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Due to their short coherence lengths and relatively large energy gaps, the high-transition temperature super-
conductors are very likely candidates as ultraclean materials at low temperature. This class of materials
features significantly modified vortex dynamics, with very little dissipation at low temperature. The motion is
then dominated by wave propagation, being in general nonlinear. Here two-dimensional vortex motion is
investigated in the ultraclean regime for a superconductor described in cylindrical geometry. The small-
amplitude limit is assumed, and the focus is on the long-wavelength limit. Results for both zero and nonzero
Hall force are presented, with the effects of nonlocal vortex interaction and vortex inertia being included within
London theory. Linear and nonlinear problems are studied, with a predisposition toward the more analytically
tractable situations. For a nonlinear problem in 211 dimensions, the cylindrical Kadomtsev-Petviashvili equa-
tion is derived. Hall angle measurements on high-Tc superconductors indicate the need to investigate the
properties of such a completely integrable wave equation.@S0163-1829~96!06526-5#

INTRODUCTION

Recently it has been shown theoretically how soliton
propagation1–3 could result from a type-II superconductor in
the mixed state.4–7Wave propagation in an Abrikosov vortex
lattice is subject to nonlinearity and dispersion. In a suitable
regime, these effects counteract in such a way that a soliton
is generated.

This paper treats both linear and nonlinear wave propaga-
tion problems for a type-II superconductor with cylindrical
symmetry. It is demonstrated that soliton propagation is pos-
sible in two space dimensions in such geometry. As de-
scribed below, the effects of nonlocal vortex interaction, vor-
tex inertia, and the Hall force can be included.

In a superconductor dispersion comes from the Meissner
screening of fields, which can be modeled either macroscopi-
cally by the London equation or microscopically with the use
of an electrodynamic kernel function. If the electrodynamic
fields are not too strong, then the nonlinearity is weak. A
necessary condition on the magnetic-field magnitude is
H!Hc2 , whereHc2 is the upper critical field, so that vortex
cores do not interact. For sustained soliton propagation, en-
ergy dissipation needs to be sufficiently low. A remarkable
property of high-Tc superconductors in this regard has re-
cently been examined experimentally, that these materials
may belong to the ultraclean class at low enough
temperature.8,9

When the energy spacing\vc is much larger than the
energy width\/t, a type-II superconductor is in the ultra-
clean regime. Here\vc is the low-level spacing for bound
vortex core states andt is the lifetime of quasiparticles in the
core. A signal of this property is a flux-flow Hall angleuH
approaching6p/2. A consequence of this varying angle is a
change of the vortex velocity from alignment with the direc-
tion of the Lorentz forceJ3 ẑ, for vortices alongẑ, to the
direction of the current densityJ. Since the Hall angle may
have either sign in the ultraclean regime, the direction of the
vortex velocity may approach the direction of6 J.

The high-Tc superconductors are particularly viable can-
didates for ultracleanliness owing to their relatively large en-
ergy gapsD and small Fermi energyeF . When the ratio of
quasiparticle mean free pathl to the coherence lengthjc
greatly exceedseF /uDu, the ultraclean regime results. Corre-
sponding to the relatively smalleF , the high-Tc materials are
recognized to have small coherence lengths.

A remarkable upturn of the Hall angleuH with decreasing
temperature has recently been observed in samples of 60 K
YBa2Cu3O61y .

8 The upturn starts around 40 K and contin-
ues to the lowest data point near 15 K. These measurements
provide direct evidence for the approach to the ultraclean
regime.8 The parametervct has been estimated as roughly
14 in 90 K Y-Ba-Cu-O, putting this material in the ultraclean
class.9

The suggestion of ultraclean high-Tc superconductors mo-
tivates a detailed study of the modified dynamics of vortices.
In materials with very long quasiparticle mean free path, the
dissipation may become negligible at low temperature. This
fact allows new features to dominate, including vortex inertia
and the Hall force. Emphasizing this point, the vortex motion
is no longer overdamped, allowing for a wide range of phe-
nomena. This paper takes up such a study for superconduct-
ors described in cylindrical coordinates. Analytically trac-
table situations for both zero and nonzero Hall coefficient
aH are treated. The recent characterization of the Hall angle
of Y-Ba-Cu-O~Refs. 8 and 9! makes such a study especially
relevant.

In an ultraclean type-II superconductor in the absence of
pinning and the Hall force, the nonlinear Korteweg-de Vries
~KdV! equation governs the evolution of the first-order elec-
trodynamic field corrections for one-dimensional vortex
motion.4 For two-dimensional~2D! motion under these con-
ditions, the Kadomtsev-Petviashvili~KP! equation10 governs
the dynamics when described in Cartesian coordinates,6

whereas radial vortex motion is described by the cylindrical
KdV ~CKdV! equation.5 With the inclusion of the Hall term,
the nonlinear Schro¨dinger ~NLS! equation appears for 1D
motion.7
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In the following section the governing equations are pre-
sented in cylindrical coordinates.~Microscopic nonlocality
and vortex pinning are ignored.! Various special cases are
analyzed in subsequent sections. Some facts are recalled
from the derivation of the CKdV equation5 to show how
these results can be developed through the second order of
the perturbation expansion. It is shown that the second-order
correction can be found by solving a linear, albeit compli-
cated variable coefficient equation.

Linear wave propagation in cylindrical coordinates in-
cluding the Hall force is then examined, showing an exact
analytical solution is possible for no angular variation. Next
the situation of zero Hall force is readdressed for motion
described by both cylindrical coordinatesr and u. Perhaps
the main result of this paper is the derivation of a variable
coefficient nonlinear wave equation in 211 dimensions for
an ultraclean superconductor. The equation is a form of the
cylindrical KP or nearly concentric KdV equation and is
completely integrable.11 This equation has been known to
arise for shallow-water waves subject to a small transverse
disturbance.11 A discussion of the results and summary fol-
lows.

GOVERNING EQUATIONS

The system considered is an isothermal type-II supercon-
ductor at or near absolute zero. In this instance a normal
current density contribution is ignored; the total current den-
sity J is the supercurrent density.~Frequencies well below
the superconducting gap frequency are assumed so that the
displacement current is not present.! The superconductor is
assumed isotropic in the plane perpendicular to the direction
of vortices, which is taken to beẑ. It is considered to be of
very large Ginzburg-Landau parameter,k@1, a condition
well satisfied by high-Tc materials. Within mesoscopic Lon-
don theory a continuum description is employed using a vor-
tex areal densityn(x,t).12,13Nonlocal vortex interaction is a
key in providing the dispersion necessary for a soliton equa-
tion.

With these assumptions, the principal equations4 are vor-
tex continuity ~with scalarn), a vortex equation of motion
~with velocity v!, and the London equation~with total mag-
netic inductionB!. The equation of flux-line conservation is

]Bv

]t
52¹3~Bv3v!, ~1!

whereB v5nf0ẑ is the local vortex-generated magnetic in-
duction andf05h/2e.2310215 Wb is the flux quantum.

Also written in vector form, an equation of motion for an
ultraclean superconductor is

m
dv

dt
1aHv3 ẑ5f0J3 ẑ, ~2!

whereaH is the Hall coefficient andm is the mass per unit
length of vortex.14 In the limit as uH→6p/2,aH→nsef0
wherens is the concentration of superholes. For high-Tc ma-
terials the vortex mass due to certain mechanisms is larger
than for conventional superconductors.14 In addition, a very

recent microscopic analysis of the Hall anomaly has found a
large vortex mass coming from the core, specifically in the
ultraclean limit.15

The third, London equation with vortex term, may be
written in the form

Bv5B2lL
2¹2B, ~3!

wherelL is the London penetration depth, taken to be inde-
pendent of magnetic field. Due to the neglect of a normal
fluid contribution, a term with first-order time derivative
does not appear. In the Meissner state the densityn is absent
and the left-hand side of Eq.~3! is zero. The forms of Eqs.
~1! and ~3! are briefly reviewed in Appendix A.

Consider an ultraclean superconductor with a static exter-
nal magnetic field alongẑ, with magnitudeH.2Hc1 where
Hc1 is the lower critical field. Use the above assumptions,
apply Ampere’s law, and write the vortex velocity asv
5vrr̂1vuû. Then the governing system of 2D equations is

]n

]t
1
1

r

]

]r
~rnvr!1

1

r

]

]u
~nvu!50, ~4a!

m
dvr

dt
1aHvu52

f0

m0

]B

]r
, ~4b!

m
dvu

dt
2aHvr52

f0

m0

1

r

]B

]u
, ~4c!

nf05B2
lL
2

r

]

]r S r
]B

]r D2
lL
2

r2
]2B

]u2
. ~4d!

The equations are scaled ast85v0t, r85r/lL ,
B85B/B0 , n85n/n0 , vr85vr /v0lL , and vu85vu /v0lL ,

wherev0lL5Af0B0 /m0m andn05B0 /f0 . For the sake of
notational ease, the primes are dropped andaH is written for
aH /mv0 . The governing system becomes

]n

]t
1
1

r

]

]r
~rnvr!1

1

r

]

]u
~nvu!50, ~5a!

dvr

dt
1aHvu52

]B

]r
, ~5b!

dvu

dt
2aHvr52

1

r

]B

]u
, ~5c!

n5B2
1

r

]

]r S r
]B

]r D2
1

r2
]2B

]u2
, ~5d!

whered/dt5]/]t1vr]/]r1(vu /r)]/]u is the convective
derivative.

REVIEW OF CKDV CASE AND DERIVATION
OF SECOND-ORDER FIELD CORRECTION

In the absence of the Hall force, Eqs.~5! can be combined
to yield fourth-order equations for the velocity components,
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d2vr

]t dt
5

]2

]t]r

1
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]

]r S r
dvr

dt D1
]2

]t]r

1

r

]2vu

]u dt

1
]

]r

1

r

]

]r
~rnvr!1

]

]r

1

r

]

]u
~nvu!, ~6a!

r2
d2vu

]t dt
5

]2

]t ]r S r
]

]r
r
dvu

dt D1
]4vu

]t dt ]u2
1

]2~rnvr!

]u ]r

1
]2~nvu!

]u2
, ~6b!

whereB has been eliminated. These two equations are useful
alternatives in determining the dispersion relation of the lin-
ear wave propagation problem.

If further there is no angular dependence of the electrody-
namic fields,vu drops out of the system~5!. Then Eq.~6b!
becomes void and two terms drop out of the right-hand side
of Eq. ~6a!. This special case has been shown to give the
cylindrical Korteweg-de Vries~CKdV! equation for the first-
order field correction.5 Here the analysis is extended by find-
ing the linear equation satisfied by the second-order field
correction. This equation is third-order, variable coefficient,
making its exact solution even for the single soliton case
much more complicated than for its KdV counterpart.16

In the present geometry, the supercurrent density is
strictly azimuthally directed, so that the Lorentz force is only
in the radial direction. In terms of the stretched variables
j5v(r2t), h5v3r, theO(v6) equations need to be de-
termined from the system~10! of Ref. 5 in order to find the
second-order correction equation. The vortex density, mag-
netic induction, and~radial! velocity are expanded as

n~j,h!511(
j51

`

v2 jn~ j !~j,h!, ~7a!

B~j,h!511(
j51

`

v2 jB~ j !~j,h!, ~7b!

and

v~j,h!5(
j51

`

v2 jv ~ j !~j,h!. ~7c!

Then the equations

2
]n~3!

]j
1
1

h

]

]h
@hn~1!v ~1!1hv ~2!#1

]v ~3!

]j
1

]

]j
~n~1!v ~2!!

1
]

]j
~n~2!v ~1!!50, ~8a!

2
]v ~3!

]j
1v ~1!

]v ~2!

]j
1v ~2!

]v ~1!

]j
1v ~1!

]v ~1!

]h
1

]B~3!

]j

1
]B~2!

]h
50, ~8b!

B~3!2n~3!5
]2B~2!

]j2
1

]2B~1!

]j ]h
1
1

h

]

]h S h
]B~1!

]j D , ~8c!

follow as a special case of Eqs.~5!.
By combining Eqs.~8! it is possible to eliminate the third-

order correction fields. The second-order density correction
is known in terms of B(2) by the London equation:
n(2)5B(2)2]2B(1)/]j2. In order to obtain an equation for
B(2) alone it remains to express the second-order velocity
correctionv (2) in terms ofB(2) and the first-order correction
fields v (1)5n(1)1 f (h), B(1)5n(1). By integrating the vor-
tex equation of motion atO(v4) ~Ref. 5! with respect toj it
is possible to write

v ~2!5B~2!1
1

2
@v ~1!#21

]

]hE B~1!~j,h!dj. ~9!

When the arbitrary functionf50, for simplicity, and set-
ting

I v
~1![

1

2
@B~1!#21

]

]hE B~1!~j,h!dj,

the equation for the second-order correction to the magnetic
induction can be written as

]3B~2!

]j3
12

]B~2!

]h
13

]

]j
@B~1!B~2!#1

B~2!

h
5R~B~1!!,

~10!

where

2R~B~1!!52
]3B~1!

]j2]h
1
1

h

]2B~1!

]j2
1

]

]j
@B~1!I v

~1!#

2
]

]j
B~1!

]2B~1!

]j2
1
1

h

]

]h
@h~B~1!!2#

1
1

h

]

]h
@hI v

~1!#1I v
~1!

]B~1!

]j
12B~1!

]B~1!

]h

1@B~1!#2
]B~1!

]j
. ~11!

Although the inhomogeneous Eq.~10! is linear, there are two
terms with variable coefficients. The form of this combina-
tion increases the analytical complexity of solutions, even
those of traveling wave shape.

Recalling that the exact single-soliton solution of the
CKdV equation forB(1) requires an integral representation
with the Airy function Bi,5 even in this case it appears that
the exact solution of Eq.~10! requires substantial effort. On
the other hand, by exploiting an approximate similarity solu-
tion of the CKdV equation, e.g., as constructed in Ref. 17, it
may be possible to develop an approximation for the second-
order field correction.~Such an approximation for a soliton
solution of CKdV is partly based upon consideration of the
energy.!

ROTATIONALLY SYMMETRIC DYNAMICS

In this section the Hall force is retained but the assump-
tion of rotational symmetry is invoked. In this case]u50
and the equations in the system~5! simplify. It is demon-
strated that the solution of the linear problem can be explic-
itly written and the dispersion relation is found. Consider-
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ations which may lead to a form~s! of a cylindrical nonlinear
Schrödinger equations~NLS! for the nonlinear problem are
not pursued.

For the linearized problem, let

n~r,t !511dnJ0~kr!e2 ivt, ~12a!

B~r,t !511dBJ0~kr!e2 ivt, ~12b!

vr~r,t !5dvrJ1~kr!e2 ivt, ~12c!

and

vu~r,t !5dvuJ1~kr!e2 ivt, ~12d!

where Jn is the Bessel function of ordern. By using the
ordinary differential equation satisfied byJ0 and the relation
(d/dz)zJ1(z)5zJ0(z), the coefficients are found from sys-
tem ~5! to be related by

dB52dn/~11k2!, dvr5~ iv/k!dn, dvu52~aH /k!dn.
~13!

Then the dispersion relation is given by

v2~k!5aH
2 1

k2

11k2
. ~14!

Therefore, in the long-wavelength limit, the angular fre-
quencyv(k) does not vanish. This suggests, as in the Car-
tesian case,7 that a form of the NLS equation may appear for
the correction fields for the nonlinear problem.

WhenaH→0, the above results reduce to those expected
for the cylindrical KdV case.

The necessary multiscale analysis for the nonlinear prob-
lem will not be taken up here, however a very useful scalar
equation for the linearized problem is recorded. Lettingn
temporarily stand for the perturbationdn for notational ease,
it can be shown that the following single wave equation of
sixth order for the vortex density results:

] ttF1r ]r~r ]rntt!1~11aH
2 !
1

r
]r~r ]rn!2ntt2aH

2 nG50.

~15!

With the time dependence exp(2 ivt), it can be checked
that Eq.~15! leads to the zero-order Bessel differential equa-
tion, with k2(v)5(v22aH

2 )/(11aH
2 2v2), giving the dis-

persion relation~14!.
Similarly, coupled equations can be written in the case

that]r50, and combined in the linearized regime, but being
of less physical interest, are omitted here.

DERIVATION OF CYLINDRICAL KP EQUATION

For zero Hall coefficient, the dispersion relation~14! sug-
gests the possibility to find a variable coefficient nonlinear
wave equation for the first-order field corrections in two spa-
tial dimensions. This expectation is borne out, with the deri-
vation here of a cylindrical Kadomtsev-Petviashvili
equation.11 This form of the cylindrical KP equation is com-
pletely integrable. It is possible to develop explicit solutions
for it based upon Painleve´ analysis, Ba¨cklund transforma-
tions, or symmetry reduction.11 This is an appearance of a
variable coefficient, completely integrable nonlinear wave

equation in the 2D vortex dynamics of a type-II supercon-
ductor. The key is to find an appropriate ordering~s! within
reductive perturbation theory for the angleu and the trans-
verse velocity componentvu .

A solitary disturbance is assumed to propagate mainly in
ther direction with a constant speedV, and accordingly the
stretched variables

j5v~r2Vt!, h5v3r, t5v21u, ~16!

are introduced. There is a strong coordinate dependence
upon the angleu. The uniqueness of the ordering of some of
the variables of Eq.~16! is briefly discussed below. An al-
ternative choice of stretched variables is presented in Appen-
dix B, which also leads to the cylindrical KP equation.

Written in terms of the new independent variables, the
scaled system~5! reads

2V
]n

]j
1
1

h S ]

]j
1v2

]

]h D ~hnvr!1
v

h

]

]t
~nvu!50,

~17a!

2V
]vr

]j
1vrS ]

]j
1v2

]

]h D vr1vu

v

h

]vr

]t

52S ]

]j
1v2

]

]h DB, ~17b!

2V
]vu

]j
1vrS ]

]j
1v2

]

]h D vu1vu

v

h

]vu

]t
52

v

h

]B

]t
,

~17c!

n2B52
v2

h S ]

]j
1v2

]

]h D FhS ]

]j
1v2

]

]h D GB
2

v4

h2

]2B

]t2
. ~17d!

The associated perturbation expansions for the vortex
density, velocity components, and magnetic induction are,
respectively,

n~j,h,t!5(
j50

`

v2 jn~ j !~j,h,t!, ~18a!

vr~j,h,t!5(
j51

`

v2 jvr
~ j !~j,h,t!, ~18b!

vu~j,h,t!5(
j51

`

v2 j11vu
~ j !~j,h,t!, ~18c!

and

B~j,h,t!5(
j50

`

v2 jB~ j !~j,h,t!, ~18d!

with n(0)5B(0)[1. All of these expansions are consistent
with the small amplitude limit.

Substituting the expansions~18! into Eqs.~17! and equat-
ing coefficients of like powers ofv gives recursion relations

1282 54MARK W. COFFEY



for the higher-order field corrections. The lowest-order equa-
tions, atO(v2), can be integrated to yield

n~1!5B~1!, vr
~1!5Vn~1!1 f 1~h,t!, B~1!5Vvr

~1!1 f 2~h,t!,
~19!

where f 152 f 2/V andV251. TheO(v3) relation from Eq.
~17c! reads

V
]vu

~1!

]j
5
1

h

]B~1!

]t
. ~20!

The next order contributions are atO(v4) andO(v5):

2V
]n~2!

]j
1
1

h

]

]h
@hvr

~1!#1
]vr

~2!

]j
1

]

]j
~n~1!vr

~1!!1
1

h

]vu
~1!

]t

50, ~21a!

2V
]vr

~2!

]j
1vr

~1!
]vr

~1!

]j
52

]B~2!

]j
2

]B~1!

]h
, ~21b!

2V
]vu

~2!

]j
1vr

~1!
]vu

~1!

]j
52

1

h

]B~2!

]t
, ~21c!

n~2!2B~2!52
]2B~1!

]j2
. ~21d!

Combining Eqs.~21! and using Eq.~19! gives the third-
order nonlinear equation

V
]3vr

~1!

]j3
12V

]vr
~1!

]h
13vr

~1!
]vr

~1!

]j
2 f 1

]vr
~1!

]j
1V

vr
~1!

h

1
V

h

]vu
~1!

]t
52

] f 2
]h

, ~22!

which for the 1D case (]/]t50) is the CKdV equation. The
change of coordinates

j85j1
V

2E f 1dh, h85h, ~23!

can be used to eliminate the term with the functionf 1 on the
left-hand side. If Eq.~22! is differentiated with respect toj
and Eq.~20! is differentiated with respect tot, and the two
equations are combined, there results

~Vvrjjj
~1! 13vr

~1!vrj
~1!12Vvrh

~1!2 f 1vrj
~1!1Vvr

~1!/h!j1
V

h2 vrtt
~1!

52 f 2tt~h,t!/h2, ~24!

where subscript notation has been used for the partial deriva-
tives. The variable coefficient 1/h2 of the vrtt

(1) term shows
this equation to be the cylindrical Kadomtsev-Petviashvili
equation.11 As indicated by results of Painleve´ analysis, and
the inverse scattering formalism of Dryuma,11,18,20Eq. ~24!
is completely integrable.

The Zakharov-Shabat representation of Eq.~24! can be
found by settingvr

(1)5v1 /v2 and requiring compatibility
conditions on thet andh derivatives ofv1 andv2 .

11,18Then

Eq. ~24! takes the form@]/]t2L,]/]h2A#v50, where the
operatorL is second order inj, A is third order inj, and
nonlocal.11,18,19

Truncated Painleve´ expansion can be used to generate ex-
plicit solutions. With the scalingsu5vr

(1)/2,t854t,
h85h/2, Eq. ~24! takes a standard form21

~ujjj16uuj1uh81u/2h8!j1
4

h82
ut8t850. ~25!

A solution with two arbitrary functionsa andb and an ar-
bitrary constantb is21

u~j,h8,t8!52
b2

2h8
sech2H i2 @bj~h8!21/2

1a~h8!t81b~h8!#J
1
1

6 F b2h8
24

a2~h8!

b2h8
2

~h8!1/2

b

3S 2
bj

2~h8!3/2
1a8~h8!t81b8~t8! D G .

~26!

Taking b, a(h8), and b(h8) purely imaginary gives
soliton-type solutions.21

More generally than Eqs.~16! and ~18c!, one may con-
sider order rings with

t5vpu, vu5vmvu
~1!1vm12vu

~2!1•••, ~27!

where the exponentsm and p are to be determined by dif-
ferent types of balances in the system~5!. The equations
extending the system~17! for generalm and p are not re-
corded here. Requiring a balance of lowest order terms in the
equation of motion~5c! gives the conditionm5p14. De-
manding that the last term of the continuity equation not
contribute at lowest order leads tom1p.0. Takingm to be
positive, for the weak-amplitude limit, and restrictingm<4
andp to integral values for simplicity, allows the orderings
(m,p)5(4,0) or (3,21). With the first of these orderings
the last term of the continuity equation@similar to Eq.~17a!#
does not contribute untilO(v6), which is too late to provide
the second spatial coordinate dependence in a KP-type equa-
tion. With this ordering the angular velocity component
couples very weakly to the rest of the motion.

Other possibilities exist to satisfy the lowest-order equa-
tions, leading to other possible orderings. Of particular note,
one can requirem,p14 from Eq.~5c! so thatvu

(1) must be
taken as independent of thej coordinate. By considering the
terms of the other equations withvu , other inequalities can
be developed depending upon functional dependences and
the types of lowest-order balances. Of special notice, there is
the possibility to develop nonlocal generalizations of the cy-
lindrical KdV equation, which is not pursued here. For com-
parison to the Cartesian case, see Ref. 6.

Sometimes an equation of the form~25! is called the
nearly concentric KdV equation,21 which has arisen in the
study of shallow-water waves. It differs from the modified
KP equation derived by Giambo and Pantano in the case of
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an ion acoustic wave in a cold plasma,22 in theut8t8 term. In
their derivation, they accounted for a weak third~vertical!
spatial coordinate dependence, leading to a constant coeffi-
cient of this term. Then thet8 variable is to be identified as
coming from z in cylindrical coordinates. The resulting
modified KP equation is also completely integrable. How-
ever, in this paper the motion is strictly two dimensional, in
the plane perpendicular to the vortex axis.

SUMMARY

Due to their short coherence lengths and relatively large
energy gaps, the high-transition temperature superconductors
are very likely candidates as ultraclean materials. This class
of materials has significantly modified vortex dynamics, fea-
turing the propagation of linear and nonlinear waves, includ-
ing solitons. At very low temperature there is negligible dis-
sipation in ultraclean materials and the Hall force can
dominate in the dynamics. In this paper results for both zero
and nonzero Hall force were given. A continuum theory was
used to account for nonlocal vortex interaction. Linear and
nonlinear problems were studied in cylindrical coordinates.
It was shown that results appropriate for the cylindrical KdV
equation can be developed through the second order of the
perturbation expansion. The second-order correction can be
found by solving a linear, third-order variable coefficient
equation.

The reductive perturbation theory applied in this paper
showed that there is an ordering for which 2D soliton propa-
gation arises in cylindrical geometry in an ultraclean type-II
superconductor in the absence of pinning and the Hall force.
Equation ~24! is a form of the cylindrical Kadomtsev-
Petviashvili or nearly concentric Korteweg-de Vries
equation.11,20,21 ~The cylindrical KdV equation is a special
case of this equation.! The cylindrical KP equation can be
solved by the inverse scattering transformation.18,19 It has
been studied as an integrable case of a generalized variable
coefficient KP equation.20 This 2D soliton equation was de-
rived for both weak nonlinearity and dispersion. The soliton
solutions, with characteristic speedcs5Af0B0 /m0m, may
be able to provide information on the vortex mass per unit
lengthm.14

The weak nonlinearities in the model include bilinearity
in the vortex continuity equation~4a! and convective differ-
entiation in the equation of motion~4b! and ~4c!. In this
derivation, Eq.~4d! takes into account nonlocal vortex inter-
action, over the characteristic distancelL . Magnetic-field
nonlinearity in the penetration depth was ignored, making
this London equation linear. This assumption is very well
justified for the high-Tc superconductors owing to their very
large upper critical fields.

An analogous dynamical system may exist in fluid dy-
namics, e.g., in shallow-water waves described in cylindrical
coordinates.11 However, the vortex dynamics here is distinct
from the ion-acoustic wave dynamics modeled for a cold
plasma.22 There a small disturbance transverse to the plane
of motion was assumed, leading to a constant coefficient in
place of the 1/h2 coefficient of Eq.~24!. Therefore the ion
dynamics of Ref. 22 is based upon 3D considerations, in
contrast to the 2D motion modeled here for straight vortices.

This paper, like Ref. 5 on the cylindrical KdV equation,

has considered the bulk superconductor response. For the
variable coefficient equations governing the nonlinear wave
propagation, satisfying boundary conditions in an analytical
form is likely to be a difficult task. It appears that approxi-
mations will need to be developed in order to take into ac-
count a finite radius of the superconducting sample.

In an experimental investigation, whether using a wave-
guide or resonant cavity operating at microwave frequencies
and very low temperature, it appears advantageous to employ
a transverse electric~TE! mode. In this case the electric field
and current density have only an angular component in a
lowest-order approximation, more closely matching the ge-
ometry of this paper than a TM mode.

APPENDIX A: ON VORTEX CONSERVATION
AND THE LONDON EQUATION

Equation~1! of the text is the same as the statement of
Faraday’s law for the local vortex-motion-induced electric
field E v52v3Bv . This relation forEv follows from put-
ting the rate of change of the magnetic flux enclosed by a
simple closed curve equal to the rate at which flux crosses
the boundary, and is due to Josephson.23

The mesoscopic average of the London equation with gra-
dient of the phase of the order parameter term can be per-
formed. If the curl is then taken, the result can be written as
¹3Js52(B2Bv)/m0lL

2 , whereJs is the supercurrent den-
sity. This equation together with Ampere’s law gives Eq.~3!
of the text, in the absence of a normal current density. Tak-
ing the time derivative of this equation, using
]A/]t52E2¹f , whereA is the vector potential,E is the
total electric field, andf is a scalar potential, shows that
E2Ev5m0lL

2]Js /]t.

APPENDIX B: ALTERNATIVE DERIVATION
OF CYLINDRICAL KP EQUATION

It is shown here that it is possible to obtain the cylindrical
Kadomtsev-Petviashvili~KP! equation11,20,21 with a choice
of stretched variables and an ordering different from Eq.~16!
of the text. The strong angular dependence of Eq.~16! is
avoided. Let

j5k~r2Vt!, h5k3t, t5kpu, ~B1!

suitable for the long-wavelength limit. In Eq.~B1! V is again
a constant speed.

When writing the scaled system~5! for aH50 in the new
independent variables, it is useful to express
1/kr51/(j1Vk22h) for small values ofk. The coupled
equations become

~2V]j1k2]h!n1
1

Vh S 12
j

Vh
k21••• D ]j@~jk21Vh!

3nvr#1
kp12

Vh S 12
j

vh
k21••• D ]t~nvu!50, ~B2a!

F2V]j1k2]h1vr]j1vu

kp12

Vh S 12
j

Vh
k21••• D ]tGvr

52]jB, ~B2b!
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F2V]j1k2]h1vr]j1vu

kp12

Vh S 12
j

Vh
k21••• D ]tGvu

52
kp12

Vh S 12
j

Vh
k21••• D ]tB, ~B2c!

n2B52
1

Vh S 12
j

Vh
k21••• D ]j@~jk41Vk2h!]jB#

2
k612p

V2h2 S 12
j

Vh
k21••• D 2]ttB. ~B2d!

The perturbation expansions taken for the dependent vari-
ables are

n5(
j50

`

k2 jn~ j !, vr5(
j51

`

k2 jvr
~ j ! , ~B3a!

vu5(
j50

`

km12 jvu
~ j11! , B5(

j50

`

k2 jB~ j !, ~B3b!

with n(0)5B(0)[1. With the choice p50, m54, the
lowest-order equations, atO(k2), again yield Eq.~19! of the
text, withV251.

TheO(k4) condition from thevu equation of motion gives

]vu
~1!

]j
5
1

h

]B~1!

]t
. ~B4!

The other equations atO(k4) yield

2V
]n~2!

]j
1

]n~1!

]h
1
vr

~1!

Vh
1

]vr
~2!

]j
1

]

]j
~n~1!vr

~1!!

1
1

Vh

]vu
~1!

]t
50, ~B5a!

2V
]vr

~2!

]j
1

]vr
~1!

]h
1vr

~1!
]vr

~1!

]j
52

]B~2!

]j
, ~B5b!

n~2!2B~2!52
]2B~1!

]j2
. ~B5c!

When Eqs.~B5! are combined there results

V
]3vr

~1!

]j3
12

]vr
~1!

]h
13vr

~1!
]vr

~1!

]j
2 f 1

]vr
~1!

]j
1
vr

~1!

h
1
1

h

]vu
~1!

]t

5
] f 1
]h

. ~B6!

If Eq. ~B6! is differentiated with respect toj and Eq.~B4! is
used, the cylindrical KP equation follows:

~Vvrjjj
~1! 13vr

~1!vrj
~1!12vrh

~1!2 f 1vrj
~1!1vr

~1!/h!j1
V

h2 vrtt
~1!

52 f 2tt~h,t!/h2. ~B7!

As shown by Eqs.~B1! and ~B3b! the cylindrical KP equa-
tion occurs for the angleu unchanged and weak transverse
velocity component.
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