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We investigate the two-dimensional attractive Hubbard model with quantum Monte Carlo techniques to
reveal the crossover from a BCS-type superconductivity in the weak-coupling regime to a superconductivity
properly described by a Bose-Einstein condensation~BEC! of local, preformed pairs. The crossover from BCS
to BEC is particularly well exposed in the temperature dependence of both the spin susceptibility and the
double occupancy, as well as by the appearance of a pseudogap in the density of states far aboveTc . These
features are also mirrored in the shape of the specific-heat peak aroundTc , the separation of the temperature
regimes where pair formation and their condensation occur, and in the transfer of spectral weight from the
single-particle excitation branch to a pair band in the normal state.@S0163-1829~96!05226-5#

I. INTRODUCTION

The main purpose of this work is to explore the crossover
in the attractive Hubbard model from weak- to strong-
coupling superconductivity. In the weak-coupling regime a
BCS description~see, e.g., Ref. 1! is adequate and the occur-
rence of superconductivity below the critical temperature
Tc is tied to a pairing instability of the Fermi liquid atTc .
The formation and condensation of pairs only occur below
Tc . In the strong-coupling limit, however, the scenario of
Bose-Einstein condensation~BEC! appears to be more ad-
equate because the pairs that condensate atTc already occur
at a higher temperature. Accordingly, we expect that the
normal-state properties of these limiting coupling regimes
will differ markedly. In phase-transition terminology, the
weak-coupling regime corresponds to the limit where a
mean-field description becomes valid, because the neglect of
superconducting fluctuations in the normal state is justified.
In the strong-coupling or BEC regime, superconducting fluc-
tuations dominate in a temperature window aroundTc and,
most importantly, also occur aboveTc . The crossover from
weak- to strong-coupling superconductivity corresponds in
this respect to a crossover from mean-field to fluctuation-
dominated or critical-point behavior. In this context it is in-
teresting to note that, in an early attempt prior to BCS, Blatt
and Schafroth2 explored BEC in the ideal and charged boson
gas to understand the occurrence of superconductivity in
conventional metals. An important similarity throughout the
coupling range is that we can, for instance, apply Yang’s
concept3 of off-diagonal long-range order~ODLRO! in the
reduced density matrix to classify the macroscopic quantum
state.

Renewed interest in this crossover arose with the discov-
ery and study of high-Tc materials. Unlike conventional BCS
superconductors, these compounds are characterized by ex-
tremely small pairs having a spatial extension of the order of
one lattice spacing. For this reason the high-Tc materials
have been attributed to the intermediate-coupling regime.4

This crossover has been studied by various authors4–7 and,
more recently, by Randeriaet al.8–10

Our intention here is to extend these studies. We concen-
trate on the investigation of the attractive Hubbard model
with two types of quantum Monte Carlo~QMC! methods,
the grand-canonical approach after Hirsch11 for theT.0 re-
gime and the projector method for the ground state. The
implementation of recent improvements of the numerical
tools ~see Ref. 12! allows us to extend this QMC study far
beyond the previously published data. We can easily reach
sufficiently large cluster sizes~Sec. III presents data for lat-
tices up to 144 sites!, achieve high coupling strengths of up
to U/t5212 and even higher, and cover the entire tempera-
ture range down to the ground state. Our extension of previ-
ous QMC results includes the dependence of a rather long
list of properties on temperature, band filling, and coupling
strength. These properties include kinetic energy, double oc-
cupancy, specific heat, spin susceptibility, superconducting
order parameters, chemical potential, and the one-particle
spectral functions. In Sec. II we introduce the model. A brief
outline of the QMC method is given in Sec. III. To provide
guidelines for the interpretation of the QMC results, we
sketch in Sec. IV the BCS and moment approaches. In Sec.
V we present and discuss our QMC results. The crossover
from BCS to BEC is particularly well exposed in the tem-
perature dependence of both the spin susceptibility and the
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double occupancy, as well as the appearance of a pseudogap
in the density of states far aboveTc . These features are also
mirrored in the shape of the specific-heat peak aroundTc ,
the separation of the temperature regimes where pair forma-
tion and their condensation occurs, and in the transfer of
spectral weight from the single-particle excitation branch to
a pair band in the normal state.

II. MODEL

As a starting point for our investigation we use the well-
known two-dimensional attractive Hubbard model
~‘‘negative-U model’’! on a square lattice:

H52t (
^ i j &s

~cis
† cjs1H.c.!1U(

i
ni↑ni↓2m(

is
nis ,

~1!

wherecis
† (cis) denote fermionic creation~annihilation! op-

erators at sitei with spins, andt is the kinetic term between
two neighboring sites, which serves as an energy unit
throughout the paper. The limit^ i j & restricts the sum to next
neighbors,U denotes the interaction~‘‘coupling’’ !, which is
repulsive for positive and attractive for negative values of
strengthU, andm is the chemical potential.

In the free case (U/t50) we have the well-known disper-
sion relation for the two-dimensional system

e~k!522t@cos~kx!1cos~ky!#. ~2!

This system is the simplest lattice model for correlated
electrons which can become superconducting, and it is be-
lieved to undergo in two dimensions~2D! a Kosterlitz-
Thouless~KT! transition into a superconductings-wave state
away from half-filling. At half-filling one finds a coexistence
of superconducting and long-range charge-density wave cor-
relations, which drive the effective KT transition temperature
in 2D to zero,TKT(r50.5)50.13,14 The phase diagram is
symmetric around half-filling,r50.5 ~density per site and
per spin, filling ^n&51.0 electrons per site!, i.e.,
TKT(r)5TKT(12r), because of particle-hole symmetry,
and reaches its maximum aroundr50.4 TKT .

Because of its simplicity this model allows us to investi-
gate a remarkable crossover from low to strong interaction.
Varying theU parameter provides us with a tuning instru-
ment for the pair size and therefore for a transition from
highly extended pairs to more or less local pairs. Neverthe-
less we do not propose this model as a realistic high-Tc
model, but use it to gain a better understanding of the basic
mechanisms at the superconducting transition.

III. QUANTUM MONTE CARLO METHODS

We present numerical studies of the described model us-
ing predominantly two types of QMC methods, the grand
canonical QMC formalism after Hirsch,11 and the projector
QMC method based on earlier work by Sugiyama and Koo-
nin, Sorellaet al., and de Raedt.15–17We emphasize that the
QMC approach has the potential to treat these types of
strongly correlated systems, allowing us to go far beyond
certain approximative methods; it provides an
approximation-free, numerically exact ansatz, unlike most

standard analytical techniques, and yields information about
systems much larger than those accessible by exact diagonal-
ization algorithms. In addition, applying these methods to the
attractive Hubbard model frees us from the central drawback
of fermion QMC calculations, the so-called ‘‘sign problem.’’
This allows us to perform reliable and stable calculations
over a vast parameter range. For both methods we use the
Suzuki-Trotter and the Hubbard-Stratonovich transformation
to ‘‘break up’’ the quantum-mechanical many-particle sys-
tem.

A central technique on which we rely is the temperature-
dependent formulation of a QMC algorithm in the grand-
canonical ensemble, which is largely based on the work of
Hirsch.11 Most of the presented data were produced with this
method. It starts with the grand-canonical formulation of the
partition function Z, the expectation value for a certain
quantum-mechanical observableO then represents an aver-
age over the grand canonical ensemble as

^O&5
1

Z
Tr„Oexp~2bH !… ~3!

with the partition function

Z5Tr„exp~2bH !…. ~4!

But this ansatz has a weak point:
For largeb, i.e., at low temperatures, the grand canonical

algorithm of Hirsch18 becomes increasingly useless because
not only the numerical effort to go to higherb values~i.e., to
lower temperatures! itself increases the computer time, but
also because numerical instabilities start to dominate in the
low-temperature regime and the necessary amount of CPU
time to compensate them by introducing more and more so-
phisticated stabilization techniques12,19,20 grows dramati-
cally.

Although we are able to push our algorithm to far lower
temperatures than usually known in the literature, we prefer
to switch to a different type of QMC method to investigate
the ground-state properties of the system, now in the canoni-
cal ensemble with fixed particle numbers. For this purpose
we apply the projector method,15–17,21which enables us to
filter out the ground state of a wave function by applying a
projector/filter exp(2QH) ~in imaginary time! to an appro-
priate test or trial wave functionuCT&, where it is supposed
that the trial function has a nonvanishing overlap with the
ground state. By expanding in energy eigenvalues one can
show that all statesuC1&,uC2&, . . . that belong to higher
energies than the ground stateuC0& are exponentially sup-
pressed:

exp~2QH!uCT&5exp~2QH!(
n

uCn&^CnuCT&

5exp~2QE0!H ^C0uCT&uC0&

1 (
n.0

exp@2Q~En2E0!#

3^CnuCT&uCn&J
→

Q→`

C•uC0&.
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The exponential of the Hamiltonian exp(2QH) can again be
treated using the two above-mentioned decompositions, and
again we are faced with certain numerical instabilities, which
we now try to suppress by applying a modified Gram-
Schmidt scheme as introduced by Sorella.16

For both methods we use as updating mechanism a spe-
cial single-spin algorithm, which allows a very efficient and
elegant formulation of the algorithm.12,22Both methods pro-
vide us primarily with equal-time normal Green’s functions,
which we denotêcicj

†&, and which we can use to compute a
large number of observables such as the energies, occupation
numbers, susceptibilities, and space-resolved pair-correlation
functions to investigate the normal-state and superconduct-
ing properties of our system.

According to Yang3,23–25the relevant order parameter for
the examination of the superconducting properties is the re-
duced two-particle density matrix or rather the pair-field cor-
relation function; because the attractive Hubbard model is
believed to undergo a transition into as-wave state we con-
centrate merely on the following observable:

xxs~ l !5^Dm
† ~0!Dm~ l !1Dm~0!Dm

† ~ l !&, ~5!

where

Dm
† ~ l !5

1

N(
i
ci1 l1m/2
† ci1 l2m/2

† . ~6!

We callm50 the on-site pair operator, where both constitu-
ents of the pair are created at the same site and annihilated at
distancel ; analogously we can investigate larger pair exten-
sionsm51,A2, . . . , which we call ‘‘extended-s pairs.’’ To
exclude trivial one-particle contributions we focus on the
so-called ‘‘vertex’’ correlation function26 by substracting the
corresponding one-particle contributions. In other words we
calculate the difference of the~in fermionic operators! quar-
tic contributions and the product of the quadratic contribu-
tions. A macroscopic quantum state, i.e., superconductivity,
is indicated by off-diagonal long-range order
~ODLRO!,3,23–25 which is present if the vertex correlation
function approaches a finite constant value~‘‘plateau
value’’! for large spatial pair distances; we use this long-
range plateau value~in the following sections denoted ‘‘pla-
teau’’ or xos

plateau) as a substitute for a superconducting order
parameter

x~ l !5xplateau1exp~2 l /j!. ~7!

In addition we are able to retrieve in both frameworks time-
dependent Green’s functions~in imaginary time!, which may
be written

Gs~ i2 j ,t!52^Ttcis~t!cjs
† ~0!&. ~8!

As we are merely interested in dynamical properties at finite
temperatures, we restrict ourselves to the evaluation of this
quantity in the grand canonical algorithm; a scheme for the
application in theT50 formalism was introduced by von der
Linden26 and applied in Refs. 12 and 27.

The time-dependent Green’s functionsG(k,t) in k space
are intimately connected to the spectral functionA(k,v) via

G~k,t!55 2E
2`

`

dv
exp~2vt!

exp~2bv!11
A~k,v! if t.0;

1E
2`

`

dv
exp~2vt!

exp~1bv!11
A~k,v! if t,0,

~9!

from which we can easily obtain the density of states as a
summation over allk states:

N~v!5
1

N(
k
A~k,v!. ~10!

These simple equations pose a serious problem: It is rather
difficult to extract the spectral properties from the computed
QMC data because an analytic continuation, or rather an in-
verse Laplace transformation from imaginary to real time, is
required. This inversion of QMC data~and usually of all
statistically computed data! is extremely numerically ill-
posed due to two obvious reasons: Data are available only
for a limited set of imaginary times and the data are usually
more or less noisy. As a consequence, the solution might not
be unique in general.

The method of choice is the maximum entropy ansatz, as
proposed by Gubernatis, Jarrell and co-workers27–30 for a
similar type of data; the method we used to obtain the pre-
sented information is a slight variation of this ansatz after
von der Linden’s work.27,31

IV. ALTERNATIVE METHODS

We use the recent generalization of Nolting’s moment
approach32–34 to study the single-particle properties of the
negative-U model in the normal state as well as in the su-
perconducting regime. Adapting a two-d-peak ansatz
( j52) for the spectral densityA(k,v) in the normal state
and a four-d-peak ansatz (j54) in the superconducting re-
gime

A~k,v!5(
i51

j

a i~k!d„v2V i~k!…, ~11!

one is able to fix the resulting excitation branches and their
weights in terms of the exact first four normal moments

An~k!5E
2`

`

dvvnA~k,v! ~12!

and the first two anomalous frequency momentsBn(k). This
leads to a set of self-consistently solvable equations for the
parameters including the chemical potential and the gap for
fixed band filling and temperature. A crucial limitation of
this approach arises from the neglect of damping in the two
excitation branches, i.e., lifetime effects and multiparticle ex-
citations ~continuum states! are not included. This ansatz
correctly reproduces the atomic limit, the free case and the
strong-coupling limit in first order oft. In the intermediate-
coupling regime it provides reasonable estimates as long as
the chemical potential is within a band. Further details can be
found in Refs. 33 and 34.

In addition we include a result from a self-consistent
T-matrix approach;35 unfortunately this method allows only
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valuable results in the low-correlation limit, i.e., low filling
and weak coupling as discussed in the Sec. V because it
involves only two-particle interaction terms and neglects
such features as the particle-hole interaction channel. We
nevertheless find that it provides a very interesting approach
to compare our results and to clarify limitations of the QMC
ansatz, especially because this method gives access to re-
markably larger lattice sizes, which might be an important
feature for the investigation of quantities such as spectral
weights or the density of states. As a consequence it provides
quite good access to the limit of very low coupling strength
24t,U,0, which is difficult to treat by QMC due to more
or less severe finite-size effects.

We also compared our results with the BCS approxima-
tion yielding the gap equation

1

U
5(

k

1

2Ek
tanhS bEk

2 D ~13!

with the extended dispersion

Ek5A~ek2m̄ !21D2, ~14!

whereek is the dispersion in the noninteracting case,D the
gap, m̄5m2rU the chemical potential including a Hartree
shift, andU the strength of the attractive interaction. Because
D vanishes at and aboveTc , the gap equation also fixes the
transition temperature.

Moreover, the chemical potential follows from

r5(
k

@exp„b~Ek2m̄ !…11#21, ~15!

and the spin susceptibility is given by

xs,052b(
k

exp~bEk!

@11exp~bEk!#
2 . ~16!

For the spin susceptibility, a simple random-phase ap-
proximation~RPA! yields the expression

xs,RPA5
xs,0

12Uxs,0
, ~17!

which reduces forU50 to the free-system casexs,0 .

V. RESULTS

Previous investigations revealed the following properties
of the 2D attractive Hubbard model: It shows superconduct-
ing correlations over the entire filling range; away from half-
filling it is believed to undergo a KT transition into a super-
conducting state, with an estimated maximumTc around
r'0.4. At and close to half-filling this system also exhibits
long-range charge-density correlations, and is widely re-
garded to be a charge-density insulator, with the conse-
quence thatTc would be driven to zero.4,13,14,36

A. Weak-coupling regime

We shall first consider the ‘‘low-correlation’’ limit, i.e.,
r50.1 and the interaction strengthU/t524.0, to allow a
comparison with the moment, theT-matrix and the BCS ap-
proach. This choice of the parameters is motivated by the
following considerations.

A sufficiently large attractive interaction leads to a small
pair size and coherence length, which reduce the finite-size
effects in our simulation of small discrete clusters. For
smallerU we found strong size effects, which we can only
overcome by a very CPU-time-consuming scaling analysis.
In this filling regime, U/t524.0 turned out to be large
enough to produce pairs of the order of only a few lattice
spacings, being suitable for lattice sizes accessible to our
algorithm, such as 12312.

Our other restriction was to find a regime that allows a
comparison with other methods, such as the moment and

FIG. 1. Uniform magnetic susceptibilityxs as
a function of temperature,U/t524.0, filling per
site and spinr50.1 ~i.e., 80% doping away from
half-filling!. Shown is QMC data for two lattice
sizes~838 and 12312, open symbols! as well as
data from a normal-stateT-matrix ansatz above
Tc ~32332 lattice, filled circles! and a simple
RPA approach~stars!. The inset adds data from a
BCS treatment of a lattice fermion system, as de-
scribed in Sec. IV, whereas the filled circles in
the inset indicate the continuation of thex data in
the free case, without any BCS gap, for compari-
son. Note the absence of a fluctuation region in
the BCS description.
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T-matrix approaches. The range of validity of these tech-
niques is the low-correlation limit.

The first quantity we investigated is the uniform static
spin susceptibilityxs(T), Fig. 1. This figure contains QMC
data from two different cluster sizes, as well as self-
consistentT-matrix results from Micnaset al.,35 a simple
RPA curve, and data from a BCS ansatz in the inset. The
T matrix has been evaluated only in the normal state. For
large temperatures, the QMC results appear to resemble the
T matrix and RPA results quite well, whereas for lower tem-
peratures we find rather pronounced deviations. Below
T/t,0.5 evenT matrix and QMC deviate strongly because
the T-matrix results aboveTc show no strong qualitative
deviation from RPA and appear to be fairly constant. In con-
trast, the QMC curves start to bend down atT/t'0.5, an
astonishingly high temperature, diverging from the usual
Pauli behavior, and goes to zero in the superconducting re-
gion after a large transition area. The QMC estimate for the
transition temperature of this system seems to be at or even
belowT/t50.1 ~for comparison, see Fig. 2!. We would like
to associate this behavior with a pair-breaking effect around
the critical temperature, which might arise either from a fluc-
tuating superconductivity aboveTc or a formation of bound
pairs aboveTc . We will comment on the possible origin of
this effect below. Obviously neither of these effects is acces-
sible by a simple RPA treatment; the normal-stateT matrix
does not seem to be sufficiently sensitive to these effects,
either.

Figure 2 shows QMC results~we henceforth use the con-
vention that all results are QMC data unless explicitly stated
otherwise! for the double occupancŷni↑ni↓&. This is
equivalent to the potential or Hubbard energy if multiplied
by U. Also shown is the superconducting order parameter
defined as the long-range plateau value of thes-wave pair
correlation function,xos

plateau. In the inset to Fig. 2 we show
for comparison the temperature dependence of the order pa-

rameter described with the BCS formalism for this parameter
regime. Both sets of QMC data, double occupancyand su-
perconducting order parameter, show clear transition features
exactly in the temperature range where the spin susceptibility
goes to zero. In this regime the order parameter increases
from zero, and the double occupancyd goes up again~com-
pare inset to Fig. 10, double occupancy in BCS!, therefore
deviating from the free-system behavior and accounting for
an increasing number of double-occupied sites, i.e., pairs.
This accounts only for âD2&/U2 contribution to the normal-
state background, withD being the usual superconducting
order parameter as for example in BCS theory~see inset of
Fig. 2!. The three features in the susceptibility, the order
parameter and the double occupancy take place exactly at the
same temperature, which we would like to define as the criti-
cal or superconducting transition temperatureTc , with the
same transition region. Therefore we come to the following
conclusion: Pair ‘‘formation’’ and ‘‘condensation’’ take
place more or less at the same temperature,Tp'Tc ; the
formation of pairs~signaled byd andxs) is intimately con-
nected with the transition of the system into a macroscopic
coherent quantum state. The deviation ofxs from the free-
system and RPA behavior aboveTc results in this~weak!
coupling regime from superconducting fluctuations in a criti-
cal region aroundTc , and is probably not yet connected to a
pronounced independent formation of bound pairs above
Tc . The mean-field critical temperature resulting from the
simple BCS ansatz isTc

BCS/t50.36~see Fig. 2, inset!. This is
much higher than the QMC estimate, and in this regime one
would probably assign the region roughly between the mean-
field Tc and the exactTc to superconducting fluctuations.
Treatment within the moment approach using a two-pole an-
satz aboveTc and four poles in the superconducting region
yields comparable results, as shown in Figs. 3 and 4, where
we provide again data for the double occupancy and addi-
tionally for the chemical potential, which is needed to guar-

FIG. 2. Double occupancŷni↑ni↓& ~open
squares! and order parameter~plateau value of
the singlet s-pair correlation function, filled
circles as a function of temperature. QMC data
U/t524.0, r50.1, system size 12312. The
vertical line marks the transition; one finds a clear
signal at the transition temperature in the double
occupancy corresponding to the increase of the
order parameter. The inset shows the temperature
dependence of the superconducting gap within
the BCS ansatz for the same parameter set with a
much higher transition temperature.

1290 54SINGER, PEDERSEN, SCHNEIDER, BECK, AND MATUTTIS



antee a fixed densityr50.1. QMC as well as the moments
and also theT matrix33 reproduce consistently a maximum
aroundT50.7t, which we interpret as a feature of the inter-
acting electron system in the normal state, not related to the
appearance of superconductivity. Reference 33 shows that
this feature can be explained in terms of a two-excitation-
branch ansatz, and provides results for the contributions of
the two branches to the double occupancy as a function of
temperature. For comparison the double occupancy of the
noninteracting one-band system in the normal state can be
seen in Fig. 10. This ansatz affords us an excellent under-
standing of the qualitative behavior of our QMC results be-
cause it clearly resembles the most prominent feature ind,

which is the increase of the pair number atTc ~again com-
pare with the BCS data in Fig. 10!.

The moment approach as well as the even simpler BCS
ansatz treat the superconducting phase with a gap separately
from the normal, gapless phase. Therefore in these ap-
proaches there is no transitional region of superconducting
fluctuations, giving rise to a quite sharp feature atTc , which
is smeared out in the QMC data. Otherwise we regard the
agreement between the simpled-peak ansatz of the moment
approach and the QMC treatment in this regime to be aston-
ishingly good. It is now important to compare the behavior
of m with the double-occupancy curve. The kink in the mo-
ment curve ford also produces a kink in the corresponding

FIG. 3. Temperature dependence of the
double occupancy within a QMC simulation
~squares! and in the moment approach~circles!
with a two-d-peak ansatz above the transition
temperature and a four-peak ansatz in the super-
conducting regime. System parameters:
U/t524.0, r50.1, cluster size in the QMC
simulation: 12312.

FIG. 4. Temperature dependence of the
chemical potentialm(T), which is necessary to
guarantee a constant fillingr50.1. Coupling
strength U/t524.0. Shown are QMC data
~squares, 12312 lattice!, moment data~circles,
two-pole ansatz above, four-pole ansatz below
the transition! and BCS values in the inset.
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m data because the presence of pairs results in a drop of
m. In the smallU moment ansatz the behavior of the chemi-
cal potential~i.e., the kink atTc) agrees with recent findings
of van der Marel and Rietvield;37 we are not able to extract
this tiny feature, which we also find within the BCS treat-
ment, from our finite cluster QMC calculation. This might be
due to several reasons, one being the smearing out of this
detail due to thermal fluctuation region, the other being
finite-size effects, the latter being more probable.

So far we have attempted to classify our QMC data in the
context of other methods; we shall henceforth switch to the
regime close to half-filling,r50.4 corresponding to a doping

of d520% away from half-filling, and describe the cross-
over from weak to strong coupling. This regime is no longer
realistically accessible by the other approaches.

B. Crossover

We will first present a number of results, describe them
and draw pertinent conclusions in Sec. VI.

1. Magnetic susceptibility

Again starting with the simple uniform static magnetic
susceptibilityxs , Fig. 5, we find forU/t524 a slightly

FIG. 6. Temperature dependence of the
chemical potentialm(T), r50.4, U/t 5 24.0,
26.0, 28.0, 212.0, QMC data, system size 12
312.

FIG. 5. Uniform magnetic susceptibilityxs as
a function of temperature,r50.4 ~i.e., 20% dop-
ing away from half-filling! for a range of cou-
pling strengths,U/t524.0 ~half of bandwidth
W58t) → U/t5212.0 (1.5W). QMC data, sys-
tem size 12312 ~144 sites!.
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enhanced but still similar behavior compared to that in Fig.
1. The situation changes dramatically if one considers higher
coupling strengths: The decrease ofxs starts at very high
temperatures and forU/t>8, xs is an increasing function of
T in the temperature regime investigated. Spin excitations
are suppressed with decreasing temperature, and we obtain
tightly bound pairs which contribute only when they are ion-
ized ~‘‘pair breaking’’!. Obviously we also obtain a new
high-temperature scale of coupled spins, i.e., pairs. These
results are in very good agreement with Randeria’s recent
publication ~e.g., Ref. 8! for the quarter-filled system,
r50.25 ~see inset of Fig. 14!.

2. Chemical potential

Figure 6 shows the temperature dependence of the chemi-
cal potentialm(T), which is necessary to obtain a certain
constant filling, in our caser50.4, for the same set ofU
values as before. All data shown include for convenience the
usual shift2U/2, which is not written in the formulation of
the initial Hamiltonian in Sec. II; the inclusion of this shift
should help the reader compare our data to other, previously
published sources, although from a technical point of view
the simulation uses the formulation described in Sec. II.

The (U/t524) curve shows the usual monotonic behav-
ior. However for largeuU/tu>8, being comparable to or

FIG. 7. Kinetic energyEk(T) as a function of
temperature; QMC data, system parameters as in
Fig. 6.

FIG. 8. Double occupancy~potential energy
contribution divided by the interaction! as a func-
tion of temperature; QMC data, system param-
eters as in Fig. 6.
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larger than the bandwidthW/t58 of the system, an entirely
new and different effect can be seen;m(T) decreases with
decreasing temperature, whereas in the high-temperature re-
gime a behavior similar to the weak-coupling case is found.
Looking at the bending temperature in the (U/t5212) case,
this takes place at an enormously high temperature of
T/t'0.5 and is definitely not related to the transition to the
superconducting state.

At this point it is appropriate to comment on the paper of
Randeriaet al.8 They do not find this feature, and we believe
we can explain why not. First, they give a ground-state point
at every curve, but it results only from a mean-field approach
and is not necessarily an appropriate continuation of QMC

data. Second, in the (U/t528) case, their QMC data stop at
a temperature above the one at which we find the bending of
our curve; nevertheless, a continuation of their high-
temperature curve into the mean-field ground-state point
shows a slight deviation of their low-temperature QMC data,
which is in agreement with our results. Third, for
U/t5212, in contrast to their other results, they provide
data for only an extremely small 434 system. We can repro-
duce their results forr50.25 as well as in the (r50.4) case
shown by taking the same small 434 cluster, but we obtain
the bending behavior for larger lattice sizes. It starts to sta-
bilize above a linear dimension of at least 8. We believe that
our QMC algorithm is still numerically very stable at this

FIG. 9. Temperature dependence of the spe-
cific heatc(T), r50.4, for the two opposite cou-
pling regimes, weak couplingU/t524.0 ~open
squares! and strong couplingU/t5212.0 ~filled
circles!. The dotted line includes, for comparison,
the data for the free system,U/t50. QMC data,
system size 12312.

FIG. 10. Temperature dependence of the spe-
cific heatc(T) within a BCS ansatz, for a cou-
pling strength ofU/t524.0 andr50.1. There is
a clear ‘‘mean-field’’-like jump at the transition.
The inset shows BCS data for the double occu-
pancy; the uprising detail~‘‘finger’’ ! below the
transition ~pairing instability signal! is respon-
sible for the specific-heat jump.
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strong-coupling strength and low temperatures, which we at-
tempted to monitor with a number of technical indicators and
to verify by a comparison of several observables to results
from other ~e.g., exact diagonalization! techniques. This
bending is also found for the same values ofU in the
normal-state moment approach, with an uncertainty due to
possible numerical artifacts in this coupling and temperature
regime. In contradiction to the results shown for finite di-
mensions, a simulation of an infinite-dimensional system af-
ter Hirsch and Fye38 and Georges and Krauth,39 where a
mean-field-like treatment becomes exact, does not reveal this
bending and yields a monotonic behavior. Therefore, we
cannot definitely clarify whether the QMC results simply

reproduce an artifact of the method, or whether the shown
properties are a true feature of a finite-dimensional system; a
more detailed discussion of this subject will be presented in
a future publication.40

Our interpretation of this phenomenon is that the forma-
tion of tightly bound pairs above the condensation tempera-
ture, as already indicated by the spin susceptibility, leads to
this reduction. In a simple intuitive description this pair for-
mation obviously has a certain influence on the chemical
potential of theelectronsbecause a fraction of the fermions
is tightly coupled into local composite bosons. Therefore the
effective filling of the remaining fermionic system decreases,
which involves a decrease of the chemical potential. The S

FIG. 11. Temperature dependence of the mag-
netic susceptibilityxs ~open squares! and the su-
perconducting order parameterxos

plat ~filled
circles! in the weak-coupling regime
U/t524.0, r50.4. QMC data, system size 12
312. Note the coincidence of pairing and con-
densation temperatures.

FIG. 12. Temperature dependence of the mag-
netic susceptibilityxs ~open squares! and the su-
perconducting order parameterxos

plat ~filled
circles! for an intermediate-coupling strength
U/t526.0, r50.4. QMC data, system size 12
312.
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shape of the curve, i.e., the back bending at very low tem-
peratures, merely reflects that only a certain portion of the
electrons are constituents of the bosonic pairs, whereas the
remaining electrons contribute to the fermionic system, and
the chemical potential of the fermions remains finite. This is
an indication that we are somehow still in an intermediate
regime, where only a part of the fermionic system is tightly
paired. We expect this portion to increase with increasing
attractive coupling. The effect described fits, in our opinion,
very well into the picture of a formation of composite bosons
far above a superconducting transition.

3. Energies

We now turn to the temperature dependence of the two
constituents of the total energy, the kinetic energy and the
potential contribution, or rather its descendant, the double
occupancy. Looking at Figs. 7 and 8, which show these de-
pendences for the sameU values as in the case of the sus-
ceptibility and the chemical potential, one can immediately
see the qualitative crossover between weak- and strong-
coupling data. We first discuss the double occupancy, Fig. 8:
Whereas in the case ofU/t524.0 we find the already dis-
cussed increase atTc , there is now a change in the low-
temperature behavior ofd for U/t5212.0, d simply ap-
proaches a constant value. This is the important difference.
The fact, that we still find a maximum ofd at high tempera-
tures reproduces a relic of the free system because at these
temperatures we have a dynamic double occupation, an ef-
fect we would also see in a nonsuperconducting system. This
detail should disappear for a higher coupling strength be-
cause for infinitely strong coupling we would getd5r.

In the potential energy part the characteristic feature dis-
appears, and in the kinetic term a new one arises when we
move through the crossover regime towards largeU. We can
extract this from the data in Figs. 7 and 8. Starting again
from smallU the kinetic energy merely behaves like in the
free system; in contrast, the large-U data are qualitatively

different, because the kinetic energy becomes more or less
constant over a large temperature range, and it gets closer
and closer to zero. We interpret this as a vanishing of the
kinetic energy of the fermions due to a strong pair coupling.
When the composite bosonic pairs undergo a phase transition
into a condensed phase-coherent state, the fermions as their
constituents regain kinetic energy. Such behavior is reminis-
cent of the behavior of preformed pairs; atTc the specific
heat has a peak. The transition occurs over quite a large
range due to a large fluctuation region; we will comment on
this later.

4. Specific heat

The aforementioned behavior of the kinetic and potential
energies will also be reflected in the specific heat, shown in
Fig. 9 forU/t524 andU/t5212. For weak and interme-
diate coupling (U/t524) we observe qualitative agreement
with a BCS jump, illustrated in Fig. 10. In the QMC data the
jump is smeared out by finite-size effects in our still very
small system. This is well documented also in classical and
quantum spin systems, where a ‘‘real’’ discontinuous jump
could be only expected in the case of an infinite system, so a
size scaling would be necessary for an appropriate treatment
and will be done in the near future.

In contrast the large-U case shows a totally different
curve, and reflects much better the predicted specific-heat
behavior of a local pair system inD53, which will exhibit a
logarithmic anomaly at the condensation temperature.4 The
specific heat of such a system is proportional toT3 below the
l singularity forT→0 as well as to a behavior}1/T2 above
the singularity in the normal stateT→`.

One strong advantage of our numerical access to this in-
tricate problem of describing a crossover phenomenon be-
comes obvious: We are not only able to provide results for
the specific heat in the two limiting cases, we can also assign
this qualitative change to specific effects in the underlying
constituents of the energy, i.e., the increase of pairs atTc in

FIG. 13. Temperature dependence of the mag-
netic susceptibilityxs ~open squares! and the su-
perconducting order parameterxos

plat ~filled
circles! in the strong-coupling regime
U/t528.0 ~bandwidthW58t). The tempera-
tures for pair formation~indicated by the de-
crease of the susceptibility down to zero! and
condensation~indicated by the order parameter!
are clearly separated, in contrast to Fig. 11,
U/t524.0. QMC data, system size 12312.
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the BCS case~i.e., the uprising ‘‘finger’’ shown in the inset
of Fig. 10!, and the manifestation of BEC in the kinetic
energy in the strong-coupling regime. In contrast to the
chemical potential, where we find some principal differences
between finite-dimensional QMC simulations and an
infinite-dimensional simulation~see above!, the discussed
qualitative crossover in the specific heat between the weak-
and strong-coupling limits is fully supported by recent
infinite-dimensional simulations; we again refer to Ref. 40.

Why do we find mean-field-like behavior in the weak-
coupling regime that qualitatively and even quantitatively
resembles the characteristics of the three-dimensional sys-
tem? Around the transition temperatureTc we always find a
temperature window with superconducting fluctuations. The
width of this window strongly increases with increasing cou-
pling strength, and the coherence length and therefore the
extension of a singlet pair decreases. In the limit of highly
extended pairs a mean-field treatment of the effects becomes
increasingly appropriate. This is the reason for the incredible
success of the BCS approach in the conventional supercon-
ductors with their large coherence lengths and pair exten-
sions. Each pair overlaps with numerous other pairs, and
therefore ‘‘lives in the mean field of the others.’’ In contrast,
short-coherence-length materials with their more or less local
pairs obviously show certain differences, which we indeed

expect. A system with short coherence length will exhibit a
wide critical regime, and its true critical behavior should be
observable, whereas in the weak-coupling BCS-like regime
the width of the critical regime can be as narrow as
10215 Tc and is usually technically inaccessible.

An elaborate discussion of the differences in critical be-
havior and the critical exponents can be found in the work of
Micnaset al.4 Indeed, one of the remarkable characteristics
of the high-Tc materials is their small-coherence-length vol-
ume, leading to pronounced thermal fluctuation effects con-
sistent with 3Dxy-critical-point behavior.41

In addition, the fact that we find the phenomena of the
weak-coupling 2D system to be quite similar to the effects
expected from a real 3D phase transition supports our argu-
mentation because as long as a mean-field treatment yields
the dominant features, the difference between 2D and 3D
should play only a minor role, at least concerning the de-
scription of certain details. A ‘‘mean field’’ should not be
able to distinguish dimensionality. We are nevertheless
aware of the principle implications of Mermin and Wagner’s
theorem. With increasingU, features characteristic for a KT-
like transition should become more important, and we expect
a more pronounced difference between the behavior of the
2D and the 3D system. Up to now, our resolution is too poor
to investigate quantitative differences, especially because our
systems might be still too small to allow reasonable esti-
mates, for example, of the exact position of the specific-heat
peak relative to the transition temperature or of the appropri-
ate critical exponents. To substantiate our argumentation
concerning the separation of the two temperature scales for

FIG. 14. Single-particle density of statesN(v) above the super-
conducting transition, weak couplingU/t524.0, quarter filling
r50.25, for a number of temperatures far above the transition in
the normal state,T/t50.2 ~solid line!, T/t50.33 ~dashed line!,
T/t50.5 ~dotted line! andT/t51.0 ~dash-dotted line!. QMC data,
system size 10310, analytic continuation via MaxEnt. The frequen-
cies, measured in units of t, are counted so that the chemical poten-
tial corresponds tov/t50. The upper inset shows the temperature
dependence of the uniform magnetic susceptibilityxs(T) ~filled
circles! from our simulations; for comparison, data from Randeria
et al. ~Ref. 8! is included~solid line!. The lower inset figure dis-
plays the noninteracting case,U/t50 ~‘‘free band’’!, for the same
filling r50.25.

FIG. 15. Single-particle density of statesN(v), weak coupling
U/t524.0, filling r50.4, for a series of temperatures. QMC data,
system size 838, analytic continuation via MaxEnt.
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pair formation and pair condensation in the crossover re-
gime, we again turn away from the energy discussion.

5. Order parameter: pair formation vs condensation

As discussed in the introduction, a common feature of
both extremal regimes, the weak-coupling BCS and the
strong-coupling BEC description, is the fact that in both
cases we can apply Yang’s ODLRO concept3 in the density
matrix, or rather in the pair-correlation function, to identify
the appearance of a macroscopic quantum state~superfluidity
or superconductivity!. Therefore we take this indicator to
investigate the superconducting transition–condensation
temperatureTc ~or TKT).

On the other hand, a good indicator of pair formation are
the simple uniform magnetic susceptibilityxs , as discussed
above, and the single-particle momentum-resolved spectral
densities and single-particle densities of states. First we con-
centrate onxs . Figures 11–13 show forU/t524, 26,
28 the behavior of the plateau value of thes-wave singlet
pair correlation functionxos

plat as an ODLRO indicator and
therefore as the order parameter for the condensation transi-
tion as a function of temperature. All three curves include
additionally the corresponding spin-susceptibility data.

The results are quite obvious: Whereas in the
(U/t524.0) case~Fig. 11! the formation of pairs, indicated
by the bending down ofxs , and the transition into the mac-
roscopic quantum state, signaled by the increase ofxos

plat,
appear to take place at more or less the same temperature,
both effects seem to separate into two distinct effects at dif-

ferent temperatures when we go viaU/t526 to U/t528
~Figs. 12 and 13!. The latter gives clear evidence of a con-
densation effect at a temperature far below the one at which
the spin excitations are suppressed and bound pairs are
formed. Therefore we are able to show not only the strong
increase of the pair formation temperature with increasing
interaction, but also the separation of the two phenomena,
namely pair formation and condensation, which are no
longer intimately connected in the strong-coupling regime.

6. Spectral properties

The pair formation described should also be observable in
the single-particle fermionic density of states because the
formation of coupled pairs due to an interactionU should
cause a depletion of certain energetic states and the forma-
tion of a gaplike structure. That is indeed what we find; Figs.
14–16 show the densities of statesN(v) plotted for various
different temperatures. The frequenciesv are measured in
units of t relative to the chemical potential, which corre-

FIG. 16. Single-particle density of statesN(v),weak coupling
U/t528.0, filling r50.4, for a series of temperatures. QMC data,
system size 838, analytic continuation via MaxEnt.

FIG. 17. Momentum-resolved single-particle spectral density

A(kW ,v) versusv and kW5(kx ,ky) along the triangle path (0,0),
(p,0), (p,p), (0,0) in k space (G→X→M→G), weak coupling
U/t524.0, r50.4. The upper image contains data forT/t52.0
~dashed lines! and T/t51.0 ~solid lines! in the normal state far
aboveTc . The frequency is measured relative to the chemical po-
tential located atv50. Lower image: ‘‘Band-structure’’ represen-

tation of A(kW ,v) by gray-scale shading; peak height is coded by
dark areas and the peak maximum is marked by a cross. Tempera-
ture T/t51.0. For comparison, the cosine dispersion of the free
system is included~solid white line!.
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sponds tov/t50. A distinct pseudogap structure appears
aboveTc in all cases, nicely connected to the corresponding
suppression of the magnetic susceptibility, Fig. 14. In Fig. 14
we present data for a quarter-filled system,r50.25, to allow
the reader to make a direct comparison with data in other
recent publications, e.g., Ref. 8. This ‘‘normal-state gap’’
structure is extremely pronounced in the case of strong cou-
pling, even for high temperatures aboveT/t51.0, whereas
the condensation temperature would be in the regime around
T/t50.1 or even below, lower by roughly a factor equal to
or larger than 10. In the case ofU/t528 ~Fig. 16! a clear
gap in the single-particle electronic density of states with a
flat bottom around frequencyv50 is found for temperatures
T/t'0.25, still much higher than the condensation tempera-
ture, giving rise to the assumption that we are left with very
tightly bound pair states.

For a last but very essential property, we present results
for the single-particle momentum-resolved spectral densities
A(k,v) and the associated peak position and amplitude dis-
persions in momentum space above the condensation tem-
perature,24>U/t>212, and attempt to explain them in
terms of pair formation using information known from the
simple moment approach33,34 ~Figs. 17–20!. The figures pro-
vide information forA(k,v) along the usual triangle ink
space, i.e., (0,0)→(p,0)→(p,p)→(0,0). Figure 17 shows
data for the low coupling parameter set
U/t524.0,T/t52.0, i.e., a very high temperature. We find

more or less the total spectral weight concentrated in a free-
system-like one-band structure, which fits ideally the usual
cosine band of free fermions on a 2D lattice if we take the
dispersion of the peak positions from the QMC spectral den-
sities ~see lower part of Fig. 17!. This does not change re-
markably when we go to a higher coupling strength, at least
in the investigated regime up toU/t5212, which leads us
to the conclusion that at this high temperature the system
follows a band of merely unpaired, free-system-like fermi-
ons. The situation changes when we go to lower tempera-
tures,T/t51.0. In the (U/t524.0) case this change is not
dramatic because only a small secondary peak structure with
nearly vanishing weight arises in the region around momen-
tum ~0,0! and (p,p). This small weight transfer signals a
small occupation of that band far aboveTc , which we asso-
ciate with pair excitations, and probably outside the tempera-
ture window of mere critical fluctuations. Therefore we find
ourselves already in the onset regime of pair formation and
thus at the beginning of the crossover from BCS supercon-
ductivity to BEC because we find a coexistence of still domi-
nating BCS-like features and effects resulting from the ap-
pearance of firmly coupled pairs aboveTc . Increasing
coupling strength causes an increased population of the sec-
ond excitation branch, resulting in a band having pair char-
acteristic with nonvanishing spectral weight in the normal
state at increasing temperature, accompanied by an increas-
ing separation of both bands leading to the final appearance

FIG. 18. Momentum-resolved single-particle spectral density

A(kW ,v) versusv andkW5(kx ,ky), similar to Fig. 17, intermediate
couplingU/t526.0, r50.4, T/t51.0.

FIG. 19. Momentum-resolved single-particle spectral density

A(kW ,v) versusv and kW5(kx ,ky), similar to Fig. 17, strong cou-
pling U/t528.0, r50.4, T/t51.0.
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of a gap aroundv50, which is first indicated in the case of
U/t526.0 by the precursor-like splitting of the peaks
around (p,0) and (p/2,p/2). We wish to mention the im-
portant result that this gap is not due to superconductivity or
condensation effects because we are still dealing with the
regime at least one order of magnitude above the condensa-
tion temperature. Rather, this gap is a pure correlation effect
caused by the attractive interactionU, which leads to the
splitting of the band system. We would like to connect these
two bands with a single-particle band and a pair band, which
become increasingly separated with increasingU, and which
are additionally subjected to a growing weight transfer from
the single-particle to the pair band, i.e., the appearance of a
growing proportion of tightly bound composite pairs. Recall
that this effect is accompanied by a strong suppression of the
magnetic response~Fig. 5!. To clarify the effects discussed
above, we include the band structures forT/t52.0 and
T/t51.0 and coupling strengthsU/t524.0, 26.0, 28.0,
212.0 in the lower parts of Figs. 17–20, respectively, which
we obtain if we use a gray-scale type of coding forA(k,v)
and mark thek dispersion of the peaks of the reconstructed
QMC spectral densities. The dispersion of the spectral peak
amplitudesa i(k) can also be seen in these gray-coded pic-
tures, where the white parts correspond to zero and an in-
creasing gray level to increasing amplitude. The crossover
effect can be nicely seen in Fig. 18. This interpretation seems
to be in agreement with the moment andT-matrix

calculations33 above the condensation temperature, and the
appearance of two excitation branches is remarkably consis-
tent with results from the other methods, namely the
T-matrix approach. Nevertheless we would like to state that
there are some qualitative differences in the shape of the
dispersion resulting from QMC simulations and the bands
obtained by the simpled-peak ansatz.

VI. SUMMARY

We presented extended quantum Monte Carlo data for
various static and dynamic properties of the attractive Hub-
bard model. Particular emphasis was placed on the crossover
from BCS-like superconductivity to the Bose-Einstein con-
densation of local pairs. The observables investigated in-
clude magnetic susceptibilities, energies, specific heat, order
parameters, and spectral properties. First, the dominant effect
in the crossover region is the appearance of more or less
tightly bound pairs~far! above the superconducting transi-
tion, for which we found a number of manifestations in sev-
eral of the quantities described. We have been able to ob-
serve and quantify the separation of the formation of pairs
and the condensation of the pairs into a coherent state with
increasing coupling strength. In the weak-coupling limit, the
scenario is intimately connected to the Fermi surface insta-
bility hypothesis of the BCS theory, whereas in the strong-
coupling regime the two effects, pair formation and pair con-
densation, are no longer connected at all and can take place
at different temperatures. Correlated to the formation of pairs
in the normal state aboveTc is the downward bending of the
static spin susceptibility and the appearance of a pseudogap
structure in the single-particle electronic density of states.
Moreover the attractive interaction gives rise to a pair for-
mation in the normal, nonsuperconducting state, leading to
an energy band of paired electrons. For weak and intermedi-
ate interactions this band overlaps and hybridizes with the
free quasiparticle band, whereas in the case of strong cou-
pling we find two distinct and separate bands. The crossover
takes place in the coupling range betweenW/2 andW, where
W is the bandwidth of the system. Both effects, the spin-gap
and the pseudogap in the density of states, are documented in
our data. Where applicable, the comparison between the pre-
sented QMC data and the results of other methods is surpris-
ingly good, which justifies the interpretation of the QMC
data in terms of knowledge resulting, for example, from the
quite simpled-peak ansatz of the moment method.
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FIG. 20. Momentum-resolved single-particle spectral density

A(kW ,v) versusv and kW5(kx ,ky), similar to Fig. 17, strong cou-
pling U/t5212.0, r50.4, T/t51.0.
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