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Localization transition in three dimensions: Monte Carlo simulation of a nonlinear o model
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We present a combination of analytical and numerical calculations for the critical behavior of a supersym-
metric nonlinearr model. This toy model is expected to describe at least qualitatively the localization transi-
tion of a disordered one-electron system. As a result, we obtain a localization length exponent and a set of
inverse participation numbers in three dimensions. We find a continuous phase transition with the features of
one-parameter scaling and multifractality at the critical pdig0163-182¢06)06141-3

I. INTRODUCTION an artifact of the special lattice structure of the BL and of the
EMA which imitates this structure. According to this view-
The phenomenon of particle localization in a disorderedpoint one can assign an effective dimensiba o to this
medium has attracted a considerable interest starting with thattice structure, which plays the role of the upper critical
famous Anderson papérThe scaling theo® predicts a  dimension.(A transition behavior with critical exponents 0
transition from extended to localized electronic states for anyand « is then formally identified with a jump and an expo-
spatial dimensio>2 and sufficiently large disorder. It as- nential behavior, respectivepyin this picture the above criti-
sumes that this transitiopAnderson transition, localization cal behavior on the BL or within the EMA can be understood
transition, metal-insulator transitidMIT )] can be described within the one-parameter scaling assumption; for finite di-
as a phase transition of second order with just one singlenensions a powerlike scaling behavior is expected.
relevant scaling field. Wegnkrintroduced the so-called A quantitative investigatiot indicates that the EMA ap-
N-orbital model which allowed for a field-theoretical refor- pears somehow as an uncontrolled approximation due to the
mulation of the problert’ followed by a renormalization neglect of loop graphs, since in the context of a strong-
group analysis in 2 e dimensions.~® It was recognized that coupling expansion the highly branched graphs with a high
a usual mean-field approach is not possible in this fielchumber of loops yield the dominant contribution whereas
theory since the conventional one-point Green function —zero-loop graphs can be neglected. It is therefore perhaps fair
which is closely related to the mean density of statedo say that instead of trying to calculate corrections to the BL
(DOS)—does not exhibit a critical behavior. This seems toresults it seems more promising to investigate the localiza-
break the Goldstone theorefhBy extending and making tion transition problem(within the supersymmetry formal-
rigorous this earlier workwhich made use of the mathemati- ism) directly in d=3 dimensions, at least numerically. This
cally ill-defined replica trick Efetov'! mapped the problem has, however, not yet been done.
of disordered one-electron systems on supersymmetric non- The development of a supersymmetric toy model, the hy-
linear o models(in the following called supermatrix models perbolic superplanéHSP model?° allowed for some tech-
with certain supercoset spacB#K according to the particu- nical simplifications in the investigations of nonlinear
lar behavior of the disordered one-electron system undemodels. It was showf that this model is capable of describ-
time reversal and/or spin rotation. ing localization in a quasi-one-dimensional geometry. On the
The investigation of the aforementioned supermatrixBL, an analysis of a nonlinear model taking the HSP as
models on the Bethe lattit&*4(BL) revealed an unexpected target space reproduced the previously reported unconven-
behavior at the transition point. Namely,jamp in the in-  tional critical behavior. This experience indicates that the
verse participation ratidlPR) on the localized side and an HSP might yield a qualitatively correct picture of the local-
exponentiabecrease of the diffusion constant on the metallicization transition ind>2 dimensions, too.
side of the transition were found. These results gave rise to Technical simplifications compared with the aforemen-
the hypothesi¥ that the scaling theorywhich predicts a tioned supermatrix spaces originate from the fact that the
power-law behavior of various quantitjesiight be not ap- HSP has onlyoneradial coordinate whereas the supermatrix
plicable for the localization transition. In order to investigatemodels show at least two radial degrees of freedom. It may
the critical behavior of this transition on a hypercubic lattice,thus serve as a useful toy model which allows one to study
a Lagrangian was constructed in Ref. 15 so that its saddlmany interesting features related to the MIT with relative
point reproduced the so-called effective-medium approximaease, thereby gaining some experience and insight into the
tion (EMA) of Ref. 16 which leads to the same non-power-main difficulties before one turns to the more interesting su-
like critical behavior as in the case of the BL. It was permatrix spacesThe HSP has been successfully applied to
proposed’ that this exotic behavior is characteristic of the several other problems as well, e.g., Migdal-Kadanoff
Anderson transition on a-dimensional hypercubic lattice renormalizatio' or quantum chaos in conjunction with a
for a (sufficiently high spatial dimensiomn>2. superanalog of the Selberg trace formtfa.
However, Mirlin and Fyodoro\? argued that contrary to Thus, the goal of the present paper is to help clarify the
the above hypothesis the non-power-like critical behavior isabove controversy by a mainly numerical investigation
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(Monte Carlo simulationof a nonlinearc model ind=3 cosp(1—77)
dimensions taking the HSP as coset sp&¢&. To antici- o coslr sing(1—77)

pate the main result, we find a continuous phase transition, g=| :< ) e= nn )
one-parameter scalinglPS, and multifractality. In other sintre/’ 7 '
words, the data yield no evidence for a jump of the IPR. The Ya 7

localization length exponent of our model is obtained as L
r=1.15+0.15. with r,¢ even, O<r, 0< ¢<2m, and odd elements, . Let

This work is organized as follows: After a short introduc- us denote the “radial” part of a supervectgrby ¢',
tion of the HSP in Sec. Il we state in Sec. Ill the model . _
which is to be investigated. In Sec. IV we describe the main " =(cosl,sinir,0,0,0, (©)
ideas which enable us eventually to treat the problem using a -
Monte Carlo(MC) algorithm. The results and fundamental and the origin of the HSP b,

limitations of this algorithm are outlined as well. We con- T_

, ; - 0'=(1,0,0,0,9. (4)
clude with some remarks concerning the applicability of the
MC algorithm for related problems. (The above coordinates are motivated on a group-theoretical

level in Ref. 20)
Il. HYPERBOLIC SUPERPLANE (HSP)

Geometry of the HSP lll. THE MODEL

The HSP is a supersymmetric homogeneous sf@&ite A. Definition and motivation of the model

of rank one and real dimensid8,2) and can be viewed as a In this section we introduce and motivate the model
real, supersymmetric extension of tiieppe) hyperboloid  which is to be investigated; we also define some correlation
H,=S0(2,1)/SO2). It shares several important aspects withfunctions of interest and specify the order parameter func-
Efetov’'s supermatrix spacés, more precisely, with the tion. Finally we show how physical quantities can be ex-
model | for the case of orthogonal symmetry. These(bee tracted from the model.
sides the reality constrainti) its structure as coset space  The model Efetov usédi is a system of impure metal
G/K, (ii) perfect grading, i.e., equal numbers of bosonicgranuleswith a large number of statewhich are in contact
(commuting, evenand fermionic(anticommuting, oddde-  with each other. Thémacroscopit conductivity is then es-
grees of freedom(iii) noncompactness, ari/) a positive  sentially governed by the probability of the electron jumping
(superiRiemannian curvature. from one granule to a neighboring one. This “granular”

A detailed introduction of the HSP—in particular, a pre- model is closely related to WegneR&orbital model* There
cise definition as a homogeneous sp&¢ek —was given in  is some evidend@ that the Anderson model and the
Ref. 20 (see also Ref. 21 the complex counterpart of the N-orbital model(or the granular modglexhibit the same
real HSP was introduced in Ref. 22. These definitions willcritical behavior. The above model of disordered metal gran-
not be repeated here. Instead, for our purposes it will bélles can be described by a supersymmetric nonlinear
sufficient to give a brief idea of the HSP and to put forwardmodel on a lattice; its free enerdfor identical granulesis
a useful parametrization. written in the fornt*

An elementy of the real HSP can be viewed as a five-
component supervectony' = (g, 1,2, ¥3,¢4), Where
Yo,y ., are even(bosonid and i, y, are odd (fermi- F[Q]Z—Jiz} St'Qin—BZ StAQ; . (5)
onic). We will use an involution(adjoint, complex conjuga- '
tion) of the second kind which means that for odd elementdiere, the first sum runs over nearest-neighbor grandlés,

& ,&; we define related to the coupling between the granules, and the param-
_ eter B is given by 8= (i/4)(w+i€)mvV, whereV denotes
(&)=-¢& and m: & . the volume of a granuley the average DOS¢—0", and

] o ) ] N w is a frequency. The supermatric€sand A have dimen-
Using this involution we can express the reality condition forg;o, g 8. Their precise forms can be found in Refs. 11 and

the HSP as 14.
— The correlation function of the DOX;, and the density-
Yohr. e R 3=t density correlatoK , are given by
The supervectory obeys a(nonlineaj constraint
Ki(x,y;E)=G" (x,x;E)G " (y,y;E), (6)
yroy=1,

N Y _ + . — . _
wherey =4 and the metridd is given by Ka(x,y:Ei0)=G7(x,y;E)G™(y X E-w), @)

. where the overbar stands for the disorder average@nd
=diag1,~1,). @) and G~ are the retarded and advanced Green functions.
Moreover, we require for the bodithe bodym(x) of an  These correlators can be calculated via
even elemenk denotes the ordinary part & which results

after subtraction of all nilpotent terms &f m(#) of ¢ the K.(xVvE ch do.0(x)02(v)exp— F 8
conditionm()=1. We now introduce polar coordinates 1(xY:E) H QRuQLy)exe-FIQl. (8
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1 o1 the compact radial sector of the supermatrix spaces is of
Kz(X,y;E;w)“f H dQiQ13(x)Q31(y)exp—F[Q]. (9  equal importance as the noncompact dne.

Here, upper indices denotex4 submatrices of th€ ma- B. Correlation functions and physical quantities
trices and lower indices the corresponding entries within
these blocks.

Now let us consider the following statistical toy model:
At each sitex of a given lattice attach a fielgh(x) where
¢ is an element of the HSP. We define the actioespec-
tively, the free energyof the model as follows:

Notwithstanding the formal analogy between the model
(10) and spin models, some usual methods which are used in
phase transition theory are not applicable here. These include
in particular mean-field methods, which involve the magne-
tization, which is nonvanishing only in the ferromagnetic
phase and identically zero in the paramagnetic phase. The
reason is the equalit{#/) = o which follows from the unbro-
S yl= 72 [ (x)0y(y)— 1]+,32 [o(X)—1] kenK invariance so that the mean DOS is clearly not criti-
x—y X cal.[This is in accordance with the situation in the superma-
trix models where the expectation value@fqualsA and is

=So[y]+Si[y], B=—i(wtie)rV, €07, therefore a constait.

(10 The only nontrivial two-point function of our model is
where 6 was defined in Eq(l) and the notatiox—y means . = —y- = (=) elig
here and henceforth thatandy are nearest neighbors. The KOyin B)=Kx=yiy )= (=) () %(y)),(l
“interaction term” Sy[ 4] contains a sum over all nearest- .
neighbor pairs with an inverse coupling constant0 which ~ With
is a measure for the disorder of the system. Of central im- 0, ,even
portance are the symmetry properties Sifys]: The term wel, ... 4 |ul={. ’
Sy is invariant under a “global” transformation 1, ¢,0dd.

#(X)—~>g- ¢(x), g€ G . The second terr8, breaks this sym- [Note that ((X)io(y)) is not critical. This is a conse-
metry, but it leaves a residual symmetry unbroken. Namelyguence of the fact that the considered model has less degrees
S; is invariant under the action of the stability group of freedom than Efetov’s supermatrix modgls.

KCG, ie., under global transformations of the form  The value of the coupling constamtdecides whether the
P(x)—k- ¢(x), ke K. [The action of elements of the stabil- system is in the phase of localized or extended stiftésth

ity groupK leaves the origini4) invariant] Expectation val-  phases exist Let vy, be the value ofy at which a possible

ues of functionsA(¢) are defined in the usual way: phase transition occurs. Then we have the correspondence

< > ..
(A(¢)>=Z‘1f (D YIA()exp—S[ i, localized states» y<7y., extended states y> 1y,
Both phases differ from each other with respect to the
N symmetry-breaking behavidf.In the disordered phagén-
[Dy]=11 Duw(x). sulating phase, phase of localized statie® brokenG in-
i=1 variance is restored in the lim@— 0. The conducting phase
(metallic phase, phase of extended stateewever, exhibits
a scenario of spontaneous symmetry breaking: Ghievari-
ance remains broken even after the symmetry-breaking term
S, vanishes in the limi3—0. As was shown in Ref. 13 in
7= J [Dylexp— S ¢]=exp— S ¥y —0=1 the context of the super_matrix models this different symme-
try behavior together with the noncompactnesssoK im-
plies a different behavior of the correlation functions. One

Here,N is the number of lattice sites, and for the partition
functionZ we have

because of th& invariance which remains unbroken.

In order to motivate the present modaD) we note thata  11nds
detailed analysis of the supermatrix models of the f@&n const. localized states
has revealed'* that thecritical properties of these models lim, oBK(X—Y;y.8)= ' '
depend crucially on their symmetry structure with respect to - ’ 0, extended states.
the group<G andK. The toy model10) on the HSP imitates (12)

exactly this symmetry structure and is therefore expected t@he two phases of the system can be distinguished by an
y|e|d a qua”taﬂvely correct description of the critical behav- order parameter' more precise|y by an order parameter
ior of the localization transition. function® Let F(4(x)) be that function which is obtained if

The use of the HSP which has only ofieoncompadt  one integrates the statistical weight ex@ /] over all sites
radial coordinate is further motivated by the observation thas an (infinitely extendedl lattice except the site,

the critical behavior of the order parameter functisee be-

low) is governed by just this noncompact variable; the other

(compact radial coordinatés) of the supermatrix models are F(p(x)= f 1;[)( Dy(y)exp— S ¢]. (13

of no interest in this case. This allows for a description of the Y

MIT using the simplified toy mode[.Of course, one cannot For symmetry reasons depends only on the radial pagt
hope to use this toy model successfully in situations wherdeg. (3), of ¢ and can be used to discriminate the two phases,
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. 1(the constant function Y<7e tend towards unity. Thus, the IPR’s can be used to discrimi-
lim F (") a for 1w decaving function. v> nate localized from extended states.
p—0 ying r Y e Around the critical pointy, (i.e., in the range wheré

A physical meaning of the above functidh was given in  €xceeds by far any microscopic length sdajg) one makes

Refs. 18 and 23 where it was shown tiais closely related the following ansatz, relying on the assumption of one-
to the distribution function of the local densities of statesParameter scalinglP3 (of course, this 1PS ansatz has to be

(LDOS). checked explicitly by a numerical investigatjon
For future reference let us define L
. —7(q) — — _ *
L(, o) =exd — y(4T 0y —1)], (14) Py(yL)eL fq( §)' m(q)=(q—1)d*(q), (18
Dg()=exd —B(¢o—1)]. (15  with some scaling functiong,. The “generalized dimen-

sion(s)” d*(q) differs from the spatial dimensicth and is a

These functions show the following important symmetries: function of q. For L—2 P, must become independent of

" ' L; therefore the scaling functiorfg must(for L> £) satisfy
L(y, L(gy, VgeG, ?
() =L(@vgy’) Voe fo(L/€)o(L1€)™D. Thus, Py(y=7¢:L )&, Using
Dy(y¥)=Dg(ky) VkeK, the relationé« (y.—v) ™" (for y=<1v.) one concludes there-

. . . ) fore thatP, scales like
which means thaD 4 is aK radial function,

D () =D (" )=Dp(r).

In addition to the correlatofll), we will also frequently be
interested in “diagonal” correlators of the type

Pa(y=veiL—=o)x(y— )™, m(q)=v7(q), (19

and the multifractality of the system is reflected in a non-
trivial dependence ofr(g) on g. One can show in a rather
general contex{see, for example, Ref. 25 and references

KI(y.8)=M.m ' () 43(x)), herein that 7(q) is a monotonically increasing function with
' negative curvature.
1 T((1+1)/2)L (m+1)/2) The IPR’s can be rewritten in terms of Green
- - Y i 24,26
N m=(+ T(+m+2)2) (I+m—-2)!, functions;
(16)
. . U =
where |, m are integers larger than or equal to zero, P,(E)= lim——G™"(x,x;E)G ™ (x,x;E),
g=I+m=2, andx is an arbitrary lattice site. The normal- »—0mp(E)
ization factor is chosen so that the dependenc& bbon |
andm enters only via the sumg=I+m and that fory—0 CiTm@2p)aT (-1 (m=-1)!
K9 approaches unity.For qg=2 and|=2, m=0 (or vice Pq(E)= lim o (T+m=2)1
versa this correlator reduces—sinaf and ¢, are real—to 7=0 P
the correlation functioiK(0;v,8), Eq. (11).] X[GT(X.E)][G (. x.E)]™,

Let us now demonstrate how we cégat least formally
extract physical quantities from the above defined correlatiofvhereq=1+m andl,me N.
functions. Motivated by the unusual properties of the MIT on  Using in a second step the techniques of supersymmetry,
the BL we will focus our interest mainly on the following the above averaged products of Green functions can be rep-
quantities: the IPRand its higher momentsand the diffu-  resented in terms of certain correlators, i.e., expectation val-
sion coefficientD. ues of the bosonic blocks of tH@ matrices with respect to

Let us start from a tight-binding model with lattice sites the generating functiond (Q); see, for instance, Eq&6)—
X,y, ..., normalized eigenstateg,, and an average level (9)and Ref. 26. Because our mod#D) is only a toy model,
densityp(E) per site at energf. The inverse participation there exists, however, no such immediate physical interpre-
ratios (IPR’s) Po(E),qeR, tation of the correlator, Eq.(11), andK9(y; 8), Eq. (16).

L NeverthelessK corresponds formally to the correlat@),
_ d 2q_ 5 which in turn is related to the density-density correlation

Pq(E)_f dr|y(r)] Q_HE); | OO*S(E~Ey), function K(x,y;E; »), Eq. (7). Further, the identit}?

are a very sensitive measure for the degree of chalization in lim 7K (x,y;E) = lim 7K,(x,y;E;0)

the systen"r.4 To what extent the states are localized can be 7—0 7—0

inferred from the dependence Bf, on the lengthL of the ) ) ) )
system(we setN=L¢, whered is the spatial dimensionFor relates the correlation functiori§) and(7) in the localized
extended state@leep in the metallic regionP,, scales like ~ regime. Therefor& playsalsothe role ofK,, and we obtain

S B R (17 Pa(7)=lim BK(0:7.B). (20
B—0
whereas for strong disordéwhich means that the localiza-

tion length¢ is much smaller thah) Py is rather indepen-  Similarly, concerning the whole set of IPR'§%£2), we can
dent of L. In the limit of extremely localized states d@l,  formally identify
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Py(y)=lim B971K(y,p), (21 1 o' 1
q oy — ) _ - ro12
B—0 Lo(w,0',0")=exp—vy 5\ o7 +_w 1+2ww o'cl.
which relategat least, formally the IPR’sP, to expectation (29

values of the mode(10). Let us note, however, that due to .
the reduced number of variables in our toy mo@eimpared Note that all POWers oB he}ve canceled. Ater a ;tralghtfor—
with the supermatrix spaceshe correlatoi® is nontrivial ward calculation one obtains for the last remaining integral
only for even landm. Thus, we can only hope to calculate =242
IPR’s with an everg within our model. P.(y)= (=) 7y

The diffusion coefficienD(y) can be extracted by com- aly (g—2)!
parison with the long-range behavior of the correldfr—

(9,)972

or, equivalently, Eq.(11)—on the conducting side of the T (48202 y+o
e ; - - X{1-6\/ € N1-¢| — ,

transition. More precisely, its Fourier transform reads 2y /_27
5=y

1 . . .
K(k,w;y)* ———>——, k—0, ©—0, (220 where¢ is the error function. In particular, fog=2 the
D(y)k~iw result is

from which D(y) can be inferred. Consequently, we can

calculateP4(y) and D(y) by consideration of thesingle Ty
functionK..- Pa(y)=1~- 7627[1— d(N2y)].
C. Simple illustration The limiting behavior ofPy(y) for y—0 and y—c« can

The simplest case which can be considered is a IatticgaSlly be read off,

with just N=2 lattice sitesx andy, with attached fieldsy
and ', respectively. Let us evaluate the correlat) and P 1, y—0,
the IPR’s(21) for this particular case. We have dv)— 2-(@-1 4

p — AL q—1J’ Dy WTF (). as required in Eq(17). _ _ _
a7 MmﬁlToﬂ WagaF ) Let us now turn our attention to the three-dimensional

case where integrals of the above type can, of course, be
solved only numerically.
F(l/fr)=Dﬁ(w’)f Dy'L(4",¢")Dg(¢").
We can use polar coordinaté® and easily integrate out the V. MONTE CARLO SIMULATION
variables ¢, 7, 7) at the sitex which yields(for I,m even In this section we introduce a MC algorithm which allows
and greater than or equal to zgra factor N .,/ us to calculate some correlation functions of the mdqdé)
(I+m—2)!. In order to integrate out the remaining variables numerically. For simplicity, we will restrict ourselves th-
note that because of the infinitesimefi ! only the asymp- agonal correlation functions; specifically we will calculate
totic domains r,r’ —o contribute (coshcosh’~g™Y);  the set of IPR'SP (), EQ.(21). In principle the algorithm is

hence we substitute capable of calculating nondiagonal correlation functions as
well.

o= pBcoshr, o'=pcosh’, In order to apply MC techniques it is absolutely neces-

sary, however, to find a method which treats the fermionic

'=¢'IB, x'=7'1B. (23)  variables appropriately. It is well known that attempts to

study systems which include dynamical fermions by means

of MC simulations face severe problems. This is mainly due

)qz to the so-called “minus sign” problem which arises from the
o

P4() becomes then, using standard integral identftfes,

q71 )
Pq(y)=lim ﬂ—f d_a)

@ presence of Grassmann variables that make a definition of a

s—od=2)!Jo B\B positive-definite probability measure problemaficHow-
ever, it turns out that a MC simulation of the mod&0) is
»do’ [ B\? ! , IOy possible in spite of the presence of fermionic variables, be-
fo 7 o e fﬁdso B2 cause of the self-terminating property of the Grassmann
polynomials.
XLo(w,0",¢" ) (1— yoo' Y x') The underlying idea of the algorithm was suggested some

years agt® but has never been pursued. Thus, no numerical

y simulations of the kind below have yet been performed.
wt+ =
2

A. Derivation of the algorithm

J‘“dwqu ) v
=)o a2 ™R 972N
(24 L . . . .
To begin with, letx be an arbitrary lattice site with at-
with tached fields. We write the IPRP (), Eq.(21), in the form
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Pq(7)=M,m‘1limo Bq—lf Dzﬂ%'wsz(wr), L(¢i ) =Lo(w; , w; a‘Pi_QDj)(l_'ywiijXijAXij)a(z
ﬁ;,

whereA x;;=x;— x;j - Now let us call a bond between

F(¢")=D4(¢") f y[j Dy(y)D (¢ (y))

nonoccupieT

lﬂi and lﬂj[

occupied
< A1 Lt v H L@ p0g), 28 _ _ o
X' —x X if the “interaction term” according to Eq(27) is given by
where g=1+m. [P4(y) does not depend on the specific
choice ofx, of course} Similarly as in Sec. Ill C we integrate | E) ’
out the angular and fermionic variables at the siteThe — ywjo;AxijAxijLo)

substitution o= Bcoshr leads afterwards tdin the limit
B—0 no boundary terms arise when one changes to polafhen, after integrating out the Grassmann variables, one can

coordinates; thev integrations run from 0O tee) expresd (' (x)) as a sum over all possible graplt®nsist-
w0(x) ing of occupied and unoccupied bondsn the underlying
: X lattice. The following simple graphical rules for the evalua-
- o(x) o(y) g ple grap
o) ;'L"OJ doxje =5 | 11 puty)e” tion of (4/(x)) hold.

(1) Each graph which contains a loop of occupied bonds
vanishesThe reason for this is the identity

X IT L (), p(x") N H L04), 9(x)))

x"—x

Ax128 x23 - - Axn1=0.

_af [ e H ~a(y) :
(q—2)! % e : Thus, only tree graphs c.ontrlbut_e t6)" (X)). _ .
(2) Each graph that is not linked to the site x (via a
with cluster of occupied bonds) vanish@he reason for this is
that for a nonvanishing contribution the number of Grass-
= — ()] (1 mann variables(provided by the occupied bondsnust
-0 de(x)e WD, match exactly the number of fermionic integratiofo-
vided by the verticegxceptby the sitex).

Thus, only tree graphs that emerge out of the sitean
| D L
Won= f H v) H W00, 9(x)) contribute. Let us denote this set of contributing tree con-

x"—x
figurations by{G}.
After we have integrated out the Grassmann variables, the
X L (¢(X; Xi " . '
x,l;[ (WOu), 9()))- partition sum can be rewritten as

Note that the normalization of this average is

dw(y) de(y)
o(x) At
{G} j dw(x)e” f

yix o(y) 2m

2=((1)= [ dotoe @1 @o0=1,

e{G}
becausel (¢(x))=1 due to the absence of symmetry- x [T Lo(wi,0),¢i—¢j) T yowo.
breaking terms. X X] X=X

Thus, the correlation functions can be expressed as “therln order to circumvent the—ifrom a numerical point of
modynamic” expectation values, similar to the concept of iew—inconvenient conditiom=0 together with thepsm u-
statistical mechanics. Thus, the following scheme becomes ™. g€ the sing
apparent. arity of the measure ab=0 the following substitution ap-

(i) Generate configurations according to a certain distribuP€ars usefu:
tion function which will be specified below.

(i) Average the symmetry-breaking terms AX)=exp-w(X), ty)=Inw(y) (fory#Xx).
q-2 Thus, we have
&H e o)
(q_ 2)! y#X

Py(v)=2, f D[ ¢1A4($)V(¢,G),
{G}

over these configurations.
Next comes the problem of how to deal with the Grass-

mann variables. Performing at each lattice site the substitu- 1 o = de(y)
tion [compare Eq(23)] f D[¢]=f de ) ]] f d(Inw(y))f o
0 y#EX J —o —w £
(r,é,m,m)—>(w=pB costt,o= ¢/ B,x=nlB,x=nlB), ,
_ - R w(X)4”
we integrate out all remaining Grassmann variablesy{: o(B)= _H exp-w(y),

First note that as a direct generalization of E2p) we find (4—2)! yx
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V(¢,G)= )’N_lw(X)Z(X)H w(y)X) 1
Yy#X

X H LO(wi !wj v(Pi_(pj)v

Xi =X r2«pb

wherez(x,) is the local coordination number of the ske
i.e., the number of occupied bondskat
In principle one could now calculat®y(y) via a MC +

algorithm on the configuration spa¢éw; ,¢;),{G}} . How-
ever, such simulations have revealed that the relaxation into
equilibrium is—even upon small lattices—very slow, and far
from being satisfactory. It is therefore expedient to reduce

the number of degrees of freedom of the model further, by

integrating out the angular variables This integration is 2
just an (N— 1)-dimensional Gaussian integral with the addi- ' X
tional constraintp(x)=0 and yields 1< Z

FIG. 1. Example of contributing bond configurations which rep-
resent trees emerging from the site Left, r, is an ancestor of
rq; right, r, is no ancestor of 1, therefore a new tree configuration

H d@k

k;tx —o 277

F{ wa](ﬁpl ‘PJ |<px70

N-1 evolves.
=| ILoct[2my)~ 7z (detny ™22
— N=1N==
Here, the matriX, results from the real, symmetric, positive =2y — 2.
definite matrixA with The scheme of a MC simulation is nogee, for example,
al iz Ref. 29 to approximate the integrdR9) by its importance
b ' sampled average
D SN B
Aij= 1, i-j, a 25 )’ (28

1M
Ao~ A, Y

0, otherwise,
by erasing the line and column corresponding to the latticévhere theM configurations {; ,G;) are distributed accord-
site x. (Note that deA,>0.) Therefore we can reduce the INg to their statistical weight, i.e., with probability

configuration space to Q]={w1, . ..,on}.{G}), and ob- P(£2i.G))*W(Q;.G)) . _ _
tain finally The above considerations motivate the following MC al-

gorithm.

(1) Choose an arbitrary lattice, a sixe and a start con-
figuration (],G) of fields and bondsthe latter exhibiting
a tree structure

(2) Generate(locally, i.e., by changing the value of a
single, randomly chosenw) a new field configuration
([Q'],G). Calculate the weight rati?W(Q’,G)/W(Q,G)
and accept the new configuration with probability

Py(v)=2>, f DLQIAL(Q)W(Q,G), (29)
{G}

1 0
J orar= [ ae Il | dinoy, @0

w(x)972

A==yl e o), (31)

N—-1

W(Q,G)= %)T(dew\x)‘l/zw(x)z(x)

X [T w(y)?- ZH L (o o)),

y#X

(32

.2
Ly(wi,wj)=exp—%M (33

U)i(l)j

Notice that¥, /D[ ]W(Q,G)=1 and that the appearance
of the exponentg(y)—2 is “natural” because the average and accept the new configuration with probabilipyng
(local) coordination numbez of a tree configuration is given

Psite=mMIin(LW(Q',G)/W(Q,G)).

(3) Choose randomly a nearest-neighbor paif ,(>)
wherer, andr, arenot linked with each other by an occu-
pied bond. Generate a new tree configuratginby breaking
the bond between, and its predecessor and linking and
r, if r, isnotan “ancestor” ofr, which means that the path
from r, towardsx along occupied bonds does not visit
This procedure is illustrated in Fig. 1; it guarantees that the
new bond configuration is again of tree type. Calculate the
weight ratio of the new and the old bond configuration,

W(Q,G')
wW(Q,G)

o(ry)
w(predecessor af,)’

=min{1,[W(Q,G")]/[W(Q,G) ]}. Note that all possible
tree configurations can be attained within this procedure.
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Before | present the results of numerical simulations, itsizeN=L XL XL and skew-symmetri¢.e., helica} bound-
seems reasonable to get first a qualitative understanding afry conditiongby skew-symmetric boundary conditions we
the model(29)—(33). | will discuss this point taking the one- mean that the lattice sites are numbered from (Nte 1

dimensional(1D) chain as an example. where for each sit& its nearest neighbors are located at the
positions k=1, k=L, and k=L? (modulo L% ], a naive
B. Qualitative discussion for a 1D chain implementation using standard libraries would take

. . N o O(N®)=0(L® steps, which is clearly unacceptable. The
In a one-dimensional chain witN lattice sites the sum . : ; .
R reason is that although the matri itself is sparse, it be-
over trees reduces to a triviality since only one tree, namerComes in general dense afterlat decompositioriwhich is
the chain itself, contributes. We will therefore omit the index 9 X ; mp
(G} in the sequel useq_ for the calculation of its pletermm}an;Sugh a decpm-
: position generate®(N?) “fills” in the matrix; i.e., entries

Consider first the limity—o . In this case the factors g
. . that were originally zero become nonzero after thé de-
L (i, ;) in the weightW(Q) force all w; to take roughly composition

the same value which I denote by Consequently one can In a first improvement, one can modify the boundary con-

approximate ditions in such a way that the matri& displays a band
y structure with bandwidthO(L?). This modification affects
\/2 L (0, 0)=0d(w;— o)), only a fraction of O(N~ %) lattice sites—for which the

boundary conditions are changed from periodic to free

and up to factors which are independenfwobne finds (hard—and is therefore negligible in the thermodynamic
limit. We can then use a standard Cholesky factorization for
W(Q)y::oconsthN*lH Swi— w)) the determinant of areal, symmetric, positive definite,
L1 ! 1/
i~]

bandedmatrix. But since the CPU time in this case is still of
O(L"), such algorithms are practicable only for very small
systems [(<5).

One can, however, calculate the determinanfgfn an

In the evaluation of the quantity, all integrals except the
integral overw(x) break down due to thé function and one

arrives at approximate but controlled manner@(L®) time. First, one
w i 2 splits the matrixA, Eg. (28), into its diagonal and off-
Pq(y)= fo dﬁaxp(—NBj(q_—Z)!zN‘(q‘l), diagonal parts:
I - . 1, i—j,
which is the correct limiting behaypr. . A=B-C,B; :ai—l5ij Cij=8i_;= '
For finite values ofy the statistical mechanics of the 0, otherwise.

model is gove_rned by two competing effects: Qn thg O"%or each matrixT, let T, denote the matrix which results
hand, the variablew, takes values of order unity, since from erasing the line and columr. Using the identity

D[QIW(Q) contains the factor(x)%exp—w(X). On the _ . .
other hand, the radial coordinates at the boundaries of thceiet_ exptrin, and expanding the logarithm, one then has

chain, w; and wy, say, show a strong singularity of type detd. = deB.de(1—B-1C
1/w in Eq. (32) and tend therefore to zero. The inverse X et x G

square root of dét, does not resolve this singularity. De- 1

pending on the value of the intermediate sites “feel” the =deB,exp — Z ﬁtrMQ ,

effect of the dynamics ob,, w;, andwy and balance it. For n=1

small y the effect of thew “fixing” of the site x is only o

weak, and consequently adl,—exceptw,—are pushed to Mij=vaia;di-;. (39
zero. Thus, all IPR'$, tend to unity. It remains to calculate M} for n=1,2, ... . Note thaM,

For lattices which are of nontree tyfgéor instance, hy-  goes not display a simple structure, due to the effect of eras-
percubic lattices ini=2) the qualitative picture is similar; in  ing one line and column. However, if we redefine
addition to the previous discussion any siteith an (at the
momenj large value ofw; (compared to the other lattice |\/|”.:‘/aiaj Sici, a:=0 (36)
siteg will accumulate occupied bonds at the cost of those ] )

of occupied bonds at a given lattice sitevill favor a large By @ zero line and column then it holds true that
value of o; . trM{=trM". Thus, we need not bother about the somewhat

- unpleasant structure &, ; instead, the problem of calculat-
ing det, is essentially reduced to the evaluation of

C. Calculation of the determinant

This section deals with the “bottleneck” of the algorithm, trM"= Z Mii=
namely, the(technical, but numerically extremely important
guestion how to evaluate efficiently the determinaniddet for positive n. The latter sum can be interpreted as a sum
which appears inW(Q,G), Eg. (32. For the one- over all closed paths of lengthstarting at(and returning tp
dimensional chain withN sites it can be calculated with a sitei on the underlying hypercubic lattice. Having this
O(N) multiplications. However, for a hypercubic lattice of picture in mind, one clearly recognizes that

L

i—ky—kp— - —kp_q1=i n-1
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0.1

FIG. 2. The “raw data” P,(y;;L) together
with their statistical errors, and the interpolating
function P,(y;L) as calculated from g2 fit.
System sizes aré =4,5,6,7,8,10(from top to
bottom.

P2 (y)

0.01

0.001 L L
0.01 0.1

trM2"~1=0, n=1,2,--. follows. To obtain a set oPy(y;L) (for fixed y andL, but
o variable 9=2,4,6,...) we perform typically some
In addition, it can be shown that the seri@$) converges at  {f_ 10’ Monte Carlo stepgéMCS), where each step repre-
least like (1h)27", which allows one to truncate the series gants a complete sweep, i.e., consistdefL3 random up-
after a finite value oh. In practice, =4 is sufficientforan  gates of sites and bonds as described in Sec. IV A. We store
accuracy of better than 1%. Consequently, we can expresge pair (w(X),exp-3,.,w(y)) after each tenth MCS. From

the determinant oA, by this data one can afterwards averdgee Eq.(34)], the ex-
N 1 1 pressionAy(2), Eq. (31), for eachq separately, and obtain
detA. ~ -1 ZtrM2+ StrM4 | thus Pq(_y;L) for all g. In o_rder to make sure thz?\t the above
x (ylllﬁx % )EXp_(Z ' 4 ) data pointsAy(2;) (wherei labels the MC$ which are to

be averaged, are statistically independent, we calculate the
w; autocorrelation function
M= Vaia;5ij, ai=55—— &=0. (37 B
o C(n)=Aq(Q)A¢(Qin) —AG, (39)
Moreover, the remaining error largely cancels itself out when _ _
one calculates the ratid/(Q)’,G)/W(Q,G), so that we end and take for averaging only eactN{th data point
up with a relative accuracy of about 19 . [In order to  Aq(£2i). Here,N¢, is defined as the length on whi@(n)
achieve a performance @#(L3) essential multiplications in has collapsed to a relative value of 10%. Given these
the calculation of de,, it is, of course, necessary to use the NeffllzthotaI/ Ncorr data points, the statistical error scales like

sparsity of the matri®M in the implementation of the matrix Ne
multiplications in Eq.(37).] After we have produced for eachandL the “raw data”

yi=Pq4(7i;L) (for discretey;) together with their statistical

errorso; , these data are subjected tq%&fit procedure. This

) o ] procedure yields a continuous functié®(y;L) that inter-
We have now gained a qualitative understanding of howy|ates between the valugsby a least-squares fisee, for

tht_e model works an_d how a numerical implementation is iNinstance, Ref. 30, or an appropriate textbpds an illustra-

principle done. | will therefore present the results of theiig, Fig. 2 shows the resulting set of functions &p+2 and

above algorithm. L=4,5,6,7,8,10.

_ The algorithm has been checked at the example of a one- Thege functions tend in fact to the correct limits for

dimensional chain withN sites, since exact results for y—0 andy—o and do not intersect each other.

P4(y) are available for bottN=2 andN=«. The agree-

ment between analytical and numerical results is very good.
From the analytical calculations of the mod#&0) on the

BL,° we expect the critical disordey, for the 3D hypercu- The goal of this section is to investigate the expected

bic lattice in the range between 19and 101. We focus  multifractal structure of the MIT, by extracting from the set

our attention therefore on this order of magnitudeyoénd  of functionsP,(y;L) the generalized dimensionds (q), Eq.

calculateP(y;L) for system size& =4,5,6,7,8,10[It turns ~ (18), and the correlation length exponentvia a finite-size

out to be somewhat disadvantageous that the precise value afialysis.

7. is not yet known which hampers a direct investigation of We determiney. and the setr(q) [from which d*(q)

the critical regime right from the beginnindrhis is done as follows immediately by multiplying each function

D. Results of the Monte Carlo simulation

E. Multifractal analysis
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FIG. 3. The curves "9Py(y;L) forq=4,1=456,7,8,10, and FIG. 4. The obtained values for 7(q) with
7(4)=18. g=2,4,6,8,10,12,14. The trivial result§0)=—d andr(1)=0 are
~ added.
Pq(¥:L) by a factorL "@—with a “guess” 7(q). If (and
only if) 7(q) = 7(q) then all curved T(“)Pq(y;L) (for fixed  In our approach, howeveg, is not a continuous variable, as
g and variablel) intersect in one single point at a nontrivial we do not calculate the quantum mechanical wave function
valuey= .. This is due to the expected 1PS behavior in the(from which P, for any value ofq could be deduced In-

critical regime(where &1 i), stead,q takes only discretéand evei values. We therefore
omit the calculation of thé(«) spectrum, since the regime
Po( L)L~ ™M@ ((y—yo) L), (B9  a=a, [the maximum off(a)] cannot be probed by our

approach.

compare Eq(18). [ 7(q) does not depend op.] Usually, the
above “fitting” procedure is not very accurate, since the
critical coupling constany,. is not known and thereforevo
parameterq 7(q) and vy.] are determined simultaneously,
which might yield quite a large uncertainty. Note, however,
that y. must take the same value for ajt therefore this
approach allows for a rather precise estimationyof Thus,
for eachq, effectively only one parameter(q) is fitted.
[Once the value ofy. is known, one could alternatively ex- »=1.15+0.15:
tract the setr(q) from a plot of IrPy(y,;L) versus Ik,

The localization length exponemtcan be obtained if one
makes a gues¥ and plotsPy(y;L)L™® versusLY” for
v=1,. and fixedq. For, from Eq.(39), one recognizes that, if
V=7, then the curve®(y;L)L"™¥ have for different (but
fixed q) the same dependence ¢r vy, and fall together, as
long as the criticality conditiog> 1, is satisfied.

We obtain

compare Fig. 5.

InPy(yc:;L)=—7(q)InL+const, Although this value ofv [and the findings fod*(q)] is
o ) ) ) ) surely not the result of a high-precision calculation, it fits
which is a straight line witinegative slope(q).] well into the “landscape” of estimates for for the 3D

Proceeding along this scheme we observe indeed 1PS and
multifractality at the critical point: The dimensions
d*(g)=7(q)/(g—1) are not constant but fall off with in-
creasing, approaching a saturation valde=0.3. In Fig. 3 M
we show as an example the 1PS behavioigfer4. Here, we "y,
have multiplied the functionP,(y,L) with a factor
7(4)=1.8 which results(roughly) in a single intersection
point aroundy.=0.04.

We find

10 T

A
e
® ‘%00&
o

L

P2(yiL) L2
<
o
3

v.=0.038£0.004,

where for differentq the numerically obtained values for
v, fluctuate a little bit around that value. The sdi) is
displayed in Fig. 4.
In principle we can from these data determine the so- o1 . . .
called f(a) spectruni® o 005 et 005

dr() 1DP,(yiL) vs (y- yLM* [r(2)=1.45, v=
f(@)=a(@)q-r(a),a(q)= d;‘ . @9 FIG S LTEPyL) vs ()L [7(2)=1.45,v= L1 or
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Anderson model that have been obtained in the past bgnd hopes that the fluctuations are damped by the square
means of several different methods; see, for instance Refgoot. However, numerical tests have shown that this proce-
31-35. These values range—roughly—from=0.97 to dure yields no improvement. Instead, the problem of expo-
v=1.5 together with some quite strongly deviating esti-nentially large fluctuations seems to be inherent to the MIT
mates. It is, of course, not guaranteed that the localizatiof@t least in the formulation of a nonlinear mode). _
exponents of our toy model and of the Anderson model co- tis the last restriction that hampers me from investigat-
incide exactly. But the qualitative agreement of its numericalNd Systems with. =13, say. However, as we have seen, the
values is a further indication that the above toy model yieldsLPS Sets in already fdr=10 so that the investigation of still
a qualitatively correct description of the localization transi-/2rger systems seems to be unnecessary.
tion. V. DISCUSSION

F. Limitations of the algorithm In this work, we have put forward a nonlinear toy

. . L N model which we assume to give a qualitatively correct de-
Let us briefly discuss the limitations of the applicability of scription of the localization transition. After a short discus-

the above outlined algorithm. A natural limitation is given by giqny of a simple case, in which this model is exactly solv-

a maximal system siZe<15, because of restrictions in CPU able, we outlined a MC algorithm and provided numerical

time. Further, because of the “critical slowing down” one gata which demonstrate that the localization transition within

needs more and more MCS to investigate the critical pointthe supersymmetric formulation is a continuous phase tran-
Apart from that, there are other restrictions which are spesition which can be described by 1PS. The multifractal na-
cific to our model. ture of the transition has been confirmed.

First, for y—0, all w; tend to zero, bunonuniformly It would be an interesting future task to transfer the MC
Thus, the exponent df,, Eq. (33), fluctuates strongly—in  algorithm from the toy model of the present work onto the
spite of the smallness of—due to the “almost singularity”  supermatrix models, for instance, onto the unitary model. It
which appears inw;/w;. Consequently, the weight ratio seems that the additional degrees of freedom that arise in
W(Q',G)/W(Q,G) might take very small or large values such a transfer are not too difficult to handlelowever, due
and produce a numerical underflow or overflow. This prob-to the presence of more than one Grassmann variables to-
lem can be resolved if one chooses in each MCS only smafjether with their conjugates, the contributing bond configu-
deviations from the previous configuration so that the larg&ations in Sec. IV are no more necessarily of tree e
numbers cancel each other mostly. This is, of course, at thessential features of these models are already encountered in
cost of CPU time, since one needs more MCS to “scan” thethe present MC algorithm. Such a transfer would be advan-
configuration space. Fortunately, these “precursors” of theageous in the sense that a direct connection between physi-
singularity aty=0 do not affect the present analysis too cal quantities and correlation functions of the model is avail-
seriously, sincey, is still large enough so that simulations able. Moreover, one can calculate the IPRPg for all
aroundy= . are not plagued by this feature. (positive integer g not only forq even.

More problematic seems the structure of the model at the One could also utilize the above MC algorithm in a very
opposite limit, that is, fory=1y, and largeL. As the sym-  similar way in order to calculate the order parameter function
metry breaking termd,, Eq.(31), which is to be averaged, F(y"), Eq.(26) in d=3. This yields directly the distribution
is essentially of the form exp=;w;, the fluctuations of this  function of the local amplitudes of wave functiGfs?) in-
guantity become enormously largelifis large and thew; stead of each of its moments. Further, one can investigate the
are not small, which means thatis not small. Therefore one cased=2 (see, for example, Ref. 38vhere it is possible to
needs a large number of MCS, since—roughly speaking—simulate systems of largélinear size than in three dimen-
the distribution ofA, is essentially of log-normal type, and sions.
thus the less probable values dominate its average.

One might ask whether this problem cannot be circum- ACKNOWLEDGMENTS
vented if—speaking in general terms—instead of averaging a
strongly fluctuating quantityh; according to a weight distri-
bution W, one averages, say/A; according tow;A,,
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