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General properties of a polaron in motion
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A concise approach for static polarons is extended to study the dynamic polaron system having nonspherical
symmetry. The general properties of moving polarons, such as the ground-state energy, the phonon number,
the effective mass, and the density distribution of phonon momentum—studied as functions of the total polaron
momentum and electron-phonon coupling strength—are calculated numerically in a wide range of intermediate
coupling strengths. In particular, a modified Rlioh Hamiltonian is derived for the problem of polaron
momentumQ=1. [S0163-18206)05542-7

[. INTRODUCTION and the electron-phonon coupling strength, are made in a
wide range of intermediate-coupling strengths. In Sec. II, we
Polaron problems have attracted much attention durindjrst perform a two-phonon correlation to phonon coherent
the last 40 years, and there has been considerable progressstate of the Schiinger equation with a Fdich model. As
both theoretical and experimental studies of its properties? result, a self-consistent integral equation for the distribu-
Each improvement in polaron theory has doubtlessly sheéon function of the energy in terms of the wave veatpis
light on elucidating the mechanisms of the electron-phonorlerived under the consideration of axial symmetry. Finally,
interaction in polar crystals, semiconductors, and noncrystalve solve the equation numerically. The calculated results are
line materials. In general, three approaches were applied @résented and discussed in Sec. Ill. In particular, we give a
static polarons, which are variational calculations includingmodified Frdilich Hamiltonian to discuss the energy-
the path-integral method, perturbation theory, and thémomentum relation of polarons to the problem of polaron
Green’s function method. The path-integral method was firsfhomentumQ=1 in Sec. IV. Conclusions are given in
applied to the polaron problem by Feynmaand his results Sec. V.
was universally accepted and proved to be reliable. Recently,
a Monte Carlo calculation has been performed on the polaron II. THEORETICAL DERIVATION
ground-state energy by Alexandretial> Meanwhile, some . o
fundamental theorems, deductions, and physical properties 1he work starts with the well-known Hndich

H H 11 H H _ —\/—F —
about the static polaron system have been discussed by mahigmiltonian:~In this paper, the units off@= wo=V=A=1

physicists®~ are adopted, and so the Hamiltonian reads
The problem of the energy-momentum dispersion relation

of a Frdhlich polaron confined to two dimensions for small

electron-phonon coupling strength has been studied by

Peeterset al® P. Warmenbolet al1° have investigated the

effect of the polaron-induced nonparabolicity of the energy-where

momentum relation on the dynamics of transport electrons

for AgCl using different models. It is known that the static 2\Jma

polaron has spherical symmetry so that an original three- quw, ()

dimensional(3D) problem can be reduced into a 1D one. If

the polaron is in motion, the symmetry of the system will beangal anda, are the creation and annihilation operators of

broken, and the properties of moving polarons in the horiyhe |ongjtudinal optical(LO) phonon with wave vectou,
zontal and vertical directions one are intrinsically different.espectively.« is a dimensionless coupling constant.

For this reason, the symmetry should be an axial symmetry. The operator of total momentum,

Thus a 3D problem then became an essentially 2D question.

By physical considerations, the moving polarons may have

more significance than static ones, including how their trans- Q=P+ 2 qagaq, (3

port character becomes affected by the surrounding, defects q

and impurities, for example. These properties must have a . I .

close rtglation with the mc?ving behavﬁ)r gf polarons. This jscommutes W'.th the Hamﬂtomahi; therefore,QHés a con-

why the problem of polarons in motion is interesting. serveq quantity. .Fqllowmg Lee, Low, and. Pinésye can
In this paper, a concise approach is extended to a dynam se this fact tp eliminate the el'ectron coordinates fidbnwe

polaron system. With this method, a systematic study of th efine the unitary transformation

general properties of moving polarons including, the ground-

state energy, the total phonon number, the effective mass and U=ex i(Q— E ala

their dependent relations with the distribution of phonons, g 4

H=P2+Zq aanJ“% Vo(age't " +age™4N), (1)

'r:|, (4)
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and calculateH’=U "HU, which results in
Do=11 exiF(aazlo) 7
r_ A2 AP
H'=Q +% (1-2Q-g+0%)aqaq andb(q;,q,) is the interchanging symmetrical function @f
and g,. It implies the correlation between two emitted
2 _— T phonons. With the intermediate-coupling strength, the ex-
+q : q1~q2aqlaq2aqlaq2+% Vg(agtag). (5 pansion(6) is enough to describe the polaron behavior in
1 ionic crystals or semiconductor materials. Even if stronger
In the next important step, following Ref. 13, we intro- coupling should be considered, one can add more correlation

duce our phonon coherent state as follows: terms of phonons Ed6), which only adds to the difficulties
in calculation.
Inserting Eqs(5) and(6) into the Schrdinger equation
y=Do+ 2 b(ds,d2)ad.al o, (6)
41,92 H’|):E|>, (8)
where we obtain

E |>o+qZq b(ql,q2>agla;2|>o}=§ qu<q>|>o+|§ (1-2Q-q+0?)F(a)+Vq+22 b(a,9)Vq 1aglo
1.2 q’

+q2q [% VF(@)b(a1,02) + 01 - GF (A1) F(0p) +[2—2Q- (91 + )

+(01+d2)?1b(01,02) + Q?b(qy,G2) + Gy - QZb(QLQZ)} al.aq o, 9

where the &")® terms are neglected. Comparing the coefficientboofam)o, andaglaazbo on two sides of Eq(9), we have

E=Q2+% VqF(a), (10
Vo +(1-2Q-g+g?)F(a)+22 Vg b(a,q)=0, (11)
q!
% VoF(Q)+[2-2Q- (a;+dz) + (01 +02)2] — E+Q?} b(qy,02) = — 0y G2F (1) F(ay). (12

From Egs.(11) and(12), one has

v 2 q-a'F(9)F(q")
_ q
F(g)= 1—2Q-q+q2+ 1—2Q-q+q2 % Vqr 2—2Q-(q+q')+(Q+q’)2-

(13

Since the polaron is in motion, the phonons should be distributed over the direction of total polaron momenf(ry). So
can be expressed in the forf(Q,q, ), where 6 is the angle betwee® andg. Turn the summatiorX, into an integral
[1/(27)3]f dq, the Eq.(13) can be reduced to the form as

\ 2
— q , 1ot 13( i [ ’
FQ.8.0) =~ T 55 com+? " (1-20q Cosg+qz)(277)3j Vq'F(Q,9,0)F(Q.q",6")qq">(sind sing” cosp

+cosd cosd’)sing’dq’'de’ de’[2—2q(q cosf+q’ codd’ +2qq’(sind sind’ cosp’ +cosd cosh’ )] L.
(14
From Eg.(14) one can prove that i@ satisfies the condition d@<1, the denominator of formulél4) will not be equal

to zero. That is to say, the solution of H44) exists. ForQ approaching 1.0 and the case@#% 1.0, a modified calculation
will be discussed in Sec. IV.
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IIl. NUMERICAL RESULTS AND DISCUSSIONS

By Egs.(14) and (6), an exact form for the density of phonon number can be derived as

n(Q.q,0)=|F(Q,q,0)[[1+G*Q,q,0)], (15
where
1 + o T ]
G(Q,q,6)=ﬁ fo dq’JO do'F(Q,q,0")q’? sind' R, (16)

R=1-[2-2Q(q cos#+q’ cosd’)+q+q'?][2—2Q(q cosh+q’ cosd’)+q>+q’?
+2qq’ cog6+6")] Y42—2Q(q cod+q’ cosd’ +q2+q’'2+2qq’ cog6—6')] Y2 (17

The numerical calculations are arranged as follows. Firstrapidly; (ii) if the coupling strengthv increases, the DPN
by the iteration method, we calculate the solution ofgoes up in value, and the small included angle corresponds to
F(Q,q,); we then substitute it into Eq15) to calculate the the large value of the DPN.
distribution of the density of phonon numbeBPN) as the The densities of phonon number as a function of the dis-
function of phonon momentum and its directions, respec-  tribution angle of phonons with different phonon momentum
tively. After that, we calculate the phonon momentum distri-d and coupling constant are presented in Figs(& and
bution, total averaged number of virtual phonons, total2(D) separately. Figures(@ and 2b) stipulate «=2 and
ground-state energy, and the effective mass as functions of

coupling strengthn and the total momentur® separately. 4.00 -
Now we demonstrate our numerical results and give the ex- ] q = 0.110
planation. ’5 ]
< ]
A. Distribution of density of phonon numbers % 2.00 EN
According to formulag14) and(15), we first calculate the a sw
density of phonon numbers as the functions of phonon mo- & ]
mentumgq in different directiond and coupling strength by E . _
the iteration method. The results are shown in Fig. 1. The 0.00 - 7 1368
ordinate takes the logarithm unit. Each group curve means g I T 9 = 2003
the samew and Q with a different angle of phonons. The § ] \
lower group curve represents the smallevalue. It can be Y I 4 = 2890
seen that(i) with the increasing ofy, n(Q,q,6) descends
-2.00
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FIG. 1. Density of phonon numbers as a function of phonon
momentum with different directions of phonorsand coupling FIG. 2. Density of phonon numbers vs the phonon distribution
strengtha. angle @ in differentq. (@) =2 and(b) «=6.
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FIG. 3. Total average phonon numbirvs the total polaron
momentumQ with a=1, 2, 3, and 4, respectively.

a=6, respectively. The abscissa of two figures express th
included angle betwee@ andq, with its unit in radians. The
ordinate mark the density of phonon numbetogarithmi-
cally. From two figures we noticed théf n(Q,q, 6) takes
the maximum value in th&) direction and the minimum
value in the opposit€ direction—this result is consistent
with our suggestion of axial symmetrtij) with an increase

in coupling strength, as a result of the increase of the phono
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FIG. 4. Phonon momentum as a function of total momentum
with different coupling constants.

&nd the electron momentuR}, is determined by

P.=Q—Pp. (20
According to Eq(19), we calculate the dependent relation

of phonon momentur®, as a function of total polaron mo-

mentumQ with different coupling strengths. Some interest-

number, the change in the distribution of phonons becomel¥d results are shown in Fig. 4. It can be seen that the phonon

more clear with respect to the angle (iii) the density of

phonon numbers do not change obviously only in the case d

g being taken both as a smaller and larger value, and in th
case of a weak coupling constant.

B. Total average phonon numberN

The total phonon number can be given by

N=§q‘, n(Q,q). (18

momentum is changing in a nonlinear relation with the po-
ron momentum. From the lowest solid line, we know that
e proportion which phonon momentum occupies is only
1/3 of the total momentum, but when=4 (the highest ling

the proportion will be almost 1. That is to say, the momen-
tum of a charged carrier increases more slowly v@thvhen

the electron-phonon coupling is weak. When the coupling
strength becomes stronger, the momentum of charged carrier
has a obvious change wifR. So we can conclude that the
speed of a charged carrier cannot be increased by increasing
the total momentun® and coupling strength.

Using the results for the density of phonon number and

formula (18), we calculate the total average phonon number

as a function of total momentur®. The relation between
them in different coupling strengthg is demonstrated in
Fig. 3. We find(i) the total average phonon numhrin-

creases with the increasing of momentQ@s-there is a non-
linear relation between them@h the stronger the coupling
constant is, the larger the phonon numbkeis, a reasonable
physical result. We also notice that wher3.5 andQ=0.7,

D. Energy and the effective mass

The dependent relation between total eneEffQ) and
polaron momentunQ with different coupling strengths is
presented in Fig. 5. One finds that the polaron energy has a
slight increase witlQ from 0 to 0.9. The possible reason can
be explained as follows: with an increase @f the total
phonon number will increase, as does the binding energy of
the system; thus, it will offset most of the increase of kinetic

N is n-e-ar 2.4. This means that the tWO-phonon correlation i%nergy, and keep the total energy almost constant @nh
insufficient to describe the facts in such an electron-phonon There are two deductions that can be mag@eThe in-

system. So the reliability of the calculation in terms of the
expansion(6) will be questionable. More phonon’s correla-
tion should be considered.

C. Phonon momentum

The phonon momenturR, is given by

Pp=§ n(Q,q)q, (19)

equality E(Q=0)>E(Q#0)—Q? is always tenable. This
conclusion had been given in theorem by Gerlach and
Lowen® Our quantitative results show no difference with his
theorem.(ii) When the polaron is regarded as a point par-
ticle, the effective mass of this particle should be the func-
tion of total momentunQ.

Since the energy can be written as

AE(Q)=E(Q+AQ)—E(Q), (21)
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FIG. 5. Total energye(Q) vs the total momenturn® with dif- FIG. 6. The effective mass as a function of total momentum
ferent coupling strength foR<1.0. with coupling constantr=2, 3, and 4, respectively.
the effective mass can be given by U(r-X,)=U(r-R,)—u,-VU(r—-R,)
Q 1 PU(r-R,)

Q= 3Eag: (22 PR B I

whereU(r—X ) is the potential energy of an electronrain
According to Eq(22), we calculated the effective mass of e field of a'ion atx,, andX,=R,+u, whereR, is the

moving polarons versus the momentugn The results are  gqyilibrium position andJ is the atomic displacement.

displayed in Fig. 6. One may find that* (Q) increases with After a derivation, we can write a modified ‘Eich
an increase i1Q, and the trend of this phenomenon becomesy;miitonian as

more pronounced as the coupling constant increases.
—p2 T iq-r ta—ig-r

IV. ENERGY-MOMENTUM RELATION FOR Q=1 H=P +§ aqanr% Va(@ge ™ +age )

It should be pointed out that the above method is not valid , ,
for a>6 andQ>0.9. The enlargement of a valid range of +2 W(age't +ale 92, (24)
coupling constant can be realized by introducing more pho- d
non correlation to the ansatz. As for wiy cannot be equal where the forth term of the right side of the equation indi-
to 1.0, the reason is that the Htich Hamiltonian was de- cates the second-order electron-phonon interackéris a
rived under a one-order perturbation approximation for theparameter coefficient, which is found from the calculation
potential energy. 1fQ=1.0, it leads to a divergence of the that relates it to the particular materials, the coupling
energy. In order to overcome this difficulty, we expand thestrength, and the nonlinearity of the system.
potential energy around the equilibrium position to the Following a procedure similar to the above treatment, we
second-order term as follows: obtain the following equations:

W+q-q'F(q)F(q’)

== 2
P9~ 3 2q (ara)+ (grq) 29
Y, oW Vg
F(a)=- 4 + S e a —
1-20-q+ @+ 2W+aWS b(a.q))  1-2Q-q+ @+ 2W+awS b(qq) ¢ 2 22 @rairiara)
q’ q’
N 2 s _ Vodd F(Q)F(a') 6

! 2_2 N + ! + —I'- YA
1_2Q'q+q2+2W+4WE b(q.ql) q Q (q q ) (q q )
q/

Q2+2 Vv F(q>+2 WIF?(q)+1]+22, Wh(q,q"). 27)
qq’
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FIG. 7. Real part of the energy vs momentum fr@w0 to
Q=1.1 with different coupling constants. The dotted line indicatesprecise results which match the previous values of sixth-
a=1; the solid line represents=2; the dot-dashed line is far=3; order perturbation theory and are as good as the Feynman
the dashed line indicates=4. resultst3

It is also found that phonons are distributed over the di-

According to Eqs(26) and(27), we calculate the polaron rection of moving polarons, and such a distribution decreases
energy-momentum relation numerically fror@=0 to  rapidly with the increase of the angte The larger the cou-
Q=1.1 using different coupling constants. The results argying constant, the more obvious this appearance. The pho-
shown in Fig. 7. For comparison, we also present energynon momentum has a nonlinear relation with the total po-
momentum relations for the modified Ca'CUlat.@ﬁé 1.1 and laron momentum in a dynamic p0|aron System_ The effective
our original calculation Q<0.9) in Fig. 8 asa=2.0. It is  mass increases approximately linearly with the increase of
found that, wherQ<0.5, two results are in good agreement, total momentum, but the slope of the curve becomes large as

though they have obvious differences whem0.6. the coupling strength increases.
It should be pointed out that, although some conclusions
V. CONCLUSION of this paper are similar to the pioneer wok® we use a

method to deal with this problem that has enabled us to

_In summary, the general properties of dynamic polarong)ptain more information about the moving polarons, espe-
with nonspherical symmetry are investigated in a wide rangeija|ly about those of phonons. It can be predicted that our

of intermediate coupling constants. Some character parampethod is suitable for many actual polar and semiconductor
eters of moving polarons, such as the ground-state energy,aterials.

the distribution of phonons, the effective mass, the average
number of virtual phonons, and the phonon momentum, have
been calculated. The calculations are completely self-
consistent and the method proves to be general and effective. We would like to thank Dr. Cheng Qinghu and Professor

It also includes the results predicted by Gerlach’s theoremYang Jinglong for helpful discussions. This work was sup-

The reason is that, if we tak@ =0, we are able to return to ported by the Nonlinear Science Foundation and Nature Sci-
the case of the static polaron, and we can reproduce thence Foundation of China.
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