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Ground-state energy of an exciton(LO) phonon system in two and three dimensions:
General outline and three-dimensional case
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This paper presents a variational study of the ground-state energy of an exciton-phonon system in two or
three spatial dimensions. The exciton-phonon interaction is dflielotype. Making use of functional-integral
techniques, the phonon part of the problem can be eliminated exactly, leading to an effective two-particle
problem, which has the same spectral properties as the original one. Subsequently, we apply Jensen’s inequal-
ity to obtain upper bounds on the ground-state energy. The paper has two major intentions: First, we demon-
strate for the problem under consideration that one can profitably use a nonharmonic trial action within the
functional-integral framework. The corresponding variational bounds on the ground-state energy compare
favorably with all previous ones. Second, we show that the lowest bound is an analytical function of the
electron-phonon coupling parameter and completely smooth throughout the whole parameter region. This is in
contrast to previous variational findings, but consistent with rigorous qualitative results for the true ground-
state energy.S0163-18206)07942-§

[. INTRODUCTION problem could be generalized to the case of excitons. The
main advantage of this approach is that all exciton observ-
This paper and a following one are concerned with a deables can be derived from an effective two-particle system,
tailed discussion of the excitoft-O) phonon problem and, in  the phonon degrees of freedom being eliminated without any
particular, with the dimensional dependence of the groundapproximation. The corresponding two-particle action is
state energy. Because of the enormous amount of literatuig§ighly suggestive and allows for a direct analysis in limiting
on this subject(see Sec. VIl there may be some need to casegsee Sec. I). On the other hand, functional integration
clarify the motivation for this new attempt. has an inherent disadvantage: Only very few integrals can be
To begin with, we mention the controversially discussedevaluated in closed analytical form; the most important ones
question of a delocalization-localization transition in systemsare Gaussian integrals for arbitrary spatial dimension. The
of Frohlich type. Is it possible that energies, wave functions,present functional integral does not admit an analytical solu-
effective masses, etc., are nonanalytic functions of theion. It is exactly at this point that variational methods come
electron-phonon COUD“”Q parameter? Based on a pioneeringto the game. At first glance, the flexibility for the choice of
paper of Fralich," this possibility was excluded for a large variational actions seems to be insufficient—even the con-
class of models: an excitoil:O) phonon system cannot stituents of a free exciton are bound within a Coulomb po-
show phenomenona such as self-trapping or mass strippingential, not to mention the phonon-induced interaction. One
The corresponding proofsee Gerlach and weerf) is @  has to recall, however, that a pure Coulomb action can be
qualitative one, based on abstract methods of operator analyansformed into an oscillator action in four dimensions
sis. A quantitative calculation of, e.g., the ground-state en¢see, e.g., the work of Duru and Kleinerand Ho and
ergy proceeds along different lines; it has to rely on approxiinomat&) — the use of functional-integral methods is com-
mation procedures, mostly of variational type. Interestinglypatible with a correct treatment of the Coulomb potential.
enough, many of the corresponding papers do report a phasgfe shall extensively use this fact in Sec. IV; our ansatz
transition-like behaviofagain, see Sec. YlIn view of the  action(17) contains Coulombic terms, too. As for the treat-
quoted rigorous results one has to conclude that a nonangrent of electron-phonon interactions, the method of func-
lytic behavior of an approximate expression for the ground+ional integration is known to be ideally suited. Combining
state energy is an artifact of the approximations made. Withthese facts, it is not too surprising that we can find an excel-

out underestimating the merits of the correspondingent trial action in a variational sengsee Sec. IV beloy
variational calculations as such, one has to reexamine their

results for the critical values of the coupling parameters. In
Sec. VI, we present variational res_ults, Which are completely || FORMALIZED STATEMENT OF THE PROBLEM
smooth and compare favorably with all previous ones.

We shall employ the functional-integral method, com- In the following three section@l-IV), the spatial dimen-
bined with a variational ansatz. Functional integration was ofion D is a parameter; if not explicitly stated otherwise, all
particular importance in this field. Hakénealized as early equations are valid fob=2 andD=3.
as 1957 that Feynman’s famous treatrfiestt the polaron We start with Fralich’s Hamiltonian, generalized for the
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interaction of an electron and a hole with a LO-phonon 2
branch(see, e.g., Hakén S[Rl,Rz]:zf [nZl 2(1)+Uc(Ry(7)— Rz(r))}
2 2 -7 |2
e T 19Kl fﬁfﬁ
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n=1,2 refers to electron and hoI;-)nz U, andm, are the rﬁp[ﬁl,ﬁz] characterizes a free excitaffirst line on the
corresponding momentum and position operators and ba ght-hand sidg andS|[§1,§2] contains all phonon-induced

masses, ane, ande,, are the low- and high-frequency limits e ) —— .
of the dielectric function. To avoid confusion with electro- gwe(;:jr:g(cjaggns(second line on the right-hand s)de&(7) is

dynamic units — the permittivity of free space is usually

abbreviated agg, as well — we absorbed the latter one into (B-lmhto . glrlho

our definition of the chargee?: = e?/4me,, e being the hole G(r):= %, re[-B.8]. ®
charge. Furthermorey; andaE are the annihilation and cre- 2(efhe-1)

ation operators for phonons with wave veckoand disper- Furthermore, we introduced
sion wg=w; V is the quantization volume. Finally, the cou-
pling g; is connected wittk and spatial dimensiob = 2,3 as 1
follows: n T)::%

C)

D—lg, g i \/w@zﬁw( 1 1) @ Because of3(7)=G(r— B) for 0<7<p, G(7) can be pe-

9= s €. € riodically continued with periogg and represented as a Fou-
rier series:
We remark that the particle-phonon coupling strength can ol 2
be characterized by the dimensionless parameter G(7)= 2 e Q, % (10)

©) Equations(5)—(9) clearly state the remaining problem: We
have to discuss the density matrix of an effective two-
particle system. This exhibits the same spectral properties as
the original electron-hole-phonon system. The effects of the
article-phonon interaction are completely incorporated into

he additional actios, , containing self-energy contributions
(n=n") as well as corrections to the Coulomb potential be-
.o .. .. tween electron and holen¢-n’). All terms are “noninstan-

p(as,ay,B8):= Tryas.ale #la,a), B>0, (4  taneous.”
o . In the remainder of this article, we shall specifically be

where|a, ,a,) are eigenvectors af;, g, with eigenvalues concerned with the ground-state enef§y. Consequently,

a,, a,. The phonon trace can be evaluatsde Feynman and We have to evaluate
Hibbs'). This yields

Am=

e 2me/l 1
2ho % e

€, €)'

m being the particle mass.

The spectral properties of Hamiltoniad) can conve-
niently be derived from the diagonal element of the reduce
density matrix

1 - o
lim —Elnp(al,az,ﬂ) =E,, (11
p(al!52lB)ZthJ f 5DR15DR2 B—»
n(0)=Rn(B8)=a,
the left-hand side being independent of the positians

xXexp{— YRy, Ra]} 5 It will prove useful to introduce center-of-mass and rela-

Equation(5) introduces a functional integral. The integration tive coordinated? andr instead ofR, andR, in the familiar
way. To complete our notational conventions, we add the

has to be done over all reBl-dimensional path®,(7) with  ¢4responding formulae; instead of E¢S) and(7) one may
fixed end pointsR,(0)=Ry(B)=a,. Zy, is the partition  yse the equivalent expressions
function for free phonons,

p(a,A,B)=Z :PR&Prexp—gR,r}
Zon:=I1 (1-exp~ o)) ©®) ) JR&?J? o "
k

and the actior§[R;,R,] reads as follows: and
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- o B M-, JT, . left with a free, the so-called bare excitddbeing replace-
SRr]= f d7y SR+ 51 (7) +Uc(r (7)) able byS,. Again, we shall analytically confirm this result in
0 the Appendix.

~|2
— E (—l)“*”’% ? BdeT’
Nk V Jo Jo IV. UPPER BOUNDS FOR THE GROUND-STATE
o o i i ENERGY
X G(7— 7 )RR+ yor (1) = yri(7)] _ _
The essential tool to derive lower bounds for the reduced

=So[§ F]Jrs[ﬁ F. (13) density matrix and, correspondingly, upper bounds for the
' e ground-state energy is Jensen’s inequality. As for a general
In Eq. (13), we defined formulation, we refer to the textbook of Reed and Sirfien;

specialized version will follow below. As in any variational
mem m m approach, we have to start from a sufficiently flexible trial
It/l 2 y= VZ ypi=— — ansatz. Here, we propose

M:i=m;+my, u:i=

N

(14 - . .
S[ﬁ,r]:=jﬁdr[%r 27+ U (7))

0
IIl. QUALITATIVE DISCUSSION OF THE PHONON-
INDUCED MODIFICATIONS OF THE EXCITON

B M-y
+J dr—=R*(7)
0 2

B (B o
+J J drd7' f(r—7)R(7)R(7")
To begin with, we show that the effective two-particle 0o
system, characterized by the actigh, has a lower ground-

state energy than a free exciton. To prove this, we insert the =:Sl[F]+Sz[I§], (17
Fourier decompositioti10) of the kernelG(7) into expres- .
sion (7) for the action§[R;,R,] and find wherein U(r) and f(7) are to be chosen appropriately;
U(r) is to model the relative motion of the phonon-dressed
.. 1w o |gi? electron and hole, anf{ 7) characterizes the center-of-mass
Si[Ry,Rx]=~— V;n ? (ﬁw)—2+92 motion. We assume thzhl(F) admits of an isolated ground
' m state and stress that there is no restriction to a quadratic
o (2 kR (94 0] 2 form; in fact, we shall finally choose an expression of Cou-
x 2 (=1 Jo dre’t mi <0, lomb type. The center-of-mass motion, in turn, is modeled

by a quadratic action. The reason is that this part of the
(15 motion should be free-polaron-like; in this case a quadratic
. ) ) action is known to be an excellent approximatié(r) can
independently of the detailed functional form of the cou-pe assumed to be a symmetrical function; furthermore, trans-
pling. _ lational invariance must hold. We meet both conditions, if
In limiting cases, we can proceed further. Again, we makgye admit only functions which fulfill
direct use of formuld7) for S,[Iil,fzz]. For given values of
hw, B and R,=ue?/2h%e2, we consider the following B /
cases. f(n)="f(—-7), fo dr'f(r—7)=0foranyr, Osr<§g.
ho>R,,B 1. For a moment, let us concentrate on the (18)
nondiagonal terms ir5,. Under the specified conditions,
hwG(71) approaches a delta functia¥(7). Inserting this in ~ We mention that the latter condition implies that
formula (7) and using the explicit expressiorig) for the

coupling, we can perform thie integration and find f(r)=f(7—p) foranyr, Os7<p, (19
-, is true. To proceed further, let us introduce the abbreviation
. e
Uer(Ry,Rp): =~ —=—=~ (16) -
€o|R1—R,| f SPR&Crexp— R, FJAIR ]
C
for the total electron-hole interaction. In additi@,contains (A)s:= S (20
two polaronic self-energy terms. Summarizing, we may view f °RéPrexp— SR, 1]}
C

the total system as a two-polaron system, the constituents

being bounc_i by & statl_cally sfcreened Coulomb potentlﬁl. W%vhereC is a shortcut characterization of the domain of inte-
shall analytically confirm this picture of a so-called “po-

laronic exciton” in the Appendix. gration [in our caseR(0)=R(8)=A, r(0)=r(g)=al. In
R.>%w,B 1. Under this assumption the Coulomb con- analogy to Eq.(20) we define expectation values with re-

tribution to the binding energy is the dominant one andspect toS; andS,. Then, we may rewrite

neighboring path®;(7) ~R,(7) will be most important for

the evaluation _of the _functional integra_l. Inspection of EA). p(5,'&,ﬁ)=zpn<e_(s_g))éj 5DR5Drexp{_§[§,r"]}_ (21)
shows thatS; will vanish under these circumstances. We are C
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Let us now apply Jensen'’s inequality in the specialized verWe notice that one further integral in E@3) can be derived

sion
(65 Syz=g (593, 22)
We arrive at the inequality
p(a,A B)=Zye (555 f sOr sPRe Sille=SARI (23)
C

All expressions on the right-hand side can be evaluated in
closed form up to normal integrations. To begin with, we

consider
~ B R >
(S-9)5= fo dr(Uc(r(m)—U(r(n))s,
B (B N >
—f f deT'f(T—7")<R(7')R(7")>§2
0Jo

- 2 B B
%f f drd7'G(7—17")
VvV Jo Jo

X (K [R( =Ry (gik [y (0= 7T (7]
2 1

_ 2) (_1)n+n’

n,n’ k

(29)

First, we turn to the two functional integrals with respect to

from Eq. (28) by means of a parameter differentiatiffior
details, we refer again to Ref).90ne finds

SPRexp{— S,[R]}

h(xg)
&

(29

| L f
=—_In
3 B JRO)=R(B)=A

D 277/%2 Dhw

_ZB T 2—2 AXxgIn| 1+

The reader should notice that the right-hand sides of Egs.
(27)—(29) have well-defined limits fo3— . Then,x, will

turn into a continuous variablex with the domain
0=<x=x. We note the results for further use:

R. They are both of Gaussian type and can be done accord-
ing to the recipes given by, e.g., Adamowski, Gerlach, and-urthermore,
Leschke® To keep the results as compact as possible, let us

introduce the Fourier transform ¢{):
f(r)=:2, f,eltn. (25)
n

Furthermore, define

Qy 2mn Ao 2 H - 2pf,
X”'_%_Bﬁw’ X”'_Bhw’ (Xn)'_sz
(26)
Then, one can prove
;= (e[RRI
2
. £.2k? i 1—codhwxy(7—17')]
P T aMie ST Xt h(xy)
(27)

The expectation valug[R(7)—R(7')])3, can be derived

from Eq. (27) as a second derivative with respectkdor

k=0. Integration with respect te, 7" will finally yield the
second integral of interest:

1(8(8 > -
2= 5 [ ] ante = RRG)S,

()3, o

h(xn)

nm (28)

#2k?

[:[nmllzexp{—ﬂ_th Plho(r—1"))1, (30

where we introduced

(" 1—cogxy)
P(y).—jo de (31)
i I_Dﬁwad h(x) 32
Blinm 2= 27 Jo 5% h() (32
and

lim | —thrd in 14 " 33
BILTL 3™ 2 0 Xinp 1+ X2 . ( )

Let us finally discuss the functional integrals with respect to

r, which are contained in Eq&23) and(24). We mentioned

in the Introduction that they can be done directly. It will
nevertheless prove useful to make a certain digression. In
doing so, we generalize an idea of HaReFhe starting point

is given by the useful formufd

(ale PMT [A1(A(70))- - - An(@(m)]|a)
(ale™#M|a)

=(AL(r(my)) - A (T))s

The left-hand side contains standard quantum-mechanical
expectation valuedd is a certain one-particle Hamiltonian,
Ai(q) a Schrdinger, A;(q(7)):=e™A;(q)e” ™ the corre-
sponding Heisenberg operator, aadan arbitrary particle
position. The right-hand side is a path-integral expectation
value in the sense of Eq20). The actionS corresponds to

H; the paths are closed, the starting and ending point being
a.

(34)
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We shall now use Eq34) to reformulate the path inte- 18 . . - -
grals of interestH is replaced byH:=p?/2u+U(q), S by ;:Imoﬁjo dr(Uc(r(7) = U (r(n))5,=(¢olUc— Ul bo)
S, according to Eq(17). Let us denote the eigenfunctions (35)

and eigenvalues dfl as¢, andE, . Restricting ourselves to
the caseB—«, we can derive in a straightforward manner and

.| 2
B (B o L .
lim = 2 (-1 |g\k/| fo fodeT’G(T—Tf)<euk.[R<T>—R<r Nyg (elk Lo (=il

Bﬂoo n,n’ k

-l 2 o o~ _ 2
:Z |g\k/| fo du e—hwu—(hzkz/thﬂ')P(hwu)i eu(EO_E/.L) _ )n<¢0|e'k7nq|¢)’u> ) (36)
k [z
|
In Eg. (36), the combined summation-integration symbol . (v2—wW?)x?
needs a comment: Whenever a part of the spectrui of h(x):= TWiex2 (39

discrete(continuou$, a summatior(an integration has to be
done. In addition to Eq¢35) and(36), we recall the equality {5 mimick the center-of-mass motion. Here, and w
(v=w) are variational parameters. We find

_Emf 5Drexp{ Sl[r]}) Eo. (37)
F(0)=r(p)=

lim
B— * h(x h(x
J dx[ln 1+ (2))— 5 ) ] S
Combining all results, we can now apply relatiofid) and 0 X x“+h(x) ] 2v
(23) for E,. Inserting the result$30), (32), (33), and(35)— (40)
(37), we arrive at
2 2_ 2
| w v B
Eo<Eq+(dolUc—U| o) P(y)=> l_fy+_3_(1 e vy)]- (42)
Dhow (= h(x) h(x) . . .
+ T dxiInf 1+ —|— T h Inserting Eqs(40) and(41) into Eq. (38) and expanding the
™Jo X X (X) twofold exponential function, caused by the last term of

P(y), we arrive at

.| 2 o) 1
—f de[ Df duexp{—hwu
(2m)" Jo Dhw (v— W)2
2k Eo=<Eo+(do|U. U|¢o>+_ »
- P(hwu)}
MAw ] B2 p2—w2 mj o |gl€|2 o
-~ o “oml| 2MAw 03 (2m)P
xF BB (- 1)Gole 3, 2
A n 72K2 Uz_
X
(39) eXp{ 2Mhiw 03 “ du
Equation(38) is the central result of this article. It is a direct w2 72K2
generalization of the corresponding polaron formula, which ><exp{ —|fo(l+mv)+ — oM u}
was derived in Ref. 9. v

We add two commentg1) Settingh(x)=0, one finds a

special bound onE,, which was already published by Xi U(Eo—E) > (—1)”<'$O|ei'27n‘i|5ﬂ) 2].
Haken? This proved to be poor for strong electron-phonon A n
coupling (see our numerical results in Sec.)\(2) Truncat- (42)

ing theu sum concerning the eigenstatedtfone derives a

new class of bounds d#, all of them being weaker than the One can verify that a new class of bounds can be found by

present one. On the other hand, these can readily be evalttuncation of then summation. Inspection of E¢42) proves

ated and show a nonanalytical behavisee Adamowski, that all of these bounds are weaker than the present one; as

Gerlach, and Leschk®. for details see the numerical evaluation in the next section.
Presently, it seems impossible to find the minimum of thewe anticipate the result that eveny truncation generates a

above bound as functional df{7) and U(r). Instead, we nonanalytical bound.

used Feynman’s choice Finally, we evaluate the integration(formally) and find
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- o~ ~ Dho (v—w)?2 Pratt!? which in turn stimulated many others. Here, we use
Eo<Ep+(¢o|Uc—U| o) + —— — an expansion due to Zon, Manakov, and Rapopbrt:
0 2 2_ 2 2 o~ _17 , ,
_ i( R vow )’“f dok{ 9" om (FI(H=27 1) =3 gi(r.r 2)Yn(Q) Yi(Q)*,
o m | 2MAw v (2m) '
(48)
h2k2 v2_W2
><eXp|' C 2Mho  o® ] gi(r,r',z):= 2 Jm{el‘“”')"‘alcos”‘”
a2Jrr" Jo
_a\n+n';7 ilZynd b_n-1 —”Z'yn'a~ (o4 2
XE’ ( 1) <¢0|e (H z) e |¢O>]! XCOchK . —\/rr_’sinf(a) ,
n.n 2 Ka
(43 (49
where we defined whereY! (Q) and|,(y) are spherical harmonics and modi-
2 5242 fied Bessel functiongas for a complete definition of these
z=Eg—fiw(l+my)— — ——. (44)  functions, we quote Edmontfsand Erdelyiet al); the
v® 2M scaled Bohr radiuga and the quantityc are defined as
Therefore, the remaining task is to speclfly (or, equiva- 5
lently, H) and to calculate the matrix elements in €43). a = gi: E, K=\ /E>0_ (50)
We choose MEeN N z
) Ne? Inserting Eq.(49) into Eq. (47), one can perform the and
Ur)=-— A=0. (45 r’ integrations as well as tHeandm summations. The cal-

€1 I .
culation is very lengthy but elementary. Therefore, it seems

\ is a variational parameter, which measures the effectiveufficient to give a precise description of the steps to be
strength of the potential. Clearly, this ansatz can model thelone: First, one has to use the familiar expansion of
I|r_n|t|ng cases, which we d_lscussed in Sec. lll. Moreover, itexp(Kky,r) as a series of spherical harmonics; then, all angu-
W|Il_prove to be very effective for the intermediate-coupling |5, integrations in Eq(47) as well as then summation can
regme. ~ be done. One is left with two radial integrations. As the
As the eigenvalue problem &1 is that of a(scaled hy-  (54ia| part ofgby(F) is proportional to exptr/a), these inte-
drogen problem, we can make use of the familiar solutiong atigns turn out to be two Laplace transforms of products of
Concerning Eq(43), we find Bessel functions. Having performed one of th&sieis use-
o _ 4 ful to evaluate thé summation.’ before the last integration
Eo+(o|Uc—U| o) = WROO(AZ—ZR)- (46) (a Laplace transform of a Bessel functida done. Finally,
( one arrives at

2F (=3 f;dacothzk( g) g{ S

A much larger effort is needed to evaluate the quantity 2x2+ 2
64ua> Iy
— 7 Fa(ki=2 (-)™"

n,n’

2X2+ §2 4§2X2k232
~ e~ v~ _(l_én,n’) J2 - J3 )
X po|e*7IU(H —z)"Te "M Y| ¢)
o (51
= 2 (=pnr f J dPrdPr’ek(var=var") where we introduced the abbreviations
n,n
-~ I TR e S cos sin
(T[(A=2) )85 do(F), (47 o—14 208 o, sinfa) (52
K K
which is needed in the last term on the right-hand side of Eq.
(43). The reader will notice that we have to insert an expres- I :=(kayy)?+ x?— 22,
sion for the Green functiodr|(H—2z)"Yr’). It is at this o as s 22
point that we have to distinguish between the cades2 Ji=(x*—k%a%|y1y2l — £%)°+ x’k*a’. (53
andD =3. We start with the latter one, as we can profitably s s ,seful to perform a final substitution in expressi&a):
use important results from the previous literature. We set
V. THREE-DIMENSIONAL CASE @
y:= tanit E) (54)

To the best of our knowledge, the first analytic expression
for (r|(H—2)"Yr’) was given in a paper of Hostler and and arrive at
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1 T (1+1/k)%+ (2Ik?— 1)y + (1 — 1)2y?
Frn(k)==2 f dyy | S —
nn’ 40 In
(1+ 1/k)?+(2/k?> —1)y+(1/k —1)%y? 8k?a?y[1/k +1+(1/k —1)y]?
= (1~ 6nn) ? - Kz? . (55
|
In Eq. (55), we defined One can easily derive from Eq&0) and (44) that
— 1\2 1 2 1 1 2
. - 2,22 || = _ 2.2.2 w
Ih:= 1+K +k%a%y; [(K 1 +ka7n}ya 5 F=1+W 1+mv+Fx2) (61

2

1 2 2
—k%a?|yyy,| - [ (; - 1) —k%a?|yy 4| M

F-i].

Returning to inequality43), we insert expression®), (46),
(47), and (55) on the right-hand side and can finally set up
the following upper bound ok&:

+ (57)

1
1+ =
K

Eo

_ 3(v—w)? 64o+o Y)¢
R_O\ _

4 1)772 17773)\2

2_
e [7\ 2N+

o 22\ M .
m=0 M! v 0
2Mw

XF| \ 5

=:B(v,W,\). (58
The reader will notice that we used the static Rydberg unit
P

Ry:= ==
0 212l

(59

is true. Consequently, the bourig{v,w,\) is entirely de-
fined by », o, ¢ alone.

The remaining task is to minimizB(v,w,\) as a func-
tion of the variational parametets w, andA.

VI. NUMERICAL RESULTS AND COMPARISON
WITH PREVIOUS WORK

The minimization ofB(v,w,\) with respect ta, w, and
\ requires a numerical treatment. To achieve a compact pre-
sentation of our results, it will prove useful to introduce the
notationB(v,w,\) for a truncated bound,(v,w,\) is de-
rived fromB(v,w,\) by omission of all terms in then sum,
having anm value larger thark. We remind the reader that
B(v,w,\) is in fact a true upper bound d&, /R, and mo-
notonously decreasing with increasikgas was remarked in
connection with Eq(42).

It is interesting to begin the discussion by analyzing a
restricted class of bounds: Let us consider the aasev.
Recalling the definition of the trial actio8 [see Eq.(17)]
and relationg25), (26), and(39) for the center-of-mass ker-
nel f(7), it becomes clear that the equaliy=w is equiva-
lent to f(7)=0: The trial action assumes a free center-of-
mass motion. In this case, we find

B(v,v,\)=By(v,v,N\), (62

as the energy scale; in doing so, we follow the convention of
most papers to be quoted below. Furthermore, we introducetthe right-hand side being independentvoflf we put addi-

the three dimensionless material parameters

tionally N\=1, the trial action is precisely that of an un-
coupled exciton-phonon system. ConsequenBy(v,v,1)

2. R 2._ M g = reproduces the result of second-order perturbation theory for
T ke T T my FT1T g ©9 ENR, One can easily do better by calculati
> 0 o/Ro- y do better by calculating
TABLE |I. Results for the ground-state energy bounds TABLE Il. Results for the ground-state energy bounds
Bo(v,v,1) andB_O for specified parameter valuea32=;11 and Bo(v,v,1) andB_O for specified parameter valueg®=1 and
{=0.5. {=0.5.
o? Bo(v,v,1) B_0 o? Bo(v,v,1) B_O
0.010 - 44.416 - 45.264 0.010 -22.544 -23.224
0.020 - 32.832 - 33.664 0.020 -16.824 -17.432
0.050 - 22.688 - 23.488 0.050 -11.840 -12.376
0.100 -17.776 - 18.528 0.100 - 9.484 - 9.928
0.200 - 14544 - 15.264 0.200 - 7.980 - 8.340
0.500 - 12.256 - 12.928 0.500 - 6.948 - 7.228
1.000 - 11.760 - 12.416 1.000 - 6.732 - 6.992




12 848

B. GERLACH AND F. LUCZAK

54

TABLE Ill. Results for the ground-state energy bounds TABLE IV. Comparison of the ground-state energy bounds

Bo(v,v,1), B_0 and B, for specified parameter valueg=4 and
{=0.5.

2

By and B,y with previous ones by Adamowski, Bednarek, and
Suffczynski Bags) and Adamowski, Gerlach, and Leschke
(BagL) for 7°=4, {=0.5. In addition, the continuum edg¥/R,

o Bo(v,v,1) B_o By and the binding energ&E/R, are presented.

0.010 - 11.927 -12.341 -13.408 o2 B, Bao Bags Bao, S/R, AE/R,

0.020 -9.178 - 9.497 Y=W —

0.050 - 6.900 -7.093 - 0.010 -12.341 -15.241 -12.185 -15.395 -14.70 -0.5

0.100 - 5.884 - 6.001 - 0.020 -9.497 -10.212 -9.364 -10.311 -9.38 -0.83

0.200 -5.275 - 5.345 - 0.050 -7.093 -7.185 -6.994 -7.028 -599 -1.19

0.500 -4.884 - 4.925 - 0.100 -6.001 -6.024 -5926 -5.678 -4.557 -1.467

1.000 - 4.805 - 4.840 B=W — 0.200 -5.345 —wv=w - -5.287 -4.893 -3.660 -1.685

0.500 -4925 ———- -4.879 -4.407 -3.029 -1.896

. 1.000 -4.840 —wv=w - -4.797 -4311 -2.892 -1.948
By:=inf,By(v,v,\). (63

Tables |-l contain a collection of results f@,(v,v,1) as
well asB,. By will be explained below. _
What about the quality of these bounds?®assumes the

center-of-mass motion to be free, the corresponding electron;

phonon coupling constant
e [2Mo
f

aM:Zﬁw

1 1

€, €p

(64)

1
o+ —
(g

-

found, the minimizing values of andw being not equal.
For ay = ayy, Bg is a nonanalytic function of, .

Having in mind thatE,/R, is an analytical function of
v (or, equivalently,o) for all possible values ofyy, (or,
equivalently,o), we evaluated, for larger values ok. In
Fig. 1, we show typical graphs fd,, By, Bs, andB,g as
functions of o2 (5% and ¢ being fixed. The conclusion is
obvious: Fork— o, no critical value ofo? exists. So far, our

should be Sufﬁcienﬂy small. |nteresting|y enough, we Cannumerical findings are consistent with the analytical results,

demonstraténumerically that «), may be of the order 10,

before the bound, becomes poor. To do so, we consider

the more general bounds

Bk:=infU’W’)\Bk(v,W,)\). (65)

In principle, these bounds admit an infimum fo# w. This

is equivalent to a nonfree center-of-mass motion. In an
case,B,<B, and in particulalB,<B, is guaranteed. Com-
paring B, with B_O, we find a remarkable behavior: # and

¢ are fixed, there may exist a critical valueaj, (or, equiva-
lently, o) in the following sense: lfay<ay,, BO=B_0 is
true, v and w being equal. Ifay>a,, Bo<B, will be

-10.0

energy bounds

—— inf B(v,v,A)

=== infB,(v,w,1)
—--infBy(v,w,\)
—— inf B (v,w,\)

-12.5

-15.0

01 .02 .03 .05

2
()

FIG. 1. Comparison of separate upper bounds to the groundd.500

state energy as gained by minimization of the correspondin
Bk(U,W,)\).

which were quoted in the Introduction. o

In Tables IV-VI we list our results foB,, andBy. The
correspondingz? values are changing from 4 to 40. For
smaller values ofp, one may useB, from the preceding
Tables I-1ll. In this parameter regioB,, andB, differ from
each other by less than 1%. Furthermore, we quoted two
)previous boundsBgs and Bag, which are due to Ad-
amowski, Bednarek, and Suffczyn¥kiand Adamowski,
Gerlach, and LeschKé.To the best of our knowledge, these
compare favorably with all previous ones, but in sepatate
regions: The former one is excellent for small or intermedi-
ate, the latter one for large electron-phonon coupling param-
eters oy, . Moreover, we added two columns for the con-
tinuum edge> /R, and our prediction for the binding energy
AE/Ry. X is the sum of the polaronic self-energies of elec-
tron and hole. It is important to tredt on the same level of
accuracy asE,. In general, it is not sufficient to use the
second-order perturbation resutti w(a,+ @) for %, as

TABLE V. Comparison of the ground-state energy bounds
By and B,y with previous ones by Adamowski, Bednarek, and
Suffczynski Bags) and Adamowski, Gerlach, and Leschke
(BagL) for »2=8, £=0.5. In addition, the continuum edg&/R,
and the binding energg& E/R, are presented.

2

o B, B.o Bass Bac. /Ry AE/R
0.010 -9.262 -13.603 -9.096 -13.626 -13.0 -0.6
0.020 -7.326 -8578 -7.201 -8552 -7.62 -0.96
0.050 -5.758 -5.822 -5.682 -5566 -4.36 -1.46
0.100 -5.089 -5.096 -5.038 -4.634 -3.300 -1.796
0.200 -4.707 —w=w - -4671 -4.173 -2.621 -2.086
-4.474 - -4.446 -3906 -2.163 -2.311
4.000 -4.428 —w=w - -4.402 -3.855 -2.064 -2.364
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___TABLE VI. Comparison of the ground-state energy bounds TABLE VIIl. Material parameters as employed to obtain the
B, and B, with previous ones by Adamowski, Bednarek, and ground-state energy bounds in Table VII.

Suffczynski Bags) and Adamowski, Gerlach, and Leschke
(BagL) for #2=40, =0.5. In addition, the continuum ed@'R, € €. My mg] my[mg]  ae an  ho[meV]

and the binding energE/R, are presented.

GaAs 13.1 11.1 0.0665 0.131 0.0682 0.0957 36.8
AE/R, GaP 11.0 9.1 0.17 0.238 0.129 0.153 50.0
ZnS 86 52 0.28 0.394 0.712 0.845 43.4
0.010 -5.556 -12.275 -5.473 -12.201 -114 -09 cucl 74 3.7 0.44 3.60 2.005 5.735 27.2
0.020 -4.889 -7.260 -4843 -7.124 -6.0 -1.3 TICI 376 51 0.37 0.36 2594 2558 215
0.050 -4.418 -4.432 -4398 -4134 -288 -155 TIBr 351 54 0.18 0.38 2.051 2.980 14.3
0.100 -4.242 —w=w- -4230 -3.661 -1.81 -243
0.200 -4.150 - -4142 -3556 -1.296 2.854

0.500 -4.097 ——— -4.091 -3.498 -1013 -3.084  pertyrpation theory of second order with respect to the
1.000 -4.087 w=w- -4.081 -3.487 -0.964 -3.123 exciton-phonon coupling was performed by Mahanti and
Varma?® Sak?! and Wang and Matsuuf&.The correspond-
was frequently done. One will systematically overestimateng results have to be compared with our boBy{v,v,1).
the binding energy that way, the mistake growing with We mention that there was a controversial discussion con-
Here, we used the involved variational results from Ref. 9. Incerning the correct weak-coupling limit of the polaronic ex-
any caseAE is not necessarily an upper bound on the bind-citon. After all, Sak’s results were confirmed. A brief discus-
ing energy. Based on our extensive numerical studies, wsgion of this limit is contained in the Appendix.
estimate the error oAE to be in the order of 1%. Most of the previous variational calculations were par-
Table VII provides a comparison of ground-state energiesticularly influenced by the Lee-Low-Pin€sapproach to the
presented in various papefsurs includedl and for various free polaron. Early papers are due to Hakeand Meyer®
materials of interest. The data are based on the material p@ased on these, refined calculations were performed by
rameters, given in Table VIII; for a more complete compila- Mahler and Schider?® Barentzerf’ Fock, Kramer, and
tion, we refer to the work of ladonisi and Bass&hiGoing  Bittner?® Pollmann and Btiner?® Bednarek and
through the experimental literature, the reader will realizeSuffczynski’® Hattori>* Adamowski, Bednarek and
that some parameters, in particular masses, have changsdffczynskit® Behnke and Btiner®? Kane®® Bednarei*
considerably over the years, in some cases up to a factor of Rjatsuura and Biner3® and ladonisi and Bassaffi.
Therefore, it is impossible to perform a direct comparison Functional-integral methods were used by Haken,
with most of the papers, to be quoted below. To comparévoskalenko’’ Matsuura and Mavroyannfs and Ad-
even so, we used their input parameters in our bound. Pramowski, Gerlach, and Leschk&The corresponding papers
ceeding this way, we realized that our bound compared faean directly be related to the present one. The bound of Mat-
vorably with all previous ones, which we are aware of. Wesuura and Mavroyannis, based on Haken'’s early work, coin-
found no use in publishing these data, as they are based @ides with our bound,. Their trial action can be derived
parameters which had to be revised because of improveglom ours in Eq.(17), if one putsf(7)=0; no phonon-
experimental findings. Instead, we refer to Tables 1-Vl,jnduced center-of-mass term appears. The work of Mosk-
which cover a relevant parameter regime. Concerning bindajenko and Adamowski, and Gerlach and Leschke, on the
ing energie\E, we recall the remarks from the last section. other hand, concentrates on the phonon-induced center-of-
To establish a well-defined basis for a comparison, we inmass effects. Their trial actions contain at most bilinear ex-
cluded our values for the continuum edte The lower the  pressions of the center-of-mass and relative coordinates.
ground-state energy aridl are, the higher is the priori  There is a clear indication that the coupling of both coordi-
reliability of the theory with respect to the predicted value of nates is of minor importance, whereas both self-interactions
AE. have to be kept. Concerning quantitative bounds on the
Finally, we comment on related publications. We apolo-ground-state energy, a center-of-mass term is important in
gize in advance for being incomplete, but we hope to behe strong-coupling regime; this is in agreement with the
representative. present result¢see Fig. 1 and Tables |-Yhand was men-

TABLE VII. Absolute ground-state energy bounds in meV as tioned above. Concer_ni_ng qualitative properties _of_ th_e
derived by ladonisi and BassaBig (Ref. 36, Pollmann B (Ref. bounds such as analyticity, a center-of-mass term is indis-

29), and the present authoBg,. 3 denotes the continuum edge. pensable, as was shown abdagain, see Fig.)1
The discussion of analytical properties leads us back to

o? B, Bao Bass  Bac. 2/Ro

= Ep B s the controversy _con_cernin_g an eventual deloc_alization-
localization transition in exciton-phonon systems. Direct ref-

GaAs 9.56 — 9.62 6.04 erences are Sur, Pekar, Rashba, and Shékas well as
GaP 25.70 — 25.78 14.13 Shimamura and Matsuufa.In all these papers indications
ZnS 110.02 — 110.14 68.41 for a transition were deduced from the behavior of varia-
Cucl 443.22 440.5 443.91 226.51  tional bounds. These bounds are as interesting as any in-
TICI 127.85 125.8 128.05 115.31 volved variational study of the ground-state energy; their
TIBr 80.86 79.94 80.75 71.94 analytical behavior, however, is not that of the exédmtt

unknown eigenvalue.
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VIl. CONCLUSION U=U,. In addition, we make use of the relation

_ This paper is concerned with a qualitative and quantitativeskmaf(p, q)e~ 9= k=" DH(p—fiy, K,q).  (AL)
discussion of an excitofl-O) phonon system. To the best of ] )
our knowledge, we obtain the lowest upper bound on th&/Ve find for the second-order expressiéif’ of the ground-
ground-state energy known so far. The interesting poinftate energy
about this bound is its smoothness as a function of the _ 2 e

, , { 4R.  (D-1)[g|

particle-phonon coupling for the whole parameter region of E(2 = — 2= 5 D-1
electron and hole. This is in agreement with rigorous quali- (D-1) m

dk (ol (1—e k)

0

tative results for the true ground-state energy and disproves r22 pRg)
once more, now quantita‘gively, previous assertion_s of a % ﬁ+Rx+ﬁw+ _ p) |'(r7)0>_ (A2)
phase-transition-like behavior of the system for certain cou- 2m, m;,

pling parameters. At this point it proves useful to define dimensionless vari-

Concerning the methodological part of this work, we - >, >, e >,
make use of a nonharmonic trial action within the functional-201€S K', @",_and p’ as follows: k=:(v2uw/A)K’,

integral approach: Besides an ansatz of Feynman type for tHf&=:asd’, andp= :fi(ag) 'p’. One finds

c_enter-of-mass_motlon,_ we choose a scaled Coulpmb poten- 4R, (D-1)hwén [~

tial for the relative motion of the exciton. All functional in- E(®=— >— S

tegrals of interest can be reduced to normal integrals, con- (D-1) T’

taining the Green function of hydrogen. It is crucial that ik ~ —_~ =~
. " _ -q'/ 2 "n2_771-1

these can once more be simplified by means of a decompo- e N7 (L+h)+ 1+ ]|y, (K) =] o),

sition of the Green function as a series of spherical harmon- (A3)

ics. We shall demonstrate in a forthcommg paper that th?/vhere we introduced

corresponding procedure can be generalized.

dk' 2 (hol(1

0

h (2 ~a._ Y
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APPENDIX needs some more analysis: Expanding the propagator

In this appendix we discuss two limiting cases of the[ﬂz(l_f h)jL1+|7n_|(k')2—U|2] ! with respect tovg, the
exciton-phonon system. The so-called polaronic limit is de/émaining integrations can be done term by term. Up to cor-
fined by <1, the opposite case of a bare exciton by'€ctions of the ordefiw®, the result is
7n>1. Alternatively, one may contrast the effective radii: D—1 4R, up
The Bohr radius of a polaroniarg exciton is larggsmal) E@=— —— 73 P(a;+ar)ho— ——— —.
in comparison with the polaron radius. 2 (D=1 u

To render an analytical discussion, we restrict ourselvesiere, up is the reduced mass of the two constituting po-
to the weak-coupling case);<<1. A convenient starting larons. These, in turn, have individual massegl +Xa),
point is given by Eq.(43), evaluated forv=w and wherex is ¢ in three andr/8 in two dimensions.
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