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The ground state of a two-level system coupled to a dispersionless phonon bath is studied by the coupled-
cluster method. The estimates of both the ground-state energy and the tunneling reduction factor are found to
be in good agreement with the exact values. It is also found that within the coupled-cluster approximation there
is no indication of the discontinuous localization-delocalization transition. This is consistent with the exact
result.@S0163-1829~96!08042-3#

I. INTRODUCTION

The study of the influence of a phonon bath on a
quantum-tunneling system is of fundamental interest, both in
physics and chemistry.1 For a particle with small tunneling
probability, the system may be approximated as a dissipative
two-state system. In terms of pseudospin formalism, the
Hamiltonian of a two-state system coupled linearly to a pho-
non bath can be written as

H52D0sx1(
k

\vkak
†ak1(

k
gk~ak

†1ak!sz , ~1!

whereak andak
† are boson annihilation and creation opera-

tors, respectively, andsx andsz are usual Pauli matrices. In
this HamiltonianD0 represents the bare tunneling matrix el-
ement andgk the coupling constant to the phonon modek.
WhenD050, the system consists of a set of oscillators, dis-
placed in one direction when the tunneling system is in one
of the two levels and displaced in the other direction when
the tunneling system is in the other of the two levels. Thus,
there is a twofold degenerate localized ground state with en-
ergy E52(kgk

2(\vk)
21. On the other hand, whengk50,

the eigenstates of the system are the symmetric and antisym-
metric combinations of the spin states with energies
E56D0. Thus, this two-state system exhibits a competition
between the localization inherent in the interaction with the
phonons and the delocalization inherent in the tunneling. In
the intermediate regime, the effect of the phonons is to
modify the tunneling matrix element and damp the oscilla-
tions.

Despite the relatively large amount of work in the litera-
ture, no exact solution to the problem is yet available in
general, except for the dispersionless case~vk5v0 for all
k!.2 There do exist, however, analytic treatments of the
model based upon the variational principle.3–12 The varia-
tional approach has two limitations. First, although the varia-
tional method always yields an upper bound of the ground-
state energy, it is not trivial to improve the variational results
systematically and construction of better variational trial
wave functions requires good physical insight. Second, the
variational ansatz may not simulate the true ground state
well, even though its estimate of the ground-state energy is
fairly close to the exact value. For instance, in the disper-
sionless case the variational calculations predict the exist-
ence of the discontinuous localization-delocalization transi-

tion and are contrary to the exact result.9,11 It is, therefore,
desirable to find a method which provides a systematic
scheme to improve the approximation of the ground-state
wave function. In this paper we shall explore the applicabil-
ity of the coupled-cluster method~CCM! to the ground state
of the dissipative two-state system. Instead of dealing with
the general case of a dispersive phonon bath, we shall con-
centrate on the simpler case of dispersionless phonons. The
CCM has proved to be a very useful technique, and has been
applied to a wide range of physical systems in nuclear phys-
ics, quantum chemistry, relativistic quantum field theory,
etc.13 One of its main advantages is its systematic ability to
be taken to arbitrary accuracy. The CCM can be used to
calculate ground-state and excited-state energies, and also
such other physical quantities as correlation functions and
density matrices. Recently, the widespread success of the
CCM applications has also led to the method being applied
to quantum-mechanical systems defined on an extended
regular spatial lattice, e.g., quantum spin systems and Hub-
bard model on a square lattice.14–21

The outline of the rest of this paper is as follows. In the
next section we describe the basic elements of the CCM and
apply it to a two-state system coupled to a dispersionless
phonon bath. Numerical results are discussed in Sec. III. Fi-
nally, the conclusion is presented in Sec. IV.

II. THEORY

The basic idea of the CCM can be outlined as follows.
The ground state of a many-body HamiltonianH can be
expressed as

uc&5exp~W!uc0& ~2!

with uc0& being an appropriate ‘‘starting wave function’’
which is not orthogonal to the exact ground state. The Schro¨-
dinger equation

Huc&5E0uc& ~3!

can be written as

Huc0&[exp~2W!H exp~W!uc0&5E0uc0&, ~4!

where

exp~2W!H exp~W!5H1@H,W#1
1

2!
@@H,W#,W#1••• .

~5!
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Sinceuc0& is normalized, we may write

^c0uHuc0&5^c0uexp~2W!H exp~W!uc0&5E0 , ~6!

and by projecting Eq.~4! onto the statesucn& which are or-
thogonal touc0& we obtain

^cnuHuc0&5^cnuexp~2W!H exp~W!uc0&50. ~7!

This orthogonality condition yields a series of nonlinear
coupled algebraic equations, each of which contains a finite
number of terms. The correlation operatorW is determined

FIG. 1. Ground-state energyECCA versusD0, for S5~a! 0.02,
~b! 2, and~c! 200. The straight dotted line denotes the zeroth-level
CCA of energy. For other curves, the dash-dotted, dashed, dotted,
and solid lines represent the first-, second-, third-, and fourth-level
result of the CCA, respectively. The exact result is denoted by the
dash-double-dotted line.

FIG. 2. Ground-state energyECCA versusS, for D05~a! 0.01,
~b! 1, and~c! 100. The straight dotted line denotes the zeroth-level
CCA of energy. For other curves, the dash-dotted, dashed, dotted,
and solid lines represent the first-, second-, third-, and fourth-level
result of the CCA, respectively. The exact result is denoted by the
dash-double-dotted line.
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by solving these equations. OnceW is known, the ground-
state energy and wave function can be obtained readily.
Hence, the problem of finding the ground-state energy and
wave function of the many-body system is reduced to com-
puting the operatorW. Nevertheless, this is a very formi-
dable task, and we have to resort to some approximation
scheme to solve the coupled equations. In the following we
shall apply a successive coupled-cluster approximation
~CCA! scheme to investigate the ground state of a two-state
system coupled to a dispersionless phonon bath. This ap-
proximation scheme was proposed by Roger and Hethering-
ton and has been successfully applied to the antiferromag-
netic Heisenberg models and the Hubbard model on a square
lattice.14–16,20Recently, we have also applied the CCM to the
linearE2e Jahn-Teller system in which an electronic dou-
blet interacting with a doubly degenerate vibration.22

We begin our treatment by first applying a unitary dis-
placement transformation to the HamiltonianH in Eq. ~1!:
H̃[exp(T†)H exp(T), whereT52(kgk(ak

†2ak). After the
transformation, we obtain~\vk5\v051 for all k!

H̃52D0sx1(
k
ak
†ak1~sz21!(

k
gk~ak

†1ak!

1S~122sz!, ~8!

whereS5(kgk
2. To initiate our CCA, we then choose our

‘‘starting state’’ uc0& to be the stateuvac&u↑&, whereuvac& de-
notes the vacuum state of all the phonon modes, andu↑&
denotes the spin-up state. This ‘‘starting state’’ has the ad-
vantage that if we apply theH̃ to this state, the off-diagonal
term (sz21)(kgk(ak

†1ak) will vanish automatically. With
this uc0&, we simply choose the correlation operatorW in Eq.
~2! to be zero as the zeroth-level approximation. In this ze-
roth level of CCA we have

exp~2W!H̃ exp~W!uc0&52SS1
D0

2
s2D uc0&, ~9!

and the zeroth-level estimate of the ground-state energy
ECCA

~0! is equal to2S. In order to get rid of the extra term in
Eq. ~9!, we then include inW the operators2 , which flips an
‘‘up-spin’’ to a ‘‘down-spin’’, for the first level of CCA:

W5as2 , ~10!

where the parametera is to be determined. Using this corre-
lation operatorW, we obtain

exp~2W!H̃ exp~W!uc0&5Euc0&1F0s2uc0&

1F1s2(
k
gkak

†uc0&, ~11!

where E52S22aD0 , F054aS2D0(1/222a2) and
F1522a. The parametera is determined by settingF0 equal
to zero, from which we geta52S/D01A(S/D0)

211/4.
This, in turn, gives the first-level estimate of the ground-state
energyECCA

~1! : ECCA
(1) 5E5S22SA11(D0/2S)

2.
Comparing the expressions ofECCA

~0! andECCA
~1! , one im-

mediately realizes thatECCA
~0! takes care of the spin-phonon

interaction only whileECCA
~1! also involves the tunneling ef-

fect, asD0 appears in the expression ofECCA
~1! . This is the

effect of thes2 term inW which makes a spin flip from the
spin-up state to the spin-down state. If we examinea more
carefully, it can be shown that asuS/D0u@1 ~large coupling!,
a tends to zero. This is consistent with our observation from
Eq. ~9! that the remaining term is negligible in this limit so
thatW is no longer important. On the other hand, ifuS/D0u!1
~small coupling!, a tends to 1/2. In this limit, the Hamil-
tonian H̃ is essentially given byH̃'2D0sx . Hence,
if a'1/2, exp(2W)H̃ exp(W) uc0&'exp~2s2/2!H̃ exp~s2/
2!uc0&52D0uc0& and our problem is solved.

In the second level of approximation we include inW the
terms necessary to cancel the remaining term of Eq.~11!:

W5as2~11b1A1!, ~12!

whereA15(kgkak
† . The operatorA1 corresponds to single

excitations in the phonon modes. With this new correlation
factor, we have

exp~2W!H̃ exp~W!uc0&5Euc0&1 (
n50

2

Fns2A1
n uc0&

1G1A1uc0&, ~13!

where

F0522ab1S2
D0

2
~124a2!14aS,

F154a2D0b11ab114aSb122a,
~14!F252a2D0b1

222ab1 ,

G152aD0b1 .

By settingF0 and F1 equal to zero, a set of two coupled
algebraic equations is obtained, from which we may deter-
mine the parametersb1 and a. The corresponding second-
level estimate of the ground-state energy is
ECCA

~2! 5E52S22aD0 . In the third level of CCA, we pick
the correlation operator:

W5as2~11b1A11b2A1
2 !1ag1A1 , ~15!

and obtain

exp~2W!H̃ exp~W!uc0&5Euc0&1 (
n50

4

Fns2A1
n uc0&

1 (
n51

2

GnA1
n uc0&, ~16!

where

F054aS2
D0

2
~124a2!22aS~b11ag1!,

F154a2b1D01ab114ab1S22a~11ab1g1S12Sb2!,

F254a2b2D012a2b1
2D012ab214ab2S

22a~b11ag1b2S!,

F354a2b1b2D022ab2 , ~17!

F452a2b2
2D0 ,

G15ag122aD0b1 ,

G2522ab2D0 .
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The parametersa, b1, b2, and g1 can be determined by
equatingF0, F1, F2, andG1 to zero, and the third-level
estimate of the ground-state energy is given by
ECCA

~3! 5E52S22aD0 .

Finally, following the same idea as shown above, the cor-
relation operatorW for the fourth level of CCA can be cho-
sen as

W5as2S 11 (
n51

4

bnA1
n D 1a (

n51

2

gnA1
n . ~18!

FIG. 3. Tunneling reduction factortCCA versusD0, for S5~a!
0.02,~b! 2, and~c! 200. The dash-dotted, dashed, dotted, and solid
lines represent the first-, second-, third-, and fourth-level result of
the CCA, respectively. The exact result is denoted by the dash-
double-dotted line.

FIG. 4. Tunneling reduction factortCCA versusS, for D05~a!
0.01,~b! 1, and~c! 100. The dash-dotted, dashed, dotted, and solid
lines represent the first-, second-, third-, and fourth-level result of
the CCA, respectively. The exact result is denoted by the dash-
double-dotted line.
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The resultant expression for exp(2W)H̃ exp(W) uc0& is very
lengthy and will not be presented here. By requiring the ap-
propriate coefficients to vanish, a set of seven nonlinear
coupled algebraic equations is obtained, from which the pa-
rameters inW can be determined. This, in turn, gives the
fourth-level estimate of the ground-state energy
ECCA

~4! 52S22aD0. Furthermore, within the CCA, the tun-
neling reduction factortCCA

(n) can be identified as

tCCA
~n! 52a, ~19!

wheren corresponds to thenth level of the CCA. In Sec. III,
we shall show the numerical results for both the approximate
ground-state energy and the tunneling reduction factor of the
CCA.

III. NUMERICAL RESULTS AND DISCUSSION

In Figs. 1–4 we show the CCA results for different levels
of approximation. In Figs. 1 and 3 we considerS fixed to the

values 0.02, 2, and 200, and let the bare tunneling factorD0
vary. In Figs. 2 and 4 we letS vary while fixing D0 to the
values 0.01, 1, and 100. We expect that ifD0 is small, the
two-state system is mainly controlled by the interaction with
phonons and thusE'2S. On the other hand, ifD0 is large,
the energy isE'2D0. Except for the zeroth level, the results
of each level of CCA agree with our expectation in these two
extreme cases. For nearly all cases, our results of the ground-
state energy indicate apparent convergence, and are in good
agreement with the exact results.2 However, in the interme-
diate regionD0'S'\v051, the convergence is still not per-
fect, and discrepancy between the CCA results and the exact
results is noticeable. Comparing the values of the reduction
factor of the third and fourth levels, we observe that there is
no significant difference for nearly all cases, except for the
cases ofS50.02 andD050.01. In these two cases, although
convergence in energy is apparent, the value oftCCA

~4! still
differs from that oftCCA

~3! by a considerable amount. Never-
theless, we believe that higher levels of CCA will be able to

TABLE I. Ground-state energy calculated by different methods
for S50.02, 2, and 200.ECSQrepresents the result of the variational
correlated squeezed-state approach~Ref. 11!.

D0/S

S50.02

ECCA
~4! /S Eexact/S ECSQ/S

0.01 21.009 605 21.009 608 21.009 608
0.04 21.038 429 21.038 434 21.038 434
0.07 21.067 257 21.067 263 21.067 263
0.1 21.096 087 21.096 094 21.096 094
0.4 21.384 535 21.384 553 21.384 553
0.7 21.673 244 21.673 272 21.673 272
1 21.962 204 21.962 242 21.962 241
4 24.864 013 24.864 106 24.864 103
7 27.783 804 27.783 913 27.783 907
10 210.717 092 210.717 200 210.717 194

S52
0.01 21.000 029 21.000 212 21.000 185
0.04 21.000 470 21.001 204 21.000 760
0.07 21.001 438 21.002 728 21.001 369
0.1 21.002 935 21.004 789 21.002 018
0.4 21.047 042 21.055 737 21.015 492
0.7 21.144 520 21.164 368 21.122 562
1 21.295 572 21.330 803 21.309 130
4 24.059 590 24.067 174 24.067 156
7 27.035 658 27.037 131 27.037 130
10 210.025 166 210.025 673 210.002 567

S5200
0.01 21.000 025 21.000 025 21.000 000
0.04 21.000 401 21.000 401 21.000 000
0.07 21.001 227 21.001 227 21.000 000
0.1 21.002 503 21.002 503 21.000 000
0.4 21.040 051 21.040 051 21.000 000
0.7 21.122 654 21.122 659 21.000 000
1 21.250 266 21.250 336 21.119 031
4 23.991 809 24.000 732 24.000 732
7 26.998 948 27.000 387 27.000 387
10 29.999 807 210.000 264 210.000 264

TABLE II. Ground-state energy calculated by different methods
for D050.01, 1, and 100.ECSQ represents the result of the varia-
tional correlated squeezed-state approach~Ref. 11!.

S/D0

D050.01

ECCA
~4! /D0 Eexact/D0 ECSQ/D0

0.01 21.009 804 21.009 804 21.009 804
0.04 21.039 216 21.039 216 21.039 216
0.07 21.068 628 21.068 628 21.068 628
0.1 21.098 041 21.098 041 21.098 041
0.4 21.392 187 21.392 187 21.392 187
0.7 21.686 365 21.686 366 21.686 366
1 21.980 574 21.980 579 21.980 579
4 24.924 060 24.924 512 24.924 510
7 27.867 917 27.871 596 27.871 587
10 210.806 535 210.821 663 210.821 639

D051
0.01 21.003 341 21.003 341 21.003 341
0.04 21.013 449 21.013 453 21.013 453
0.07 21.023 683 21.023 704 21.023 703
0.1 21.034 033 21.034 098 21.034 094
0.4 21.141 923 21.146 829 21.146 511
0.7 21.251 728 21.279 103 21.276 632
1 21.375 042 21.436 545 21.426 780
4 24.067 031 24.067 461 24.000 345
7 27.037 094 27.037 096 27.000 001
10 210.025 659 210.025 659 210.000 000

D05100
0.01 21.000 050 21.000 050 21.000 050
0.04 21.000 202 21.000 203 21.000 203
0.07 21.000 350 21.000 361 21.000 361
0.1 21.000 478 21.000 525 21.000 525
0.4 20.991 066 21.002 726 21.002 725
0.7 21.057 693 21.058 663 21.027 490
1 21.250 598 21.250 674 21.121 511
4 24.062 539 24.062 539 24.000 000
7 27.035 727 27.035 727 27.000 000
10 210.025 006 210.025 006 210.000 000
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take care of these discrepancies and ensure convergence of
the results.

One important point worth noticing is that there is no
evidence of the discontinuous localization-delocalization
transition in our calculations; in other words, asD0 or S
varies, there is no abrupt jump in the value of the reduction
factor. This is consistent with the exact calculations. How-
ever, this observation is far different from those results ob-
tained by the conventional coherent-state or squeezed-state
variational approaches which, contrary to the exact results,
predict the existence of the discontinuous localization-
delocalization transition.8,9,11 With a correlated squeezed
~CSQ! phonon state as an improved variational ansatz, the
sudden change in the value of the reduction factor is re-
moved in some cases, but it still persists in the largeD0 and
largeS regimes.11 This indicates that these variational trial
wave functions are incapable of accurately representing the
exact ground state of the system. On the other hand, the good

agreement of the CCA results with the exact ones seems to
suggest that, unlike the variational approaches, the CCM is
able to serve as a practical tool which can properly deal with
the ground-state properties of the dissipative two-level sys-
tems.

In order to have a clearer comparison between the results
of different methods, we have also tabulated the results of
the ground-state energy in Tables I and II as well as the
tunneling reduction factor in Tables III and IV. It is clear that
ECCA

~4! andEexact show excellent agreement. Even in the in-
termediate region whereD0'S'\v051, their differences
are only a few percent. For other cases, the agreement is far
better than this. In some cases, for example,D05100 and
S/D054, 7, or 10, the agreement is up to seven significant
figures. Our results of the tunneling reduction factor also
show good accuracy compared with the exact results. On the
other hand, the CSQ works well in the region whereD0 or S
are small enough. However, in the region whereS andD0 are

TABLE III. Tunneling reduction factor calculated by different
methods forS50.02, 2, and 200.tCSQ represents the result of the
variational correlated squeezed-state approach~Ref. 11!.

D0/S

S50.02

tCCA
~4! texact tCSQ

0.01 0.960 455 0.960 820 0.960 820
0.04 0.960 732 0.960 910 0.960 910
0.07 0.960 810 0.961 000 0.961 000
0.1 0.960 869 0.961 089 0.961 089
0.4 0.961 337 0.961 968 0.961 968
0.7 0.961 776 0.962 819 0.962 818
1 0.962 204 0.963 641 0.936 641
4 0.966 003 0.970 575 0.970 574
7 0.969 115 0.975 719 0.975 719
10 0.971 709 0.979 635 0.979 635

S52
0.01 0.002 935 0.024 195 0.018 644
0.04 0.011 739 0.041 910 0.019 171
0.07 0.020 543 0.059 738 0.020 944
0.1 0.029 349 0.077 684 0.022 363
0.4 0.117 606 0.264 149 0.126 406
0.7 0.206 457 0.460 675 0.523 667
1 0.295 572 0.643 119 0.701 814
4 0.764 898 0.981 842 0.981 868
7 0.862 237 0.994 473 0.994 473
10 0.902 517 0.997 360 0.997 361

S5200
0.01 0.002 503 0.005 006 0.000 000
0.04 0.010 013 0.020 025 0.000 000
0.07 0.017 522 0.035 044 0.000 000
0.1 0.025 031 0.050 063 0.000 000
0.4 0.100 126 0.200 256 0.000 000
0.7 0.175 221 0.350 468 0.000 000
1 0.250 266 0.500 724 0.714 052
4 0.747 952 0.999 780 0.999 780
7 0.856 993 0.999 940 0.999 940
10 0.899 981 0.999 972 0.999 972

TABLE IV. Tunneling reduction factor calculated by different
methods forD050.01, 1, and 100.tCSQ represents the result of the
variational correlated squeezed-state approach~Ref. 11!.

S/D0

D050.01

tCCA
~4! texact tCSQ

0.01 0.999 804 0.999 808 0.999 808
0.04 0.999 216 0.999 231 0.999 231
0.07 0.998 628 0.998 655 0.998 655
0.1 0.998 041 0.998 079 0.998 079
0.4 0.992 187 0.992 339 0.992 339
0.7 0.986 365 0.986 630 0.986 630
1 0.980 574 0.980 953 0.980 952
4 0.924 060 0.925 882 0.925 879
7 0.867 917 0.873 798 0.873 782
10 0.806 535 0.824 552 0.824 508

D051
0.01 0.993 341 0.997 770 0.997 770
0.04 0.973 449 0.990 991 0.990 992
0.07 0.953 683 0.984 073 0.984 076
0.1 0.934 033 0.977 013 0.977 021
0.4 0.741 923 0.897 727 0.898 459
0.7 0.551 728 0.800 423 0.805 526
1 0.375 042 0.685 294 0.701 401
4 0.067 031 0.134 732 0.354 852
7 0.037 094 0.074 195 0.000 008
10 0.025 659 0.051 320 0.000 000

D05100
0.01 0.990 050 0.999 950 0.999 950
0.04 0.960 202 0.999 794 0.999 794
0.07 0.930 350 0.999 627 0.999 627
0.1 0.900 478 0.999 447 0.999 447
0.4 0.591 066 0.995 737 0.995 739
0.7 0.357 693 0.718 011 0.876 268
1 0.250 598 0.501 455 0.714 044
4 0.062 539 0.125 079 0.000 000
7 0.035 727 0.071 454 0.000 000
10 0.025 006 0.050 013 0.000 000
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both large, the CSQ no longer works properly. Due to its
incapability of simulating the exact ground state, it predicts
an abrupt jump in the tunneling reduction factor which is
absent in the exact results. It seems to suggest that the CCM
is able to work well in the whole parameter space, and that,
even in the region where the CSQ breaks down, the CCA
results agree with the exact ones with high precision.

IV. CONCLUSION

In this paper we have investigated the ground-state prop-
erties of a two-state system coupled to a dispersionless pho-
non bath by the coupled-cluster method. With this method,
we can systematically improve not only the estimate of the
ground-state energy but also the ground-state wave function.
Up to the fourth level of our coupled-cluster approximation
scheme, our results show good agreement with the exact re-
sults. We have found that the system shows no sign of the

discontinuous localization-delocalization transition. In other
words, there is no abrupt change in the value of the tunneling
reduction factor as the coupling strength or the bare tunnel-
ing matrix element varies. This result contradicts those of
previous studies by the variational approach but agrees with
the exact result. Hence, our results seem to suggest that the
coupled-cluster method is able to provide a useful tool for
studying the ground-state properties of the dissipative two-
state system. We are in the process of applying the coupled-
cluster method to the general case of a dispersive phonon
bath, and the results will be published elsewhere.
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