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From BCS-like superconductivity to condensation of local pairs: A numerical study
of the attractive Hubbard model
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We investigate the two-dimensional attractive Hubbard model with quantum Monte Carlo techniques to
reveal the crossover from a BCS-type superconductivity in the weak-coupling regime to a superconductivity
properly described by a Bose-Einstein condensa#C) of local, preformed pairs. The crossover from BCS
to BEC is particularly well exposed in the temperature dependence of both the spin susceptibility and the
double occupancy, as well as by the appearance of a pseudogap in the density of states fag abbese
features are also mirrored in the shape of the specific-heat peak afgurie separation of the temperature
regimes where pair formation and their condensation occur, and in the transfer of spectral weight from the
single-particle excitation branch to a pair band in the normal st8@&163-18206)05226-5

[. INTRODUCTION Renewed interest in this crossover arose with the discov-
ery and study of highi-. materials. Unlike conventional BCS
The main purpose of this work is to explore the crossovesuperconductors, these compounds are characterized by ex-
in the attractive Hubbard model from weak- to strong-tremely small pairs having a spatial extension of the order of
coupling superconductivity. In the weak-coupling regime aone lattice spacing. For this reason the highmaterials
BCS descriptior(see, e.g., Ref.)lis adequate and the occur- have been attributed to the intermediate-coupling redime.
rence of superconductivity below the critical temperatureThis crossover has been studied by various authbend,
T is tied to a pairing instability of the Fermi liquid &,.  more recently, by Randeriet al®°
The formation and condensation of pairs only occur below Our intention here is to extend these studies. We concen-
T.. In the strong-coupling limit, however, the scenario of trate on the investigation of the attractive Hubbard model
Bose-Einstein condensatigBEC) appears to be more ad- with two types of quantum Monte Carl@MC) methods,
equate because the pairs that condensafe atready occur the grand-canonical approach after Hirsclor the T>0 re-
at a higher temperature. Accordingly, we expect that thegime and the projector method for the ground state. The
normal-state properties of these limiting coupling regimesmplementation of recent improvements of the numerical
will differ markedly. In phase-transition terminology, the tools (see Ref. 12allows us to extend this QMC study far
weak-coupling regime corresponds to the limit where abeyond the previously published data. We can easily reach
mean-field description becomes valid, because the neglect siifficiently large cluster sizesSec. Il presents data for lat-
superconducting fluctuations in the normal state is justifiedtices up to 144 sitgsachieve high coupling strengths of up
In the strong-coupling or BEC regime, superconducting flucto U/t=—12 and even higher, and cover the entire tempera-
tuations dominate in a temperature window arodndand, ture range down to the ground state. Our extension of previ-
most importantly, also occur above.. The crossover from ous QMC results includes the dependence of a rather long
weak- to strong-coupling superconductivity corresponds ifist of properties on temperature, band filling, and coupling
this respect to a crossover from mean-field to fluctuationstrength. These properties include kinetic energy, double oc-
dominated or critical-point behavior. In this context it is in- cupancy, specific heat, spin susceptibility, superconducting
teresting to note that, in an early attempt prior to BCS, Blatiorder parameters, chemical potential, and the one-particle
and Schafrothexplored BEC in the ideal and charged bosonspectral functions. In Sec. Il we introduce the model. A brief
gas to understand the occurrence of superconductivity iutline of the QMC method is given in Sec. Ill. To provide
conventional metals. An important similarity throughout theguidelines for the interpretation of the QMC results, we
coupling range is that we can, for instance, apply Yang'ssketch in Sec. IV the BCS and moment approaches. In Sec.
concept of off-diagonal long-range ordgfODLRO) in the ~ V we present and discuss our QMC results. The crossover
reduced density matrix to classify the macroscopic quantunfrom BCS to BEC is particularly well exposed in the tem-
state. perature dependence of both the spin susceptibility and the
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double occupancy, as well as the appearance of a pseudogsgandard analytical techniques, and yields information about
in the density of states far aboWe. These features are also systems much larger than those accessible by exact diagonal-
mirrored in the shape of the specific-heat peak arolipd  ization algorithms. In addition, applying these methods to the
the separation of the temperature regimes where pair formaattractive Hubbard model frees us from the central drawback
tion and their condensation occurs, and in the transfer off fermion QMC calculations, the so-called “sign problem.”

a pair band in the normal state. over a vast parameter range. For both methods we use the

Suzuki-Trotter and the Hubbard-Stratonovich transformation

to “break up” the quantum-mechanical many-particle sys-
Il. MODEL tem

As a starting point for our investigation we use the well- A central technique on which we rely is the temperature-

known two-dimensional attractive Hubbard model 9&Pendent formulation of a QMC algorithm in the grand-
(“negativelU model”) on a square lattice: canonical ensemble, which is largely based on the work of

Hirsch! Most of the presented data were produced with this
method. It starts with the grand-canonical formulation of the
H=—1t2 (cl,cjptHC)TUX nyni = Ny, partition function Z, the expectation value for a certain

(iho ' to guantum-mechanical observalilethen represents an aver-
D age over the grand canonical ensemble as

whereciTU (¢i,) denote fermionic creatiotannihilatior) op- 1
erators at sité with spino, andt is the kinetic term between (0)= ZTr(Oexp( —BH)) 3
two neighboring sites, which serves as an energy unit

throughout the paper. The lim(tj ) restricts the sum to next Wwith the partition function

neighborsU denotes the interactioffcoupling” ), which is

repulsive for positive and attractive for negative values of _ Z=Tr(exul .B H)). @
strengthU, andu is the chemical potential. But this ansatz has a weak point: _
In the free caseld/t=0) we have the well-known disper- _ For largeg, i.e., at low temperatures, the grand canonical
sion relation for the two-dimensional system algorithm of Hirsch® becomes increasingly useless because
not only the numerical effort to go to highgrvalues(i.e., to
e(k) = —2t[ cog k,) + cogk,)]. 2) lower temperaturgsitself increases the computer time, but

also because numerical instabilities start to dominate in the
This system is the simplest lattice model for correlatedlow-temperature regime and the necessary amount of CPU
electrons which can become superconducting, and it is bdlme to compensate them by introducing more and more so-
lieved to undergo in two dimension@D) a Kosterlitz-  Phisticated stabilization techniqués®2® grows dramati-
Thouless(KT) transition into a superconductimgwave state  cally- ,
away from half-filling. At half-filling one finds a coexistence __Although we are able to push our algorithm to far lower
of superconducting and long-range charge-density wave COtgemperatures than usually known in the literature, we prefer

relations, which drive the effective KT transition temperatureﬁ switch to a different type ?fr? MC method to |n\r/1est|gate.
in 2D to 2610, Ter(p=0.5)= 0.1 The phase diagram is ¢ ground-state properties of the system, now in the canoni-

i d half-fili — 0.5 (densit i d cal ensemble With fixed particle numbe_rs. For this purpose
symmetric around half-filingp=0.5 (density per site and ;e 4551y the projector methdd;1"2Lwhich enables us to
per spin, filing (n)=1.0 electrons per site i.e. fier out the ground state of a wave function by applying a
Tkr(p)=Ter(1=p), because of particle-hole symmetry, yrojectorffilter expt-®7) (in imaginary time to an appro-
and reaches its maximum aroupe- 0.4 Tgr . _ _ priate test or trial wave functiop¥ 1), where it is supposed
Because of its simplicity this model allows us to investi- {4t the trial function has a nonvanishing overlap with the
gate a remarkable crossover from low to strong mteractlonground state. By expanding in energy eigenvalues one can
Varying theU parameter provides us with a tuning instru- ghow that all state$W,),|W,), ... that belong to higher

ment for the pair §ize and therefore for a trgnsition fromenergies than the ground stdté,) are exponentially sup-
highly extended pairs to more or less local pairs. Neverthebressed:

less we do not propose this model as a realistic Aigh-

model, but use it to gain a better understanding of the basic
mechanisms at the superconducting transition. exp(— O7)[Wr)=exp(~ ®H); (W) (Wl )

. QUANTUM MONTE CARLO METHODS =eX[X—®E0)[ <q;0|\p_r>|\po>

We present numerical studies of the described model us-
ing predominantly two types of QMC methods, the grand
canonical QMC formalism after Hirsct,and the projector +ngo ex —O(Ey—Eo)]
QMC method based on earlier work by Sugiyama and Koo-

nin, Sorellaet al, and de Raed’ We emphasize that the

QMC approach has the potential to treat these types of ><(‘1’n|‘I’T>|‘I’n>}
strongly correlated systems, allowing us to go far beyond

certain  approximative methods; it provides an O—w

approximation-free, numerically exact ansatz, unlike most — C-|W¥y).
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The exponential of the Hamiltonian exp@7H) can again be o expl— oT) _

treated using the two above-mentioned decompositions, and —f deA(k,w) if 7>0;

again we are faced with certain numerical instabilities, which (k,7)= *

we now try to suppress by applying a modified Gram- ’ o expl—w7) .

Schmidt scheme as introduced by Soréfla. + f_wdeA(k'w) if 7<0,
For both methods we use as updating mechanism a spe- 9)

cial single-spin algorithm, which allows a very efficient and
elegant formulation of the algorithi:?> Both methods pro- from which we can easily obtain the density of states as a
vide us primarily with equal-time normal Green’s functions, summation over alk states:
which we denotécicD, and which we can use to compute a 1
large number of observables such as the energies, occupation N(w)=—=> A(K,w). (10)
numbers, susceptibilities, and space-resolved pair-correlation N“%
functions to investigate the normal-state and superconduc
ing properties of our system.

According to Yang®*~*the relevant order parameter for

I]:hese simple equations pose a serious problem: It is rather
difficult to extract the spectral properties from the computed

the examination of the superconducting properties is the reQNIC data because an a“?'y“c continuation, or rathe_r an in-
duced two-particle density matrix or rather the pair-field cor-'< > Laplace transformation from imaginary to real time, is

relation function; because the attractive Hubbard model iés(tagtlijgfcillThcl;f)rknvl?treséor:ja;;ighg;rgr%tgndnﬁriue?ilgal?f ﬁ:l
believed to undergo a transition intosavave state we con- y P y y

centrate merely on the following observable: posed_ d_ue to two _obwo_us reasons. Data are available only
for a limited set of imaginary times and the data are usually
B + more or less noisy. As a consequence, the solution might not
Xl 1) =(A(0) (1) +Ar(0)AR(1)), ®  pe unique in general.
The method of choice is the maximum entropy ansatz, as
proposed by Gubernatis, Jarrell and co-worker$ for a
1 similar type of data; the method we used to obtain the pre-
Tihy== f T sented information is a slight variation of this ansatz after
An(l) NZ Crrtem2Cicl-me: © von der Linden’s work/=3?

where

We callm=0 the on-site pair operator, where both constitu-
ents of the pair are created at the same site and annihilated at
distancel; analogously we can investigate larger pair exten- We use the recent generalization of Nolting’s moment
sionsm=1,/2, ..., which we call “extendeds pairs.” To  approacf?~3*to study the single-particle properties of the
exclude trivial one-particle contributions we focus on thenegativetd model in the normal state as well as in the su-
so-called “vertex” correlation functioff by substracting the perconducting regime. Adapting a twbpeak ansatz
corresponding one-particle contributions. In other words wgj=2) for the spectral densitp(k,w) in the normal state
calculate the difference of thén fermionic operatorsquar-  and a fours-peak ansatzj=4) in the superconducting re-
tic contributions and the product of the quadratic contribu-gime

tions. A macroscopic quantum state, i.e., superconductivity, .

is indicated by off-diagonal long-range order !

(ODLRO),2>2*-% which is present if the vertex correlation A(k,w)?Z ai(k) 8(w—Q;(k)), (11
function approaches a finite constant valgplateau 1

value”) for large spatial pair distances; we use this long-one is able to fix the resulting excitation branches and their
range plateau valugn the following sections denoted “pla- weights in terms of the exact first four normal moments
teau” or xP2'*@Y as a substitute for a superconducting order

parameter A (k)= J dwo"Ak, o) (12

x(1)=xPaeexp( —1/¢). (7
and the first two anomalous frequency momeBy{ék). This
In addition we are able to retrieve in both frameworks time-leads to a set of self-consistently solvable equations for the
dependent Green'’s functiofi® imaginary time, which may  parameters including the chemical potential and the gap for
be written fixed band filling and temperature. A crucial limitation of
this approach arises from the neglect of damping in the two
G,(i—j,7)=—(TCin()c/,(0)). (8)  excitation branches, i.e., lifetime effects and multiparticle ex-
citations (continuum stateésare not included. This ansatz
As we are merely interested in dynamical properties at finitecorrectly reproduces the atomic limit, the free case and the
temperatures, we restrict ourselves to the evaluation of thistrong-coupling limit in first order of. In the intermediate-
quantity in the grand canonical algorithm; a scheme for thecoupling regime it provides reasonable estimates as long as
application in thel =0 formalism was introduced by von der the chemical potential is within a band. Further details can be
Linderf® and applied in Refs. 12 and 27. found in Refs. 33 and 34.
The time-dependent Green’s functioB¢k, 7) in k space In addition we include a result from a self-consistent
are intimately connected to the spectral functie(k,w) via  T-matrix approach? unfortunately this method allows only

IV. ALTERNATIVE METHODS
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valuable results in the low-correlation limit, i.e., low filling For the spin susceptibility, a simple random-phase ap-
and weak coupling as discussed in the Sec. V because [iroximation(RPA) yields the expression
involves only two-particle interaction terms and neglects
such features as the particle-hole interaction channel. We _ Xso
nevertheless find that it provides a very interesting approach XsRPAT7 — Uxso' (17
to compare our results and to clarify limitations of the QMC
ansatz, especially because this method gives access to Mhich reduces fotJ =0 to the free-system casg,o.
markably larger lattice sizes, which might be an important
feature for the investigation of quantities such as spectral V. RESULTS
weights or the density of states. As a consequence it provides
quite good access to the limit of very low coupling strength
—4t<U<0, which is difficult to treat by QMC due to more
or less severe finite-size effects.

We also compared our results with the BCS approxima
tion yielding the gap equation

Previous investigations revealed the following properties
of the 2D attractive Hubbard model: It shows superconduct-
ing correlations over the entire filling range; away from half-
filling it is believed to undergo a KT transition into a super-
conducting state, with an estimated maximdm around
p~0.4. At and close to half-filling this system also exhibits
1 1 BE, long-range charge-density correlations, and is widely re-
—:2 —tank(—) (13 garded to be a charge-density insulator, with the conse-
U % 2k 2 quence thafl, would be driven to zer$31436

with the extended dispersion
A. Weak-coupling regime
Ev=V(e—w)?+A2, (14 We shall first consider the “low-correlation” limit, i.e.,
p=0.1 and the interaction strength/t=—4.0, to allow a
comparison with the moment, tliematrix and the BCS ap-
roach. This choice of the parameters is motivated by the
ollowing considerations.

A sufficiently large attractive interaction leads to a small
pair size and coherence length, which reduce the finite-size
effects in our simulation of small discrete clusters. For
smallerU we found strong size effects, which we can only
pZE [exp(B(Ex—m))+1]7 L, (15) overcome by a very CPU-time-consuming scaling analysis.

k In this filling regime, U/t=—4.0 turned out to be large
enough to produce pairs of the order of only a few lattice
spacings, being suitable for lattice sizes accessible to our
algorithm, such as 1212.

where ¢ is the dispersion in the noninteracting cadethe
gap, u=u—pU the chemical potential including a Hartree
shift, andU the strength of the attractive interaction. Becaus
A vanishes at and abovi,, the gap equation also fixes the
transition temperature.

Moreover, the chemical potential follows from

and the spin susceptibility is given by

XYoo= 2,32 exp( BEx) (16) Our other restriction was to find a regime that allows a
. . .
> © [1+exp(BEYT? comparison with other methods, such as the moment and

2D attractive Hubbard model, U/t=-4.0, p=0.1, x;(T)

0.12 T T | T | T T T T
QMC,12x12 8-
FEK Ak ke, QMC8x8 &
01 e ***** Tmatrix & . . o
° o * RPA * FIG. 1. Uniform magnetic susceptibilitys as
> .* * 5 a function of temperaturé)/t=— 4.0, filling per
site and spip=0.1(i.e., 80% doping away from
0.08 - 7] half-filling). Shown is QMC data for two lattice
sizes(8X 8 and 1 12, open symbo)sas well as
0.95 , , , . X data from a normal-stat&€-matrix ansatz above
0.06 ~ = T. (32x 32 lattice, filled circles and a simple
RPA approaclistarg. The inset adds data from a
BCS treatment of a lattice fermion system, as de-
0.04 - - scribed in Sec. IV, whereas the filled circles in
the inset indicate the continuation of tyedata in
the free case, without any BCS gap, for compari-
son. Note the absence of a fluctuation region in
0.02 |- ] the BCS description.
(i
0 0.2 0.4 0.6 0.8 1
0G L | t 1 1 1 1 1 L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Temperature T/t
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2D attractive Hubbard model, U/t=-4.0, p = 0.1
0.04 T T T T

double oce.(T) B—
Xgiateau(T) -

0.035 T4

0.03 FIG. 2. Double occupancyn;;n;) (open
squares and order parameteplateau value of
the singlet s-pair correlation function, filled
circles as a function of temperature. QMC data
U/t=-4.0, p=0.1, system size 2212. The
vertical line marks the transition; one finds a clear

n signal at the transition temperature in the double
occupancy corresponding to the increase of the
order parameter. The inset shows the temperature
. dependence of the superconducting gap within
_ the BCS ansatz for the same parameter set with a
much higher transition temperature.

0.025

0.02

0.015

0.4

order parameter
0.01 F 0.3F BCS ansatz

0.2
0.005 -} o1

0 S
0 005 01 015 02 025 03 035 04
0 *o—b—0o—0o—4 +—o!

0 1 2 3 4 5
Temperature T/t

[ J

T-matrix approaches. The range of validity of these techrameter described with the BCS formalism for this parameter
nigues is the low-correlation limit. regime. Both sets of QMC data, double occupaaoy su-

The first quantity we investigated is the uniform static perconducting order parameter, show clear transition features
spin susceptibilityys(T), Fig. 1. This figure contains QMC exactly in the temperature range where the spin susceptibility
data from two different cluster sizes, as well as self-goes to zero. In this regime the order parameter increases
consistentT-matrix results from Micnaset al,®® a simple  from zero, and the double occupargtyoes up agaiicom-
RPA curve, and data from a BCS ansatz in the inset. Theare inset to Fig. 10, double occupancy in BC®erefore
T matrix has been evaluated only in the normal state. Fotleviating from the free-system behavior and accounting for
large temperatures, the QMC results appear to resemble tl@ increasing number of double-occupied sites, i.e., pairs.
T matrix and RPA results quite well, whereas for lower tem-This accounts only for éA2)/U? contribution to the normal-
peratures we find rather pronounced deviations. Belowstate background, with being the usual superconducting
T/t<0.5 evenT matrix and QMC deviate strongly because order parameter as for example in BCS the(sge inset of
the T-matrix results abovel . show no strong qualitative Fig. 2). The three features in the susceptibility, the order
deviation from RPA and appear to be fairly constant. In con-parameter and the double occupancy take place exactly at the
trast, the QMC curves start to bend downTdt~0.5, an  same temperature, which we would like to define as the criti-
astonishingly high temperature, diverging from the usualcal or superconducting transition temperatlrg with the
Pauli behavior, and goes to zero in the superconducting resame transition region. Therefore we come to the following
gion after a large transition area. The QMC estimate for theconclusion: Pair “formation” and *“condensation” take
transition temperature of this system seems to be at or eveplace more or less at the same temperatliies T, ; the
below T/t=0.1 (for comparison, see Fig)2We would like  formation of pairs(signaled byd andys) is intimately con-
to associate this behavior with a pair-breaking effect aroundhected with the transition of the system into a macroscopic
the critical temperature, which might arise either from a fluc-coherent quantum state. The deviationyqffrom the free-
tuating superconductivity abovE, or a formation of bound system and RPA behavior abovg results in this(weak
pairs aboveT.. We will comment on the possible origin of coupling regime from superconducting fluctuations in a criti-
this effect below. Obviously neither of these effects is acceseal region around ., and is probably not yet connected to a
sible by a simple RPA treatment; the normal-statenatrix =~ pronounced independent formation of bound pairs above
does not seem to be sufficiently sensitive to these effectd,.. The mean-field critical temperature resulting from the
either. simple BCS ansatz i§2°%/t=0.36(see Fig. 2, inset This is

Figure 2 shows QMC resultsve henceforth use the con- much higher than the QMC estimate, and in this regime one
vention that all results are QMC data unless explicitly statedvould probably assign the region roughly between the mean-
otherwis¢ for the double occupancyn;;nj;). This is field T, and the exacfl. to superconducting fluctuations.
equivalent to the potential or Hubbard energy if multiplied Treatment within the moment approach using a two-pole an-
by U. Also shown is the superconducting order parametesatz abovel . and four poles in the superconducting region
defined as the long-range plateau value of she@ave pair  yields comparable results, as shown in Figs. 3 and 4, where
correlation function,)(g's""tea“. In the inset to Fig. 2 we show we provide again data for the double occupancy and addi-
for comparison the temperature dependence of the order p&enally for the chemical potential, which is needed to guar-
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2D attractive Hubbard model, U/t=-4.0, p=0.1, {double occ.(T')}

0.04 T T T T T T | T T
QMC &
0.038 moments 0
g
0.036
Q% FIG. 3. Temperature dependence of the
0.034 double occupancy within a QMC simulation
(squareys and in the moment approadkircles
0.032 with a two-6-peak ansatz above the transition
temperature and a four-peak ansatz in the super-
conducting  regime.  System  parameters:
0.03 U/t=-4.0, p=0.1, cluster size in the QMC
simulation: 12<12.
0.028
0.026 - 4
0024 | 1 | 1 i 1 1 L I

0 02 04 06 038 1 1.2 14 1.6 1.8 2
Temperature T/t

antee a fixed density=0.1. QMC as well as the moments which is the increase of the pair numberTat (again com-
and also theT matrix*® reproduce consistently a maximum pare with the BCS data in Fig. 10

aroundT=0.7, which we interpret as a feature of the inter- The moment approach as well as the even simpler BCS
acting electron system in the normal state, not related to thansatz treat the superconducting phase with a gap separately
appearance of superconductivity. Reference 33 shows thfitom the normal, gapless phase. Therefore in these ap-
this feature can be explained in terms of a two-excitationproaches there is no transitional region of superconducting
branch ansatz, and provides results for the contributions dfuctuations, giving rise to a quite sharp featurd at which

the two branches to the double occupancy as a function a6 smeared out in the QMC data. Otherwise we regard the
temperature. For comparison the double occupancy of thagreement between the simpiegpeak ansatz of the moment
noninteracting one-band system in the normal state can bapproach and the QMC treatment in this regime to be aston-
seen in Fig. 10. This ansatz affords us an excellent undeishingly good. It is now important to compare the behavior
standing of the qualitative behavior of our QMC results be-of u with the double-occupancy curve. The kink in the mo-
cause it clearly resembles the most prominent featur@, in ment curve ford also produces a kink in the corresponding

2D attractive Hubbard model, U/t=-4.0, p=0.1, u(T)
: T T T T T T T

QMC 28—
moments O

-3.5

4

FIG. 4. Temperature dependence of the
chemical potentialu(T), which is necessary to
guarantee a constant filling=0.1. Coupling
strength U/t=—-4.0. Shown are QMC data
(squares, 1212 lattice, moment datacircles,
two-pole ansatz above, four-pole ansatz below
the transitiom and BCS values in the inset.

S5 a7
-3.8F
390791 02, 03 04 05 06 0.7 08 09
-6 1 e -} -9 1 . I | 1 1

0 02 04 06 038 1 1.2 1.4 1.6 1.8 2
Temperature T/t
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2D attractive Hubbard Model, p=0.4, susceptibility x,(7")

0.14
0.12 4
0.1 5
FIG. 5. Uniform magnetic susceptibilitys as
0.08 N a function of temperaturgy=0.4 (i.e., 20% dop-
ing away from half-filling for a range of cou-
0.06 i pling strengths,U/t=—4.0 (half of bandwidth
’ W=8t) — U/t=—-12.0 (1.3). QMC data, sys-
tem size 1X 12 (144 sites.
0.04 4
0.02 -
0 T, : . . . :

0 0.5 1 1.5 2 2.5 3 3.5
Temperature T/t

u data because the presence of pairs results in a drop of 6=20% away from half-filling, and describe the cross-
. In the smallU moment ansatz the behavior of the chemi-over from weak to strong coupling. This regime is no longer
cal potential(i.e., the kink afT;) agrees with recent findings realistically accessible by the other approaches.
of van der Marel and Rietvieldf’: we are not able to extract
this tiny feature, which we also find within the BCS treat- B. Crossover
ment, from our finite cluster QMC calculation. This might be _— .
due to several reasons, one being the smearing out of this we will f|rsF present a nymbe_r of results, describe them
detail due to thermal fluctuation region, the other being2nd draw pertinent conclusions in Sec. V.
finite-size effects, the latter being more probable.

So far we have attempted to classify our QMC data in the
context of other methods; we shall henceforth switch to the Again starting with the simple uniform static magnetic
regime close to half-filingp=0.4 corresponding to a doping susceptibility x5, Fig. 5, we find forU/t=—4 a slightly

1. Magnetic susceptibility

2D attractive Hubbard Model, p=0.4, chem. pot. p(T)
-2 T T T T T T

FIG. 6. Temperature dependence of the
- chemical potentiaju(T), p=0.4, U/t = —4.0,
-6.0, —8.0, —12.0, QMC data, system size 12

X12.

6+ U/t=-4.0 ©— -

U/t=-6.0 58—

U/t=-8.0 -©—

U/t=-12.0 »—
Tk -
-8 1 1 1 ! i ]

0 0.5 1 1.5 2 2.5 3 3.5

Temperature T/t
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2D attractive Hubbard Model, p=0.4, Ex(T)
-0.4 T T T T T T

FIG. 7. Kinetic energ)e,(T) as a function of
temperature; QMC data, system parameters as in

Fig. 6.
.14 1 1 1 1 I 1
0 0.5 1 1.5 2 2.5 3 3.5
Temperature T/t
enhanced but still similar behavior compared to that in Fig. 2. Chemical potential

1. The situation changes dramatically if one considers higher Figure 6 shows the temperature dependence of the chemi-
coupling strengths: The decrease yaf starts at very high cal potential(T), which is necessary to obtain a certain
temperatures and fdd/t=8, x; is an increasing function of constant filling, in our case=0.4, for the same set df

T in the temperature regime investigated. Spin excitationsalues as before. All data shown include for convenience the
are suppressed with decreasing temperature, and we obtaigual shift—U/2, which is not written in the formulation of
tightly bound pairs which contribute only when they are ion-the initial Hamiltonian in Sec. Il; the inclusion of this shift
ized (“pair breaking”). Obviously we also obtain a new should help the reader compare our data to other, previously
high-temperature scale of coupled spins, i.e., pairs. Thesgublished sources, although from a technical point of view
results are in very good agreement with Randeria’s recerthe simulation uses the formulation described in Sec. Il.
publication (e.g., Ref. 8 for the quarter-filled system, The (U/t=—4) curve shows the usual monotonic behav-
p=0.25(see inset of Fig. 14 ior. However for large|U/t|=8, being comparable to or

2D attractive Hubbard Model, p=0.4, dopp.occ.(T)
0.38

0.36

0.34

0.32

FIG. 8. Double occupancypotential energy

- contribution divided by the interactigmas a func-
tion of temperature; QMC data, system param-
eters as in Fig. 6.

0.3
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2D attractive Hubbard model, p=0.4, ¢(T)

0.6 T T T T
U/t=-4.0 8-
U/t=-12.0 »—
05 |- free - - _|
04 |
FIG. 9. Temperature dependence of the spe-
cific heatc(T), p=0.4, for the two opposite cou-
03 L pling regimes, weak coupling/t=—4.0 (open
: squaresand strong couplindJ/t=—12.0 (filled
circles. The dotted line includes, for comparison,
the data for the free systert/t=0. QMC data,
0.2 | system size 12 12.
0.1 :
.
0 ] | ] 1
0 0.2 0.4 0.6 0.8 1

Temperature T/t

larger than the bandwidtiV/t=8 of the system, an entirely data. Second, in thé)/t= —8) case, their QMC data stop at
new and different effect can be seen(T) decreases with a temperature above the one at which we find the bending of
decreasing temperature, whereas in the high-temperature redr curve; nevertheless, a continuation of their high-
gime a behavior similar to the weak-coupling case is foundtemperature curve into the mean-field ground-state point
Looking at the bending temperature in thé/(= —12) case, shows a slight deviation of their low-temperature QMC data,
this takes place at an enormously high temperature ofvhich is in agreement with our results. Third, for
T/t=~0.5 and is definitely not related to the transition to theU/t=—12, in contrast to their other results, they provide
superconducting state. data for only an extremely smal4 system. We can repro-
At this point it is appropriate to comment on the paper ofduce their results fop=0.25 as well as in thep(=0.4) case
Randerizet al® They do not find this feature, and we believe shown by taking the same smalk4: cluster, but we obtain
we can explain why not. First, they give a ground-state pointhe bending behavior for larger lattice sizes. It starts to sta-
at every curve, but it results only from a mean-field approactbilize above a linear dimension of at least 8. We believe that
and is not necessarily an appropriate continuation of QMGur QMC algorithm is still numerically very stable at this

Attractive Hubbard model, U/t=-4.0, p=0.1, ¢(T)

0.5 T T | T T | T | T
0.035;
0.45 [ 0.03 T
0.4 |0025 i
0.02 double
0.35 | occupancy 1]
0015 BCs FIG. 10. Temperature dependence of the spe-
0.3 | 0.01 . cific heatc(T) within a BCS ansatz, for a cou-
pling strength olJ/t=—4.0 andp=0.1. There is
0.005 ) L o
0.25 |- . a clear “mean-field”-like jump at the transition.
0 o1 02 03 04 05 The inset ShOV\.IS. BCS da.lta. for the double occu-
0.2 | Temperature T/t . pancy; the uprising detail“finger” ) below the
transition (pairing instability signal is respon-
0.15 - 7 sible for the specific-heat jump.
0.1 | -
0.05 - 4
0 L] | 1 | | 1 |
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2D attractive Hubbard model, p=0.4, U/t=-4.0
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FIG. 11. Temperature dependence of the mag-
0.08 - netic susceptibilityys (open squargsand the su-
perconducting order parametep(g'sat (filled
circles in the weak-coupling regime
0.06 = U/t=-4.0, p=0.4. QMC data, system size 12
o X 12. Note the coincidence of pairing and con-
densation temperatures.
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strong-coupling strength and low temperatures, which we atreproduce an artifact of the method, or whether the shown
tempted to monitor with a number of technical indicators andproperties are a true feature of a finite-dimensional system; a
to verify by a comparison of several observables to resultsnore detailed discussion of this subject will be presented in
from other (e.g., exact diagonalizatipntechniques. This a future publicatiorf®

bending is also found for the same values Wfin the Our interpretation of this phenomenon is that the forma-
normal-state moment approach, with an uncertainty due ttion of tightly bound pairs above the condensation tempera-
possible numerical artifacts in this coupling and temperaturéure, as already indicated by the spin susceptibility, leads to
regime. In contradiction to the results shown for finite di- this reduction. In a simple intuitive description this pair for-
mensions, a simulation of an infinite-dimensional system afmation obviously has a certain influence on the chemical
ter Hirsch and Fy& and Georges and Krautfi,where a potential of theelectronsbecause a fraction of the fermions
mean-field-like treatment becomes exact, does not reveal this tightly coupled into local composite bosons. Therefore the
bending and yields a monotonic behavior. Therefore, weeffective filling of the remaining fermionic system decreases,
cannot definitely clarify whether the QMC results simply which involves a decrease of the chemical potential. The S

2D attractive Hubbard model, p=0.4, U/t=-6.0

0.12 T T T T T T
xs(T) B—
1 xbH(T) -—
0.1+ B
0.08 4
FIG. 12. Temperature dependence of the mag-
netic susceptibilityys (open squargsand the su-
0.06 + -1 perconducting order parametep(ﬂ'sat (filled
circles for an intermediate-coupling strength
U/t=-6.0, p=0.4. QMC data, system size 12
0.04 - X12.
0.02 -
oc '

- o
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Temperature T/t



1296 SINGER, PEDERSEN, SCHNEIDER, BECK, AND MATUTTIS 54

2D attractive Hubbard model, p=0.4, U/t=-8.0

0.09 ¢ T T T T T 1
xs(T) 8—
0.08 - X5:(T) o— 4
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FIG. 13. Temperature dependence of the mag-
0.06 - N netic susceptibilityys (open squargsand the su-
perconducting order parametep(g'sa‘ (filled
0.05 - = circles in the strong-coupling regime
U/t=—8.0 (bandwidth W=8t). The tempera-
0.04 | - tures for pair formation(indicated by the de-
crease of the susceptibility down to zgrand
0.03 b N condensatior(indicated by the order parameger
are clearly separated, in contrast to Fig. 11,
0.02 - U/t=—4.0. QMC data, system size ¥22.
0.01 (- 4
o *é—eo ¢ o—ol ¢ : ! .

0.5 1 1.5 2 2.5 3 3.5
Temperature T/t

shape of the curve, i.e., the back bending at very low temdifferent, because the kinetic energy becomes more or less
peratures, merely reflects that only a certain portion of theonstant over a large temperature range, and it gets closer
electrons are constituents of the bosonic pairs, whereas ttend closer to zero. We interpret this as a vanishing of the
remaining electrons contribute to the fermionic system, andinetic energy of the fermions due to a strong pair coupling.
the chemical potential of the fermions remains finite. This iswhen the composite bosonic pairs undergo a phase transition
an indication that we are somehow still in an intermediatento a condensed phase-coherent state, the fermions as their
regime, where only a part of the fermionic system is tightly constituents regain kinetic energy. Such behavior is reminis-
paired. We expect this portion to increase with increasingent of the behavior of preformed pairs; Bt the specific
attractive coupling. The effect described fits, in our opinion,heat has a peak. The transition occurs over quite a large
very well into the picture of a formation of composite bosonsrange due to a large fluctuation region; we will comment on
far above a superconducting transition. this later.

3. Energies 4. Specific heat

We now turn to the temperature dependence of the two The aforementioned behavior of the kinetic and potential
constituents of the total energy, the kinetic energy and thenergies will also be reflected in the specific heat, shown in
potential contribution, or rather its descendant, the doubl€ig. 9 for U/t=—4 andU/t=—12. For weak and interme-
occupancy. Looking at Figs. 7 and 8, which show these dedliate coupling U/t=—4) we observe qualitative agreement
pendences for the sani¢ values as in the case of the sus- with a BCS jump, illustrated in Fig. 10. In the QMC data the
ceptibility and the chemical potential, one can immediatelyjump is smeared out by finite-size effects in our still very
see the qualitative crossover between weak- and strongmall system. This is well documented also in classical and
coupling data. We first discuss the double occupancy, Fig. &quantum spin systems, where a “real” discontinuous jump
Whereas in the case &f/t=—4.0 we find the already dis- could be only expected in the case of an infinite system, so a
cussed increase dt;, there is now a change in the low- size scaling would be necessary for an appropriate treatment
temperature behavior o for U/t=—12.0, d simply ap- and will be done in the near future.
proaches a constant value. This is the important difference. In contrast the largé} case shows a totally different
The fact, that we still find a maximum af at high tempera- curve, and reflects much better the predicted specific-heat
tures reproduces a relic of the free system because at thebehavior of a local pair system D= 3, which will exhibit a
temperatures we have a dynamic double occupation, an efegarithmic anomaly at the condensation temperatufae
fect we would also see in a nonsuperconducting system. Thispecific heat of such a system is proportional tcbelow the
detail should disappear for a higher coupling strength bex singularity forT—0 as well as to a behavierl/T? above
cause for infinitely strong coupling we would gitp. the singularity in the normal stafe— .

In the potential energy part the characteristic feature dis- One strong advantage of our numerical access to this in-
appears, and in the kinetic term a new one arises when weicate problem of describing a crossover phenomenon be-
move through the crossover regime towards ladjg&Ve can  comes obvious: We are not only able to provide results for
extract this from the data in Figs. 7 and 8. Starting agairthe specific heat in the two limiting cases, we can also assign
from smallU the kinetic energy merely behaves like in the this qualitative change to specific effects in the underlying
free system; in contrast, the lartge-data are qualitatively constituents of the energy, i.e., the increase of paifg.ah
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2D negU Hubbard, U/t=-4.0, rho=0.25, N(w) 2D negU Hubbard, U/t=-4.0, rho=0.4, N(w)
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FIG. 14. Single-particle density of statl¢w) above the super-
conducting transition, weak coupling/t=—4.0, quarter filling Th=2.0 ! L
p=0.25, for a number of temperatures far above the transition in -15 -10 -5 0 5 10 15
the normal stateT/t=0.2 (solid line), T/t=0.33 (dashed ling frequency wit

T/t=0.5 (dotted ling and T/t=1.0 (dash-dotted line QMC data, ) ) ) )
system size 18 10, analytic continuation via MaxEnt. The frequen-  F1G- 15. Single-particle density of statdf«), weak coupling
cies, measured in units of t, are counted so that the chemical potef/t=—4.0, filling p=0.4, for a series of temperatures. QMC data,
tial corresponds ta/t=0. The upper inset shows the temperature SyStém size &8, analytic continuation via MaxEent.
dependence of the uniform magnetic susceptibijtfT) (filled . ) o
circles from our simulations; for comparison, data from Randeria®XPect. A system with short coherence length will exhibit a
et al. (Ref. 8 is included(solid line). The lower inset figure dis- Wide critical regime, and its true critical behavior should be
plays the noninteracting case/t=0 (“free band”), for the same  Observable, whereas in the weak-coupling BCS-like regime
filling p=0.25. the width of the critical regime can be as narrow as
101 T, and is usually technically inaccessible.
the BCS caséi.e., the uprising “finger” shown in the inset An elaborate discussion of the differences in critical be-
of Fig. 10, and the manifestation of BEC in the kinetic havior and the critical exponents can be found in the work of
energy in the strong-coupling regime. In contrast to theMicnaset al? Indeed, one of the remarkable characteristics
chemical potential, where we find some principal differencef the highT. materials is their small-coherence-length vol-
between finite-dimensional QMC simulations and anume, leading to pronounced thermal fluctuation effects con-
infinite-dimensional simulation(see above the discussed sistent with 3Dxy-critical-point behaviof!
gualitative crossover in the specific heat between the weak- In addition, the fact that we find the phenomena of the
and strong-coupling limits is fully supported by recentweak-coupling 2D system to be quite similar to the effects
infinite-dimensional simulations; we again refer to Ref. 40. expected from a real 3D phase transition supports our argu-
Why do we find mean-field-like behavior in the weak- mentation because as long as a mean-field treatment yields
coupling regime that qualitatively and even quantitativelythe dominant features, the difference between 2D and 3D
resembles the characteristics of the three-dimensional syshould play only a minor role, at least concerning the de-
tem? Around the transition temperaturg we always find a  scription of certain details. A “mean field” should not be
temperature window with superconducting fluctuations. Theable to distinguish dimensionality. We are nevertheless
width of this window strongly increases with increasing cou-aware of the principle implications of Mermin and Wagner's
pling strength, and the coherence length and therefore thiseorem. With increasing, features characteristic for a KT-
extension of a singlet pair decreases. In the limit of highlylike transition should become more important, and we expect
extended pairs a mean-field treatment of the effects becomesmore pronounced difference between the behavior of the
increasingly appropriate. This is the reason for the incredibl€D and the 3D system. Up to now, our resolution is too poor
success of the BCS approach in the conventional supercote investigate quantitative differences, especially because our
ductors with their large coherence lengths and pair extensystems might be still too small to allow reasonable esti-
sions. Each pair overlaps with numerous other pairs, andhates, for example, of the exact position of the specific-heat
therefore “lives in the mean field of the others.” In contrast, peak relative to the transition temperature or of the appropri-
short-coherence-length materials with their more or less locadte critical exponents. To substantiate our argumentation
pairs obviously show certain differences, which we indeedconcerning the separation of the two temperature scales for
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2D negU Hubbard, U/t=-8.0, rho=0.4, N(w) 2D negU Hubbard, U/t=-4.0, tho=0.4, T=1.0/2.0, A(k,w)
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FIG. 16. Single-particle density of staté§ w),weak coupling (0,0) (p,0) (p.p) (0,0)

U/t=—8.0, filling p=0.4, for a series of temperatures. QMC data, (ko ky)
system size 88, analytic continuation via MaxEnt.

FIG. 17. Momentum-resolved single-particle spectral density
A(k,») versusw and k=(k,k,) along the triangle path (0,0),
(7,0), (m,7), (0,0) ink space [—+X—M—T), weak coupling
U/t=-4.0, p=0.4. The upper image contains data foit=2.0
(dashed linesand T/t=1.0 (solid lineg in the normal state far
aboveT,.. The frequency is measured relative to the chemical po-

As discussed in the introduction, a common feature oftential located atw=0. Lower image: “Band-structure” represen-
both extremal regimes, the weak-coupling BCS and theation of A(k,») by gray-scale shading; peak height is coded by
strong-coupling BEC description, is the fact that in bothdark areas and the peak maximum is marked by a cross. Tempera-
cases we can apply Yang's ODLRO conée'ptthe density ture T/t=1.0. For comparison, the cosine dispersion of the free
matrix, or rather in the pair-correlation function, to identify system is includedsolid white line.
the appearance of a macroscopic quantum ssatgerfluidity
or superconductivity Therefore we take this indicator to ferent temperatures when we go \idt=—6 to U/t=—8
investigate the superconducting transition—condensatioffigs. 12 and 1B The latter gives clear evidence of a con-
temperatureT . (or Tyr). densation effect at a temperature far below the one at which

On the other hand, a good indicator of pair formation arethe spin excitations are suppressed and bound pairs are
the simple uniform magnetic susceptibiligg, as discussed formed. Therefore we are able to show not only the strong
above, and the single-particle momentum-resolved spectréiicrease of the pair formation temperature with increasing
densities and single-particle densities of states. First we corioteraction, but also the separation of the two phenomena,
centrate onys. Figures 11-13 show folJ/t=—4, —6, namely pair formation and condensation, which are no
—8 the behavior of the plateau value of thavave singlet longer intimately connected in the strong-coupling regime.
pair correlation functiony?® as an ODLRO indicator and )
therefore as the order parameter for the condensation transi- 6. Spectral properties
tion as a function of temperature. All three curves include The pair formation described should also be observable in
additionally the corresponding spin-susceptibility data. the single-particle fermionic density of states because the

The results are quite obvious: Whereas in theformation of coupled pairs due to an interactionshould
(U/t=—4.0) casdFig. 11) the formation of pairs, indicated cause a depletion of certain energetic states and the forma-
by the bending down ofs, and the transition into the mac- tion of a gaplike structure. That is indeed what we find; Figs.
roscopic quantum state, signaled by the increasqﬁ@f, 14-16 show the densities of stafdéw) plotted for various
appear to take place at more or less the same temperatudifferent temperatures. The frequenciesare measured in
both effects seem to separate into two distinct effects at difunits of t relative to the chemical potential, which corre-

pair formation and pair condensation in the crossover re
gime, we again turn away from the energy discussion.

5. Order parameter: pair formation vs condensation
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2D negU Hubbard, Uf=-6.0, tho=0.4, T=1.0, A(k,w) 2D negU Hubbard, U/t=-8.0, tho=0.4, T=1.0, A(k,w)
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FIG. 18. Momentum-resolved single-particle spectral density FIG. 19. Momentum-resolved single-particle spectral density
A(k, ) versusw andk=(ky,k,), similar to Fig. 17, intermediate A(k,w) versusw andk=(kyky), similar to Fig. 17, strong cou-
couplingU/t=—6.0, p=0.4, T/t=1.0. pling U/t=—8.0, p=0.4, T/t=1.0.

sponds tow/t=0. A distinct pseudogap structure appearsmore or less the total spectral weight concentrated in a free-
aboveT, in all cases, nicely connected to the correspondingystem-like one-band structure, which fits ideally the usual
suppression of the magnetic susceptibility, Fig. 14. In Fig. 14osine band of free fermions on a 2D lattice if we take the
we present data for a quarter-filled systgm,0.25, to allow  dispersion of the peak positions from the QMC spectral den-
the reader to make a direct comparison with data in othesities (see lower part of Fig. 17 This does not change re-
recent publications, e.g., Ref. 8. This “normal-state gap”markably when we go to a higher coupling strength, at least
structure is extremely pronounced in the case of strong colun the investigated regime up 1d/t=—12, which leads us
pling, even for high temperatures aboVé&=1.0, whereas to the conclusion that at this high temperature the system
the condensation temperature would be in the regime arourfdllows a band of merely unpaired, free-system-like fermi-
T/t=0.1 or even below, lower by roughly a factor equal toons. The situation changes when we go to lower tempera-
or larger than 10. In the case bfft=—8 (Fig. 16 a clear tures,T/t=1.0. In the (J/t=—4.0) case this change is not
gap in the single-particle electronic density of states with adramatic because only a small secondary peak structure with
flat bottom around frequenay=0 is found for temperatures nearly vanishing weight arises in the region around momen-
T/t~0.25, still much higher than the condensation temperatum (0,0) and (wr,7r). This small weight transfer signals a
ture, giving rise to the assumption that we are left with verysmall occupation of that band far aboVg, which we asso-
tightly bound pair states. ciate with pair excitations, and probably outside the tempera-
For a last but very essential property, we present resultaure window of mere critical fluctuations. Therefore we find
for the single-particle momentum-resolved spectral densitiesurselves already in the onset regime of pair formation and
A(k,w) and the associated peak position and amplitude disthus at the beginning of the crossover from BCS supercon-
persions in momentum space above the condensation terductivity to BEC because we find a coexistence of still domi-
perature,—4=U/t=—12, and attempt to explain them in nating BCS-like features and effects resulting from the ap-
terms of pair formation using information known from the pearance of firmly coupled pairs abovE.. Increasing
simple moment approath® (Figs. 17—20. The figures pro- coupling strength causes an increased population of the sec-
vide information forA(k,») along the usual triangle ik ond excitation branch, resulting in a band having pair char-
space, i.e., (0,6y(m,0)—(m,7)—(0,0). Figure 17 shows acteristic with nonvanishing spectral weight in the normal
data for the low coupling parameter set state at increasing temperature, accompanied by an increas-
U/t=-4.0,T/t=2.0, i.e., a very high temperature. We find ing separation of both bands leading to the final appearance
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calculationd® above the condensation temperature, and the
appearance of two excitation branches is remarkably consis-

2D negU Hubbard, U/t=-12.0, rho=0.4, T=1.0, A(k,w)

I N tent with results from the other methods, namely the

(0.0) -~ o~ ] T-matrix approach. Nevertheless we would like to state that

I T e there are some qualitative differences in the shape of the

. dispersion resulting from QMC simulations and the bands
g (P.p) obtained by the simplé-peak ansatz.

_L
PO

I I . VI. SUMMARY
I U B
" o~ We presented extended quantum Monte Carlo data for
0.0 10 5 0 5 10 15 various static and dynamic properties of the attractive Hub-
frequency wit bard model. Particular emphasis was placed on the crossover

from BCS-like superconductivity to the Bose-Einstein con-
densation of local pairs. The observables investigated in-
15 : clude magnetic susceptibilities, energies, specific heat, order
’ parameters, and spectral properties. First, the dominant effect
in the crossover region is the appearance of more or less
tightly bound pairs(far) above the superconducting transi-
tion, for which we found a number of manifestations in sev-
eral of the quantities described. We have been able to ob-
serve and quantify the separation of the formation of pairs
and the condensation of the pairs into a coherent state with
increasing coupling strength. In the weak-coupling limit, the
scenario is intimately connected to the Fermi surface insta-
A5k bility hypothesis of the BCS theory, whereas in the strong-
0,0) {p.0) (p:p) (0,0) coupling regime the two effects, pair formation and pair con-
(tocky) densation, are no longer connected at all and can take place

frequency wi/t

fIG. 20. Momenttjm-resolved single-particle spectral densityﬁ]t ?r:gerzg?rzflttz\i;a;%rg\?éﬁs::]e;aéi(\?vgxgﬁjfg;?;té%no?ftﬁglrs
ggﬁéw&/\tliriufz‘”oaz(i%;(k_l_"/’tki)i S'm'lar to Fig. 17, strong cou- static spin susceptibility and the appearance of a pseudogap
- o o structure in the single-particle electronic density of states.
o ) Moreover the attractive interaction gives rise to a pair for-
of a gap around»=0, which is first indicated in the case of mation in the normal, nonsuperconducting state, leading to
U/t=—6.0 by the precursor-like splitting of the peaks an energy band of paired electrons. For weak and intermedi-
around (7,0) and (r/2,7/2). We wish to mention the im-  ate interactions this band overlaps and hybridizes with the
portant result that this gap is not due to superconductivity ofree quasiparticle band, whereas in the case of strong cou-
condensation effects because we are still dealing with thgjing we find two distinct and separate bands. The crossover
regime at least one order of magnitude above the condensgykes place in the coupling range betw&ef2 andw, where
tion temperature. Rather, 'Fhis gap is a pure correlation effeqjy is the bandwidth of the system. Both effects, the spin-gap
caused by the attractive interactiaf, which leads to the ang the pseudogap in the density of states, are documented in
splitting of the band system. We would like to connect these,r data. Where applicable, the comparison between the pre-
two bands with a single-particle band and a pair band, whiClyented QMC data and the resuits of other methods is surpris-
become increasingly separated with increasingand which  jngly good, which justifies the interpretation of the QMC
are additionally subjected to a growing weight transfer fromgata in terms of knowledge resulting, for example, from the

the single-particle to the pair band, i.e., the appearance of gite simples-peak ansatz of the moment method.
growing proportion of tightly bound composite pairs. Recall

that this effect is accompanied by a strong suppression of the
magnetic responsg@-ig. 5). To clarify the effects discussed
above, we include the band structures fbit=2.0 and
T/t=1.0 and coupling strengthd/t=—4.0, —6.0, —8.0, We thank Ch. Baur, W. Fettes, T. Hul3slein, P. F. Meier,
—12.0 in the lower parts of Figs. 17—-20, respectively, whichR. Micnas, |. Morgenstern, J. J. Roguez-Nuez, and S.
we obtain if we use a gray-scale type of coding Adik, ) Schafroth for useful discussions, as well as W. von der Lin-
and mark thek dispersion of the peaks of the reconstructedden for helpful support with the maximum entropy tech-
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