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The inelastic quasiparticle lifetime due to the electron-electron interaction~out-scattering time in the kinetic
equation formalism! is calculated for finite metallic diffusive systems~quantum dots! in the whole range of
parameters. Both cases of ‘‘continuous’’~the inelastic level broadening much exceeds the mean level spacing!
and ‘‘discrete’’ spectrum are analyzed. In particular, the crossover between one- and zero-dimensional regimes
is studied in detail. In the case of a continuous spectrum the out-scattering time is shown to be the same as the
inelastic time entering expressions for universal conductance fluctuations and persistent currents. It is also
found to be shorter than the phase-breaking time in two- and one-dimensional systems, while in zero-
dimensional systems these two times coincide. In the case of a discrete spectrum for small enough systems a
universal behavior of the scattering time is obtained. For temperatures below the mean level spacing the
out-scattering rate is shown to be vanishingly small.@S0556-2821~96!05342-8#

I. INTRODUCTION

As is well known, inelastic electron scattering plays an
important role in various phenomena in disordered metallic
systems ~see the extensive review by Altshuler and
Aronov1!. It is enough to mention that it is responsible for
the weak localization correction to the conductivity. It
proved also to be important in mesoscopic phenomena in
these systems. In particular, inelastic scattering governs the
temperature dependence and crossovers between different di-
mensionalities for universal conductance fluctuations2,3

~UCF’s! and similar problems, such as persistent currents
~see, e.g., Ref. 4! and correlators of persistent currents within
the grand canonical ensemble~GCE! ~see, e.g., Ref. 5!. Re-
cent estimations6 have shown that the conductance of meso-
scopic systems in the case of a discrete spectrum, at least
within the canonical ensemble~CE!, is also governed by the
inelastic electron scattering.

The electron-electron interaction enters these problems
through the inelastic scattering time. Extensive investigations
carried out about 10 years ago showed that at least two rel-
evant electron-electron scattering times exist:7 ~i! the out-
scattering time tout appearing in the kinetic equation
formalism;8,9 it has the meaning of an inverse frequency of
inelastic collisions; and~ii ! the phase-breaking time10 tf ~see
also Ref. 11! responsible, in particular, for the weak local-
ization correction and for the quasi-particle decay within the
Fermi liquid theory. These two times have been shown to
coincide in ~3D! three-dimensional systems (tf;tout
}T23/2). The phase-breaking time is well studied also in
infinite 2D (tf}T21) and quasi-1D (tf}T22/3) systems.10

However, the out-scattering rate in low-dimensional systems,
g(e,T)5tout

21 has caused some controversy. It was studied
for zero temperature by Altshuler and Aronov~see Ref. 1!
who obtained the resultg(e,T50)}ed/2, d51 ~quasi-1D! or
d52 ~2D!. This implies, in particular, that the Fermi liquid
theory is violated in quasi-1D systems close enough to the
Fermi level. An attempt to include the finite temperature
makes the situation even worse: The out-scattering rate di-
verges for low enough energiese!T. In two-dimensional

systems attempts to cure this singularity have been
made,12–16 leading to different results.

Below this problem is revisited. The out-scattering rate
g(e,T) is considered forT@e. In principle, one should
study the two-parameter problem, but in order not to make
the expressions too cumbersome and not to consider a huge
number of parameter ranges,e is just put to be equal to
zero.17 It is shown that the out-scattering time definitely does
not coincide with the phase-breaking one. For the 2D case
~Sec. II! just the result by Refs. 12–14,g}TlnT, is recov-
ered. In the quasi-1D system~Sec. III! results are obtained:
For large temperatures the out-scattering time shows the
same temperature dependence as the phase-breaking one (g
}T2/3) but is parametrically shorter than the latter; moreover,
for low enough temperatures~but still in the metallic regime!
the out-scattering rate exceeds the temperature, and exhibits
another temperature dependenceg}T3/4.

Now we return to the effect of inelastic scattering on the
mesoscopic phenomena in disordered systems, in particular
UCF’s. It is rather clear~and it is shown once more below!
that the inelastic scattering time entering the UCF problem is
essentially the out-scattering time.~Note that because of the
controversy mentioned above it it is believed also to coincide
with the phase-breaking time, which is definitely not the case
for 2D and Q1D systems.! So one needs to investigate the
out-scattering rate infinite systems. The problem of electron
lifetimes in finite systems has not been addressed so far,
except for the only paper by Sivan, Imry, and Aronov18 ~to
be discussed below, see Sec. IV!.

The introduction of the finite size of the system leads to
the appearance of two characteristic energies: the Thouless
energyEc5D/L2 ~hereD andL are the diffusion coefficient
and the largest size of the system, respectively! and the mean
level spacingD. The small parameter of the standard pertur-
bation theory~in particular, the diagram technique! is g/D,
and, respectively, two cases should be distinguished: ‘‘con-
tinuous spectrum’’g@D and ‘‘discrete spectrum’’g!D.

In the three-dimensional systems~e.g. a cube of the size
L) the situation is rather simple: ForT@Ec the inelastic
level broadeningg much exceeds the mean level spacingg
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~continuous spectrum!, and the results actually do not depend
on L. However, forT!Ec one obtainsg!D, and the cross-
over to the zero-dimensional situation occurs. So in the case
of 3D - 0D crossover the distinction between 3D and 0D
situations is the same as the one between continuous and
discrete spectra~for the exact formulation of this point see
Sec. IV!. However, it is not the case for 2D - 0D and Q1D -
0D crossovers. The out-scattering and the phase-breaking
rates are calculated in Secs. II~2D - 0D crossover! and III
~Q1D - 0D crossover! in the case of the continuous spectrum
by means of the diagram technique. It is shown, in particular,
that the spectrum forT@Ec is always continuous, and for the
zero-dimensional situation~the result depends onL) the two
inelastic times coincide:tout;tf .

In the case of the discrete spectrumg!D the perturbation
theory is no longer valid, and the random matrix theory
~RMT! should be involved. Two cases of ‘‘small’’L!pFl

2

and ‘‘large’’ L@pFl
2 dots should be distinguished. The tem-

perature dependence of the out-scattering time is obtained,
g;T2D/Ec

2 for D!T!Ec , in ‘‘large’’ dots, while ‘‘small’’
dots exhibit a universal behavior,g;T2/eF . For the tem-
peratures below the mean level spacingT!D in all cases the
scattering rateg is found to be vanishingly small~Sec. IV!.

Below diffusive metallic systems are considered. ‘‘Diffu-
sive’’ implies the following relation between the character-
istic lengths of the problem:l!Li with l and Li being the
elastic mean free path and linear sizes of the system, respec-
tively. For definiteness a rectangular sample with sizes
Lz[L>Ly>Lx[a is chosen;\51. ‘‘Metallic’’ means that
~i! the disorder is weak,pFl@1, pF being the Fermi momen-
tum, and~ii ! in a quasi-1D system the localization length
j; l (pFa)

2 is larger than eitherL or the phase-breaking
length (Dtf)

1/2. The closed systems are of primary interest.
This means that the coupling to the environment is assumed
to be weak, namely,tc

21!D, tc being a characteristic time
of the electron escape through the attached leads. For open
systems the single-particle states are smeared; the magnitude
of this smearing is of the ordergc;min$Ec ,tc

21%, and, re-
spectively, one is interested in the energy~temperature!
rangee@gc . The results obtained below are valid, however,
for the open systems also providedg@gc ~see the discussion
in Sec. II!.

II. CONTINUOUS SPECTRUM:
GENERAL EXPRESSIONS AND 2D CASE

A. Generalities

In the case of a continuous spectrumg@D the standard
impurity diagram technique19 may be involved. We use be-
low the diffusion-Cooperon approximation.1 For T@D one
cannot expect any difference between the GCE and CE; as
will be shown below the spectrum is always continuous for
T@Ec@D, and so all calculations are performed for the
more simple GCE case.

It is well known that in a 3D system the phase-breaking
time

tf
21;~T/D !3/2n3

21 ~1!

coincides with the out-scattering time and is governed by a
large momentum transferDq2;T. HereD5 l 2/td is the dif-

fusion coefficient (d is the dimensionality, presentlyd53)
while n35mpF /p

2 and t are the density of states and the
elastic scattering time, respectively. So the 3D case is not
interesting for us. Crossover to other dimensionalities occurs
when one of the sizes is under (D/T)1/2. Below low-
dimensional systems are studied; the inequalityT!D/a2 is
assumed to be satisfied.

In the UCF theory and related problems the inelastic scat-
tering time appears as a result of calculation of the ‘‘UCF
diffusion propagator.’’3 It differs from the ‘‘true’’ diffusion
propagator1 by the absence of electron-electron interaction
lines connecting two electron propagators. A ‘‘true’’ density-
density correlation function is not affected by the electron-
electron interaction due to the Ward identity, which is re-
sponsible for the cancellation of interaction lines from the
vertex corrections and from the corrections to electron propa-
gators. However, if some diagrams are omitted, the Ward
identity does not take place any more, and hence the
electron-electron interaction renormalizes the UCF diffusion
propagator. In the absence of a magnetic field the ‘‘UCF
Cooperon’’ is given by exactly the same expressions as the
UCF diffusion propagator.

The diagram equation in the lowest order of the electron-
electron interaction for the diffusion propagator is shown in
Fig. 1.8,13 The shaded rectangle is the full diffusion propaga-
tor G(q,v), and the double-dashed line is the bare diffusion
propagator

G~0!~q,v!5
1

pndt
2~ uvu1Dq2!

, ~2!

while the crossed rectangle is the block concerned with the
electron-electron interactionI (q,v), displayed for the UCF
case in Fig. 2. The density of states in quasi-d-dimensional
system nd ~to be referred below asn) is equal to
nd5n3a

32d; for the pure 2D systemn25m/p. The Matsub-
ara diagram technique is used; it is assumed for definiteness
that v1e.0, e,0, and after the analytical continuation
iv→v, i e→e, the propagator corresponds to the averaged
product of retarded and advanced Green’s functions
^GR(v1e)GA(e)&. The equation can be readily solved to
obtain

G~q,v!5
1

pnt2~ uvu1Dq21g!
, ~3!

g52~pnt2!21I ~q,v!.

So the inelastic rateg is given by the interaction block and is
essentially the same as the out-scattering rate in the kinetic
equation approach.8

Now we calculate the interaction block. In the arbitrary
dimensionality one obtains for the diagrams of Figs. 2~a!,
2~b!, 2~c!, and 2~d!, respectively@note that for Fig. 2~a! and

FIG. 1. The diagram representation of the diffusion propagator.
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Fig. 2~b! the leading terms cancel and one has to perform an
expansion over the small momenta and low frequencies#,

I a52pnt2T (
V.v1e

(
q1

U~q1 ,V!

~ uVu1Dq1
2!2

3@v1V1D~q21q1
2!#,

I b52pnt2T(
V,e

(
q1

U~q1 ,V!

~ uVu1Dq1
2!2

3@v2V1D~q21q1
2!#,

I c5pnt2T (
V,e1v

(
q1

U~q1 ,V!

v2V1D~q2q1!
2 ,

I d5pnt2T(
V.e

(
q1

U~q1 ,V!

v1V1D~q1q1!
2 . ~4!

HereU(q,V) is a screened Coulomb interaction.

B. 2D case: Infinite system

As the Coulomb interaction has different forms in differ-
ent dimensionalities,1 the analytical continuation should be
performed separately ford52 andd51. We start from the
2D case with

U~q,V!5
2pe2

q

uVu1Dq2

uVu1Dkq
. ~5!

Herek54pe2n3a for the quasi-2D case andk52pe2n2 for
the 2D case.

After the analytical continuationiv→v, i e→e, we ob-
tain, forv50, q50,

g5
e2

p E
0

`

D2kq1
3dq1E dzS coth z2T2tanh

z2e

2T D
3

z

~z21D2q1
4!~z21D2k2q1

2!
. ~6!

It is important that the terms with the hyperbolic cotangent
come from the quantitiesI c and I d .

It is easy to see that for nonzero temperature the integral
diverges atz50. This singularity can be cured by the sub-
stitution of a self-consistent expression for the diffusion
propagator~3! to the formulas~4! instead ofG (0). The diffu-
sion propagators entering the diagrams of Figs. 2~a! and 2~b!
are ‘‘true’’ and are not renormalized by the electron-electron
interaction, while those of diagrams Figs. 2~c! and 2~d! are
renormalized. ForT@e the main contribution to the integral
comes from the regionuzu,2T, and one obtains the self-
consistent equation forg ~which is supposed to be momen-
tum independent for a while!:

g5
4e2T

p E
0

`

Dkq1~Dq1
21g!dq1

3E
0

2T dz

~z21D2k2q1
2!@z21~Dq1

21g!2#
. ~7!

A straightforward calculation leads to an equation

g5
e2T

Dk
ln~2Dk2Tg22!5

e2T

Dk
lnS 2Dk2

~Dk!2

e4T D , ~8!

where the last equality is the leading term of the solution.
Substituting the explicit expressions fork, one finally ob-
tains

g5H ~T/2eFt!ln@8Dk2~eFt!2/T# 2D,

~3pT/4pF
2al !ln@Dk2~4pF

2al/3p!2T21# ~quasi-2D!.
~9!

Note that this rate is higher~by a logarithmic factor! than the
2D phase-breaking rate10

tf
21;~T/Dn2!H ln~pFl ! ~2D!,

~pFa!21ln~pF
2 la ! ~quasi-2D!.

~10!

The result~9! is valid under the conditionT@g only. In
principle, this condition~unlike the condition of the Fermi-
liquid theory validity,Ttf@1) is violated in the exponen-
tially small range of low temperatures. We consider this
problem as purely academic, however, and do not write
down expressions for the corresponding range.

Expression~9! was derived first in Ref. 12 as an imagi-
nary part of the impurity-averaged self-energy. Later this re-
sult was confirmed in Refs. 13 and 14~Fukuyama and
Abrahams13 have used a technique identical to that of the
present paper!. However, it was believed to be the expression
for the phase-breaking time in a 2D system. The origin of
this confusion lies in the statement13 that the diagrams with
the interaction between different electron lines~i.e., those not
contributing tog, but important fortf , in-scattering terms
in the kinetic equation approach8! are small. However, the
original calculation of the phase-breaking time10 allows one

FIG. 2. The diagrams contributing to the interaction block
~crossed rectangle in Fig. 1! for the UCF diffusion propagator.
Wavy lines and dashed lines with a cross denote the electron-
electron interaction and bare impurity scattering (pnt)21, respec-
tively.
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to separate these two contributions~with and without inter-
action lines between different Green’s functions! explicitly,
and the result is that these contributions are of the same
order. So the difference betweeng andtf

21 should be looked
for in the diagrams omitted in Ref. 13. Hence the attempt15

to cure this discrepancy by the introduction of a small-
momenta cutoff does not seem well justified. Indeed, the
momenta range proposed to be cut off is exactly the region
of relevant momenta in the integral, and the introduction of
finite momenta does not change the result. So we argue that
the result by Fukuyama and Abrahams, Eq.~9! is true; how-
ever, it describes not the phase-breaking time, but the out-
scattering time~or the UCF inelastic time!. We have shown
that the inelastic time entering the UCF problem is essen-
tially the out-scattering time and differs from the phase-
breaking one. It will be seen in Sec. III that the difference is
even more pronounced for the quasi-one-dimensional case.

C. 2D case: Finite system

Now we turn to the description of the 2D - 0D crossover.
In the derivation of Eq.~9! it was supposed implicitly that
the system is infinite. Let us now consider a 2D finite system.
Under the conditions of the diffusive regimeL@ l , and in the
caseT@Ec , Eq. ~7! is still valid; however, the integral
should be understood as a sum over momenta with the
boundary conditions taken into account. So q15(p/
L!(nx ,ny) with integersnx andny allowed or not to be equal
to zero, subject to the boundary conditions. It is important
that in any case the q150 mode does not contribute to the
integral: For open systems~attached to the metallic junc-
tions, i.e., in the UCF problem! this mode is forbidden by the
boundary conditions, while for closed ones~e.g., in the prob-
lem of persistent currents! the conditions of the charge neu-
trality imply U(0,v)50. So the difference between these
two cases is not quite important, and the boundary conditions
will be taken into account just by the cutting off the integral
for small momentaq,p/L.

The analysis of Eq. ~7! then shows that for
g@(EcDk2)1/2 this cutoff does not play any role and the
result ~9! is still valid. Note that this region corresponds to
the 2D case from the diffusion point of view. For the oppo-
site case, which is realized under the conditions

T/eF!H ~ l /L !eFt ~2D!

~ l /L !~pF
2al ! ~quasi-2D!,

one obtains

g5
e2T

kD
ln

2T

p2Ec
. ~11!

It is seen that this result also differs from Eq.~8! by a loga-
rithmic factor.

III. QUASI-1D CASE AND Q1D-0D CROSSOVER

Let us now turn to the quasi-1D case. The screened Cou-
lomb interaction is

U~q,V!5e2lnS 1

q2a2D uVu1Dq2

uVu1Dq21e2n1Dq
2ln~q2a2!21 .

~12!

It is convenient to denote the denominator of this expression
as uVu1Dq2f (q) with f (q)511Cln(q2a2)21, C5e2n1. If,
as usual,e2;v, the constantC occurs to be of order
C;(pFa)

2@1.
Prior to the calculation ofg for the quasi-1D system it is

necessary to analyze the expression for the phase-breaking
time,10 which can be conveniently rewritten as

tf
21;T2/3t21/3~pFa!24/3. ~13!

This result was obtained under some assumptions to be ana-
lyzed here. First, the Fermi liquid theory is valid only in the
caseTtf@1. Second, the system is one dimensional, i.e.,
Ec;D/L2!tf

21!T!D/a2. Finally, it is supposed to
be metallic, i.e., the correlation lengthj5 l (pFa)

2

@min$L,(Dtf)
1/2%.

The last condition is violated in the localized regime~the
shaded range in Fig. 3!,

Tt!~pFa!24, l /L!~pFa!22,

and the first three are consequently summarized as~Fig. 3,
ranges I, II, III, and IV!

~ l /L !3~pFa!2!Tt!~ l /a!2!1. ~14!

The question of much interest is what happens if the con-
dition Tt@( l /L)3(pFa)

2 @for l /L@(pFa)
22# is violated.

The expression for the phase-breaking time in an infinite
system, Eq.~13! is no longer valid there. However, it is
possible to derive the expressions for this regime. This is
done in Appendix A. The result is

FIG. 3. Different regimes for the 1D-0D crossover. Curves 1,
g5Ec /D51; 2, Tt5( l /L)3(pFa)

4 @or g5Ec(pFa)
2#; 3,

Tt5( l /L)2(pFa)
2 @or Ec5T(pFa)

22#; 4, Tt5( l /L)3(pFa)
2 ~or

Ectf51); and 5,Tt5( l /L)2 ~or T5Ec). Regimes I–V are de-
scribed in Sec. III.
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ù1

tf
;

T

~pFa!2
L

l
, ~15!

~ l /L !2!Tt!~ l /L !3~pFa!2. ~16!

This expression is valid untilEc;T ~range V!, as is seen
from Eq.~16!. As will be shown, in the whole range~16! the
inequality g@D is satisfied,D5(n3V)

21 being the mean
level spacing. So the spectrum is continuous and this range is
subject to the perturbative analysis. Thus, one has a ‘‘true’’
quasi-1D region~14!, transition Q1D – 0D region~16!, and
‘‘true’’ 0D region T!Ec where the spectrum is discrete. In
this section both Q1D and transitional ranges are considered.
It will be shown that a new splitting of the range in respect to
the out-scattering time appears.

Now it is possible to start the calculation of the out-
scattering time. Consideration of the diagrams of Fig. 2 leads
to the divergent expression, and this divergence can be cured
exactly in the same way as in 2D case. Extracting the main
term forT@e, one obtains

g5
4Te2C

p2 E
p/L

`

dqDq2~Dq21g!ln2~q2a2!21

3E
0

2T

dz
1

@z21D2q4f 2~q!#@z21~Dq21g!2#
. ~17!

Here a low-momentum cutoff is introduced in the momen-
tum integral~see the discussion for the 2D case!. Equation
~17! contains all information about the scattering rate and
should be solved in different limiting cases~Fig. 3!.

A. Range I

Let us assumeD(p/L)2f (p/L)!g!T. In this case the
cutoff is not important, and the essential momenta in theq
integration areDq2f (q),g. The equation simplifies to a
form

g54Te2/CDq0p, Dq0
2f ~q0!5g

~the inequalityC@1 has been used!. This yields the result

g5S 4Te2p D 2/3~CD!21/3ln1/3F ~CD!4/3

a2 S p

4Te2D
2/3G . ~18!

This cumbersome expression can be simplified if one as-
sumes againe2;v. Then, as the cube root of the logarithm is
always a quantity of order unity, one obtains

g;T2/3t21/3~pFa!22/3. ~19!

It is seen that the initial assumptionsD(p/L)2f (p/L)!g
andg!T are satisfied only in the temperature range

max$~pFa!22,~ l /L !3~pFa!4%!Tt!~ l /a!2

~range I!. In particular, this result is valid for the infinite
quasi-1D system for temperatures abovet21(pFa)

22. It
should be emphasized also that in this case
tfg5(pFl )

2/3@1, and consequentlytout5g21!tf . So the
out-scattering time in this range of parameters shows the
same temperature dependence as the phase-breaking time,
but is much shorter than the latter. Nevertheless, the transi-

tion to the 0D behavior in the problem of out-scattering
times occurs before the corresponding transition in the
dephasing problem.

B. Ranges II and III

If one assumesD(p/L)2f (p/L)!g, g@T, a straightfor-
ward calculation leads to the equation

g5
4Te2

p2 E
p/L

`

dqarctan
2T

Dq2f ~q!

1

Dq21g
. ~20!

A new relevant length scale appears,q̃, defined by
Dq̃f (q̃)52T. Then two limiting cases should be distin-
guished.

1. Range II, q̃@L21

The cutoff is again unimportant, and one obtains

g5
2eT3/4

p1/2~CD!1/4
ln21/4S CD

2Ta2D;T3/4t21/4~pFa!21/2. ~21!

The second identity is the estimation, based upon assump-
tion e2;v. All assumptions made for the derivation of Eq.
~21! occur to be consistent in range II:

max$~pFa!24,~ l /L !2~pFa!2%!Tt!~pFa!22.

This result does not contain the length of the sample again
and consequently describes infinite quasi-1D systems for the
temperatures just above the metal-insulator transition:
(pFa)

24!Tt!(pFa)
22. We have obtained a new tempera-

ture dependenceg}T3/4, and the out-scattering time is now
not only parametrically shorter than the phase-breaking one,
but eveng@T. As g has the meaning of a frequency of
electron-electron collisions, the violation of the condition
g!T has nothing to do with the violation of Fermi liquid
theory ~the latter is subject to another condition,Ttf@1).

2. Range III, q̃!L21

Now the scattering rate introduced to the right-hand side
~RHS! of Eq. ~20! for self-consistency is inessential, and one
obtains

g5
4T

p3/2S e2LCDD 1/2ln21/2
L

pa
;T~ l /L !1/2~pFa!21. ~22!

This result is valid under the conditions~range III!

l /L!~pFa!22, ~pFa!24!Tt!~ l /L !2~pFa!22.

Now the result contains the length of the sample, but still one
hasg@T andgtf@1.

C. Ranges IV and V

In the caseD(p/L)2f (p/L)@g the important region in
the integral overz is z,Dq21g, and again straightfor-
wardly all dependence on the inelastic time cancels out on
the RHS. The result is

g5
2T

~pFa!2
L

l
, ~23!
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~ l /L !2!Tt!~ l /L !3~pFa!4.

To summarize, we have described the crossover between
quasi-one-dimensional and zero-dimensional behavior for
the case of continuous spectrum. We have discovered five
different parameter ranges~Fig. 3!, which can be divided
into three groups.

~1! I and II. Here both the dephasing and the out-
scattering are purely quasi-one-dimensional, the results do
not containL. In the whole range the relationtout!tf holds.

~2! III and IV the transitional region. The dephasing is
still quasi-one-dimensional, while the out-scattering time de-
pends onL and is of zero-dimensional nature. Still one has
tout!tf .

~3! The range V is truly zero dimensional, the expressions
for the phase-breaking rate, Eq.~15!, and for the out-
scattering rate Eq.~23!, coincide. However, the spectrum
still is continuous, i.e.,tf

21;tout
21@D.

The spectrum becomes discrete for the temperatures be-
low the Thouless energyT!Ec , as takes place in the 3D
case.

IV. DISCRETE SPECTRUM

The diagram technique used in Secs. II and III is valid
only in the case of a continuous spectrumg@D. As was
shown above, this condition in all cases is equivalent to an-
other oneT@Ec . So this perturbative approach is not suit-
able for the case of low temperatures~or, alternatively, small
dots! T!Ec . Fortunately, this is exactly the range where the
random matrix theory20 ~RMT! works quite well for the de-
scription of small disordered systems.21 Note that usually
RMT in the range of its applicability is equivalent to the
zero-dimensional nonlinears model.22 However, in the
problem under consideration one should use the four-point
correlation function which up to now was not derived by
means of the supersymmetry method. So RMT~in spirit of
the paper by Gor’kov and Eliashberg21! seems presently to
be the only method for investigation of the electron-electron
interaction in the nonperturbative regime. To avoid misun-
derstanding, we stress that the electron-electron interaction is
taken into accountperturbatively; however, the parameter
D/g is no longer small and should be treatednonperturba-
tively.

In order not to overburden our expressions, we consider in
this section the cubic sample with sizeL. The system is
assumed to be charge neutral, and the results rely heavily on
this fact. In principle, the methods used allow one to con-
sider samples of arbitrary geometry, and all expressions be-
low containing the parametersD and Ec instead ofL are
valid for the general case~for the metallic regime!. Also, we
do not distinguish two types of scattering rates from each
other. To understand the results better, we extend the ranges
of the parameter to the clean case also. The exact result for
the scattering rate in the bulk 3D case reads as8

g~e,T50!5
31/2

2

1

~pFl !
3/2

e3/2

eF
1/21

p

8

e2

eF
. ~24!

The first term is exactly Eq.~1!. It exceeds the second one
for small enough temperatures,Tt!(pFl )

22, and in the pre-

vious sections it was implicitly supposed that this condition
is satisfied. However, forTt@(pFl )

2 the second term is the
most important. This is just the result in the ‘‘clean’’ case:
The mean free path does not enter the expressions. So we
consider in this section the caseL@ l for arbitrary tempera-
tures: both diffusive and clean limits. The result~24! is ob-
tained by the diagram technique and is valid consequently
for g@D only; in the diffusive limit this condition is equiva-
lent to T@Ec , while in the clean limit forT5Ec one has
still g@D. The methods used below are valid forT!Ec ,
and so in the clean regime one has some overlap between the
results to be obtained and Eq.~24!. Below the out-scattering
time g21 for both the GCE and CE cases is calculated.

Prior to the the calculation it is necessary to analyze the
paper by Sivan, Imry, and Aronov,18 devoted to the inelastic
scattering rate in finite systems. The authors of Ref. 18 cal-
culated exactly the same quantity as we do — the scattering
rate as a function of energyg(e). The methods they used are
valid in the case of a ‘‘continuous’’ spectrumg@D where
they have just reproduced the results~24!. However, the for-
mal application of these methods to the opposite case of a
‘‘discrete’’ spectrum (g!D) leads to some nontrivial results
that appear to be not well justified in the approach of Ref. 18.
Below we present arigorous calculation, valid in the case
g!D, and the results in the rangeT@D ~where level corre-
lations are unimportant! exactly reproduce those of Ref. 18.
The reasons for this equivalence are still unclear. Also the
effect of level correlations, which cannot be taken into ac-
count by the methods of Ref. 18, is automatically incorpo-
rated in the approach developed below.

A general expression for the scattering rate, based on the
perturbation theory of the Coulomb interaction, is

gl52p (
l1 ,l2 ,l3

u^l,l2uU~r1 ,r2!ul1 ,l3&u2

3d~el1el2
2el1

2el3
! f l2

~12 f l1
!~12 f l3

!, ~25!

^l,l2uUul1 ,l3&[E dr1dr2U~r1 ,r2!cl* ~r1!

3cl1
~r1!cl2

* ~r2!cl3
~r2!.

Hereul i&[cl i
(r ) are exact single-particle states—single-

electron states in the unique disorder realization in a quan-
tum dot ~note that all four states need to be different!—f l i

are Fermi distribution functions~the CE case needs a more
delicate treatment though; see below!, andU stands for the
electron-electron interaction. Expression~25! should be av-
eraged over the disorder realizations.

A. Coulomb interaction in the restricted geometry

The first thing is to calculate the screened Coulomb inter-
action in the restricted geometry. For the temperatures~en-
ergies! below the Thouless energy one can study the static
screening only. The latter is a solution to the equation as
follows:

¹2U~r1 ,r2!5k2u~r1!u~r2!U14pe2d~r12r2!, ~26!
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k5(4pe2n)1/2 being the inverse Debye length,n[n3. The
functionsu(r ) are equal to unity and zero inside and outside
the sample, respectively. This equation cannot be solved ex-
actly for a rectangular sample, and one should introduce
some approximations.

In order to make this approximations clear, we consider
first Eq. ~25! in the simplest geometry, where it can be
solved. Namely, if the sample occupies a half-spacex.0,
the exact solution to Eq.~25! in the regionx.0, x8.0 has
the form

U~r1 ,r2!5E dqxdqy
~2p!2

exp@ iqy~y2y8!

1 iqz~z2z8!# f q~x,x8!, ~27!

f q~x,x8!52
2pe2

p
exp~2pux2x8u!2

2pe2

p

p2q

p1q

3exp@2p~x1x8!#,

p5~q21k2!1/2. ~28!

Here the first term is essentially the screened Coulomb inter-
action in the continuous media; it is translationally invariant
and for small screening lengthk21 is proportional to
d(x2x8). The second term is due to the restricted geometry
effects; it is important that it be essentially nonzero when
bothx andx8 lie in a narrow layer along the boundary of the
sample; the thickness of this layer is of the order ofk21.

Now consider another problem. Let us impose the bound-
ary condition in Eq.~25!: Uux5050 ~and, respectively,U is
nonzero only when bothx and x8 lie inside the sample!.
Then bothu factors are identically equal to unity, and we
obtain

f q~x,x8!52
2pe2

p
exp~2pux2x8u!

1
2pe2

p
exp@2p~x1x8!#. ~29!

If another boundary condition is imposed,]U/
]xux5050, a solution is

f q~x,x8!52
2pe2

p
exp~2pux2x8u!. ~30!

It is seen that the results the problems~28! and~29! yield
inside the sample (x.0,x8.0) differ from exact ones~27!
by the contribution that is nonzero only near the boundary of
the sample. Now one should recollect that the initial problem
requires only the matrix elements of the screened Coulomb
potential, and so one has to consider the region inside the
sample only, and the contribution of the boundary term is
small in comparison with the main one by a factor
(kL)21!1. So Eq.~25! may be replaced by a more simple
one, withu factors set equal to unity and the boundary con-
dition imposed. Moreover, since the range of the interaction
is k21, i.e., is extremely small, this result is not sensitive to

either boundary conditions or the sample’s geometry, and
one may perform this replacement for our rectangular sample
as well.

So, turning to the case of the rectangular sample, one
easily obtains

U~r ,r 8!54pe2(
q

wq~r !wq~r 8!

q21k2 . ~31!

Here wq(r ) are the eigenfunctions of the Laplace operator
with appropriate boundary conditions; the eigenvalues are
equal to2q2. In the case of the specified cubic geometry
one gets

q5~p/L !~nx ,ny ,nz!, ni50,1,2, . . . .

If the system is charge neutral, theq50 mode should be
dropped in the summation.

B. Calculation of the matrix element

Now we return to Eq.~25!. Actually the squared absolute
value of the Coulomb interaction matrix element contains the
product of eight single-particle eigenfunctions, and our state-
ment is that this combination only weakly depends on the
energies of these states, and therefore can be impurity aver-
aged separately from other, energy-dependent, factors, yield-
ing the constantU2. The results obtained below follow in
fact from the quasiclassical approximation.21,23

One needs to average

J~r1 ,r2 ,r3 ,r4!5^cl* ~r1!cl1
~r1!cl~r3!cl1

* ~r3!

3cl2
* ~r2!cl3

~r2!cl2
~r4!cl3

* ~r4!&, ~32!

so that

U25E dr1dr2dr3dr4U~r1 ,r2!U~r3 ,r4!J~r1 ,r2 ,r3 ,r4!.

~33!

In the particular case~30!, U(r ,r 8)5n21d(r2r 8), one
obtains

U25n22E dr1dr3J~r1 ,r1 ,r3 ,r3!. ~34!

The quantityJ contains the constant part, which corre-
sponds to the calculation in the Gaussian ensemble, and
coordinate-dependent contributions of higher modes.

1. Gaussian ensemble

The constant part can be easily calculated. It is convenient
to introduce discrete notation. If one considersN electrons
(N;eF /D@1), and consequently splits the system overN
elementary volumes with positionsr i , then the values of
each two eigenfunctions in each two elementary volumes are
in the Gaussian ensemble independent except for the con-
straints due to the orthogonality and normalization condi-
tions for these eigenfunctions. In leading order inN21 one
has
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JG~r1 ,r1 ,r3 ,r3!5HV24, r15r3 ,

2N22V24, r1Þr3 ,
~35!

V being the volume of the system.
Hence the contribution toU2 from the Gaussian ensemble

is

UG
2 5n22V22N215D2/N5aD3/eF . ~36!

Herea is a numerical coefficient. It can be adjusted from the
comparison with the clean limit in the overlap parameter
range ~see below!; this givesa51/8. Note that the main
contribution to the integral~33! comes from the range where
all four coordinates coincide; in continuous notation, this
means that the distance between these points is of the order
of the screening length.

2. Higher modes

The contribution of the higher modes is concerned with
the diffusion processes. In particular, the coordinate-
dependent part of Eq.~32! describes the diffusion of an elec-
tron from pointr1 to point r3, and the diffusion of another
electron from pointr2 to point r4. It is reasonable to assume
that if pointsr1 is far enough from pointr2 ~in the discrete
terms, these two points lie in different elementary volumes,
or, alternatively, the distance between these points exceeds
several interatomic distances!, and point r3 is far enough
from point r4, these diffusion processes are independent:

JHM~r1 ,r2 ,r3 ,r4!5^cl* ~r1!cl1
~r1!cl~r3!cl1

* ~r3!&

3^cl2
* ~r2!cl3

~r2!cl2
~r4!cl3

* ~r4!&.

~37!

If, however, these pairs are close to each other~in particular,
this is the case for the short-ranged interaction!, additional
contributions from the diffusion processr1→r4, r2→r3 ap-
pear, and expression~37! acquires a coefficient 2.

The average of four eigenfunctions of the type~37! can be
calculated up to the terms of orderg22, with g5Ec /D being
the conductance. The result reads21,24

^cl* ~r !cl8~r 8!cl~r 8!cl8
* ~r 8!&

5~D/pV!E
0

`

~Wr~r 8,t !2V21!dt. ~38!

HereWr(r 8,t) is the probability to find an electron at the
time momentt in the pointr 8 if it was in the pointr in the
time moment t50. This probability obeys the diffusion
equation

]W/]t5D¹ r8
2 W,W~r 8,t50!5d~r 82r !. ~39!

Integrating Eq.~39! over the time variable and taking into
account that fort→` the distribution tends to be uniform
one,W5V21, one obtains

E
0

`

Wdt5V211 (
qÞ0

~Dq2!21wq~r !wq~r 8!. ~40!

Finally, combining Eqs.~30!, ~33!, ~37!, ~38!, and~40!, one
obtains for the contribution of the higher modes to the inter-
action matrix element

UHM
2 5

2JD4

p4Ec
2 . ~41!

The constantJ is given by

J5~p/L !4(
qÞ0

q245 (
nx1ny1nz.0

~nx
21ny

21nz
2!22'5.

If one rewrites the contribution of the higher modes as
U2;D2g22, g5Ec /D being the conductance, it is easily
seen that it has the same contribution as that of the Gaussian
ensemble, except for the factorN21 being replaced with
g22. Consequently one obtainsUG

2 /UHM
2 ;g2/N.25 In large

sample,L@pFl
2, we obtaing2!N, and consequently the

contribution of higher modes is the leading one. In the op-
posite caseL!pFl

2, the Gaussian ensemble produces the
leading term. The latter is universal, i.e., does not contain
any information about the disorder. It is shown below that
this contribution leads to the clean-limit resultg@T2/eF .

To summarize, we have obtained the following expression
for the averaged matrix element of the Coulomb interaction:

U2[u^l,l2uUul1 ,l3&u2

5H ~2J/p2!D4/Ec
2 , L@pFl

2 ~g2!N!,

D3/8eF , L!pFl
2 ~g2@N!.

~42!

C. Uncorrelated case

Further calculations are different for the GCE and CE. We
start from the most simple GCE case. In this situation the
averaged sum over the three different statesl1, l2, andl3 in
Eq. ~25! is essentially the integral over three energies, corre-
sponding to these states, multiplied by the normalizing factor
D23, and the four-point correlation functionR4, which is
responsible for the level repulsion for small energy differ-
ences:

g~e!52pU2D23E de1de2de3f 2~12 f 1!~12 f 3!

3d~e1e22e12e3!R4~e,e1 ,e2 ,e3!. ~43!

Now we sete50. As was already mentioned, an analysis
gives the same energy dependenceg(e,T50) as the tem-
perature oneg(e50,T) obtained below, apart from the nu-
merical coefficients.

The characteristic scales of the variation for the Fermi
functions and the correlation functionR4 areT andD, re-
spectively. So forT@D the correlation function can be re-
placed with its asymptotic expressions for large values of
arguments, i.e.,R451.20 In physical terms this means that
the level correlation does not play any role for the electron-
electron scattering rate providedT@D. Note also that in this
limiting case the GCE and CE situations coincide essentially,
for the number of excited quasiparticles is large.

Direct calculation of the integral gives forT@D
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guc5
p3

2

U2T2

D3 5H ~J/p!~T2D/Ec
2!, L@pFl

2 ~g2!N!,

~p3/16!~T2/eF!, L!pFl
2 ~g2@N!

~44!

~Fig. 4!. The appearance of the mean level spacingD in the
expression for the case where the level correlation is absent
should not be misleading: It just stands for a combination
(nL)21, and is introduced for convenience.

The upper line of Eq.~44! ~range III in Fig. 4! corre-
sponds to the case of ‘‘large’’ dots. The dependenceg}T2 is
universal and is not sensitive to the geometry of the sample.
However, the coefficient depends both on the sample’s size
and the mean free path. It is valid forT!Ec , and gives in
this parameter rangeg!D. Hence the spectrum is discrete
and this result cannot be obtained in the perturbation theory.
Note, however, that if one formally applies the perturbative,
e.g., those developed in Ref. 8 or 18 methods to the range
T!Ec , one obtains the same resultg}T2D/Ec

2 g!D. We
have given above arigorous, self-consistentderivation of
this result.

The lower line of Eq.~44! is essentially the same result
that appears in the clean limit for bulk 3D system. It does not
contain either the size of the system or the diffusion proper-
ties ~such as the mean free path!. However, the range of
validity for this result (L!pFl

2,D!T!Ec) is rather differ-
ent. This range includes both cases of discrete and continu-
ous spectra, and consequently we have an overlap between
the perturbation theory and the RMT calculation~region be-
tween curves 1 and 3, Fig. 4!. Note that this ‘‘clean’’ behav-
ior is observed in small enough dots even for small tempera-
turesTt!(pFl )

22 ~cf. Ref. 18!

D. Effect of level correlation

For T!D the correlation function can be replaced for its
expansion for small arguments; in the particular case of the
Gaussian unitary ensemble~GUE! one has~see Appendix B!

R4~0,v,v1V,V!

5~p/D!12~212 625!21~v8V422v6V61v4V8!.

Straightforward calculation gives

gcorr5p4b
U2T2

D3 S pT

D D 1252pbS pT

D D 12guc ,

b5
59p11

94 500
;1000. ~45!

In particular, one obtains

gcorr5H bJ~DT2/Ec
2!~pT/D!12, L@pFl

2 ~g2!N!,

~p4/8!~T2/eF!~pT/D!12, L!pFl
2 ~g2@N!.

~46!

The 12th power in the result can be easily explained. One
needs to find four energies close to each other; these four
energies form six pairs, and the contribution of each pair is
proportional to (v/D)2 in the GUE,v being the difference
between the energies in a pair. Consequently one obtains the
extra factor (T/D)12 in comparison with the uncorrelated
case. In a similar way, the contribution from each pair is
proportional touv/Du in the Gaussian orthogonal ensemble
~GOE! and to (v/D)4 in the Gaussian symplectic ensemble
~GSE!, and so the results areg}guc(T/D)

6 ~GOE! and g
}guc(T/D)

24 ~GSE!.
The CE case is more complicated. As we argue above, for

T@D it yields the same results as the GCE, and so the only
interesting situation isT!D. In expression~25! the functions
f are still Fermi distribution functions; however, the chemi-
cal potential needs now to be pinned to one of the energy
levels:m5e l10. This fact changes all results considerably,
as the probability to findm in some gap between levels de-
pends no longer on the width of this gap.26,27 The arbitrari-
ness of the selection of the pinned level is removed by aver-
aging with a weight function that is centered around the
‘‘mean value’’ of the chemical potentialm̄ and has the sup-
port dm: D!dm!m̄. If this weight function is chosen to be
a step function, after taking the limitdm→0 one obtains

gl52pU2D (
l1 ,l2 ,l3 ,l

d~el1el2
2el1

2el3
!

3d~e l2m10! f l2
~12 f l1

!~12 f l3
!. ~47!

In principle, the summation overl contains terms with
l5l i . These particular terms are reduced after disorder av-
eraging to the integrals over three energies with the four-
point correlation functionR4. But upon settinge50 these
terms vanish just because of the correlation function, con-
taining two equal energies (e l50). However, for nonzero
e these terms yield the results:

g~e,T!;H guc~e/T!4~T/D!12 ~GUE!,

guc~e/T!2~T/D!6 ~GOE!.
~48!

All other terms contain the five-point correlation function
and hence can be omitted. Formally fore50 one obtains,
e.g., in the GUEgCE;guc(T/D)

20.

FIG. 4. 3D-0D crossover. Curves 1,T5Ec ; 2, T5D. Line 3
(g5D) separates the cases of continuous and discrete spectrum for
L@pFl 2. Regimes: I, clean limit;g;T2/eF ; II, bulk diffusive
limit, g}T3/2; III, zero-dimensional diffusive limit; in ranges IV
and V the level correlation is important.
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V. CONCLUSIONS

In conclusion, we have investigated the out-scattering
time g21 appearing due to the electron-electron interaction.
Two different cases should be distinguished: a continuous
spectrum (g@D), where perturbation theory can be applied,
and the nonperturbative case of a discrete spectrum
(g!D).

In the case of a continuous spectrum the out-scattering
time is essentially the same as the inelastic scattering time
entering the problems of universal conductance fluctuations
and persistent currents. In 3D and 0D systems it coincides
also with the phase breaking time, while in the 2D and
quasi-1D cases these times differ considerably. In the 2D
case in some range of parameters we have recovered the
earlier results,12–14 but we interpret it as the out-scattering
time rather than the phase-breaking time. Also an intermedi-
ate parameter range between 2D and 0D systems is investi-
gated. For quasi-1D systems we have obtained principally
the results~18!–~23!. In the purely one-dimensional case for
large enough temperaturesTt@(pFa)

2 the out-scattering
time is proportional toT22/3 as well astf ; however, the
former is considerably shorter. For lower temperatures
(pFa)

24!Tt!(pFa)
22 the out-scattering rate is propor-

tional toT3/4, and becomes larger than the temperature. Also
a transitional region between 1D and 0D systems exists, and
we have investigated different regimes of the diffusion. In
particular, forT@Ec the spectrum is always continuous, and
close enough toEc we obtain zero-dimensional behavior:
g;tf}T. Ranges of parameters corresponding to different
regimes are displayed in Fig. 3.

For temperatures below the Thouless energy the spectrum
is discrete. In this case the out-scattering rate coincides with
the phase-breaking one, and it is reasonable to speak just of
the inelastic scattering rate. We have shown that for large
enough systemsL@pF

2 l (N;eF /D@g2), the latter behaves
itself as g;T2D/Ec

2 (D!T!Ec), while in small systems
N!g2 the universal dependenceg;T2/eF is found. For
T!D we have obtained an abundance of results for small-
large / CE-GCE / GUE-GOE cases. In spite of this abun-
dance one should clearly understand that the inelastic scat-
tering rate due to the electron-electron collisions is in this
parameter range vanishingly small. So for real systems it is
necessary to look for another mechanism of inelastic scatter-
ing. Electron-phonon scattering seems to be a good candi-
date; it has been recently discussed for mesoscopic
systems.28 Also a coupling to the environment produces an
inelastic rate in the nearly closed system.
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Note added. As this paper was being prepared, a number
of related works came to my attention. First, models similar
to the ‘‘discrete spectrum’’ situation in quantum dots have

been recently studied with the help of the random band ma-
trices, and the results are rather similar.29 Then, Kamenev
and Gefen30 studied the role of the external enviroment on
the inelastic broadening, and found this effect to be very
strong. They relate this fact to the phenomena of the Cou-
lomb blockade. Finally, the recent unpublished results by
Altshuler, Gefen, Kamenev, and Levitov31 ~AGKL ! and the
comment on their work by Imry32 are so close to the results
obtained above that some discussion is required. AGKL
study the same problem, and reproduce, in fact, the matrix
element~41!. They interpret it as an overlap between one-
particle ul& and three-particleul1 ,l2 ,l3& states. Conse-
quently this overlap should be compared with the three-
particle level spacingD3;D3/e2, and this comparison
creates a new energy scaleE*5(EcD)

1/2. For E.E* the
three-particle states are well mixed by the Coulomb interac-
tion, and the broadened peaks~which are resolved for
E,Ec) are essentially a mixture of many-particle states. On
the other hand, forE,E* the single-particle state is mixed
with one three-particle state, one five-particle state, and so
on. In this sense the inelastic scattering rate is zero: The state
does not decay at all. AGKL describe this situation as an
analog of the localization transition on the Bethe lattice. I do
not want to address this problem here; however, the results
obtained above forE,E* can be interpreted rather as the
width of the ‘‘envelope’’ formed by the many-particle states
around the single-particle one. I am indebted to the authors
of all these papers for the possibility to become acquainted
with their results prior to publication.

APPENDIX A: DEPHASING AND Q1D-0D CROSSOVER

Below results for the phase-breaking time in the range of
parameters intermediate between the quasi-one- and zero-
dimensional cases are obtained. In principle, one has to per-
form calculations similar to those of Ref. 10 in a restricted
geometry, and this does not look quite hopeful. However, as
we are interested in the result up to the numerical factor only,
it is reasonable to use the method developed by Stern, Aha-
ronov, and Imry33,34 that was later applied to the calculation
of the quasiparticle lifetime in a quantum dot.18 In this ap-
proach the phase uncertaintyP(t0) accumulated by the elec-
tron due to the interaction with the environment~in our par-
ticular case it interacts with the electromagnetic fluctuations!
is calculated; the timet0 when this phase uncertainty be-
comes of order unity~we will set it exactly unity! is associ-
ated with the electron lifetime~phase-breaking time!. This
phase uncertainty is given by18

P~ t0!5
2

La2E0
t0
dtdt8E

2`

`

dvcoth
v

2T

3 (
qÞ0

4e2

q2
ImS 1

«~q,v! Deiv~ t2t8!~S11S21S31S4!,

~A1!

with

S15exp$ iq@x1~ t !2x1~ t8!#%,

S25exp$ iq@x2~ t !2x2~ t8!#%,
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S35exp$ iq@x1~ t !2x2~ t8!#%,

S45exp$ iq@x2~ t !2x1~ t8!#%. ~A2!

In these expressions~to be the direct generalization of those
of Ref. 18 for the case of finite temperatures! x1(t) and
x2(t) are arbitrary~quasiclassical! electron paths, and the
averaging over these paths is supposed;«(q,v) is the dielec-
tric susceptibility. Expression~A1! is derived for an infinite
system; however, as it varies on scales of the order of the
elastic mean free pathl!a, this expression is valid in the
diffusive regime, and the bulk results may be substituted for
the dielectric susceptibility. It is also important that the
q50 mode does not contribute to the sum~A1!: It is absent
in the open systems while in the closed ones the correspond-
ing contribution is forbidden by charge neutrality. So the
difference between open and closed systems is not quite im-
portant, and the system is assumed to be closed:
q5p(nx /L,ny /a,nz /a), nx1ny1nz.0. The results for the
open systems depend on boundary conditions, but in all
cases differ by a numerical factor of order unity only.

After the averaging over paths is carried out in exactly the
same way as in Ref. 18, one obtains

P~ t0!5
48T

La2ppF
2 l

D

Ec
(

nx1ny1nz.0

1

nx
21~L/a!2~ny

21nz
2!

3E
0

t0
dt1E

0

t1dt

t
sin~2Tt!

3exp$2p2Ect@nx
21~L/a!2~ny

21nz
2!#%. ~A3!

HereD is the three-dimensional diffusion coefficient and we
have taken into account that the main contribution to the
integral over frequencies comes from the regionuvu,2T.
The summation is restricted by the conditionq! l . For
D/a2@T ~this condition excludes the 3D situation! only the
valuesny5nz50 are important in the summation~A3!.

In the limiting caseEc@t0
21 @the inverse situation corre-

sponds to the ‘‘true’’ quasi-1D case and the result is given by
Eq. ~13!# the integral can be easily calculated. One gets

P~ t0!5
48T

ppF
2 lLa2

D

Ec
(
n51

;L/ l
1

n2 F t0arctan 2T

p2Ecn
2

2
2T

4T21p2Ec
2n2G . ~A4!

The phase-breaking timetf is defined as the timet0 when
the phase uncertaintyP(t0) is equal to unity.

The caseEc@T corresponds to the ‘‘true’’ 0D situation.
One has

1

tf
5

96T

p3pF
2 lLa2

D

Ec
2 (
n51

`
1

n4
5
5pT2t

16pF
2a2 S Ll D

3

. ~A5!

This is the result by Sivan, Imry, and Aronov18 up to the
numerical factor. It is seen, however, that in this region the
spectrum is discrete:tf

21!D. Thus, the 0D region is not
subject to our analysis and should be treated by another
methods.@See, however, the discussion after Eq.~44!#.

The casetf
21!Ec!T is intermediate between quasi-1D

and 0D regimes. Only terms withEcn
2!T are important in

the summation~A4!; however, due to the conditionT@Ec ,
the summation can be extended to the infinity. One obtains

1

tf
5

4p2TL

~pFa!2l
, ~A6!

which is a new result. In the whole regiontf!Ec!T the
spectrum turns out to be continuous and the result~A6! is
valid.

APPENDIX B: FOUR-POINT CORRELATION FUNCTION
IN THE GUE

Below we follow the generalities given in Ref. 20. As an
explicit expression for the four-point correlation is not given
anywhere in the literature to the best of our knowledge, we
derive it for the most simple GUE case. It is convenient to
use the dimensionless energiesx5pe/D throughout this ap-
pendix.

The first step is to define the functions

Yi~x1 ,x2 , . . . ,xi !5(
P

s12s23•••si1 . ~B1!

Here

si j[s~ uxi2xj u!, s~x![
sinx

x
, ~B2!

and the summation is carried out over (i21)! different per-
mutations of indices. Hence,

Y1~x!51, Y2~x1 ,x2!5s12
2 , Y3~x1 ,x2 ,x3!52s12s23s31,

Y4~x1 ,x2 ,x3 ,x4!52s12s23s34s4112s13s34s42s21

12s14s42s23s31.

Now the correlation functionsRi(x1 , . . . ,xi) can be ex-
pressed as

R151, R2~x1 ,x2!52Y2~x1 ,x2!1R1~x1!R2~x2!,

R3~x1 ,x2 ,x3!5Y3~x1 ,x2 ,x3!1R1~x1!R2~x2 ,x3!1R1~x2!R2~x1 ,x3!

1R1~x3!R2~x1 ,x2!22R1~x1!R1~x2!R1~x3!,

54 12 817ELECTRON-ELECTRON SCATTERING RATE IN . . .



R4~x1 ,x2 ,x3 ,x4!52Y4~x1 ,x2 ,x3 ,x4!1$R1~x1!R3~x2 ,x3 ,x4!1R1~x2!R3~x1 ,x3 ,x4!

1R1~x3!R3~x1 ,x2 ,x4!1R1~x4!R3~x1 ,x2 ,x3!%1$R2~x1 ,x2!R2~x3 ,x4!1R2~x1 ,x3!R2~x2 ,x4!

1R2~x1 ,x4!r 2~x2 ,x3!%22$R2~x1 ,x2!R1~x3!R1~x4!1R2~x1 ,x3!R1~x2!R1~x4!

1R2~x1 ,x4!R1~x2!R1~x3!1R2~x2 ,x3!R1~x1!R1~x4!1R2~x2 ,x4!R1~x1!R1~x3!

1R2~x3 ,x4!R1~x1!R1~x2!%16R1~x1!R1~x2!R1~x3!R1~x4!.

After some algebra one obtains an explicit expression for the correlation functionR4:

R4~x1 ,x2 ,x3 ,x4!5122$s12s23s34s411s13s34s42s211s14s42s23s31%

1$s12
2 s34

2 1s13
2 s24

2 1s14
2 s23

2 %12$s12s23s311s12s24s411s13s34s411s23s34s42%

2$s12
2 1s13

2 1s14
2 1s23

2 1s24
2 1s34

2 %. ~B3!

In our particular casex11x35x21x4, and, taking into account that the correlation function depends on three differences of
arguments only, one arrives to an expressionR4(0,x,x1y,y). From Eq.~B3! after cumbersome calculations one obtains an
expansion ofR4 for x,y!1:

R4~0,x,x1y,y!5
1

212 625
~x4y822x6y61x8y4!. ~B4!

The 12th power can be easily explained. The pair correlation function for small arguments is proportional in the GUE,
R2(x)}x

2. As one has inR4 six pairs of arguments close to each other and each pair produces the second power, the total
expansion starts from the 12th power. In the GOE,R2(x)}x, and we may easily conclude that an analogous expansion starts
from the sixth power.

As could be expected, for a large value of the argumentsx,y@1 all functionsSi j are small, andR451. This fact means just
that the levels are uncorrelated on distances exceeding the mean level spacingD.

*On leave from: Department of Theoretical Physics, Moscow In-
stitute for Steel and Alloys, Leninskii Pr. 4, 117936 Moscow,
Russia.
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