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Due to their short coherence lengths and relatively large energy gaps, the high-transition temperature super-
conductors are very likely candidates as ultraclean materials at low temperature. This class of materials
features significantly modified vortex dynamics, with very little dissipation at low temperature. The motion is
then dominated by wave propagation, being in general nonlinear. Here two-dimensional vortex motion is
investigated in the ultraclean regime for a superconductor described in cylindrical geometry. The small-
amplitude limit is assumed, and the focus is on the long-wavelength limit. Results for both zero and nonzero
Hall force are presented, with the effects of nonlocal vortex interaction and vortex inertia being included within
London theory. Linear and nonlinear problems are studied, with a predisposition toward the more analytically
tractable situations. For a nonlinear problem thl2dimensions, the cylindrical Kadomtsev-Petviashvili equa-
tion is derived. Hall angle measurements on highsuperconductors indicate the need to investigate the
properties of such a completely integrable wave equafi®0163-182606)06526-5

INTRODUCTION The highT. superconductors are particularly viable can-
didates for ultracleanliness owing to their relatively large en-
Recently it has been shown theoretically how soliton€rgy gapsA and small Fermi energye . When the ratio of
propagatiofi could result from a type-Il superconductor in quasiparticle mean free pathto the coherence lengtf,
the mixed staté-” Wave propagation in an Abrikosov vortex greatly exceedsg/|A|, the ultraclean regime results. Corre-
lattice is subject to nonlinearity and dispersion. In a suitableSPonding to the relatively smadk, the high . materials are
regime, these effects counteract in such a way that a solitoffcognized to have small coherence lengths. _
is generated. A remarkable upturn of the Hall angh, Wlth decreasing
This paper treats both linear and nonlinear wave propagdEmPerature has recently been observed in samples of 60 K
tion problems for a type-ll superconductor with cylindrical YBa,Cu30¢..y .~ The upturn starts around 40 K and contin-
symmetry. It is demonstrated that soliton propagation is posl—Jes o the lowest data point near 15 K. These measurements

sible in two space dimensions in such geometry. As deprovide direct evidence for the approach to the ultraclean

. . . regime? The parametet.7 has been estimated as roughly
scribed below, the effects of nonlocal vortex interaction, vor-; % ~"gq Y-Ba-Cu-O, putting this material in the ultraclean

tex inertia, and the Hall force can be included. class?

In a_supert_:onducto_r dispersion comes fr_om the Meissne_r The suggestion of ultraclean high-superconductors mo-
screening of fields, which can be modeled either macroscoply ates a detailed study of the modified dynamics of vortices.
cally by the London equation or microscopically with the use|, materials with very long quasiparticle mean free path, the
of an electrodynamic kernel function. If the eIectrodynamicdissipation may become negligible at low temperature. This
fields are not too strong, then the nonlinearity is weak. Afact allows new features to dominate, including vortex inertia
necessary condition on the magnetic-field magnitude ignd the Hall force. Emphasizing this point, the vortex motion
H<H,, whereH, is the upper critical field, so that vortex s no longer overdamped, allowing for a wide range of phe-
cores do not interact. For sustained soliton propagation, emomena. This paper takes up such a study for superconduct-
ergy dissipation needs to be sufficiently low. A remarkableors described in cylindrical coordinates. Analytically trac-
property of highT, superconductors in this regard has re-table situations for both zero and nonzero Hall coefficient
cently been examined experimentally, that these materialg,; are treated. The recent characterization of the Hall angle
may belong to the ultraclean class at low enoughof Y-Ba-Cu-O(Refs. 8 and Pmakes such a study especially
temperaturé:® relevant.

When the energy spacinjw. is much larger than the In an ultraclean type-ll superconductor in the absence of
energy width/7, a type-ll superconductor is in the ultra- pinning and the Hall force, the nonlinear Korteweg-de Vries
clean regime. Heré w, is the low-level spacing for bound (KdV) equation governs the evolution of the first-order elec-
vortex core states anglis the lifetime of quasiparticles in the trodynamic field corrections for one-dimensional vortex
core. A signal of this property is a flux-flow Hall angt, motion? For two-dimensiona(2D) motion under these con-
approaching* 7/2. A consequence of this varying angle is a ditions, the Kadomtsev-PetviashvikP) equatior® governs
change of the vortex velocity from alignment with the direc-the dynamics when described in Cartesian coordirfates,
tion of the Lorentz forcelxz, for vortices alongz, to the  whereas radial vortex motion is described by the cylindrical
direction of the current density. Since the Hall angle may KdV (CKdV) equatior? With the inclusion of the Hall term,
have either sign in the ultraclean regime, the direction of thehe nonlinear Schidinger (NLS) equation appears for 1D
vortex velocity may approach the direction af J. motion.
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In the following section the governing equations are preecent microscopic analysis of the Hall anomaly has found a
sented in cylindrical coordinatesMicroscopic nonlocality large vortex mass coming from the core, specifically in the
and vortex pinning are ignoredVarious special cases are ultraclean limit*®
analyzed in subsequent sections. Some facts are recalled The third, London equation with vortex term, may be
from the derivation of the CKdV equatidrto show how  written in the form

these results can be developed through the second order of

the perturbation expansion. It is shown that the second-order B,= B—)\EVZB, 3
correction can be found by solving a linear, albeit compli-
cated variable coefficient equation. wherel\ | is the London penetration depth, taken to be inde-

Linear wave propagation in cylindrical coordinates in- pendent of magnetic field. Due to the neglect of a normal
cluding the Hall force is then examined, showing an exacfluid contribution, a term with first-order time derivative
analytical solution is possible for no angular variation. Nextdoes not appear. In the Meissner state the densisyabsent
the situation of zero Hall force is readdressed for motionand the left-hand side of E@3) is zero. The forms of Egs.
described by both cylindrical coordinatpsand 6. Perhaps (1) and(3) are briefly reviewed in Appendix A.
the main result of this paper is the derivation of a variable Consider an ultraclean superconductor with a static exter-
coefficient nonlinear wave equation in-2 dimensions for nal magnetic field along, with magnitudeH>2H_; where
an ultraclean superconductor. The equation is a form of th&l; is the lower critical field. Use the above assumptions,
cylindrical KP or nearly concentric KdV equation and is apply Ampere’s law, and write the vortex velocity a&s
completely integrablé! This equation has been known to =v,p+uv,0. Then the governing system of 2D equations is
arise for shallow-water waves subject to a small transverse

disturbancé?! A discussion of the results and summary fol- on 19 14 0 A
JR— + —_—
lows. FRPY p(p V)t a(nva) (43
GOVERNING EQUATIONS dvp ¢0 0B
ILLF + ayL pg= — 5 (4b)
The system considered is an isothermal type-Il supercon- Mo p’
ductor at or near absolute zero. In this instance a normal
current density contribution is ignored; the total current den- dvg_ __$olB (40
sity J is the supercurrent densityi-requencies well below Kdt HUp Mo p 90’
the superconducting gap frequency are assumed so that the
displacem_ent current is not presenthe _superconductc_Jr is_ )\E 9 JB )\E 2B
assum.ed |sotrqp|c.|n the pIaneAperpendlcu_Iar to the direction Npo=B— — P35~ 52 787 (4d)
of vortices, which is taken to bz It is considered to be of poopyooplo P

very large Ginzburg-Landau parametets>1, a condition
well satisfied by highf, materials. Within mesoscopic Lon- —B/By, n'=n/Ny, v)=v,lwo\,, andv)=vylwoh,

don theory a continuum description is employed using a vor p
tex areal densityi(x,t).1213Nonlocal vortex interaction is a WHeréwohL=¢oBo/uou andne=Bo/¢o. For the sake of

key in providing the dispersion necessary for a soliton equal®tational ease, the primes are dropped apds written for
ay/pwg. The governing system becomes

tion.
With these assumptions, the principal equatfoare vor-

The equations are scaled a$'=wgt, p'=p/\_,

M ; ; ; on 1 9 190
tex contlnu_|ty(W|th scalarn), a vortex equation of motion SF S (pnw,) + = (v ) =0, (53
(with velocity v), and the London equatiofwith total mag- ot pdp p d0
netic inductionB). The equation of flux-line conservation is
dv, N JB 5
B Ty TRV T ——,
=~ VX(B,XV), (1) dt P
dvg 1B
whereB ,=ng¢,zZ is the local vortex-generated magnetic in- gt GHUpT T ; 90’ (50)
duction and¢,=h/2e=2x10"1° Wb is the flux quantum.
Also written in vector form, an equation of motion for an 2
, 19 aB 1 "B
ultraclean superconductor is n=B— - — - — (5d)
pap\Pap| p? 067
M 5 5 hered/dt=dl/dt+uv 0l dp+ (v 4/p)dld0 is the convective
— + apVX 2= ¢gIX 7, wherec pOldpt(vylp
TR o @ derivative.
\llvherﬁa,:c is the)(lljz?ll cr?effll_mgnt angh |s+th72mass per unit REVIEW OF CKDV CASE AND DERIVATION
ength of vortex.” In the limit as 6y — X w/2,a11—nseebg OF SECOND-ORDER FIELD CORRECTION

whereng is the concentration of superholes. For highma-
terials the vortex mass due to certain mechanisms is larger In the absence of the Hall force, E¢5) can be combined
than for conventional superconductdfdn addition, a very  to yield fourth-order equations for the velocity components,
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follow as a special case of Eq®).
By combining Eqgs(8) it is possible to eliminate the third-
order correction fields. The second-order density correction

n (92 1 192U0
dtdp p 96 dt

dzvp_ ? 19 dvp
atdt atap p ap\Pdt

a1la g1 is known in terms of B® by the London equation:
+ %;5(1)”%)"' 3_;@(”00)- 63 @=B@ - 52BM)3£2 In order to obtain an equation for
B alone it remains to express the second-order velocity
2d2vg _ prs i % v, ﬁz(pnvp) ?O[(SECtI(??B (1|)n tferms ofl(?;)_a?lc)J the flrst ord_er cohrrectlon
P 5t dt ot ap ap Papp dt st dt 962 90 ap ieldsv*'=n + (?7)' B —4n . By |nt.egrat|ngt e vor-
tex equation of motion aD(w”) (Ref. 5 with respect tc it
%(nv ) is possible to write

- : v?=B@+ }[u<l>]2+i B (&, n)dé 9
whereB has been eliminated. These two equations are useful 2 an RS

alternatives in determining the dispersion relation of the lin-
ear wave propagation problem. When the arbitrary functioi=0, for simplicity, and set-
If further there is no angular dependence of the electrodyting
namic fields,v , drops out of the systertb). Then Eq.(6b)
becomes void and two terms drop out of the right-hand side
of Eq. (6a). This special case has been shown to give the
cylindrical Korteweg-de Vrie$CKdV) equation for the first-
order field correction.Here the analysis is extended by find-
ing the linear equation satisfied by the second-order fiel
correction. This equation is third-order, variable coefficient,
making its exact solution even for the single soliton case
much more complicated than for its KdV counterp@rt.

1 d
DW= "rg®2+ | g
I,V=31B"] &nf BW(£,7)dé,
the equation for the second-order correction to the magnetic
cijnduction can be written as

3 B B - B y

B2 4B
—+2
9&s an

In the present geometry, the supercurrent density is (10)
strictly azimuthally directed, so that the Lorentz force is onlywhere
in the radial direction. In terms of the stretched variables _— 20()
é=w(p—t), 7=w%p, the O(w®) equations need to be de- —R(B(l))—Zﬁ B +£ 9°B +i[B(1)I(1)]
termined from the systerfi.0) of Ref. 5 in order to find the - T0&%9m 9E° € v
second-order correction equation. The vortex density, mag-
. . . . J #2BM 1 4
netic induction, andradial) velocity are expanded as ~Zgw + = [ p(B1)?]
) o€~ & nany
n(&n) =1+ 2>, o?nl(g, ), 7 d ! oBM
(&m) jzl (&m) (7a) +_%[n|f}1)]+|£1)_+28(1> -
S B
B(&,7)=1+ _21 w?BY(&,7), (7h) +[B(1)]2&—§. (12)
i=
and Although the inhomogeneous EQ.0) is linear, there are two
terms with variable coefficients. The form of this combina-
= o tion increases the analytical complexity of solutions, even
v(§, U):jzl w?v(£,7). (70 those of traveling wave shape.

Then the equations

Recalling that the exact single-soliton solution of the
CKdV equation forB® requires an integral representation
with the Airy function Bi> even in this case it appears that

on® 1 g w® 9 the exact solution of E(10) requires substantial effort. On
_ + = —[ WDt @]+ — + — (nVyp @) " X S
9E 7 Iy n 7 9E | 9 the other hand, by exploiting an approximate similarity solu-
tion of the CKdV equation, e.g., as constructed in Ref. 17, it
d may be possible to develop an approximation for the second-
+ —(n®yM)=0 (83 . . L .
o€ ' order field correction(Such an approximation for a soliton
solution of CKdV is partly based upon consideration of the
PG PE)) PINEN) @  4B® energy)
- +ot +v®@ +o® +
23 23 23 an 23
ROTATIONALLY SYMMETRIC DYNAMICS
B2 . ) . :
=0, (8h) In this section the Hall force is retained but the assump-
an tion of rotational symmetry is invoked. In this casg=0
2B 2B 1 4 JBM and the equations in the syste(llf'm) simplify. It is demon- .
B3 _ 3= n L -2 (80 strated that the solution of the linear problem can be explic-
9€2 dEdn mndy 7 I itly written and the dispersion relation is found. Consider-
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ations which may lead to a fori$) of a cylindrical nonlinear
Schralinger equationgNLS) for the nonlinear problem are
not pursued.

For the linearized problem, let
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equation in the 2D vortex dynamics of a type-ll supercon-
ductor. The key is to find an appropriate ordefg)gvithin

reductive perturbation theory for the angleand the trans-
verse velocity componeny, .

A solitary disturbance is assumed to propagate mainly in

N(p,t)=1+dnJo(kp)e ", (128 thep direction with a constant spead and accordingly the
it stretched variables
B(p,t)=1+6BJy(kp)e™'", (12b
) =w(p—Vit), =wdp, =0 16, 16
0,(p.t)= 30, d3(kp)e ', (120 eV mmety 1o
q are introduced. There is a strong coordinate dependence
an upon the angl®. The uniqueness of the ordering of some of
vo(p,t)=Svydy(kp)e 1, (120 the variables of Eq(16) is briefly discussed below. An al-

ternative choice of stretched variables is presented in Appen-
where J, is the Bessel function of order. By using the dix B, which also leads to the cylindrical KP equation.
ordinary differential equation satisfied By and the relation Written in terms of the new independent variables, the
(d/d2)zJ,(z) =zJy(2), the coefficients are found from sys- scaled systen) reads

tem (5) to be related by

, . v N 1(o 0 w B
8B=—on/(1+k?), v,=(iw/k)n, dv,=—(aylk)don. e Tyl et e gy ()t o o (v =0,
(13 (173
Then the dispersion relation is given by
2 —V%+v i+wzi)v v @7,
w2(K) =X+ ——. (14) g€ “P\aE T an)P "0y a7
1+k
Therefore, in the long-wavelength limit, the angular fre- =— i+ wzi) B, (17b
guencyw(k) does not vanish. This suggests, as in the Car- 9€ a7
tesian casé that a form of the NLS equation may appear for
the correction fields for the nonlinear problem. _V@Jrv (iﬂuzi)v i vy 0B
When a,— 0, the above results reduce to those expected 3 Plog an) " "y ar n Jr’
for the cylindrical KdV case. (179
The necessary multiscale analysis for the nonlinear prob- 5
lem will not be taken up here, however a very useful scalar I , 0 J 5 0 B
equation for the linearized problem is recorded. Letting =m0 ay) | Mg oy
temporarily stand for the perturbatidim for notational ease, 4
it can be shown that the following single wave equation of _w E (179
sixth order for the vortex density results: 7?91

The associated perturbation expansions for the vortex
density, velocity components, and magnetic induction are,

1 1
At ;ﬂp(p dNy) + (1+ aﬁ);ap(p apn)—nn—aﬁn}:o.
respectively,

(15
With the time dependence exp{wt), it can be checked

that Eq.(15) leads to the zero-order Bessel differential equa- n& g n=2 odnig ), (189
tion, with k?(w)=(w?— a?)/(1+ af,— w?), giving the dis- =0
persion relation(14).
Similarly, coupled equations can be written in the case - 20 (i)
thatd,=0, and combined in the linearized regime, but being vp(fw,ﬂ:; ©7v, (&7,7), (180
of less physical interest, are omitted here.
DERIVATION OF CYLINDRICAL KP EQUATION vo(&,m,7)= 21 w2t W& g, 1), (189
For zero Hall coefficient, the dispersion relatida) sug- :
gests the possibility to find a variable coefficient nonlinearand
wave equation for the first-order field corrections in two spa- .
tial dimensions. This expectation is borne out, with the deri- _ 2i(i)
vation here of a cylindrical Kadomtsev-Petviashvili B(¢, 77'7)_120 wBY(E,7,7), (18d)

equation! This form of the cylindrical KP equation is com-
pletely integrable. It is possible to develop explicit solutionswith n©©=B®=1. All of these expansions are consistent

for it based upon Painlévanalysis, Baklund transforma-
tions, or symmetry reductiott. This is an appearance of a

with the small amplitude limit.
Substituting the expansiori$8) into Egs.(17) and equat-

variable coefficient, completely integrable nonlinear waveing coefficients of like powers ab gives recursion relations
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for the higher-order field corrections. The lowest-order equakq. (24) takes the fornj 9/dr—L,d/dn— Alv =0, where the

tions, atO(w?), can be integrated to yield
nM=BW, v;l)IVn(l)-Ffl(n,T), B<l)=Vv£,l)+f2( 7)),
(19

wheref,=—f,/V andV?=1. TheO(w?) relation from Eq.
(170 reads

vy’ 1 9BY
(95 :; or (20)
The next order contributions are @(»*) andO(w®):
n? 1 9 w? g 1 a0l
_ Sy SN ¢ U e RN € DY D Nl
Vg T el e 1t e T ae(n e, )t S
=0, (219
av'? 'V gB@  sBD
_yZe W% _ _
+
Vgt ey (2D
'@ P’  148@
_ w20 __ =
\Y; 56 TV o 7 ar (219
B
n(2>— B(Z)Z — 72— (21d)

Combining Egs(21) and using Eq(19) gives the third-
order nonlinear equation

3,(1) (1) (1) (1) (1)
v Jv Jv v v
V—h+2v—L-+ 30— —f Ly
9E gn U TaE Tt ag ”
vall o,
+— =—— (22
n Jr an

which for the 1D cased/dr=0) is the CKdV equation. The
change of coordinates

V
§’=§+§f fadn, n'=n, (23
can be used to eliminate the term with the functfgron the
left-hand side. If Eq(22) is differentiated with respect té
and Eq.(20) is differentiated with respect te, and the two
equations are combined, there results

pTT

\%
(valg)gg—k 3v£,1)v£,l§) + 2Vv;l,])— flvglg)+ Vv;l)/ n)et ?v(l)

= _fZTT( 77!7-)/7]2’ (24)

operatorL is second order irg, A is third order in¢, and
nonlocal*!1819

Truncated Painlevexpansion can be used to generate ex-
plicit solutions. With the scalingsu=v{Y/2,7" =4r,
7' = nl2, Eq.(24) takes a standard forth

4
A solution with two arbitrary functiongr and 8 and an ar-
bitrary constanb is?

2

b i
u(é,n',7')=— 2—7],390H §[b§(7l')71/2

+a(77’)7’+[3(7;’)]]

1 b2 20 .1 \1/2
(8o
6|7 bcn b
bf ’ AP 1ot
X —2(7]—,)3/2"‘61 (77)7' +B (’T) .

(26)

Taking b, «(%"), and B(#n') purely imaginary gives
soliton-type solution!

More generally than Eq916) and (18¢), one may con-
sider order rings with

Vo= wmv(gl)-f- wm+2v(92)+ .

where the exponents and p are to be determined by dif-
ferent types of balances in the systdB). The equations
extending the systerfill7) for generalm and p are not re-
corded here. Requiring a balance of lowest order terms in the
equation of motion(5¢) gives the conditiorm=p+4. De-
manding that the last term of the continuity equation not
contribute at lowest order leads o+ p>0. Takingm to be
positive, for the weak-amplitude limit, and restricting<4
andp to integral values for simplicity, allows the orderings
(m,p)=(4,0) or (3;-1). With the first of these orderings
the last term of the continuity equati¢similar to Eq.(173]
does not contribute untD(w®), which is too late to provide
the second spatial coordinate dependence in a KP-type equa-
tion. With this ordering the angular velocity component
couples very weakly to the rest of the motion.

Other possibilities exist to satisfy the lowest-order equa-
tions, leading to other possible orderings. Of particular note,
one can requiren<p+4 from Eq.(50) so thatv () must be
taken as independent of tliecoordinate. By considering the
terms of the other equations withy, other inequalities can

=00,

where subscript notation has been used for the partial derivase developed depending upon functional dependences and

tives. The variable coefficient 47 of the v{"). term shows

the types of lowest-order balances. Of special notice, there is

this equation to be the cylindrical Kadomtsev-Petviashvilithe possibility to develop nonlocal generalizations of the cy-

equationt! As indicated by results of Painlewanalysis, and
the inverse scattering formalism of Dryurha®2°Eq. (24)
is completely integrable.

The Zakharov-Shabat representation of E2) can be
found by settingv{Y=v,/v, and requiring compatibility
conditions on the- and 5 derivatives ofy; andv,.'**8Then

lindrical KdV equation, which is not pursued here. For com-
parison to the Cartesian case, see Ref. 6.

Sometimes an equation of the for(@5) is called the
nearly concentric KdV equatioft, which has arisen in the
study of shallow-water waves. It differs from the modified
KP equation derived by Giambo and Pantano in the case of
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an ion acoustic wave in a cold plasiifan theu,.. term. In  has considered the bulk superconductor response. For the
their derivation, they accounted for a weak thinkrtica)  variable coefficient equations governing the nonlinear wave
spatial coordinate dependence, leading to a constant coeffiropagation, satisfying boundary conditions in an analytical
cient of this term. Then the’ variable is to be identified as form is likely to be a difficult task. It appears that approxi-
coming from z in cylindrical coordinates. The resulting mations will need to be developed in order to take into ac-
modified KP equation is also completely integrable. How-count a finite radius of the superconducting sample.
ever, in this paper the motion is strictly two dimensional, in  In an experimental investigation, whether using a wave-
the plane perpendicular to the vortex axis. guide or resonant cavity operating at microwave frequencies
and very low temperature, it appears advantageous to employ
a transverse electridE) mode. In this case the electric field
SUMMARY and current density have only an angular component in a

Due to their short coherence lengths and relatively largdOWest-order approximation, more closely matching the ge-

energy gaps, the high-transition temperature superconductopénetry of this paper than a TM mode.

are very likely candidates as ultraclean materials. This class

of materials has significantly modified vortex dynamics, fea- APPENDIX A: ON VORTEX CONSERVATION
turing the propagation of linear and nonlinear waves, includ- AND THE LONDON EQUATION

ing solitons. At very low temperature there is negligible dis-

3|pat_|on n ultraclean _materlal_s and the Hall force CanFaraday’s law for the local vortex-motion-induced electric
ominate in the dynamics. In this paper results for both Ze1Q 1d E - —vxB. . This relation forE. follows from out-

and nonzero Hall force were given. A continuum theory wasin the rate of chanae of the maanetic flux enclosed by a
used to account for nonlocal vortex interaction. Linear anot. 9 9 9 y

nonlinear problems were studied in cylindrical coordinates,{sr']mﬁ;Ie ﬂgsfd Clrj]évie %qua: t% the rﬁé% at which flux crosses
It was shown that results appropriate for the cylindrical KdV eThzumeaoy,c?) 'c; eL:Z go;);eepLongé equation with ara
equation can be developed through the second order of ﬂt;é Soscopic averag n equation with gra-

perturbation expansion. The second-order correction can (;?:qtegf ltpg]gr;ifﬁso,[htgﬁ tngeenr ?ﬁéi?:&irctaegngecsvr;it?:np;sr-
found by solving a linear, third-order variable coefficient ' ’

equation. VxJs=—(B—B,)/ uohZ, wherels is the supercurrent den-

The reductive perturbation theory applied in this paperSiy: This equation together with Ampere’s law gives Eg).

showed that there is an ordering for which 2D soliton propa-_Of the text, in the absence of a normal current density. Tak-

gation arises in cylindrical geometry in an ultraclean type-1i"9 the time derivative of this equation, —using
superconductor in the absence of pinning and the Hall force?A/9t=—E—V &, whereA is the vector potentiak is the
Equation (24) is a form of the cylindrical Kadomtsev- total electrlc2 field, andp is a scalar potential, shows that
Petviashvili or nearly concentric Korteweg-de Vries E~Eo=mor{dJs/dt.

equationt?%2! (The cylindrical KdV equation is a special

case of this equationThe cylindrical KP equation can be APPENDIX B: ALTERNATIVE DERIVATION

solved by the inverse scattering transformatioff, It has OF CYLINDRICAL KP EQUATION

been studied as an integrable case of a generalized variable
coefficient KP equatio”’ This 2D soliton equation was de-

rived for both weak nonlinearity and dispersion. The solitonOf stretched variables and an ordering different from @6
solutions, with characteristic speed= y$oBo/uout, may of the text. The strong angular dependence of @) is

be able to provide information on the vortex mass per unit .
14 avoided. Let

length w.

. The weak non!ingarities in the model includg bilipearity E=k(p—Vt), 7=k, 7=kPo, (B1)

in the vortex continuity equatiofda and convective differ-

entiation in the equation of motiofdb) and (4¢). In this  suitable for the long-wavelength limit. In E¢B1) V is again

derivation, Eq(4d) takes into account nonlocal vortex inter- a constant speed.

action, over the characteristic distankg. Magnetic-field When writing the scaled syste(B) for a;=0 in the new

nonlinearity in the penetration depth was ignored, makingndependent variables, it is wuseful to express

this London equation linear. This assumption is very welll/kp=1/(é+Vk 27) for small values ofk. The coupled

justified for the high-T, superconductors owing to their very equations become

large upper critical fields.

An analogous dynamical system may exist in fluid dy-
namics, e.g., in shallow-water waves described in cylindrica
coordinates! However, the vortex dynamics here is distinct o
from the ion-acoustic wave dynamics modeled for a cold <n Hﬂ 1—ik2+ o
plasma?? There a small disturbance transverse to the plane U Vn v
of motion was assumed, leading to a constant coefficient in
place of the 142 coefficient of Eq.(24). Therefore the ion kP*2 I3
dynamics of Ref. 22 is based upon 3D considerations, in [_Vaﬁ k23n+vpf7§+vav—n(1—v—nk2+"'
contrast to the 2D motion modeled here for straight vortices.

This paper, like Ref. 5 on the cylindrical KdV equation, =—9.B, (B2b)

Equation(1) of the text is the same as the statement of

It is shown here that it is possible to obtain the cylindrical
Kadomtsev-Petviashvil(KP) equatiod'?®?! with a choice

I (Ek*+ V)

1 3
_ 2 —_— —_—— 2 oo
(—Vagtk a,,)n+vn(1 v

aT(nv0)=01 (Bza)
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K2+ ...

p+2 g
Vi, +k2%9 +v d,+v —(1—
[ 13 7 pYé 0 Vg

V_77 (7,. [2F]
- ket 1— i|<2+ 9,B (B20)
V7 Vg T
1 f 2 4 2
k6+2p é: 2
ahvom (1—\/—77k2+~- d,,B. (B2d)

The perturbation expansions taken for the dependent vari-

ables are

n=2, k¥, y,=3 K, (B3a)
=0 i=1

ve= >, kM 2py*tY  B=> Kk2BW,  (B3b)
i=o0 i=o

with n©@=B®=1. With the choice p=0, m=4, the
lowest-order equations, &(k?), again yield Eq(19) of the
text, with V2=1.

TheO(k*) condition from thev, equation of motion gives

oy’ 1 98WY
9E @ ot

(B4)

The other equations &(k*) yield

NONLINEAR DYNAMICS OF VORTICES IN ULTRACLEAN ...

1285
an@  gn® LD 5,2 J
_ + L P 4 (nD, @
€ " Tan Tyt aE e )
1 z?v((,l)
+ — :0' B5
Vn dr (B53
w'? gV 'V B(?
-V Ly (M= B
g€ | am  Ur o€ g (BSD
#*BWM
(2)_g@—_
n B PP (B5c¢)
When Eqs(B5) are combined there results
3 (1) (1) (1) (1) (1 (1)
Va v, +2¢9 S +30(1)‘9 P &Up UL E&va
9€3 an P9 gg n 7w Or
of4 RE
= (B6)

If Eq. (B6) is differentiated with respect t and Eq.(B4) is
used, the cylindrical KP equation follows:

\
1) (1),,(1) (1 _ Q4 @ @
(VU pgeet 30,0 0 + 20 = Fod +v 7 ) o+ 772vaT

= _fZTT( 77!7-)/ 7]2' (87)

As shown by Eqs(B1) and (B3b) the cylindrical KP equa-
tion occurs for the angl® unchanged and weak transverse
velocity component.
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