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This paper presents a variational study of the ground-state energy of an exciton-phonon system in two or
three spatial dimensions. The exciton-phonon interaction is of Fro¨hlich type. Making use of functional-integral
techniques, the phonon part of the problem can be eliminated exactly, leading to an effective two-particle
problem, which has the same spectral properties as the original one. Subsequently, we apply Jensen’s inequal-
ity to obtain upper bounds on the ground-state energy. The paper has two major intentions: First, we demon-
strate for the problem under consideration that one can profitably use a nonharmonic trial action within the
functional-integral framework. The corresponding variational bounds on the ground-state energy compare
favorably with all previous ones. Second, we show that the lowest bound is an analytical function of the
electron-phonon coupling parameter and completely smooth throughout the whole parameter region. This is in
contrast to previous variational findings, but consistent with rigorous qualitative results for the true ground-
state energy.@S0163-1829~96!07942-8#

I. INTRODUCTION

This paper and a following one are concerned with a de-
tailed discussion of the exciton-~LO! phonon problem and, in
particular, with the dimensional dependence of the ground-
state energy. Because of the enormous amount of literature
on this subject~see Sec. VI! there may be some need to
clarify the motivation for this new attempt.

To begin with, we mention the controversially discussed
question of a delocalization-localization transition in systems
of Fröhlich type. Is it possible that energies, wave functions,
effective masses, etc., are nonanalytic functions of the
electron-phonon coupling parameter? Based on a pioneering
paper of Fro¨hlich,1 this possibility was excluded for a large
class of models: an exciton-~LO! phonon system cannot
show phenomenona such as self-trapping or mass stripping.
The corresponding proof~see Gerlach and Lo¨wen2! is a
qualitative one, based on abstract methods of operator analy-
sis. A quantitative calculation of, e.g., the ground-state en-
ergy proceeds along different lines; it has to rely on approxi-
mation procedures, mostly of variational type. Interestingly
enough, many of the corresponding papers do report a phase-
transition-like behavior~again, see Sec. VI!. In view of the
quoted rigorous results one has to conclude that a nonana-
lytic behavior of an approximate expression for the ground-
state energy is an artifact of the approximations made. With-
out underestimating the merits of the corresponding
variational calculations as such, one has to reexamine their
results for the critical values of the coupling parameters. In
Sec. VI, we present variational results, which are completely
smooth and compare favorably with all previous ones.

We shall employ the functional-integral method, com-
bined with a variational ansatz. Functional integration was of
particular importance in this field. Haken3 realized as early
as 1957 that Feynman’s famous treatment4 of the polaron

problem could be generalized to the case of excitons. The
main advantage of this approach is that all exciton observ-
ables can be derived from an effective two-particle system,
the phonon degrees of freedom being eliminated without any
approximation. The corresponding two-particle action is
highly suggestive and allows for a direct analysis in limiting
cases~see Sec. III!. On the other hand, functional integration
has an inherent disadvantage: Only very few integrals can be
evaluated in closed analytical form; the most important ones
are Gaussian integrals for arbitrary spatial dimension. The
present functional integral does not admit an analytical solu-
tion. It is exactly at this point that variational methods come
into the game. At first glance, the flexibility for the choice of
variational actions seems to be insufficient—even the con-
stituents of a free exciton are bound within a Coulomb po-
tential, not to mention the phonon-induced interaction. One
has to recall, however, that a pure Coulomb action can be
transformed into an oscillator action in four dimensions
~see, e.g., the work of Duru and Kleinert5 and Ho and
Inomata6! — the use of functional-integral methods is com-
patible with a correct treatment of the Coulomb potential.
We shall extensively use this fact in Sec. IV; our ansatz
action ~17! contains Coulombic terms, too. As for the treat-
ment of electron-phonon interactions, the method of func-
tional integration is known to be ideally suited. Combining
these facts, it is not too surprising that we can find an excel-
lent trial action in a variational sense~see Sec. IV below!.

II. FORMALIZED STATEMENT OF THE PROBLEM

In the following three sections~II–IV !, the spatial dimen-
sionD is a parameter; if not explicitly stated otherwise, all
equations are valid forD52 andD53.

We start with Fro¨hlich’s Hamiltonian, generalized for the
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interaction of an electron and a hole with a LO-phonon
branch~see, e.g., Haken3!:
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n51,2 refers to electron and hole,pW n , qW n , andmn are the
corresponding momentum and position operators and band
masses, ande0 ande` are the low- and high-frequency limits
of the dielectric function. To avoid confusion with electro-
dynamic units — the permittivity of free space is usually
abbreviated ase0, as well — we absorbed the latter one into
our definition of the charge:ē 2:5e2/4pe0, e being the hole
charge. Furthermore,akW andakW

† are the annihilation and cre-

ation operators for phonons with wave vectorkW and disper-
sionvkW[v; V is the quantization volume. Finally, the cou-
pling gkW is connected withkW and spatial dimensionD52,3 as
follows:
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k
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We remark that the particle-phonon coupling strength can
be characterized by the dimensionless parameter

am :5
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\ S 1e`
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D , ~3!

m being the particle mass.
The spectral properties of Hamiltonian~1! can conve-

niently be derived from the diagonal element of the reduced
density matrix

r~aW 1 ,aW 2 ,b!:5 Trpĥ aW 1 ,aW 2ue2bHuaW 1 ,aW 2&, b.0, ~4!

where uaW 1 ,aW 2& are eigenvectors ofqW 1, qW 2 with eigenvalues
aW 1, aW 2. The phonon trace can be evaluated~see Feynman and
Hibbs7!. This yields

r~aW 1 ,aW 2 ,b!5ZphE E
RW n~0!5RW n~b!5aWn

dDR1d
DR2

3exp$2S@RW 1 ,RW 2#%. ~5!

Equation~5! introduces a functional integral. The integration
has to be done over all realD-dimensional pathsRW n(t) with
fixed end pointsRW n(0)5RW n(b)5aW n . Zph is the partition
function for free phonons,

Zph:5)
kW

~12exp$2b\v%!21, ~6!

and the actionS@RW 1 ,RW 2# reads as follows:
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5:S0@RW 1 ,RW 2#1SI@RW 1 ,RW 2#. ~7!

S0@RW 1 ,RW 2# characterizes a free exciton~first line on the
right-hand side!, andSI@RW 1 ,RW 2# contains all phonon-induced
modifications~second line on the right-hand side!. G(t) is
defined as

G~t!:5
e~b2utu!\v1eutu\v

2~eb\v21!
, tP@2b,b#. ~8!

Furthermore, we introduced

RẆ n~t!:5
1

\

]RW n~t!

]t
, Uc~rW !:52

ē2

e`r
. ~9!

Because ofG(t)5G(t2b) for 0,t,b, G(t) can be pe-
riodically continued with periodb and represented as a Fou-
rier series:

G~t!5
\v

b (
n

eiVnt

Vn
21\2v2 , Vn5

2pn

b
. ~10!

Equations~5!–~9! clearly state the remaining problem: We
have to discuss the density matrix of an effective two-
particle system. This exhibits the same spectral properties as
the original electron-hole-phonon system. The effects of the
particle-phonon interaction are completely incorporated into
the additional actionSI , containing self-energy contributions
(n5n8) as well as corrections to the Coulomb potential be-
tween electron and hole (nÞn8). All terms are ‘‘noninstan-
taneous.’’

In the remainder of this article, we shall specifically be
concerned with the ground-state energyE0. Consequently,
we have to evaluate

lim
b→`

S 2
1

b
lnr~aW 1 ,aW 2 ,b! D5E0, ~11!

the left-hand side being independent of the positionsaW n .
It will prove useful to introduce center-of-mass and rela-

tive coordinatesRW andrW instead ofRW 1 andRW 2 in the familiar
way. To complete our notational conventions, we add the
corresponding formulae; instead of Eqs.~5! and~7! one may
use the equivalent expressions

r~aW ,AW ,b!5ZPhE ERW ~0!5RW ~b!5AW

rW~0!5rW~b!5aW

dDRdDrexp$2S@RW ,rW#%

~12!

and
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In Eq. ~13!, we defined
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M
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III. QUALITATIVE DISCUSSION OF THE PHONON-
INDUCED MODIFICATIONS OF THE EXCITON

To begin with, we show that the effective two-particle
system, characterized by the action~7!, has a lower ground-
state energy than a free exciton. To prove this, we insert the
Fourier decomposition~10! of the kernelG(t) into expres-
sion ~7! for the actionSI@RW 1 ,RW 2# and find
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n
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b
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W
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~15!

independently of the detailed functional form of the cou-
pling.

In limiting cases, we can proceed further. Again, we make
direct use of formula~7! for SI@RW 1 ,RW 2#. For given values of
\v, b and R`5mē 2/2\2e`

2 , we consider the following
cases.

\v@R` ,b
21. For a moment, let us concentrate on the

nondiagonal terms inSI . Under the specified conditions,
\vG(t) approaches a delta functiond(t). Inserting this in
formula ~7! and using the explicit expressions~2! for the
coupling, we can perform thekW integration and find

Ueff~RW 1 ,RW 2!:52
ē2

e0uRW 12RW 2u
~16!

for the total electron-hole interaction. In addition,SI contains
two polaronic self-energy terms. Summarizing, we may view
the total system as a two-polaron system, the constituents
being bound by a statically screened Coulomb potential. We
shall analytically confirm this picture of a so-called ‘‘po-
laronic exciton’’ in the Appendix.

R`@\v,b21. Under this assumption the Coulomb con-
tribution to the binding energy is the dominant one and
neighboring pathsRW 1(t);RW 2(t) will be most important for
the evaluation of the functional integral. Inspection of Eq.~7!
shows thatSI will vanish under these circumstances. We are

left with a free, the so-called bare exciton,S being replace-
able byS0. Again, we shall analytically confirm this result in
the Appendix.

IV. UPPER BOUNDS FOR THE GROUND-STATE
ENERGY

The essential tool to derive lower bounds for the reduced
density matrix and, correspondingly, upper bounds for the
ground-state energy is Jensen’s inequality. As for a general
formulation, we refer to the textbook of Reed and Simon;8 a
specialized version will follow below. As in any variational
approach, we have to start from a sufficiently flexible trial
ansatz. Here, we propose

S̃@RW ,rW#:5E
0

b

dtH m

2
rẆ 2~t!1U„rW~t!…J 1E

0

b

dt
M

2
RẆ 2~t!

1E
0

bE
0

b

dtdt8 f ~t2t8!RW ~t!RW ~t8!

5:S̃1@rW#1S̃2@RW #, ~17!

wherein U(rW) and f (t) are to be chosen appropriately;
U(rW) is to model the relative motion of the phonon-dressed
electron and hole, andf (t) characterizes the center-of-mass
motion. We assume thatU(rW) admits of an isolated ground
state and stress that there is no restriction to a quadratic
form; in fact, we shall finally choose an expression of Cou-
lomb type. The center-of-mass motion, in turn, is modeled
by a quadratic action. The reason is that this part of the
motion should be free-polaron-like; in this case a quadratic
action is known to be an excellent approximation.f (t) can
be assumed to be a symmetrical function; furthermore, trans-
lational invariance must hold. We meet both conditions, if
we admit only functions which fulfill

f ~t!5 f ~2t!, E
0

b

dt8 f ~t2t8!5 0 for anyt, 0<t<b.

~18!

We mention that the latter condition implies that

f ~t!5 f ~t2b! for any t, 0<t<b, ~19!

is true. To proceed further, let us introduce the abbreviation

^A& S̃ :5

E
C
dDRdDrexp$2S̃@RW ,rW#%A@RW ,rW#

E
C
dDRdDrexp$2S̃@RW ,rW#%

, ~20!

whereC is a shortcut characterization of the domain of inte-
gration @in our caseRW (0)5RW (b)5AW , rW(0)5rW(b)5aW #. In
analogy to Eq.~20! we define expectation values with re-
spect toS̃1 and S̃2. Then, we may rewrite

r~aW ,AW ,b!5Zpĥ e
2~S2 S̃!& S̃E

C
dDRdDrexp$2S̃@RW ,rW#%. ~21!
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Let us now apply Jensen’s inequality in the specialized ver-
sion

^e2~S2 S̃!& S̃>e2^S2 S̃& S̃. ~22!

We arrive at the inequality

r~aW ,AW ,b!>Zphe
2^S2 S̃& S̃E

C
dDrdDRe2 S̃1[ r

W]e2 S̃2[R
W ] . ~23!

All expressions on the right-hand side can be evaluated in
closed form up to normal integrations. To begin with, we
consider

^S2S̃& S̃5E
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b
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W~t!2gn8r

W~t8!]& S̃1.

~24!

First, we turn to the two functional integrals with respect to
RW . They are both of Gaussian type and can be done accord-
ing to the recipes given by, e.g., Adamowski, Gerlach, and
Leschke.9 To keep the results as compact as possible, let us
introduce the Fourier transform off (t):

f ~t!5:(
n

f ne
iVnt. ~25!

Furthermore, define

xn :5
Vn

\v
5
2pn

b\v
, Dxn :5

2p

b\v
, h~xn!:5

2b f n
v2M

.
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Then, one can prove

I 1 :5^eik
W
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n51

`

Dxn
12cos@\vxn~t2t8!#

xn
21h~xn!

J .
~27!

The expectation valuê@RW (t)2RW (t8)#2& S̃2 can be derived

from Eq. ~27! as a second derivative with respect tokW for
kW50. Integration with respect tot,t8 will finally yield the
second integral of interest:

I 2 :5
1

bE0
bE

0

b
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5SD\v
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n51

`

Dxn
h~xn!

h~xn!1xn
2 . ~28!

We notice that one further integral in Eq.~23! can be derived
from Eq. ~28! by means of a parameter differentiation~for
details, we refer again to Ref. 9!. One finds

I 3 :52
1

b
lnE

RW ~0!5RW ~b!5AW
dDRexp$2S2̃@RW #%

5
D

2b
ln
2pb\2

M
1
D\v
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`

DxnlnS 11
h~xn!

xn
2 D .

~29!

The reader should notice that the right-hand sides of Eqs.
~27!–~29! have well-defined limits forb→`. Then,xn will
turn into a continuous variablex with the domain
0<x<`. We note the results for further use:

lim
b→`

I 15expH 2
\2k2

pM\v
P„\v~t2t8!…J , ~30!

where we introduced

P~y!:5E
0

`

dx
12cos~xy!

x21h~x!
. ~31!

Furthermore,

lim
b→`

I 25
D\v

2p E
0

`

dx
h~x!

x21h~x!
~32!

and

lim
b→`

I 35
D\v

2p E
0

`

dxlnS 11
h~x!

x2 D . ~33!

Let us finally discuss the functional integrals with respect to
rW, which are contained in Eqs.~23! and~24!. We mentioned
in the Introduction that they can be done directly. It will
nevertheless prove useful to make a certain digression. In
doing so, we generalize an idea of Haken.3 The starting point
is given by the useful formula10

^aW ue2bHTt@A1„qW ~t1!…•••An„qW ~tn!…#uaW &

^aW ue2bHuaW &

5^A1„rW~t1!…•••An„rW~tn!…&S. ~34!

The left-hand side contains standard quantum-mechanical
expectation values.H is a certain one-particle Hamiltonian,
Ai„qW … a Schro¨dinger, Ai(qW (t)):5etHAi(qW )e

2tH the corre-
sponding Heisenberg operator, andaW an arbitrary particle
position. The right-hand side is a path-integral expectation
value in the sense of Eq.~20!. The actionS corresponds to
H; the paths are closed, the starting and ending point being
aW .
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We shall now use Eq.~34! to reformulate the path inte-
grals of interest.H is replaced byH̃:5p2/2m1U(qW ), S by
S̃1 according to Eq.~17!. Let us denote the eigenfunctions
and eigenvalues ofH̃ asf̃m andẼm . Restricting ourselves to
the caseb→`, we can derive in a straightforward manner

lim
b→`

1

bE0
b

dt^Uc„rW~t!…2U„rW~t!…& S̃15^f̃0uUc2Uuf̃0&

~35!
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V E
0
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ikW•[gnr
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ugkWu 2

V E
0

`

du e2\vu2~\2k2/M\vp!P~\vu!E(
m

eu~ Ẽ02Ẽm!U(
n

~21!n^f̃0ueik
Wgnq

W uf̃m&U 2. ~36!

In Eq. ~36!, the combined summation-integration symbol
needs a comment: Whenever a part of the spectrum ofH̃ is
discrete~continuous!, a summation~an integration! has to be
done. In addition to Eqs.~35! and~36!, we recall the equality

lim
b→`

S 2
1

b
lnE

rW~0!5rW~b!5aW
dDrexp$2S̃1@rW#% D 5Ẽ0. ~37!

Combining all results, we can now apply relations~11! and
~23! for E0. Inserting the results~30!, ~32!, ~33!, and ~35!–
~37!, we arrive at

E0<Ẽ01^f̃0uUc2Uuf̃0&

1
D\v

2p E
0

`

dxH lnS 11
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m

eu~ Ẽ02Ẽm!U(
n
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Wgnq

W uf̃m&U 2J .
~38!

Equation~38! is the central result of this article. It is a direct
generalization of the corresponding polaron formula, which
was derived in Ref. 9.

We add two comments:~1! Settingh(x)[0, one finds a
special bound onE0, which was already published by
Haken.3 This proved to be poor for strong electron-phonon
coupling~see our numerical results in Sec. VI!. ~2! Truncat-
ing them sum concerning the eigenstates ofH̃, one derives a
new class of bounds onE0, all of them being weaker than the
present one. On the other hand, these can readily be evalu-
ated and show a nonanalytical behavior~see Adamowski,
Gerlach, and Leschke11!.

Presently, it seems impossible to find the minimum of the
above bound as functional off (t) and U(rW). Instead, we
used Feynman’s choice

h~x!:5
~v22w2!x2

w21x2
~39!

to mimick the center-of-mass motion. Here,v and w
(v>w) are variational parameters. We find

E
0

`

dxH lnS 11
h~x!

x2 D2
h~x!

x21h~x! J 5
p

2 v
~v2w! 2,

~40!

P~y!5
p

2 H w2

v2
y1

v22w2

v3
~12e2vy!J . ~41!

Inserting Eqs.~40! and~41! into Eq. ~38! and expanding the
twofold exponential function, caused by the last term of
P(y), we arrive at

E0<Ẽ01^f̃0uUc2Uuf̃0&1
D\v

4

~v2w!2

v

2 (
m50

`
1

m! S \2

2M\v

v22w2

v3 D mE dDkH ugkWu 2

~2p!D
k2m

3expH 2
\2k2

2M\v

v22w2

v3 J E
0

`

du

3expH 2F\v~11mv !1
w2

v2
\2k2

2M GuJ
3(

m

E eu~ Ẽ02Ẽm!U(
n

~21!n^f̃0ueik
Wgnq

W uf̃m&U 2J .
~42!

One can verify that a new class of bounds can be found by
truncation of them summation. Inspection of Eq.~42! proves
that all of these bounds are weaker than the present one; as
for details see the numerical evaluation in the next section.
We anticipate the result that everym truncation generates a
nonanalytical bound.

Finally, we evaluate theu integration~formally! and find
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E0<Ẽ01^f̃0uUc2Uuf̃0&1
D\v

4

~v2w! 2

v

2 (
m50

`
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m! S \2

2M\v
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v3 D mE dDkH ugku2
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W uf̃0&J ,
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where we defined

z:5Ẽ02\v~11mv !2
w2

v2
\2k2

2M
. ~44!

Therefore, the remaining task is to specifyU ~or, equiva-
lently, H̃) and to calculate the matrix elements in Eq.~43!.
We choose

U~rW !52
lē2

e`r
, l>0. ~45!

l is a variational parameter, which measures the effective
strength of the potential. Clearly, this ansatz can model the
limiting cases, which we discussed in Sec. III. Moreover, it
will prove to be very effective for the intermediate-coupling
regime.

As the eigenvalue problem ofH̃ is that of a~scaled! hy-
drogen problem, we can make use of the familiar solution.
Concerning Eq.~43!, we find

Ẽ01^f̃0uUc2Uuf̃0&5
4

~D21!2
R`~l222l!. ~46!

A much larger effort is needed to evaluate the quantity

64ma2

\2 Fm~k!:5 (
n,n8

~21!n1n8

3^f̃0ueik
Wgnq

W
~H̃2z!21e2 ikWgn8q

W uf̃0&

5 (
n,n8

~21!n1n8E E dDrdDr 8eik
W~gnr

W2gn8r
W8!

3^rWu~H̃2z!21urW8&f̃0* ~rW !f̃0~rW8!, ~47!

which is needed in the last term on the right-hand side of Eq.
~43!. The reader will notice that we have to insert an expres-
sion for the Green function̂rWu(H̃2z)21urW8&. It is at this
point that we have to distinguish between the casesD52
andD53. We start with the latter one, as we can profitably
use important results from the previous literature.

V. THREE-DIMENSIONAL CASE

To the best of our knowledge, the first analytic expression
for ^rWu(H̃2z)21urW8& was given in a paper of Hostler and

Pratt,12 which in turn stimulated many others. Here, we use
an expansion due to Zon, Manakov, and Rapoport:13

^rWu~H̃2z!21urW8&5(
l ,m

gl~r ,r 8,z!Ym
l ~V!Ym

l ~V8!* ,

~48!

gl~r ,r 8,z!:5
2m

\2Arr 8
E
0

`Fe[2~r1r 8!/ka]cosh~a!

3coth2kS a

2 D I 2l11S 2

ka
Arr 8sinh~a! D G ,

~49!

whereYm
l (V) and I n(y) are spherical harmonics and modi-

fied Bessel functions~as for a complete definition of these
functions, we quote Edmonds14 and Erdelyi et al.15!; the
scaled Bohr radiusa and the quantityk are defined as

a:5
\2e`

mē2l
5
aB
l
, k:5AẼ0

z
.0. ~50!

Inserting Eq.~49! into Eq. ~47!, one can perform therW and
rW8 integrations as well as thel andm summations. The cal-
culation is very lengthy but elementary. Therefore, it seems
sufficient to give a precise description of the steps to be
done: First, one has to use the familiar expansion of
exp(ikWgnrW) as a series of spherical harmonics; then, all angu-
lar integrations in Eq.~47! as well as them summation can
be done. One is left with two radial integrations. As the
radial part off̃0(rW) is proportional to exp(2r/a), these inte-
grations turn out to be two Laplace transforms of products of
Bessel functions. Having performed one of these,16 it is use-
ful to evaluate thel summation,17 before the last integration
~a Laplace transform of a Bessel function! is done. Finally,
one arrives at

4Fm~k!5 (
n,n8

E
0

`

dacoth2kS a

2 D zH dn,n8
2x21z2

I n
4

2~12dn,n8!S 2x21z2

J2
2
4z2x2k2a2

J3 D J ,
~51!

where we introduced the abbreviations

x:511
cosh~a!

k
, z:5

sinh~a!

k
, ~52!

I n :5~kagn!
21x22z2,

J:5~x22k2a2ug1g2u2z2!21x2k2a2. ~53!

It is useful to perform a final substitution in expression~51!:
We set

y:5 tanh2S a

2 D ~54!

and arrive at
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Fm~k!5
1

k(
n,n8

E
0

1

dyy2kS dnn8
~111/k!21~2/k221!y1~1/k21!2y2

Ī n
4

2~12dnn8!H ~11 1/k!21~2/k2 21!y1~1/k 21!2y2

J̄2
2
8k2a2y@1/k 111~1/k 21!y#2

k2J̄3
. ~55!

In Eq. ~55!, we defined

Ī n :5S 11
1

k D 21k2a2gn
22F S 1k 21D 21k2a2gn

2Gy,
~56!

J̄:5H S 11
1

k D 22k2a2ug1g2u2F S 1k 21D 22k2a2ug1g2uGyJ 2
1k2a2F S 11

1

k D1S 1k 21D yG2. ~57!

Returning to inequality~43!, we insert expressions~2!, ~46!,
~47!, and ~55! on the right-hand side and can finally set up
the following upper bound onE0:

E0

R0
<

1

~12j!2 H l222l1
3

4

~v2w!2

vh2 2
64~s1s21!j

ph3l2

3 (
m50

`
1

m! S v22w2

v3 D mE
0

`

dxx2me[2~v22w2!/v3]x2

3FmSA2Mv

\
xD J

5:B~v,w,l!. ~58!

The reader will notice that we used the static Rydberg unit

R0 :5
mē4

2\2e0
2 ~59!

as the energy scale; in doing so, we follow the convention of
most papers to be quoted below. Furthermore, we introduced
the three dimensionless material parameters

h2:5
R`

\v
, s2:5

m1

m2
, j:512

e`

e0
. ~60!

One can easily derive from Eqs.~50! and ~44! that

1

k2 511
1

h2l2 S 11mv1
w2

v2
x2D ~61!

is true. Consequently, the boundB(v,w,l) is entirely de-
fined byh, s, j alone.

The remaining task is to minimizeB(v,w,l) as a func-
tion of the variational parametersv, w, andl.

VI. NUMERICAL RESULTS AND COMPARISON
WITH PREVIOUS WORK

The minimization ofB(v,w,l) with respect tov, w, and
l requires a numerical treatment. To achieve a compact pre-
sentation of our results, it will prove useful to introduce the
notationBk(v,w,l) for a truncated bound:Bk(v,w,l) is de-
rived fromB(v,w,l) by omission of all terms in them sum,
having anm value larger thank. We remind the reader that
Bk(v,w,l) is in fact a true upper bound onE0 /R0 and mo-
notonously decreasing with increasingk, as was remarked in
connection with Eq.~42!.

It is interesting to begin the discussion by analyzing a
restricted class of bounds: Let us consider the casev5w.
Recalling the definition of the trial actionS̃ @see Eq.~17!#
and relations~25!, ~26!, and~39! for the center-of-mass ker-
nel f (t), it becomes clear that the equalityv5w is equiva-
lent to f (t)50: The trial action assumes a free center-of-
mass motion. In this case, we find

B~v,v,l!5B0~v,v,l!, ~62!

the right-hand side being independent ofv. If we put addi-
tionally l51, the trial action is precisely that of an un-
coupled exciton-phonon system. Consequently,B0(v,v,1)
reproduces the result of second-order perturbation theory for
E0 /R0. One can easily do better by calculating

TABLE I. Results for the ground-state energy bounds
B0(v,v,1) and B0 for specified parameter valuesh25

1
4 and

z50.5.

s2 B0(v,v,1) B0

0.010 - 44.416 - 45.264
0.020 - 32.832 - 33.664
0.050 - 22.688 - 23.488
0.100 - 17.776 - 18.528
0.200 - 14.544 - 15.264
0.500 - 12.256 - 12.928
1.000 - 11.760 - 12.416

TABLE II. Results for the ground-state energy bounds
B0(v,v,1) and B0 for specified parameter valuesh251 and
z50.5.

s2 B0(v,v,1) B0

0.010 -22.544 -23.224
0.020 -16.824 -17.432
0.050 -11.840 -12.376
0.100 - 9.484 - 9.928
0.200 - 7.980 - 8.340
0.500 - 6.948 - 7.228
1.000 - 6.732 - 6.992
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B0:5 inflB0~v,v,l!. ~63!

Tables I–III contain a collection of results forB0(v,v,1) as
well asB0. B0 will be explained below.

What about the quality of these bounds? AsS̃ assumes the
center-of-mass motion to be free, the corresponding electron-
phonon coupling constant

aM5
ē2

2\v
A2Mv

\ S 1e`
2

1

e0
D5hjS s1

1

s D ~64!

should be sufficiently small. Interestingly enough, we can
demonstrate~numerically! that aM may be of the order 10,
before the boundB̄0 becomes poor. To do so, we consider
the more general bounds

Bk :5 infv,w,lBk~v,w,l!. ~65!

In principle, these bounds admit an infimum forvÞw. This
is equivalent to a nonfree center-of-mass motion. In any
case,Bk<B0 and in particularB0<B0 is guaranteed. Com-
paringB0 with B0, we find a remarkable behavior: Ifh and
j are fixed, there may exist a critical value ofaM ~or, equiva-
lently, s) in the following sense: IfaM,aM

c , B05B0 is
true, v and w being equal. IfaM.aM

c , B0,B0 will be

found, the minimizing values ofv andw being not equal.
For aM5aM

c , B0 is a nonanalytic function ofaM .
Having in mind thatE0 /R0 is an analytical function of

aM ~or, equivalently,s) for all possible values ofaM ~or,
equivalently,s), we evaluatedBk for larger values ofk. In
Fig. 1, we show typical graphs forB0, B0, B5, andB40 as
functions ofs2 (h2 and j being fixed!. The conclusion is
obvious: Fork→`, no critical value ofs2 exists. So far, our
numerical findings are consistent with the analytical results,
which were quoted in the Introduction.

In Tables IV–VI we list our results forB40 andB0. The
correspondingh2 values are changing from 4 to 40. For
smaller values ofh, one may useB0 from the preceding
Tables I–III. In this parameter region,B40 andB0 differ from
each other by less than 1%. Furthermore, we quoted two
previous boundsBABS and BAGL , which are due to Ad-
amowski, Bednarek, and Suffczynski18 and Adamowski,
Gerlach, and Leschke.19 To the best of our knowledge, these
compare favorably with all previous ones, but in separates
regions: The former one is excellent for small or intermedi-
ate, the latter one for large electron-phonon coupling param-
etersaM . Moreover, we added two columns for the con-
tinuum edgeS/R0 and our prediction for the binding energy
DE/R0. S is the sum of the polaronic self-energies of elec-
tron and hole. It is important to treatS on the same level of
accuracy asE0. In general, it is not sufficient to use the
second-order perturbation result2\v(a11a2) for S, as

TABLE III. Results for the ground-state energy bounds
B0(v,v,1), B0, andB0 for specified parameter valuesh254 and
z50.5.

s2 B0(v,v,1) B0 B0

0.010 - 11.927 - 12.341 -13.408
0.020 - 9.178 - 9.497 –v5w –
0.050 - 6.900 - 7.093 ———–
0.100 - 5.884 - 6.001 ———–
0.200 - 5.275 - 5.345 ———–
0.500 - 4.884 - 4.925 ———–
1.000 - 4.805 - 4.840 –v5w –

TABLE IV. Comparison of the ground-state energy bounds
B0 and B40 with previous ones by Adamowski, Bednarek, and
Suffczynski (BABS) and Adamowski, Gerlach, and Leschke
(BAGL) for h254, z50.5. In addition, the continuum edgeS/R0

and the binding energyDE/R0 are presented.

s2 B0 B40 BABS BAGL S/R0 DE/R0

0.010 -12.341 -15.241 - 12.185 - 15.395 -14.70 -0.5
0.020 -9.497 -10.212 - 9.364 - 10.311 -9.38 -0.83
0.050 -7.093 -7.185 - 6.994 - 7.028 -5.99 -1.19
0.100 -6.001 -6.024 - 5.926 - 5.678 -4.557 -1.467
0.200 -5.345 –v5w – - 5.287 - 4.893 -3.660 -1.685
0.500 -4.925 ———- - 4.879 - 4.407 -3.029 -1.896
1.000 -4.840 –v5w – - 4.797 - 4.311 -2.892 -1.948

TABLE V. Comparison of the ground-state energy bounds
B0 and B40 with previous ones by Adamowski, Bednarek, and
Suffczynski (BABS) and Adamowski, Gerlach, and Leschke
(BAGL) for h258, z50.5. In addition, the continuum edgeS/R0

and the binding energyDE/R0 are presented.

s2 B0 B40 BABS BAGL S/R0 DE/R0

0.010 -9.262 -13.603 - 9.096 - 13.626 -13.0 -0.6
0.020 -7.326 -8.578 - 7.201 - 8.552 -7.62 -0.96
0.050 -5.758 -5.822 - 5.682 - 5.566 -4.36 -1.46
0.100 -5.089 -5.096 - 5.038 - 4.634 -3.300 -1.796
0.200 -4.707 –v5w – - 4.671 - 4.173 -2.621 -2.086
0.500 -4.474 ———- - 4.446 - 3.906 -2.163 -2.311
1.000 -4.428 –v5w – - 4.402 - 3.855 -2.064 -2.364

FIG. 1. Comparison of separate upper bounds to the ground-
state energy as gained by minimization of the corresponding
Bk(v,w,l).
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was frequently done. One will systematically overestimate
the binding energy that way, the mistake growing witha.
Here, we used the involved variational results from Ref. 9. In
any case,DE is not necessarily an upper bound on the bind-
ing energy. Based on our extensive numerical studies, we
estimate the error ofDE to be in the order of 1%.

Table VII provides a comparison of ground-state energies,
presented in various papers~ours included! and for various
materials of interest. The data are based on the material pa-
rameters, given in Table VIII; for a more complete compila-
tion, we refer to the work of Iadonisi and Bassani.36 Going
through the experimental literature, the reader will realize
that some parameters, in particular masses, have changed
considerably over the years, in some cases up to a factor of 2.
Therefore, it is impossible to perform a direct comparison
with most of the papers, to be quoted below. To compare
even so, we used their input parameters in our bound. Pro-
ceeding this way, we realized that our bound compared fa-
vorably with all previous ones, which we are aware of. We
found no use in publishing these data, as they are based on
parameters which had to be revised because of improved
experimental findings. Instead, we refer to Tables I–VI,
which cover a relevant parameter regime. Concerning bind-
ing energiesDE, we recall the remarks from the last section.
To establish a well-defined basis for a comparison, we in-
cluded our values for the continuum edgeS. The lower the
ground-state energy andS are, the higher is thea priori
reliability of the theory with respect to the predicted value of
DE.

Finally, we comment on related publications. We apolo-
gize in advance for being incomplete, but we hope to be
representative.

Perturbation theory of second order with respect to the
exciton-phonon coupling was performed by Mahanti and
Varma,20 Sak,21 and Wang and Matsuura.22 The correspond-
ing results have to be compared with our boundB0(v,v,1).
We mention that there was a controversial discussion con-
cerning the correct weak-coupling limit of the polaronic ex-
citon. After all, Sak’s results were confirmed. A brief discus-
sion of this limit is contained in the Appendix.

Most of the previous variational calculations were par-
ticularly influenced by the Lee-Low-Pines23 approach to the
free polaron. Early papers are due to Haken24 and Meyer.25

Based on these, refined calculations were performed by
Mahler and Schro¨der,26 Barentzen,27 Fock, Kramer, and
Büttner,28 Pollmann and Bu¨ttner,29 Bednarek and
Suffczynski,30 Hattori,31 Adamowski, Bednarek and
Suffczynski,18 Behnke and Bu¨ttner,32 Kane,33 Bednarek,34

Matsuura and Bu¨ttner,35 and Iadonisi and Bassani.36

Functional-integral methods were used by Haken,3

Moskalenko,37 Matsuura and Mavroyannis38 and Ad-
amowski, Gerlach, and Leschke.19 The corresponding papers
can directly be related to the present one. The bound of Mat-
suura and Mavroyannis, based on Haken’s early work, coin-
cides with our boundB̄0. Their trial action can be derived
from ours in Eq. ~17!, if one puts f (t)50; no phonon-
induced center-of-mass term appears. The work of Mosk-
alenko and Adamowski, and Gerlach and Leschke, on the
other hand, concentrates on the phonon-induced center-of-
mass effects. Their trial actions contain at most bilinear ex-
pressions of the center-of-mass and relative coordinates.
There is a clear indication that the coupling of both coordi-
nates is of minor importance, whereas both self-interactions
have to be kept. Concerning quantitative bounds on the
ground-state energy, a center-of-mass term is important in
the strong-coupling regime; this is in agreement with the
present results~see Fig. 1 and Tables I–VI! and was men-
tioned above. Concerning qualitative properties of the
bounds such as analyticity, a center-of-mass term is indis-
pensable, as was shown above~again, see Fig. 1!.

The discussion of analytical properties leads us back to
the controversy concerning an eventual delocalization-
localization transition in exciton-phonon systems. Direct ref-
erences are Sumi,39 Pekar, Rashba, and Sheka40 as well as
Shimamura and Matsuura.41 In all these papers indications
for a transition were deduced from the behavior of varia-
tional bounds. These bounds are as interesting as any in-
volved variational study of the ground-state energy; their
analytical behavior, however, is not that of the exact~but
unknown! eigenvalue.

TABLE VI. Comparison of the ground-state energy bounds
B0 and B40 with previous ones by Adamowski, Bednarek, and
Suffczynski (BABS) and Adamowski, Gerlach, and Leschke
(BAGL) for h2540, z50.5. In addition, the continuum edgeS/R0

and the binding energyDE/R0 are presented.

s2 B0 B40 BABS BAGL S/R0 DE/R0

0.010 -5.556 -12.275 - 5.473 - 12.201 -11.4 -0.9
0.020 -4.889 -7.260 - 4.843 - 7.124 -6.0 -1.3
0.050 -4.418 -4.432 - 4.398 - 4.134 -2.88 -1.55
0.100 -4.242 –v5w – - 4.230 - 3.661 -1.81 -2.43
0.200 -4.150 ———- - 4.142 - 3.556 -1.296 2.854
0.500 -4.097 ———- - 4.091 - 3.498 -1.013 -3.084
1.000 -4.087 –v5w – - 4.081 - 3.487 -0.964 -3.123

TABLE VIII. Material parameters as employed to obtain the
ground-state energy bounds in Table VII.

e0 e` m1@me# m2@me# ae ah \v @meV#

GaAs 13.1 11.1 0.0665 0.131 0.0682 0.0957 36.8
GaP 11.0 9.1 0.17 0.238 0.129 0.153 50.0
ZnS 8.6 5.2 0.28 0.394 0.712 0.845 43.4
CuCl 7.4 3.7 0.44 3.60 2.005 5.735 27.2
TlCl 37.6 5.1 0.37 0.36 2.594 2.558 21.5
TlBr 35.1 5.4 0.18 0.38 2.051 2.980 14.3

TABLE VII. Absolute ground-state energy bounds in meV as
derived by Iadonisi and BassaniEIB ~Ref. 36!, Pollmann EP ~Ref.
29!, and the present authorsB̄0. S denotes the continuum edge.

EIB EP B̄0 S

GaAs 9.56 — 9.62 6.04
GaP 25.70 — 25.78 14.13
ZnS 110.02 — 110.14 68.41
CuCl 443.22 440.5 443.91 226.51
TlCl 127.85 125.8 128.05 115.31
TlBr 80.86 79.94 80.75 71.94
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VII. CONCLUSION

This paper is concerned with a qualitative and quantitative
discussion of an exciton-~LO! phonon system. To the best of
our knowledge, we obtain the lowest upper bound on the
ground-state energy known so far. The interesting point
about this bound is its smoothness as a function of the
particle-phonon coupling for the whole parameter region of
electron and hole. This is in agreement with rigorous quali-
tative results for the true ground-state energy and disproves
once more, now quantitatively, previous assertions of a
phase-transition-like behavior of the system for certain cou-
pling parameters.

Concerning the methodological part of this work, we
make use of a nonharmonic trial action within the functional-
integral approach: Besides an ansatz of Feynman type for the
center-of-mass motion, we choose a scaled Coulomb poten-
tial for the relative motion of the exciton. All functional in-
tegrals of interest can be reduced to normal integrals, con-
taining the Green function of hydrogen. It is crucial that
these can once more be simplified by means of a decompo-
sition of the Green function as a series of spherical harmon-
ics. We shall demonstrate in a forthcoming paper that the
corresponding procedure can be generalized.
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APPENDIX

In this appendix we discuss two limiting cases of the
exciton-phonon system. The so-called polaronic limit is de-
fined by h!1, the opposite case of a bare exciton by
h@1. Alternatively, one may contrast the effective radii:
The Bohr radius of a polaronic~bare! exciton is large~small!
in comparison with the polaron radius.

To render an analytical discussion, we restrict ourselves
to the weak-coupling caseaM!1. A convenient starting
point is given by Eq. ~43!, evaluated for v5w and

U5Uc . In addition, we make use of the relation

eik
Wgnq

W
H̃~pW ,qW !e2 ikWgn8q

W
5eik

W~gn2gn8q
W !H̃~pW 2\gn8k

W ,qW !. ~A1!

We find for the second-order expressionE(2) of the ground-
state energy

E~2!52
4R`

~D21!2
2

~D21!ugu2

2pD21 E
0

`

dk(
n

^f̃0u~12e2 ikW•qW !

3S H̃1R`1\v1
\2k2

2mn
2

\kWpW

mn
D 21

uf̃0&. ~A2!

At this point it proves useful to define dimensionless vari-
ables kW8, qW 8, and pW 8 as follows: kW5:(A2mv/\)kW8,
qW 5:aBqW 8, andpW 5:\(aB)

21pW 8. One finds

E~2!52
4R`

~D21!2
2

~D21!\vjh

pD22 E
0

`

dk8(
n

^c̃0u~1

2e2 ikW8•qW 8/h!@h2~11h̃!111ugnu~k8!22 ṽkW#
21uc̃0&,

~A3!

where we introduced

h̃:5~p8!22
2

q8
, ṽkW :52ugnuhkW8•pW 8. ~A4!

The scaled ground-state wave functionC̃0 is found from
f̃0, if aB is replaced by 1. Formula~A3! allows for a simple
discussion of the two limiting cases, which are of interest
here. One finds by direct inspection that no phonon-induced
contribution survives forh→`. The opposite limith→0
needs some more analysis: Expanding the propagator
@h2(11h̃)111ugnu(k8)22 ṽkW#

21 with respect toṽkW , the
remaining integrations can be done term by term. Up to cor-
rections of the order\vh2, the result is

E~2!52
D21

2
p~32D !~a11a2!\v2

4R0

~D21!2
mP

m
. ~A5!

Here,mP is the reduced mass of the two constituting po-
larons. These, in turn, have individual massesm(11xa),
wherex is 1

6 in three andp/8 in two dimensions.
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