater than the mean free path
for plasmon excitation, so that multiple-scattering effects
must be considered from the outset. The multiple-scattering
model of Dudarevet al.17 which includes the effects of dy-
namical scattering of the inelastic electrons may be used for
this purpose. However, for utilitarian purposes, a simpler and
computationally convenient model has been developed and
used recently in Ref. 15.

For high-energy transmission electron diffraction the in-
tensity profile I (g,t,u,f) of electrons having undergone
elastic and multiple-scattering due to plasmon excitation to
the position specified byu andf, in thegth beam and for a
crystal of thicknesst, may be written as

I ~g,t,u,f!5 lim
N→`

(
n50

N

Pn~ t !I n~g,t,u,f!. ~3.1!

The I n(g,t,u,f) are obtained using the recurrence relation

I n~g,t,u,f!5
1

sE I n21~g,t,u82u,f82f!
]s~u8!

]V8
dV8,

~3.2!

where Pn(t)5(1/n!)( t/L)ne2t/L is the probability of an
electron exciting a plasmonn times after traversing a dis-
tancet in the crystal. The simplicity and utility of this model
~which is equivalent to that used in Ref. 15! lies in the fact
that only the form of the differential cross section for plas-
mon excitation and the routinely calculated elastic scattered
intensityI 0(g,t,u,f) are required. The differential cross sec-
tion may in turn be obtained from theory, whether it be a
sophisticated dielectric response matrix calculation as in Sec.
II or simple free-electron theory, or from experiment.

We apply this simple multiple-scattering method to the
energy unfiltered CBED data of Dudarevet al.11,17 In this

experiment 80 keV electrons are incident on Si crystals of
thickness 2340, 2860, and 3420 Å atT5100 K for the
$110% systematic row orientation. The axis of the convergent
beam is offset by a Bragg angle so that (220) is in the exact
Bragg orientation with respect to the axis of the convergent
beam. However, the convergent beam was set to span only
one Bragg angleuB , instead of the usual 2uB for a CBED
pattern. This was done in order to minimize any inelastic
intensity ‘‘leakage’’ between beams that would be quite ap-
parent in the usual CBED geometry where the beams lie
exactly adjacent to each other. Theoretical CBED intensity
profiles have been obtained by calculating the intensity asso-
ciated with each of the four lowest-order central disks in the
CBED pattern obtained from an 11-beam Bloch wave calcu-
lation. Absorption from the elastic intensity due to TDS was
included using the Einstein model32 with a Debye-Waller
factor obtained using a projected mean-square displacement
of ^u2&50.0029 Å2. The Bloch wave calculation was per-
formed following the method described in Refs. 33 and 34.
The intensity of each of these disks@(2#2#0), (000), (220),
(440)# was used as the intitialI 0(g,t,u,f) in Eq. ~3.2!, to
obtain the final intensity profile using Eq.~3.1!. The number
of multiple-scattering orders (N) considered for a given
thickness was chosen by requiring the probability
(n50
N Pn(t) to be at least 99.9% of the result obtained for the

caseN→`. For the thicknesses considered in this work,
typicallyN58. The intensity of TDS scattered electrons was
assumed to contribute an approximately constant orientation
independent term~as discussed in Ref. 11! and is not shown
in these calculated CBED images. In practice the experimen-
tal CBED image will also contain Kikuchi lines formed by
diffraction of large angle inelastic scattered electrons@mainly
due to TDS~Ref. 35!#. This effect is more significant for
thicker crystals at higher temperatures due to the increased
amount of TDS, but its mathematical modeling remains
difficult.9

In Fig. 3~a! we show the simulated energy unfiltered in-
tensity profile for the central (000)~on the left! and the
(220) CBED disks. We note that the intensity of both the
(2#2#0) and the (440) CBED disks are very weak and so are
not shown. The corresponding energy filtered results are
shown below in Fig. 3~b!. Figure 4 shows the calculated
energy unfiltered@Fig. 4~a!# and energy filtered@Fig. 4~b!#
(220) disk, exposed to bring out the detail washed out by the
bright central (000) disk in Fig. 3. It is clear from reference
to Fig. 4~b! that the elastic or energy filtered (220) CBED
disk is symmetrical in intensity about the center of the disk.
As can be seen from Fig. 4~a! the energy unfiltered (220)
CBED disk shows only a marginal increased intensity on the
~left! side nearest the bright central (000) disk compared

TABLE I. The mean free path (L) and Lorentzian FWHM (G) as a function of incident energy calculated
from dielectric response theory~DRT! and free-electron theory~FET!.

E0 ~keV! 20.0 40.0 60.0 80.0 100.0 120.0 150.0 200.0 300.0 400.0

L DRT (Å) 324 543 730 894 1040 1170 1341 1580 1935 2164
L FET (Å) 343 625 889 1140 1385 1623 1969 2525 3584 4594

G DRT ~mrad! 0.735 0.384 0.262 0.201 0.164 0.139 0.114 0.089 0.063 0.050
G FET ~mrad! 0.830 0.415 0.277 0.208 0.166 0.139 0.111 0.083 0.055 0.042
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with the other side nearest the (440) disk. This intensity
variation is due to multiple small-angle inelastic scattering
from the much brighter (000) disk into the (220) disk and
would be more pronounced if a CBED scan spanning a con-
vergence angle of 2uB was used.

A direct comparison of the experimental CBED pattern
shown in Fig. 2 of Ref. 17 can be made with the theoretical
result shown in Fig. 4~a! of this work. The multiple-
scattering convolution method can be seen to result in good
agreement with experiment. A detailed comparison of the
experimental data with the kinetic equation calculation of
Dudarevet al.17 and the multiple-scattering model used in
this work may be found in Fig. 5 for a Si crystal of thick-
nesses 2340 Å@Fig. 5~a!#, 2860 Å @Fig. 5~b!#, and 3420 Å
@Fig. 5~c!#, respectively. The numerical solution of the ki-
netic equation for the one-particle density matrix17 ~taking
multiple scattering due to plasmon excitation into account
implicitly ! is seen to reproduce the asymmetrical trend dis-
played by the experimental intensity profiles. In comparison,
the multiple-scattering convolution method used in this work
shows very little asymmetry. This is due to the neglect of
dynamical effects such as resonance errors in the treatment
of multiple plasmon scattering as a simple multiple convolu-
tion of the final quasielastic intensity with the differential
cross section for plasmon excitation.

A somewhat smaller intensity contrast in the energy un-
filtered profiles would appear desirable in all cases for our
calculations. This suggests a slightly smaller elastic intensity
profile and hence a smaller mean free path for plasmon ex-
citation. This could be due to an underestimation of the dif-
ferential cross section for plasmon excitation, and hence an
overestimation of the mean free path, obtained from the di-
electric response matrix. A mean free path smaller~but still

within experimental uncertainty! than our calculated result
could account for this. This is consistent with the fact that
most theoretical calculations of the mean free path~includ-
ing, albeit to a lesser degree, the dielectric matrix calculation
of this work! tend to understate the total number of single-
particle excitations and transitions that can occur in a real
solid. This results in an overstated mean free path.

In Fig. 6 we compare the experimental energy unfiltered
intensity profiles ~solid lines! with the calculated results
based on the dielectric response matrix calculation of the
differential cross section for plasmon excitation~dotted line!
and free-electron theory~broken line! for the same condi-
tions as in Fig. 5. The dielectric response matrix mean free
path~894 Å) is shorter than the free-electron mean free path
~1140 Å) and gives better agreement with experiment. We
stress that care should be taken when considering fine detail
in the CBED profiles calculated by the multiple-scattering
convolution method outlined in this work. It is a convenient
but approximate model for the complex multiple-scattering
mechanisms occurring in the solid. Nonetheless, the model
yields reasonable agreement with experiment when using the
dielectric matrix based differential cross section. However,
the results indicate that there is a noticeable sensitivity to the
differential cross section for plasmon excitation used to ob-
tain the final intensity patterns. The use of simple free-
electron models may induce~depending on the incident elec-

FIG. 3. The calculated (000)~on the left! and (220) CBED
disks for 80 keV electrons incident on a 2860 Å thick Si crystal.
The incident beam axis is tilted by a Bragg angle from the crystal
normal. ~a! The energy unfiltered~elastic plus plasmon scattered!
CBED intensity profile.~b! The energy filtered~elastic! intensity
profile calculated without including the effects of small-angle scat-
tering away from the elastic beams.

FIG. 4. The calculated (220) CBED disk in Fig. 3 exposed to
show details ‘‘washed out’’ by the bright (000) disk in Fig. 3.~a!
The energy unfiltered~elastic plus plasmon scattered! CBED inten-
sity profile. This result can be compared with the experimental re-
sults of Fig. 2 in Dudarevet al. ~Ref. 17!. ~b! The energy filtered
~elastic! intensity profile. The decrease in intensity along the verti-
cal axis from the center of the disk~see arrow! is clearly visible in
the energy unfiltered case, but is of course not seen in the energy
filtered case.
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FIG. 5. The (220) CBED intensity profile for 80 keV electrons
incident on Si of thickness~a! 2340 Å, ~b! 2860 Å, and~c! 3420
Å. The dielectric matrix results are compared with the experimental
results and KE model of Dudarevet al. ~Ref. 17!.

FIG. 6. The (220) CBED intensity profiles for 80 keV electrons
incident on Si of thickness~a! 2340 Å, ~b! 2860 Å, and~c! 3420
Å. The dielectric matrix and free-electron theory results are com-
pared with the experimental results of Dudarevet al. ~Ref. 17!.
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tron energy! errors in the final intensity which negate
benefits gained from using a more accurate multiple-
scattering model.

IV. CONCLUSIONS

A first-principles calculation of the differential cross sec-
tion for plasmon excitation in Si has been performed, based
on an electronic band-structure-dependent dielectric matrix
calculation. The differential cross section was found to be
more delocalized at higher incident energies~100 keV!, and
more localized at lower energies, than simple free-electron
models indicate. The result was applied in a simple model
using dynamical Bloch wave theory to simulate the effects of
multiple-scattering due to plasmon excitation in energy un-
filtered convergent beam electron diffraction. Results based
on the first-principles dielectric matrix calculation of the dif-

ferential scattering cross section due to plasmon excitation
were found to compare favorably both with experiment and a
recently formulated multiple-scattering theory based on the
kinetic equation for the one-particle density matrix. The sen-
sitivity of the intensity patterns to the particular differential
cross section used indicates that care should be taken when
analyzing results using free-electron theory.
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