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Electron-electron scattering rate in disordered mesoscopic systems
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The inelastic quasiparticle lifetime due to the electron-electron interatisirscattering time in the kinetic
equation formalismis calculated for finite metallic diffusive systeniguantum dotsin the whole range of
parameters. Both cases of “continuoughe inelastic level broadening much exceeds the mean level spacing
and “discrete” spectrum are analyzed. In particular, the crossover between one- and zero-dimensional regimes
is studied in detail. In the case of a continuous spectrum the out-scattering time is shown to be the same as the
inelastic time entering expressions for universal conductance fluctuations and persistent currents. It is also
found to be shorter than the phase-breaking time in two- and one-dimensional systems, while in zero-
dimensional systems these two times coincide. In the case of a discrete spectrum for small enough systems a
universal behavior of the scattering time is obtained. For temperatures below the mean level spacing the
out-scattering rate is shown to be vanishingly sn&0556-282(196)05342-9

[. INTRODUCTION systems attempts to cure this singularity have been
madet?~*leading to different results.

As is well known, inelastic electron scattering plays an Below this problem is revisited. The out-scattering rate
important role in various phenomena in disordered metallicy(e,T) is considered forT>e€. In principle, one should
systems (see the extensive review by Altshuler and study the two-parameter problem, but in order not to make
AronoVt). It is enough to mention that it is responsible for the expressions too cumbersome and not to consider a huge
the weak localization correction to the conductivity. It number of parameter ranges,is just put to be equal to
proved also to be important in mesoscopic phenomena imerol’ It is shown that the out-scattering time definitely does
these systems. In particular, inelastic scattering governs theot coincide with the phase-breaking one. For the 2D case
temperature dependence and crossovers between different dec. 1) just the result by Refs. 12—14,«<TInT, is recov-
mensionalities for universal conductance fluctuatidns ered. In the quasi-1D systefSec. Il results are obtained:
(UCF'’s) and similar problems, such as persistent current$or large temperatures the out-scattering time shows the
(see, e.g., Ref.)dand correlators of persistent currents within same temperature dependence as the phase-breaking one (
the grand canonical ensemliBCE) (see, e.g., Ref.)5Re-  «T?3) but is parametrically shorter than the latter; moreover,
cent estimatiorfshave shown that the conductance of meso-for low enough temperaturébut still in the metallic regime
scopic systems in the case of a discrete spectrum, at leagfe out-scattering rate exceeds the temperature, and exhibits
within the canonical ensembl€E), is also governed by the another temperature dependenceT*.
inelastic electron scattering. Now we return to the effect of inelastic scattering on the

The electron-electron interaction enters these problemgmesoscopic phenomena in disordered systems, in particular
through the inelastic scattering time. Extensive investigation$JCF'’s. It is rather cleafand it is shown once more belpw
carried out about 10 years ago showed that at least two rethat the inelastic scattering time entering the UCF problem is
evant electron-electron scattering times eXigt) the out-  essentially the out-scattering tim@lote that because of the
scattering time 7,, appearing in the Kkinetic equation controversy mentioned above it it is believed also to coincide
formalism®? it has the meaning of an inverse frequency ofwith the phase-breaking time, which is definitely not the case
inelastic collisions; andi) the phase-breaking tirﬁ%w (see  for 2D and Q1D systemsSo one needs to investigate the
also Ref. 1] responsible, in particular, for the weak local- out-scattering rate ifinite systems. The problem of electron
ization correction and for the quasi-particle decay within thelifetimes in finite systems has not been addressed so far,
Fermi liquid theory. These two times have been shown taexcept for the only paper by Sivan, Imry, and Aroffoito
coincide in (3D) three-dimensional systemsrtf~7,, be discussed below, see Sec).lV
«T~3?). The phase-breaking time is well studied also in  The introduction of the finite size of the system leads to
infinite 2D (7,=T~1) and quasi-1D £,=T 2% systems®  the appearance of two characteristic energies: the Thouless
However, the out-scattering rate in low-dimensional systemsgnergyE.=D/L? (hereD andL are the diffusion coefficient
v(e, T)= Tgu% has caused some controversy. It was studiedind the largest size of the system, respectjvahd the mean
for zero temperature by Altshuler and Aron¢see Ref. 1  level spacingA. The small parameter of the standard pertur-
who obtained the result(e, T=0)x€%?, d=1 (quasi-1D or  bation theory(in particular, the diagram techniquis y/A,
d=2 (2D). This implies, in particular, that the Fermi liquid and, respectively, two cases should be distinguished: “con-
theory is violated in quasi-1D systems close enough to théinuous spectrum”y>A and "discrete spectrum’y<A.

Fermi level. An attempt to include the finite temperature In the three-dimensional systerfs.g. a cube of the size
makes the situation even worse: The out-scattering rate dl=) the situation is rather simple: FOr>E, the inelastic
verges for low enough energies<T. In two-dimensional level broadeningy much exceeds the mean level spacing
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(continuous spectrumand the results actually do not depend
onL. However, forT<E. one obtainsy<A, and the cross- ]
over to the zero-dimensional situation occurs. So in the case %’/ = ! + N %:
of 3D - 0D crossover the distinction between 3D and 0D = : -
situations is the same as the one between continuous and L
discrete spectréfor the exact formulation of this point see
Sec. IV). However, it is not the case for 2D - 0D and Q1D - FIG. 1. The diagram representation of the diffusion propagator.
0D crossovers. The out-scattering and the phase-breaking o ) _ ) )
rates are calculated in Secs.(BD - 0D crossoverand [II  fusion coefficient d is the dimensionality, presently=3)
(Q1D - 0D crossoverin the case of the continuous spectrum While vs=mpg /7 and r are the density of states and the
by means of the diagram technique. It is shown, in particularélastic scattering time, respectively. So the 3D case is not
that the spectrum foF> E, is always continuous, and for the interesting for us. Cro_ssovgr to other dimensionalities occurs
zero-dimensional situatiofthe result depends dr) the two ~ When one of the sizes is undeD(T)"? Below low-
inelastic times coincidety~ 7. dimensional systems are studied; the inequdlityD/a? is

In the case of the discrete spectryng A the perturbation assumed to be satisfied. _ _
theory is no longer valid, and the random matrix theory ]n thg UCF theory and related problems t_he inelastic scat-
(RMT) should be involved. Two cases of “small’<pgl2 tering time appears SIS a'result of calculation of_ the. “UCF
and “large” L>pl? dots should be distinguished. The tem- diffusion propagator.© It differs from the “true” dlf_fusmn _
perature dependence of the out-scattering time is obtained" opagatof by the absence of electron-electron interaction
7~T2A/E§ for A<T<E,, in “large” dots, while “small” Imes_connectlng two elegtron propagators. A “true” density-
dots exhibit a universal behaviog,~T?/er. For the tem- density correlation function is not affected by the electron-

peratures below the mean level spacihgA in all cases the electron interaction due to the Ward identity, which is re-

scattering ratey is found to be vanishingly smalBec. IV) sponsible for the cancellation of interaction lines from the
Below diffusive metallic systems are considered- “Di.ffu- vertex corrections and from the corrections to electron propa-

sive” implies the following relation between the character- gators. However, if some diagrams are omitted, the Ward

istic lengths of the problem:<L; with | andL; being the identity does not take place any more, and hence the

elastic mean free path and linear sizes of the system, respe%I_ectron—electron interaction renormalizes the UCF diffusion

tively. For definiteness a rectangular sample with size ropagato,r'.'ln Fhe aébsence IOfﬁ magnetic field 'the UC::
L,=L=L,=L,=ais chosenfi=1. “Metallic” means that U(C):(I):pSirf?lTsi(l)sn gl;/oena thg;(acty the same expressions as the
(1) the disorder is wealpe| >1, p. being the Fermi momen- ==, i ran?e puzgltion in the lowest order of the electron-
tum, and(ii) in a quasi-1D system the localization length lect ) ? . q for the diffusi tor is sh g

£~I(pga)? is larger than eithell or the phase-breaking electron interaction for the diffusion propagator is shown in

: 8,13 ; PPN )
length (DT¢)1/2. The closed systems are of primary interest.Flg' 1°*°The shaded rectangle is the full diffusion propaga

This means that the coupling to the environment is assumetéJr I'(q,»), and the double-dashed line s the bare diffusion

to be weak, namelyr, 1<A, 7. being a characteristic time propagator

of the electron escape through the attached leads. For open

systems the single-particle states are smeared; the magnitude r'9g,w)=
of this smearing is of the ordey,~min{E,,7.}, and, re-

spectively, one is interested in the ener@gmperature  while the crossed rectangle is the block concerned with the
rangee> vy, . The results obtained below are valid, however,electron-electron interactiol{q, ), displayed for the UCF
for the open systems also provide#- v, (see the discussion case in Fig. 2. The density of states in quasiimensional

p+q, €+ 0

mra (@] +DQ)’ @

in Sec. I). system vq4 (to be referred below asy) is equal to
vy=rza>" 9 for the pure 2D system,=m/ . The Matsub-
II. CONTINUOUS SPECTRUM: ara diagram technique is used; it is assumed for definiteness
GENERAL EXPRESSIONS AND 2D CASE that o+ €>0, €<0, and after the analytical continuation

io— w, i€e— €, the propagator corresponds to the averaged

product of retarded and advanced Green’'s functions
In the case of a continuous spectrursA the standard (GR(w+ €)G”(€)). The equation can be readily solved to

impurity diagram techniqué may be involved. We use be- obtain

low the diffusion-Cooperon approximatidnEor T>A one

cannot expect any difference between the GCE and CE; as T(q )= 1 3)

will be shown below the spectrum is always continuous for ' mvr*(|w|+ D%+ y)’

T>E.>A, and so all calculations are performed for the

A. Generalities

more simple GCE case. y=—(mv7) (g, 0).
It is well known that in a 3D system the phase-breaking . . L ) ) :
time So the inelastic rate is given by the interaction block and is

essentially the same as the out-scattering rate in the kinetic
T;1~(T/D)3’2V§1 (1) equation approach. _ _ _
Now we calculate the interaction block. In the arbitrary
coincides with the out-scattering time and is governed by alimensionality one obtains for the diagrams of Fig&),2
large momentum transf@q?~T. HereD=1%/7d is the dif-  2(b), 2(c), and Zd), respectively(note that for Fig. 2a) and
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_eszDz 3 Jd z Z—€
Y= . k0yda; z COch_T_tanh_ZT

Z
X .
(22+D2%q7)(22+D2k%q])

(6)

It is important that the terms with the hyperbolic cotangent
come from the quantitiek. andl .

It is easy to see that for nonzero temperature the integral
diverges az=0. This singularity can be cured by the sub-
stitution of a self-consistent expression for the diffusion
propagator3) to the formulag4) instead of(®). The diffu-
sion propagators entering the diagrams of Figa) and 2Zb)
are “true” and are not renormalized by the electron-electron
interaction, while those of diagrams FiggcRand Zd) are

FIG. 2. The diagrams contributing to the interaction block renormalized. Foll > e the main contribution to the integral

(crossed rectangle in Fig.) for the UCF diffusion propagator.

comes from the regionz|<2T, and one obtains the self-

Wavy lines and dashed lines with a cross denote the electrorfOnsistent equation foy (which is supposed to be momen-

electron interaction and bare impurity scatteringyé) 1, respec-
tively.

Fig. 2(b) the leading terms cancel and one has to perform an

expansion over the small momenta and low frequengcies

U(a;,Q)
(|Q]+Dg7)?

—7vr?T 2

O>w+e qp

la

X[w+Q+D(g?+gd)],

U(a:,Q)
(12[+Dayp)?

lp= —7TV7'2TZ 2

O<e qp

X[w—Q+D(g?+qd)],

U(ql!Q)
w—Q+D(q—q;)*’

l.=mvr’T 2 E

O<etow

U(qlvﬂ)
w+Q+D(g+qp)?’

lq= WVTZTE 2

O>e qq

4
HereU(q,(2) is a screened Coulomb interaction.

B. 2D case: Infinite system

As the Coulomb interaction has different forms in differ-
ent dimensionalitied,the analytical continuation should be
performed separately fat=2 andd=1. We start from the
2D case with

_ 2me? |Q|+Dg?

[Q|+Dkq’

U(q,Q) q

©)

Herek=4me?v,a for the quasi-2D case and=2mwe?v, for
the 2D case.

After the analytical continuationw— w, ie— €, we ob-
tain, forw=0, q=0,

tum independent for a while

4e’T

oo
7TJ0

y= D«q(Dgi+y)da;

2T dz
X . 7
fo (2+D?k*q;)[Z°+(Da; + 7)°] @
A straightforward calculation leads to an equation
T 2Ty = [ 2022 (g
Y= m n( K Y )_ m n K e4T ’ ( )

where the last equality is the leading term of the solution.
Substituting the explicit expressions fat, one finally ob-
tains

.

Note that this rate is highdby a logarithmic factorthan the
2D phase-breaking rafe

(T/2ep7)IN[8D k?(ep7)2IT] 2D,
(37 T/4pZal)In[D «?(4p2al/3m)?T~ 1] (quasi-2D.
€)

In(pel) (2D),
(pra) tIn(pfla)  (quasi-2D.

The result(9) is valid under the conditiom>y only. In
principle, this condition(unlike the condition of the Fermi-
liquid theory validity, T7,>1) is violated in the exponen-
tially small range of low temperatures. We consider this
problem as purely academic, however, and do not write
down expressions for the corresponding range.
Expression(9) was derived first in Ref. 12 as an imagi-
nary part of the impurity-averaged self-energy. Later this re-
sult was confirmed in Refs. 13 and 1#ukuyama and
Abraham$® have used a technique identical to that of the
present paperHowever, it was believed to be the expression
for the phase-breaking time in a 2D system. The origin of
this confusion lies in the stateméhthat the diagrams with
the interaction between different electron lifes., those not
contributing toy, but important forr,, in-scattering terms
in the kinetic equation approa®hare small. However, the
original calculation of the phase-breaking tithallows one

T¢1~(T/DV2){ (10
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to separate these two contributiofvgith and without inter-
action lines between different Green’s functipesplicitly,

and the result is that these contributions are of the same
order. So the difference betweerand 7;1 should be looked

for in the diagrams omitted in Ref. 13. Hence the attémpt
to cure this discrepancy by the introduction of a small-
momenta cutoff does not seem well justified. Indeed, the
momenta range proposed to be cut off is exactly the region
of relevant momenta in the integral, and the introduction of
finite momenta does not change the result. So we argue that
the result by Fukuyama and Abrahams, E9).is true; how-
ever, it describes not the phase-breaking time, but the out-
scattering timgor the UCF inelastic time We have shown
that the inelastic time entering the UCF problem is essen-
tially the out-scattering time and differs from the phase-
breaking one. It will be seen in Sec. Il that the difference is
even more pronounced for the quasi-one-dimensional case.

'1 2

Tz 4

Three‘%—dim nsional /ase
(Va)® ;

Ballistic

(pFa)'2

11 regime
Discrete

spectrum

111

(pga)

Va /L

(pFa)'2
C. 2D case: Finite system

Now we turn to the description of the 2D - OD crossover. g 3. Different regimes for the 1D-0D crossover. Curves 1,
In the derivation of Eq(9) it was supposed implicitly that g—g_/a=1; 2, Tr=(1/L)}pra)* [or y=E.(pra)?]; 3,
the system is infinite. Let us now consider a 2D finite systemT = (|/L)2(pra)? [or E.=T(pea) 2]; 4, Tr=(1/L)3(pra)? (or
Under the conditions of the diffusive regime>1, and in the Ecry=1); and 5,T7=(I/L)? (or T=E.). Regimes |-V are de-
case T>E;, Eq. (7) is still valid; however, the integral scribed in Sec. IlI.
should be understood as a sum over momenta with the
boundary conditions taken into account. Sq=qw/
L)(ny,ny) with integersn, andn, allowed or not to be equal
to zero, subject to the boundary conditions. It is important
that in any case the; 0 mode does not contribute to the

|0]+Dg?
|Q]+Dqg?+e’v,Dg’In(g?a?) "t
(12

U(q,Q)=€%n q2a2

integral: For open system@ttached to the metallic junc-
tions, i.e., in the UCF problejrthis mode is forbidden by the
boundary conditions, while for closed on@sg., in the prob-
lem of persistent currentshe conditions of the charge neu-
trality imply U(0,0)=0. So the difference between these

It is convenient to denote the denominator of this expression
as|Q|+Dg?f(q) with f(g)=1+ClIn(g’a® 1, C=e?v,. If,
as usual,e’~v, the constantC occurs to be of order
C~(pra)?>1.

Prior to the calculation ofy for the quasi-1D system it is

two cases is not quite important, and the boundary conditionsecessary to analyze the expression for the phase-breaking

will be taken into account just by the cutting off the integral
for small momentay<</L.

The analysis of Eg.(7) then shows that for
y>(E.D«?)? this cutoff does not play any role and the
result(9) is still valid. Note that this region corresponds to
the 2D case from the diffusion point of view. For the oppo-
site case, which is realized under the conditions

(I/L)egT (2D)
<
Tee<{ (11)(p2al) (quasi-2D,
one obtains
_e2T 2T "
Y= D e, (1)

C

It is seen that this result also differs from E§) by a loga-
rithmic factor.

Ill. QUASI-1D CASE AND Q1D-0D CROSSOVER

time 1° which can be conveniently rewritten as

T;1~T2/3T* 1/3(pFa)*4/3. (13)

This result was obtained under some assumptions to be ana-
lyzed here. First, the Fermi liquid theory is valid only in the
caseT7,>1. Second, the system is one dimensional, i.e.,
E.~D/L?<r,'<T<D/a?. Finally, it is supposed to
be metallic, i.e., the correlation lengthé=I(pra)?
>min{L,(D,)"3.

The last condition is violated in the localized regirtiee
shaded range in Fig.)3

Tr<(pea) 4, 1/L<(pga) %

and the first three are consequently summarize{Fag 3,
ranges |, Il, lll, and 1\
(1/L)3(pra)?<Tr<(l/a)?<1. (14)
The question of much interest is what happens if the con-
dition Tr>(1/L)3(pga)? [for I/L>(pga) ?] is violated.
The expression for the phase-breaking time in an infinite
system, Eq.(13) is no longer valid there. However, it is

Let us now turn to the quasi-1D case. The screened Coupossible to derive the expressions for this regime. This is

lomb interaction is

done in Appendix A. The result is
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*1 T L tion to the OD behavior in the problem of out-scattering
T—(/)le—. (15  times occurs before the corresponding transition in the

dephasing problem.

(I/L)2<Tr<(1/L)3(pga)?. (16)
B. Ranges Il and I
This expression is valid untiE;~T (range Vj, as is seen

from Eq.(16). As will be shown, in the whole rangé6) the If one assgmeD(w/L)Zf(w/L)< Y y>T, a straightfor-
inequality y>A is satisfied,A=(v3V) ! being the mean “ard calculation leads to the equation

level spacing. So the spectrum is continuous and this range is ATE? [ 2T 1

subject to the perturbative analysis. Thus, one has a “true” y=— f dqarctanD ~ —. (20
quasi-1D region(14), transition Q1D — 0D regioril6), and ™ JaiL q°f(a) Da"+y

“true” OD region T<E_ where the spectrum is discrete. In 5 new relevant length scale appear§, defined by
this section both Q1D and transitional ranges are considereg)af(a)zz-r_ Then two limiting cases sr;ould be distin-
It will be shown that a new splitting of the range in respect toguished.

the out-scattering time appears.

Now it is possible to start the calculation of the out- 1. Range I, L1

scattering time. Consideration of the diagrams of Fig. 2 leads ) ) ] )
to the divergent expression, and this divergence can be cured 1€ cutoff is again unimportant, and one obtains
exactly in the same way as in 2D case. Extracting the main 2e T3/

term for T> €, one obtains = —u4 _— | T34, 14 —12
Y 77172(CD)1;4|n 2Ta2 "7 (pFa) . (21)
4Te2C * 2 2 2/n2452\—1 : EPIE : :
y= —Z—f dgDg (Dg“+ y)In“(g<a“) The second identity is the estimation, based upon assump-
™ mlL ; 2__ ; At
tion e“~v. All assumptions made for the derivation of Eq.
2T 1 (21) occur to be consistent in range |I:
XJ dz—5 =772 2 - (17
o [z°+D g () ][z°+(Dg°+ »)] max(pra) 4,(I/L)?(pra)?}<Tr<(pga) 2.

Here a low-momentum cutoff is introduced in the momen-
tum integral(see the discussion for the 2D casEquation
(17) contains all information about the scattering rate an
should be solved in different limiting casésig. 3).

This result does not contain the length of the sample again
nd consequently describes infinite quasi-1D systems for the
emperatures just above the metal-insulator transition:
(pra) “*<Tr<(pga) 2. We have obtained a new tempera-
ture dependencg= T and the out-scattering time is now
A. Range | not only parametrically shorter than the phase-breaking one,
Let us assum@® (/L)%f(7/L)<y<T. In this case the but eveny>T. As y has the meaning of a frequency of
cutoff is not important, and the essential momenta inghe €lectron-electron collisions, the violation of the condition
integration areDg?f(q)<y. The equation simplifies to a Y<T has nothing to do with the violation of Fermi liquid

form theory (the latter is subject to another conditiohs,>1).
y=4T&/CDqym, Dq3f(gg)=7y 2. Range Ill, <L
(the inequalityC>1 has been us¢dThis yields the result Now the scattering rate introduced to the right-hand side
(RHY9) of Eq. (20) for self-consistency is inessential, and one
4Te?\ 283 (CD)%3 213 obtains
y=|—| (€D NI ——| =z |- 19
T a 4Te 21\ 172
il In’1’2L~T(I/L)1’2( a t (22
This cumbersome expression can be simplified if one as- Y= 32\ co Ta Pr :
sumes agaie®~v. Then, as the cube root of the logarithm is _ . ) . .
always a quantity of order unity, one obtains This result is valid under the conditiorieange 1))
YT Y3 p_a) 23 (19 l/IL<(pga) 2, (pra) *<Tr<(l/L)*(pra) 2.

It is seen that the initial assumptiom(#/L)2f(m/L)<y Now the result contains the length of the sample, but still one
and y<T are satisfied only in the temperature range hasy>T and y7,>1.

maxX{(pga) ~2,(1/L)3(pra)Y<Tr<(l/a)? C. Ranges IV and V

(range ). In particular, this result is valid for the infinite  In the caseD(w/L)?f(w/L)> y the important region in
quasi-1D system for temperatures abowel(pga) 2. It  the integral overz is z<Dg@?+ v, and again straightfor-
should be emphasized also that in this casevardly all dependence on the inelastic time cancels out on
747=(pel)¥*>1, and consequently,,=y *<7,. So the the RHS. The result is

out-scattering time in this range of parameters shows the

same temperature dependence as the phase-breaking time, 2T L 23)

but is much shorter than the latter. Nevertheless, the transi- v (pFa)2 I
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(/L)2<Tr<(1/L)3(pra)*. vious sections it was implicitly supposed that this condition
is satisfied. However, fof 7> (pgl)? the second term is the

To summarize, we have described the crossover betwednost important. This is just the result in the “clean” case:
quasi-one-dimensional and zero-dimensional behavior fofhe mean free path does not enter the expressions. So we
the case of continuous spectrum. We have discovered fiveonsider in this section the cake>| for arbitrary tempera-
different parameter range§ig. 3), which can be divided tures: both diffusive and clean limits. The res(2) is ob-
into three groups. tained by the diagram technique and is valid consequently

(1) 1 and Il. Here both the dephasing and the out-for y>A only; in the diffusive limit this condition is equiva-
scattering are purely quasi-one-dimensional, the results dient to T>E;, while in the clean limit forT=E; one has
not containL. In the whole range the relation,< 7, holds. ~ still y>A. The methods used below are valid for<E,

(2) Il and IV the transitional region. The dephasing is and so in the clean regime one has some overlap between the
still quasi-one-dimensional, while the out-scattering time de+esults to be obtained and E@4). Below the out-scattering
pends onL and is of zero-dimensional nature. Still one hastime v~ 1 for both the GCE and CE cases is calculated.

Tout< Tg - Prior to the the calculation it is necessary to analyze the

(3) The range V is truly zero dimensional, the expressiongaper by Sivan, Imry, and Arond¥,devoted to the inelastic
for the phase-breaking rate, E@l5), and for the out- scattering rate in finite systems. The authors of Ref. 18 cal-
scattering rate Eq(23), coincide. However, the spectrum culated exactly the same quantity as we do — the scattering

still is continuous, i.e.z, ~ o> A. rate as a function of energy(€). The methods they used are

The spectrum becomes discrete for the temperatures b#alid in the case of a “continuous” spectrury>A where

low the Thouless energ§<E., as takes place in the 3D they have just reproduced the resud). However, the for-
case. mal application of these methods to the opposite case of a

“discrete” spectrum (y<<A) leads to some nontrivial results
that appear to be not well justified in the approach of Ref. 18.
Below we present aigorous calculation, valid in the case

The diagram technique used in Secs. Il and Il is validy<A, and the results in the range>A (where level corre-
only in the case of a continuous spectrurA. As was lations are unimportahexactly reproduce those of Ref. 18.
shown above, this condition in all cases is equivalent to anThe reasons for this equivalence are still unclear. Also the
other oneT>E.. So this perturbative approach is not suit- effect of level correlations, which cannot be taken into ac-
able for the case of low temperatur@s, alternatively, small count by the methods of Ref. 18, is automatically incorpo-
doty T<E.. Fortunately, this is exactly the range where therated in the approach developed below.
random matrix theor? (RMT) works quite well for the de- A general expression for the scattering rate, based on the
scription of small disordered systefisNote that usually perturbation theory of the Coulomb interaction, is
RMT in the range of its applicability is equivalent to the
zero-dimensional nonlinear model??> However, in the
problem under consideration one should use the four-point VAZZWX >
correlation function which up to now was not derived by
means of the supersymmetry method. So RN spirit of Xo(exte,—€,— E>\3)f>\2(1—f>\1)(1— fxa), (25
the paper by Gor'kov and Eliashbétyseems presently to
be the only method for investigation of the electron-electron
interaction in the nonperturbative regime. To avoid misun- ()\,)\2|U|)\1,)\3>Ef drydroU(ry,ro) ¢ (ry)
derstanding, we stress that the electron-electron interaction is
taken into accounperturbatively however, the parameter *

A/vy is no longer small and should be treatechperturba- % dlM(rl) %Z(rZ)%3(r2)'
tively. ) ) )

In order not to overburden our expressions, we consider in Here[\;)=4, (r) are exact single-particle states—single-
this section the cubic sample with site The system is electron states in the unique disorder realization in a quan-
assumed to be charge neutral, and the results rely heavily dam dot (note that all four states need to be diffeenf,
this fact. In principle, the methods used allow one to con-are Fermi distribution functionéhe CE case needs a more
sider samples of arbitrary geometry, and all expressions betelicate treatment though; see bejpandU stands for the
low containing the parameterS and E. instead ofL are  electron-electron interaction. Expressit#5) should be av-
valid for the general casgor the metallic regime Also, we  eraged over the disorder realizations.
do not distinguish two types of scattering rates from each
other. To understand the results better, we extend the ranges
of the parameter to the clean case also. The exact result for

IV. DISCRETE SPECTRUM

(NN 2[U(r,ra) [ Ng ha) 2

1:A2.A3

A. Coulomb interaction in the restricted geometry

the scattering rate in the bulk 3D case reads as The first thing is to calculate the screened Coulomb inter-
action in the restricted geometry. For the temperatiees
312 1 &2 g€ ergies below the Thouless energy one can study the static
v(e,T=0)= TWE_}FJF 8 e (29) screening only. The latter is a solution to the equation as
follows:

The first term is exactly Eq(l). It exceeds the second one
for small enough temperaturéBr<(pgl) 2, and in the pre- V2U(rq,r)=k20(r1) 0(r,)U+4me?5(r;—r,), (26)



54 ELECTRON-ELECTRON SCATTERING RATE IN ...

k= (4me’v)*? being the inverse Debye length=v;. The

12 813

either boundary conditions or the sample’'s geometry, and

functionsé(r) are equal to unity and zero inside and outsideone may perform this replacement for our rectangular sample
the sample, respectively. This equation cannot be solved exas well.
actly for a rectangular sample, and one should introduce So, turning to the case of the rectangular sample, one

some approximations.

easily obtains

In order to make this approximations clear, we consider

first Eq. (25 in the simplest geometry, where it can be

solved. Namely, if the sample occupies a half-spaceD,
the exact solution to Eq25) in the regionx>0, x’>0 has
the form

<Pq(r)(Pq(r’)

Y — 2
u(r,r’) 4we% ol

(31)

Here ¢4(r) are the eigenfunctions of the Laplace operator
with appropriate boundary conditions; the eigenvalues are

da.day _ equal to—q?. In the case of the specified cubic geometry
U(fl,rz)=fWeXF[|qy(y—Y’) one gets
+ig,(z=2") [fo(x,x"), (27) q=(m/L)(ng,ny,nz), n=012,...
2 2me? p—g If the system is charge neutral, tlie=0 mode should be
fo(x,x)=— exn —plx—=x'1)— i dropped in the summation.
o(XX') P(=plx—x') = — = o
xexd —p(x+x")], B. Calculation of the matrix element
Now we return to Eq(25). Actually the squared absolute
p=(q+ k%2 (28)  value of the Coulomb interaction matrix element contains the

. ) ) ~ product of eight single-particle eigenfunctions, and our state-
Here the first term is essentially the screened Coulomb intefment s that this combination only weakly depends on the
action in the continuous media; it is tranS|ati0na"y invariantenergies of these states, and therefore can be |mpur|ty aver-
and for small screening lengtik~* is proportional to  aged separately from other, energy-dependent, factors, yield-

d(x—x"). The second term is due to the restricted geometryng the constantJ?. The results obtained below follow in
effects; it is important that it be essentially nonzero whenfact from the quasiclassical approximatiort>

bothx andx” lie in a narrow layer along the boundary of the  One needs to average
sample; the thickness of this layer is of the ordexof.

Now consider another problem. Let us impose the bound:](rl,rz,r3,r4):<1,//’;(r1) I (F) U (ra) g (r3)
ary condition in Eq(25): U|,—,=0 (and, respectivelylJ is ! !
nonzero only when botkx and x’ lie inside the sample
Then both# factors are identically equal to unity, and we

Xy (1) (1) ¥, (ra) ¥ (ra), (32

obtain so that
! ez ! 2
fq(x,x")=— exp(—p|x—x']) u :f drydrodradr U(ry,rp)U(rs,ra)d(ry,ra,rs,ra).
2 (33
* X~ p(x+x7)]. (29 In the particular cas€30), U(r,r')=v"18(r—r’), one
obtains
If another boundary condition is imposedgU/
(9X|X:0:0, a solution is U2:V72JA drldr3J(r1,r1,r3,r3). (34)
e2
fq(x,x")=— exp(—p[x—x']). (30) The quantityJ contains the constant part, which corre-

sponds to the calculation in the Gaussian ensemble, and

It is seen that the results the proble(@8) and (29) yield coordinate-dependent contributions of higher modes.

inside the sample X>0x'>0) differ from exact one$27)

by the contribution that is nonzero only near the boundary of
the sample. Now one should recollect that the initial problem The constant part can be easily calculated. It is convenient
requires only the matrix elements of the screened Coulomko introduce discrete notation. If one consid&tselectrons
potential, and so one has to consider the region inside theN~er/A>1), and consequently splits the system oier
sample only, and the contribution of the boundary term isclementary volumes with positions, then the values of
small in comparison with the main one by a factor each two eigenfunctions in each two elementary volumes are
(kL) 1<1. So Eq.(25 may be replaced by a more simple in the Gaussian ensemble independent except for the con-
one, with @ factors set equal to unity and the boundary con-straints due to the orthogonality and normalization condi-
dition imposed. Moreover, since the range of the interactiortions for these eigenfunctions. In leading ordemNn! one

is k71, i.e., is extremely small, this result is not sensitive tohas

1. Gaussian ensemble



12 814 Ya. M. BLANTER 54
\Vans ry=rs, Finally, combining Eqs(30), (33), (37), (38), and(40), one
ON-2y—4 " (35  obtains for the contribution of the higher modes to the inter-
» 17 Ts, action matrix element

Ja(ri,ry,r3,ra) =

V being the volume of the system.

= A4
Hence the contribution tb/? from the Gaussian ensemble U2 _ZHA (41)
is L ———y
C
UZ=v 2V 2N 1=A2/N=aA¥e; . (36)  The constanE is given by

Herea is a numerical coefficient. It can be adjusted fromthe _ S gte S 2, 2. 2 _2
comparison with the clean limit in the overlap parameter E=(mlL) & a T o (nx+ny+n;) *~5.
range (see below; this gives «=1/8. Note that the main Y

contribution to the integre(33) comes from the range where |t one rewrites the contribution of the higher modes as

all four coordinates coincide; in continuous notation, thlSU2~A2g72’ g=E./A being the conductance, it is easily

means that the distance between these points is of the ordggeap, that it has the same contribution as that of the Gaussian
of the screening length. ensemble, except for the factdé~! being replaced with
g~ 2. Consequently one obtair$2/UZ,,~g%N.% In large
sample,L>pgl?, we obtaing?<N, and consequently the
The contribution of the higher modes is concerned withcontribution of higher modes is the leading one. In the op-
the diffusion processes. In particular, the coordinateposite case.<pgl?, the Gaussian ensemble produces the
dependent part of E432) describes the diffusion of an elec- leading term. The latter is universal, i.e., does not contain
tron from pointr, to pointrg, and the diffusion of another any information about the disorder. It is shown below that
electron from point, to pointr,. It is reasonable to assume this contribution leads to the clean-limit resgit>T?/ e .
that if pointsr, is far enough from point, (in the discrete To summarize, we have obtained the following expression
terms, these two points lie in different elementary volumesfor the averaged matrix element of the Coulomb interaction:
or, alternatively, the distance between these points exceeds
several interatomic distandesand pointrs is far enough UZ=|(A,No|U[N 1 N3]
from pointr,, these diffusion processes are independent:

2. Higher modes

(2E/7?)AYEZ, L>pel? (g?<N),

Jum(r1.72,73,1) = (W3 (1) i (1) in(ra) g3 (ra)) A3/8er, L<pgel? (g°>N). 42
X<¢;2(r2)%3(r2)%2(r4) lﬁfs(rzt))- C. Uncorrelated case
37) Further calculations are different for the GCE and CE. We

If, however, these pairs are close to each offreparticular, start from the most simple G(;E case. In this situatiqn the
this is the case for the short-ranged interadtiadditional ~ 2veraged sum over the three different statgs\,, ands in
contributions from the diffusion process—r,, r,—rs ap- Eq. (2&_3) is essentially the mtegra_l over three energies, corre-
pear, and expressidi37) acquires a coefficient 2. sponding to these states, multiplied by the normalizing factor
The average of four eigenfunctions of the ty@) can be A%, and the four-point correlation functioR,, which is
calculated up to the terms of ordgr 2, with g=E_/A being responsible for the level repulsion for small energy differ-

the conductance. The result re&cé ences:
R (T4 () y(e)=277U2A73] derderdesfo(1—F1)(1—fy)
=(A/ﬂ'V)fw(Wr(r',t)—Vfl)dt. (39 X 8(e+ €e,— €1— €3)R,(€,€1, €7, €3). (43)
0

Do N i Now we sete=0. As was already mentioned, an analysis
Here W, (r',t) is the prpbaPl]lty to flnd an eIeptrqn at the gives the same energy dependende, T=0) as the tem-
time momentt in the pointr’ if it was in the pointr in the  yerature oney(e=0,T) obtained below, apart from the nu-
time momentt=0. This probability obeys the diffusion merical coefficients.
equation The characteristic scales of the variation for the Fermi
) functions and the correlation functidR, are T and A, re-

IWIgt=DV W,W(r',t=0)=4a(r"—r). (39 spectively. So forT>A the correlation function can be re-
placed with its asymptotic expressions for large values of
arguments, i.e.R,=1.2° In physical terms this means that
the level correlation does not play any role for the electron-
electron scattering rate providdé>A. Note also that in this
. limiting case the GCE and CE situations coincide essentially,

_\-1 2y-1 / for the number of excited quasiparticles is large.

Jo wdt=v +q§0 (DY) eaMeg(r). (40 Direct calculation of the integral gives far=>A

Integrating Eq.(39) over the time variable and taking into
account that fot— o the distribution tends to be uniform
one,W=V"1, one obtains
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R4(0,w,0+Q,Q)

Ts 1 = (m/A)4(212 625 {0304 — 20505+ 0?08).
Straightforward calculation gives
272 12 12
Yoor= T B3 (”—T) =2wﬂ<ﬂ) Yo
I corr A A A uc
/| Battistic 5,711
/’:/i/ B= rsoo’\’ 1000. (45)
regime In particular, one obtains
D" -
I BE(ATE)(wTIA)Y2  L>pel? (gP?<N),
1 Yeor™ | (248) (T2 ep)(nTIA) 2, L<pel? (g?>N).
(46)
v 1 ; VL The 12th power in the result can be easily explained. One
(D) needs to find four energies close to each other; these four

energies form six pairs, and the contribution of each pair is
. _ . proportional to /A)? in the GUE,» being the difference
FIG. 4. 3D-0D crossover. Curves T=Ec; 2, T=A. Line 3 poyyaan the energies in a pair. Consequently one obtains the
(v=A) separates the cases of continuous and discrete spectrum far 12 . .
= e o 2 e extra factor /A)*< in comparison with the uncorrelated
L>p"l“. Regimes: I, clean limit;y~T</ec; Il, bulk diffusive | imil th tributi f h L
limit, y<T¥Z% 1ll, zero-dimensional diffusive limit; in ranges IV case. n a similar Wgy, € con ”. ution from €ach pair 1
and V the level correlation is important. proportional to| w/A|4 in the Gauss!an orthogonal ensemble
(GOB) and to @/A)* in the Gaussian symplectic ensemble
73 U2T2 (Elw)(TZA/Eﬁ), L>pel?  (g°<N), (GSB, and so the results argx y,(T/A)® (GOE) and y
YT AT | (n016/(Tep), Leppl? (grmN) < YeelTIA* (GSE. |
F F (44) The CE case is more complicated. As we argue above, for
. o T>A it yields the same results as the GCE, and so the only
(Fig. 4). The appearance of the mean level spadinip the  interesting situation i§ <A. In expressiori25) the functions
expression for the case where the level correlation is absefitare still Fermi distribution functions; however, the chemi-
should not be misleading: It just stands for a combinationgy| potential needs now to be pinned to one of the energy
(Vlrl')h , and |s|_|ntr0(1u|<E:ed4fZ)r convenlltr,ln_ce.F_ levels: u= ¢ +0. This fact changes all results considerably,
€ upper fine o “q( ) (range IIl in Fig. 9 Cogr.e' as the probability to fingk in some gap between levels de-
e e g TP ependened i piens 1o longer o the width of this g4 The aritar
However, the coefficient depends both on the sample’s sizBESS of t_he selec.t|on B the_ pinned Igvel is removed by aver-
aging with a weight function that is centered around the

and the mean free path. It is valid for<E;, and gives in | lue” of the chemical potential and has th
this parameter range<<A. Hence the spectrum is discrete mean value of Iné chemical poten "’# and has the sup-
rt Su: A< Su<<u. If this weight function is chosen to be

and this result cannot be obtained in the perturbation theor}?o ) A _ _
Note, however, that if one formally applies the perturbative,@ Step function, after taking the limix—0 one obtains
e.g., those developed in Ref. 8 or 18 methods to the range

T<E;, one obtains the same resql@cT?A/Eg y<A. We y=27U2A D Slexte —e. —€)
have given above aigorous, self-consistendlerivation of M AgAgl 2 ! 3
this result.
The lower line of Eq.(44) is essentially the same result X (e —ut0)f (1-F )(1-F). (47)

that appears in the clean limit for bulk 3D system. It does not

contain either the size of the system or the diffusion proper- In principle, the summation ovdr contains terms with
ties (such as the mean free patiHowever, the range of |=\;. These particular terms are reduced after disorder av-
validity for this result ( <pgl?,A<T<E,) is rather differ- eraging to the integrals over three energies with the four-
ent. This range includes both cases of discrete and contingoint correlation functiorR,. But upon settinge=0 these
ous spectra, and consequently we have an overlap betweestms vanish just because of the correlation function, con-

the perturbation theory and the RMT calculatioagion be-  taining two equal energiese(=0). However, for nonzero
tween curves 1 and 3, Fig).ANote that this “clean” behav- ¢ these terms yield the results:
ior is observed in small enough dots even for small tempera-
turesTr<(pgl) ~2 (cf. Ref. 18 ( Yuc e THH(TIA)2  (GUE), .
e )~ 2 6
D. Effect of level correlation Yucle/T)5(T/A)"  (GOB).

For T<A the correlation function can be replaced for its All other terms contain the five-point correlation function

expansion for small arguments; in the particular case of thand hence can be omitted. Formally fex=0 one obtains,

Gaussian unitary ensemhl8UE) one hagsee Appendix B €.g., in the GUEyce~ v,(T/A)%.
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V. CONCLUSIONS been recently studied with the help of the random band ma-
In conclusion, we have investigated the out-scatterin frices, and the results are rather simfiaThen, Kamenev

. 1 ! g ; "M% nd Gefef® studied the role of the external enviroment on
time y " appearing due to the electron-electron mtera_lctlon.[he inelastic broadening, and found this effect to be very
§trong. They relate this fact to the phenomena of the Cou-

spectrum ¢>A), where perturbation theory can be appIiEd’Iomb blockade. Finally, the recent unpublished results by

and the nonperturbative case of a discrete Spec””%tshuler Gefen, Kamenev, and LevifBWAGKL ) and the
(’y<A). L 1 1

. ._comment on their work by Imf are so close to the results
In the case of a continuous spectrum the out-scalteringy,-ineq above that some discussion is required. AGKL
. mgtudy the same problem, and reproduce, in fact, the matrix

and persistent currents. In 3D and 0D systems it coincide
also with the phase breaking time, while in the 2D and
quasi-1D cases these times differ considerably. In the 2%
case in some2 r&nge of parameters we have recovered t
s e s et st s DAl stles are el miei b e Cotlom ierac
: jon, and the broadened peakwhich are resolved for

ate parameter range between 2D and 0D systems is inves “<E_) are essentially a mixture of many-particle states. On

gated. For quasi-1D systems we havg obta!ned pr|nC|paII¥he other hand, foE<E* the single-particle state is mixed
the resultg18)—(23). In the purely one-dimensional case for _ . . . i
with one three-particle state, one five-particle state, and so

5 ) )
L?r;\geeisen?gggrtfgrr:;ﬁ)etgg 2?;5;? (vegﬁ )asthg Eg\t/vz(\:/ztrte:wg on. In this sense the inelastic scattering rate is zero: The state
brop T ' does not decay at all. AGKL describe this situation as an

forme[4|s con&dereﬁly shorter. For . lower te_mperaturesanalog of the localization transition on the Bethe lattice. | do
(pra) "<Tr<(pra) “ the out-scattering rate is propor-

: 3/4 not want to address this problem here; however, the results
tional tgj’ ,and'becomes larger than the temperature. AISOo tained above foE<E* can be interpreted rather as the
a transitional region between 1D and 0D systems exists, ang i of the “envelope” formed by the many-particle states
we _have investigated different regimes of the @ffusmn. Inaround the single-particle one. | am indebted to the authors
particular, forT>E_ the spectrum is always continuous, and

. ) ) .~ of all these papers for the possibility to become acquainted
close enough tdE. we obtain zero-dimensional behavior: bap b y g

. ) with their results prior to publication.
y~74,>T. Ranges of parameters corresponding to different P P

regimes are displayed in Fig. 3. .
For temperatures below the Thouless energy the spectrum®PPENDIX A DEPHASING AND Q1D-0D CROSSOVER
is discrete. In this case the out-scattering rate coincides with gejow results for the phase-breaking time in the range of

the phase-breaking one, and it is reasonable to speak just Bhrameters intermediate between the quasi-one- and zero-
the inelastic scattering rate. We have shown that for larg@jimensional cases are obtained. In principle, one has to per-
enough systems>pgl (N~ ep/A>g?), the latter behaves form calculations similar to those of Ref. 10 in a restricted
itself as y~T?A/EZ (A<T<E), while in small systems geometry, and this does not look quite hopeful. However, as
N<g? the universal dependence~T?/er is found. For  we are interested in the result up to the numerical factor only,
T<A we have obtained an abundance of results for smallit is reasonable to use the method developed by Stern, Aha-
large / CE-GCE / GUE-GOE cases. In spite of this abuntonov, and Imry>**that was later applied to the calculation
dance one should clearly understand that the inelastic scatf the quasiparticle lifetime in a quantum d8tin this ap-
tering rate due to the electron-electron collisions is in thisproach the phase uncertair®t,) accumulated by the elec-
parameter range vanishingly small. So for real systems it isron due to the interaction with the environmeint our par-
necessary to look for another mechanism of inelastic scatteticular case it interacts with the electromagnetic fluctuadions
ing. Electron-phonon scattering seems to be a good candis calculated; the timeé, when this phase uncertainty be-
date; it has been recently discussed for mesoscopigomes of order unitywe will set it exactly unity is associ-
systems? Also a coupling to the environment produces anated with the electron lifetiméphase-breaking tinje This

Barticle IN) and three-particld\;,\,,\3) states. Conse-
uently this overlap should be compared with the three-
article level spacingA;~A3/€?, and this comparison
Feates a new energy scal = (E,A)Y2 For E>E* the

inelastic rate in the nearly closed system. phase uncertainty is given By
2 (to (= ®
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S;=exp{ia[x,(t) —Xx(t") 1}, 1 96T D 8

T T 3.2 a2 2
Sy=exp{igq[x,(t) —x5(t")]}. (A2) 7y 7 PglLa® Ega=1in

In these expressiorito be the direct generalization of those This is the result by Sivan, Imry, and ArorfSwup to the
of Ref. 18 for the case of finite temperatureg(t) and  numerical factor. It is seen, however, that in this region the
x,(t) are arbitrary(quasiclassicalelectron paths, and the Spectrum is discreter,*<A. Thus, the 0D region is not
averaging over these paths is suppog4d; ») is the dielec- subject to our analysis and should be treated by another
tric susceptibility. ExpressiofAl) is derived for an infinite Methods[See, however, the discussion after &f)].
system; however, as it varies on scales of the order of the The caser;'<E <T is intermediate between quasi-1D
elastic mean free path<a, this expression is valid in the and OD regimes. Only terms wit.n?<T are important in
diffusive regime, and the bulk results may be substituted fothe summatior(A4); however, due to the conditioh>E_,
the dielectric susceptibility. It is also important that the the summation can be extended to the infinity. One obtains
g=0 mode does not contribute to the syAl): It is absent
in the open systems while in the closed ones the correspond- 1 AmTL
ing contribution is forbidden by charge neutrality. So the T_qs_W’ (AB)
difference between open and closed systems is not quite im-
portant, and the system is assumed to be closedvhich is a new result. In the whole regian,<E <T the
q=m(ny/L,ny/a,n,/a), n,+n,+n,>0. The results for the Spectrum turns out to be continuous and the reQA\l) is
open systems depend on boundary conditions, but in aNalid.
cases differ by a numerical factor of order unity only.

After the averaging over paths is carried out in exactly the

L
(A5)

same way as in Ref. 18, one obtains APPENDIX B: FOUR-POINT CORRELATION FUNCTION
o 48T D 1 IN THE GUE
(to)= La?mp2l E, im0 n§+(L/a)2(n§+n§) Below we follow the generalities given in Ref. 20. As an
explicit expression for the four-point correlation is not given
o trdt anywhere in the literature to the best of our knowledge, we
*1, dt o 7Sin(2TY derive it for the most simple GUE case. It is convenient to

use the dimensionless energies e/ A throughout this ap-
xexp{ — mEt[nZ+(L/a)2(ni+n2)]}.  (A3)  pendix.

The first step is to define the functions
HereD is the three-dimensional diffusion coefficient and we P

have taken into account that the main contribution to the
integral over frequencies comes from the regjanf<2T. Yi(Xq,Xo, ... ,xi):2 $12S93 * - Si1 - (B1)
The summation is restricted by the conditi@pg!. For P
D/a?>T (this condition excludes the 3D situatioanly the
valuesn,=n,=0 are important in the summatidA3).

In the limiting caseE.>t, * [the inverse situation corre- Sinx
sponds to the “true” quasi-1D case and the result is given by Sij =s(|x —le), s(X)= ~ (B2)
Eqg. (13)] the integral can be easily calculated. One gets

Here

L and the summation is carried out ovér-(1)! different per-

D 2T ; PR,
P(t.)= It t t mutations of indices. Hence,
(to) mp2lLaZ E, nzl n2| todrtan 2 2
oT Y10=1, Ya(X1,X2)=5}r, Ya(X1,X2,X3) = 251555531,
T AT 222 (Ad)
4T+ 7 Een Y a(X1,X2,X3,X4) = 2515523534541 2513534542521

The phase-breaking time, is defined as the timg when + 2514542573531 -
the phase uncertainty(t,) is equal to unity.

The caseE.>T corresponds to the “true” 0D situation. Now the correlation function®;(xy, ... X;) can be ex-
One has pressed as

Ri=1, Ra(X1,X)=—Ya(X1,X2) +Ry(X1)Ra(X2),

R3(X1,X2,X3) = Y3(X1,X2,X3) + R1(X1) Ra(X2,X3) + R1(X2) Ra(X1,X3)

+ R1(X3)Ra(X1,X2) = 2R1(X1) Ri(X2) R1(X3),
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Ra(X1,X2,X3,X4) = = Y4(X1,X2,X3,Xa) +{R1(X1) Ra(X2,X3,X4) + Ry (X2) R3(X1,X3,X4)
+ R1(X3)Ra(X1,X2,X4) + Ry (Xa) Ra(X1, X2, X3) } +{Ra(X1,X2) Ra(X3,X4) + Ra(X1,X3) Ra(X2,X4)
+ Ra(X1,X4) 2(X2,X3) } = 2{Ra(X1,X2) R1(X3) R1(X4) + Ra(X1,X3) R1(X2) R1(X4)
+ Ra(X1,X4) R1(X2) R1(X3) + Ra(X2,X3) Ry (X1) R1(X4) + Ra(X2,X4) Re(X1) Ry (X3)
+Ra(X3,X4) Ry (X1) Ry (X2) } + 6R1(X1) R1(X2) Ry (X3) Ry(Xy).
After some algebra one obtains an explicit expression for the correlation furiRtion

R4(X1,X2,X3,X4) = 1= 2{ 155735345411 S13534845521F $14845523531}
2.2, 22 22
+ {81834 S13524F 1483} + 215125235311 $12524541 S135345411 S23534542}
2,2 2,2 2,2
—{STot S13t S4t Syt S24+S34) (B3)

In our particular cas®; +X3=X,+ X4, and, taking into account that the correlation function depends on three differences of
arguments only, one arrives to an expresdtaf0.x,x+vy,y). From Eq.(B3) after cumbersome calculations one obtains an
expansion oR, for x,y<<1:

R4(0X,x+Yy,y)=

5(x“y8 — 2x8y0+xBy%. (B4)
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The 12th power can be easily explained. The pair correlation function for small arguments is proportional in the GUE,
R,(x)*<x?. As one has irR, six pairs of arguments close to each other and each pair produces the second power, the total
expansion starts from the 12th power. In the GB&(x) «x, and we may easily conclude that an analogous expansion starts
from the sixth power.

As could be expected, for a large value of the arguments-1 all functionsS;; are small, andR,= 1. This fact means just

that the levels are uncorrelated on distances exceeding the mean level spacing

*On leave from: Department of Theoretical Physics, Moscow In-
stitute for Steel and Alloys, Leninskii Pr. 4, 117936 Moscow,
Russia.
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