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A concise approach for static polarons is extended to study the dynamic polaron system having nonspherical
symmetry. The general properties of moving polarons, such as the ground-state energy, the phonon number,
the effective mass, and the density distribution of phonon momentum—studied as functions of the total polaron
momentum and electron-phonon coupling strength—are calculated numerically in a wide range of intermediate
coupling strengths. In particular, a modified Fro¨hlich Hamiltonian is derived for the problem of polaron
momentumQ>1. @S0163-1829~96!05542-7#

I. INTRODUCTION

Polaron problems have attracted much attention during
the last 40 years, and there has been considerable progress in
both theoretical and experimental studies of its properties.
Each improvement in polaron theory has doubtlessly shed
light on elucidating the mechanisms of the electron-phonon
interaction in polar crystals, semiconductors, and noncrystal-
line materials. In general, three approaches were applied to
static polarons, which are variational calculations including
the path-integral method, perturbation theory, and the
Green’s function method. The path-integral method was first
applied to the polaron problem by Feynman,1 and his results
was universally accepted and proved to be reliable. Recently,
a Monte Carlo calculation has been performed on the polaron
ground-state energy by Alexandrouet al.2 Meanwhile, some
fundamental theorems, deductions, and physical properties
about the static polaron system have been discussed by many
physicists.3–8

The problem of the energy-momentum dispersion relation
of a Fröhlich polaron confined to two dimensions for small
electron-phonon coupling strength has been studied by
Peeterset al.9 P. Warmenbolet al.10 have investigated the
effect of the polaron-induced nonparabolicity of the energy-
momentum relation on the dynamics of transport electrons
for AgCl using different models. It is known that the static
polaron has spherical symmetry so that an original three-
dimensional~3D! problem can be reduced into a 1D one. If
the polaron is in motion, the symmetry of the system will be
broken, and the properties of moving polarons in the hori-
zontal and vertical directions one are intrinsically different.
For this reason, the symmetry should be an axial symmetry.
Thus a 3D problem then became an essentially 2D question.
By physical considerations, the moving polarons may have
more significance than static ones, including how their trans-
port character becomes affected by the surrounding, defects
and impurities, for example. These properties must have a
close relation with the moving behavior of polarons. This is
why the problem of polarons in motion is interesting.

In this paper, a concise approach is extended to a dynamic
polaron system. With this method, a systematic study of the
general properties of moving polarons including, the ground-
state energy, the total phonon number, the effective mass and
their dependent relations with the distribution of phonons,

and the electron-phonon coupling strength, are made in a
wide range of intermediate-coupling strengths. In Sec. II, we
first perform a two-phonon correlation to phonon coherent
state of the Schro¨dinger equation with a Fro¨hlich model. As
a result, a self-consistent integral equation for the distribu-
tion function of the energy in terms of the wave vectorq is
derived under the consideration of axial symmetry. Finally,
we solve the equation numerically. The calculated results are
presented and discussed in Sec. III. In particular, we give a
modified Fröhlich Hamiltonian to discuss the energy-
momentum relation of polarons to the problem of polaron
momentumQ>1 in Sec. IV. Conclusions are given in
Sec. V.

II. THEORETICAL DERIVATION

The work starts with the well-known Fro¨hlich
Hamiltonian.11 In this paper, the units of 2m5v05V5\51
are adopted, and so the Hamiltonian reads

H5P21(
q
aq
†aq1(

q
Vq~aqe

iq•r1aq
†e2 iq•r !, ~1!

where

Vq5
2Apa

uqu
, ~2!

andaq
† andaq are the creation and annihilation operators of

the longitudinal optical~LO! phonon with wave vectorq,
respectively.a is a dimensionless coupling constant.

The operator of total momentum,

Q5P1(
q
qaq

†aq , ~3!

commutes with the HamiltonianH; therefore,Q is a con-
served quantity. Following Lee, Low, and Pines,12 we can
use this fact to eliminate the electron coordinates fromH; we
define the unitary transformation

U5expF i SQ2(
q
aq
†aqD •r G , ~4!
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and calculateH85U21HU, which results in

H85Q21(
q

~122Q•q1q2!aq
†aq

1 (
q1 ,q2

q1•q2aq1
† aq2

† aq1aq21(
q
Vq~aq1aq

†!. ~5!

In the next important step, following Ref. 13, we intro-
duce our phonon coherent state as follows:

u&5u&01 (
q1 ,q2

b~q1 ,q2!aq1
† aq2

† u&0 , ~6!

where

u&05)
q

exp@F~q!aq
†#u0& ~7!

andb~q1,q2! is the interchanging symmetrical function ofq1
and q2. It implies the correlation between two emitted
phonons. With the intermediate-coupling strength, the ex-
pansion~6! is enough to describe the polaron behavior in
ionic crystals or semiconductor materials. Even if stronger
coupling should be considered, one can add more correlation
terms of phonons Eq.~6!, which only adds to the difficulties
in calculation.

Inserting Eqs.~5! and ~6! into the Schro¨dinger equation

H8u&5Eu&, ~8!

we obtain

EH u&01 (
q1 ,q2

b~q1 ,q2!aq1
† aq2

† u&0J 5(
q
VqF~q!u&01H(q ~122Q•q1q2!F~q!1Vq12(

q8
b~q,q8!Vq8J aq†u&0

1 (
q1 ,q2

H(q VqF~q!b~q1 ,q2!1q1•q2F~q1!F~q2!1@222Q•~q11q2!

1~q11q2!
2#b~q1 ,q2!1Q2b~q1 ,q2!1q1•q2b~q1 ,q2!J aq1† aq2† u&0 , ~9!

where the (a†)3 terms are neglected. Comparing the coefficients ofu&0, aq
†u&0 , andaq1

† aq2
† u&0 on two sides of Eq.~9!, we have

E5Q21(
q
VqF~q!, ~10!

Vq1~122Q•q1q2!F~q!12(
q8

Vq8b~q,q8!50, ~11!

H(
q
VqF~q!1@222Q•~q11q2!1~q11q2!

2#2E1Q2J b~q1 ,q2!52q1•q2F~q1!F~q2!. ~12!

From Eqs.~11! and ~12!, one has

F~q!52
Vq

122Q•q1q2
1

2

122Q•q1q2 (
q8

Vq8

q•q8F~q!F~q8!

222Q•~q1q8!1~q1q8!2
. ~13!

Since the polaron is in motion, the phonons should be distributed over the direction of total polaron momentum. SoF~q!
can be expressed in the formF(Q,q,u), whereu is the angle betweenQ and q. Turn the summation(q into an integral
[1/(2p)3]* dq, the Eq.~13! can be reduced to the form as

F~Q,q,u!52
Vq

122Qq cosu1q2
1

2

~122Qq cosu1q2!~2p!3
E Vq8F~Q,q,u!F~Q,q8,u8!qq83~sinu sinu8 cosw8

1cosu cosu8!sinu8dq8du8dw8@222q~q cosu1q8 cosu812qq8~sinu sinu8 cosw81cosu cosu8!#21.

~14!

From Eq.~14! one can prove that ifQ satisfies the condition ofQ,1, the denominator of formula~14! will not be equal
to zero. That is to say, the solution of Eq.~14! exists. ForQ approaching 1.0 and the case ofQ>1.0, a modified calculation
will be discussed in Sec. IV.
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III. NUMERICAL RESULTS AND DISCUSSIONS

By Eqs.~14! and ~6!, an exact form for the density of phonon number can be derived as

n~Q,q,u!5uF~Q,q,u!u2@11G2~Q,q,u!#, ~15!

where

G~Q,q,u!5
1

2p2 E
0

1`

dq8E
0

p

du8F~Q,q,u8!q82 sinu8R, ~16!

R512@222Q~q cosu1q8 cosu8!1q21q82#@222Q~q cosu1q8 cosu8!1q21q82

12qq8 cos~u1u8!#21/2@222Q~q cosu1q8 cosu81q21q8212qq8 cos~u2u8!#21/2. ~17!

The numerical calculations are arranged as follows. First,
by the iteration method, we calculate the solution of
F(Q,q,u); we then substitute it into Eq.~15! to calculate the
distribution of the density of phonon numbers~DPN! as the
function of phonon momentumq and its directionu, respec-
tively. After that, we calculate the phonon momentum distri-
bution, total averaged number of virtual phonons, total
ground-state energy, and the effective mass as functions of
coupling strengtha and the total momentumQ separately.
Now we demonstrate our numerical results and give the ex-
planation.

A. Distribution of density of phonon numbers

According to formulas~14! and~15!, we first calculate the
density of phonon numbers as the functions of phonon mo-
mentumq in different directionu and coupling strengtha by
the iteration method. The results are shown in Fig. 1. The
ordinate takes the logarithm unit. Each group curve means
the samea andQ with a different angle of phonons. The
lower group curve represents the smallera value. It can be
seen that~i! with the increasing ofq, n(Q,q,u) descends

rapidly; ~ii ! if the coupling strengtha increases, the DPN
goes up in value, and the small included angle corresponds to
the large value of the DPN.

The densities of phonon number as a function of the dis-
tribution angle of phonons with different phonon momentum
q and coupling constanta are presented in Figs. 2~a! and
2~b! separately. Figures 2~a! and 2~b! stipulatea52 and

FIG. 1. Density of phonon numbers as a function of phonon
momentum with different directions of phononsu and coupling
strengtha.

FIG. 2. Density of phonon numbers vs the phonon distribution
angleu in differentq. ~a! a52 and~b! a56.

12 854 54WANG KELIN, WANG YI, AND WAN SHAOLONG



a56, respectively. The abscissa of two figures express the
included angle betweenQ andq, with its unit in radians. The
ordinate mark the density of phonon numbern logarithmi-
cally. From two figures we noticed that~i! n(Q,q,u) takes
the maximum value in theQ direction and the minimum
value in the oppositeQ direction—this result is consistent
with our suggestion of axial symmetry;~ii ! with an increase
in coupling strength, as a result of the increase of the phonon
number, the change in the distribution of phonons becomes
more clear with respect to the angleu; ~iii ! the density of
phonon numbers do not change obviously only in the case of
q being taken both as a smaller and larger value, and in the
case of a weak coupling constant.

B. Total average phonon numberN

The total phonon number can be given by

N5(
q
n~Q,q!. ~18!

Using the results for the density of phonon number and
formula ~18!, we calculate the total average phonon number
as a function of total momentumQ. The relation between
them in different coupling strengthsa is demonstrated in
Fig. 3. We find~i! the total average phonon numberN in-
creases with the increasing of momentumQ—there is a non-
linear relation between them—~ii ! the stronger the coupling
constant is, the larger the phonon numberN is, a reasonable
physical result. We also notice that whena53.5 andQ50.7,
N is near 2.4. This means that the two-phonon correlation is
insufficient to describe the facts in such an electron-phonon
system. So the reliability of the calculation in terms of the
expansion~6! will be questionable. More phonon’s correla-
tion should be considered.

C. Phonon momentum

The phonon momentumPp is given by

Pp5(
q
n~Q,q!q, ~19!

and the electron momentumPe is determined by

Pe5Q2Pp . ~20!

According to Eq.~19!, we calculate the dependent relation
of phonon momentumPp as a function of total polaron mo-
mentumQ with different coupling strengths. Some interest-
ing results are shown in Fig. 4. It can be seen that the phonon
momentum is changing in a nonlinear relation with the po-
laron momentum. From the lowest solid line, we know that
the proportion which phonon momentum occupies is only
1/3 of the total momentum, but whena54 ~the highest line!
the proportion will be almost 1. That is to say, the momen-
tum of a charged carrier increases more slowly withQ when
the electron-phonon coupling is weak. When the coupling
strength becomes stronger, the momentum of charged carrier
has a obvious change withQ. So we can conclude that the
speed of a charged carrier cannot be increased by increasing
the total momentumQ and coupling strengtha.

D. Energy and the effective mass

The dependent relation between total energyE(Q) and
polaron momentumQ with different coupling strengths is
presented in Fig. 5. One finds that the polaron energy has a
slight increase withQ from 0 to 0.9. The possible reason can
be explained as follows: with an increase ofQ, the total
phonon number will increase, as does the binding energy of
the system; thus, it will offset most of the increase of kinetic
energy, and keep the total energy almost constant withQ.

There are two deductions that can be made.~i! The in-
equality E(Q50).E(QÞ0)2Q2 is always tenable. This
conclusion had been given in theorem by Gerlach and
Löwen.6 Our quantitative results show no difference with his
theorem.~ii ! When the polaron is regarded as a point par-
ticle, the effective mass of this particle should be the func-
tion of total momentumQ.

Since the energy can be written as

DE~Q!5E~Q1DQ!2E~Q!, ~21!

FIG. 3. Total average phonon numberN vs the total polaron
momentumQ with a51, 2, 3, and 4, respectively.

FIG. 4. Phonon momentum as a function of total momentum
with different coupling constantsa.
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the effective mass can be given by

m* ~Q!5
Q

DE/DQ
. ~22!

According to Eq.~22!, we calculated the effective mass of
moving polarons versus the momentumQ. The results are
displayed in Fig. 6. One may find thatm* (Q) increases with
an increase inQ, and the trend of this phenomenon becomes
more pronounced as the coupling constant increases.

IV. ENERGY-MOMENTUM RELATION FOR Q>1

It should be pointed out that the above method is not valid
for a.6 andQ.0.9. The enlargement of a valid range of
coupling constant can be realized by introducing more pho-
non correlation to the ansatz. As for whyQ cannot be equal
to 1.0, the reason is that the Fro¨hlich Hamiltonian was de-
rived under a one-order perturbation approximation for the
potential energy. IfQ51.0, it leads to a divergence of the
energy. In order to overcome this difficulty, we expand the
potential energy around the equilibrium position to the
second-order term as follows:

U~r2Xm!5U~r2Rm!2um•“U~r2Rm!

1
1

2
um•um8

]2U~r2Rm!

]r]r 8
, ~23!

whereU~r2Xm! is the potential energy of an electron atr in
the field of a ion atXm , andXm5Rm1um whereRm is the
equilibrium position andum is the atomic displacement.

After a derivation, we can write a modified Fro¨hlich
Hamiltonian as

H5P21(
q
aq
†aq1(

q
Vq~aqe

iq•r1aq
†e2 iq•r !

1(
q
W~aqe

iq•r1aq
†e2 iq•r !2, ~24!

where the forth term of the right side of the equation indi-
cates the second-order electron-phonon interaction.W is a
parameter coefficient, which is found from the calculation
that relates it to the particular materials, the coupling
strength, and the nonlinearity of the system.

Following a procedure similar to the above treatment, we
obtain the following equations:

b~q,q8!52
W1q•q8F~q!F~q8!

222Q•~q1q8!1~q1q8!2
, ~25!

F~q!52
Vq

122Q•q1q212W14W(
q8

b~q,q8!

1
2W

122Q•q1q212W14W(
q8

b~q,q8!
(
q8

Vq8
222Q•~q1q8!1~q1q8!2

1
2

122Q•q1q212W14W(
q8

b~q,q8!
(
q8

Vq8q•q8F~q!F~q8!

222Q•~q1q8!1~q1q8!2
, ~26!

E5Q21(
q
VqF~q!1(

q
W@F2~q!11#12(

qq8
Wb~q,q8!. ~27!

FIG. 5. Total energyE(Q) vs the total momentumQ with dif-
ferent coupling strength forQ,1.0.

FIG. 6. The effective mass as a function of total momentum
with coupling constanta52, 3, and 4, respectively.

12 856 54WANG KELIN, WANG YI, AND WAN SHAOLONG



According to Eqs.~26! and~27!, we calculate the polaron
energy-momentum relation numerically fromQ50 to
Q51.1 using different coupling constants. The results are
shown in Fig. 7. For comparison, we also present energy-
momentum relations for the modified calculationQ<1.1 and
our original calculation (Q,0.9) in Fig. 8 asa52.0. It is
found that, whenQ,0.5, two results are in good agreement,
though they have obvious differences whenQ.0.6.

V. CONCLUSION

In summary, the general properties of dynamic polarons
with nonspherical symmetry are investigated in a wide range
of intermediate coupling constants. Some character param-
eters of moving polarons, such as the ground-state energy,
the distribution of phonons, the effective mass, the average
number of virtual phonons, and the phonon momentum, have
been calculated. The calculations are completely self-
consistent and the method proves to be general and effective.
It also includes the results predicted by Gerlach’s theorem.
The reason is that, if we takeQ50, we are able to return to
the case of the static polaron, and we can reproduce the

precise results which match the previous values of sixth-
order perturbation theory and are as good as the Feynman
results.13

It is also found that phonons are distributed over the di-
rection of moving polarons, and such a distribution decreases
rapidly with the increase of the angleu. The larger the cou-
pling constant, the more obvious this appearance. The pho-
non momentum has a nonlinear relation with the total po-
laron momentum in a dynamic polaron system. The effective
mass increases approximately linearly with the increase of
total momentum, but the slope of the curve becomes large as
the coupling strength increases.

It should be pointed out that, although some conclusions
of this paper are similar to the pioneer works,9,10 we use a
method to deal with this problem that has enabled us to
obtain more information about the moving polarons, espe-
cially about those of phonons. It can be predicted that our
method is suitable for many actual polar and semiconductor
materials.
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