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We present a combination of analytical and numerical calculations for the critical behavior of a supersym-
metric nonlinears model. This toy model is expected to describe at least qualitatively the localization transi-
tion of a disordered one-electron system. As a result, we obtain a localization length exponent and a set of
inverse participation numbers in three dimensions. We find a continuous phase transition with the features of
one-parameter scaling and multifractality at the critical point.@S0163-1829~96!06141-3#

I. INTRODUCTION

The phenomenon of particle localization in a disordered
medium has attracted a considerable interest starting with the
famous Anderson paper.1 The scaling theory2,3 predicts a
transition from extended to localized electronic states for any
spatial dimensiond.2 and sufficiently large disorder. It as-
sumes that this transition@Anderson transition, localization
transition, metal-insulator transition~MIT !# can be described
as a phase transition of second order with just one single
relevant scaling field. Wegner4 introduced the so-called
N-orbital model which allowed for a field-theoretical refor-
mulation of the problem5–7 followed by a renormalization
group analysis in 21e dimensions.7–9 It was recognized that
a usual mean-field approach is not possible in this field
theory since the conventional one-point Green function —
which is closely related to the mean density of states
~DOS!—does not exhibit a critical behavior. This seems to
break the Goldstone theorem.10 By extending and making
rigorous this earlier work~which made use of the mathemati-
cally ill-defined replica trick! Efetov11 mapped the problem
of disordered one-electron systems on supersymmetric non-
linears models~in the following called supermatrix models!
with certain supercoset spacesG/K according to the particu-
lar behavior of the disordered one-electron system under
time reversal and/or spin rotation.

The investigation of the aforementioned supermatrix
models on the Bethe lattice12–14~BL! revealed an unexpected
behavior at the transition point. Namely, ajump in the in-
verse participation ratio~IPR! on the localized side and an
exponentialdecrease of the diffusion constant on the metallic
side of the transition were found. These results gave rise to
the hypothesis14 that the scaling theory~which predicts a
power-law behavior of various quantities! might be not ap-
plicable for the localization transition. In order to investigate
the critical behavior of this transition on a hypercubic lattice,
a Lagrangian was constructed in Ref. 15 so that its saddle
point reproduced the so-called effective-medium approxima-
tion ~EMA! of Ref. 16 which leads to the same non-power-
like critical behavior as in the case of the BL. It was
proposed17 that this exotic behavior is characteristic of the
Anderson transition on ad-dimensional hypercubic lattice
for a ~sufficiently high! spatial dimensiond.2.

However, Mirlin and Fyodorov18 argued that contrary to
the above hypothesis the non-power-like critical behavior is

an artifact of the special lattice structure of the BL and of the
EMA which imitates this structure. According to this view-
point one can assign an effective dimensiond5` to this
lattice structure, which plays the role of the upper critical
dimension.~A transition behavior with critical exponents 0
and` is then formally identified with a jump and an expo-
nential behavior, respectively.! In this picture the above criti-
cal behavior on the BL or within the EMA can be understood
within the one-parameter scaling assumption; for finite di-
mensions a powerlike scaling behavior is expected.

A quantitative investigation19 indicates that the EMA ap-
pears somehow as an uncontrolled approximation due to the
neglect of loop graphs, since in the context of a strong-
coupling expansion the highly branched graphs with a high
number of loops yield the dominant contribution whereas
zero-loop graphs can be neglected. It is therefore perhaps fair
to say that instead of trying to calculate corrections to the BL
results it seems more promising to investigate the localiza-
tion transition problem~within the supersymmetry formal-
ism! directly in d53 dimensions, at least numerically. This
has, however, not yet been done.

The development of a supersymmetric toy model, the hy-
perbolic superplane~HSP! model,20 allowed for some tech-
nical simplifications in the investigations of nonlinears
models. It was shown20 that this model is capable of describ-
ing localization in a quasi-one-dimensional geometry. On the
BL, an analysis of a nonlinears model taking the HSP as
target space19 reproduced the previously reported unconven-
tional critical behavior. This experience indicates that the
HSP might yield a qualitatively correct picture of the local-
ization transition ind.2 dimensions, too.

Technical simplifications compared with the aforemen-
tioned supermatrix spaces originate from the fact that the
HSP has onlyoneradial coordinate whereas the supermatrix
models show at least two radial degrees of freedom. It may
thus serve as a useful toy model which allows one to study
many interesting features related to the MIT with relative
ease, thereby gaining some experience and insight into the
main difficulties before one turns to the more interesting su-
permatrix spaces.~The HSP has been successfully applied to
several other problems as well, e.g., Migdal-Kadanoff
renormalization21 or quantum chaos in conjunction with a
superanalog of the Selberg trace formula.22!

Thus, the goal of the present paper is to help clarify the
above controversy by a mainly numerical investigation
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~Monte Carlo simulation! of a nonlinears model in d53
dimensions taking the HSP as coset spaceG/K . To antici-
pate the main result, we find a continuous phase transition,
one-parameter scaling~1PS!, and multifractality. In other
words, the data yield no evidence for a jump of the IPR. The
localization length exponent of our model is obtained as
n51.1560.15.

This work is organized as follows: After a short introduc-
tion of the HSP in Sec. II we state in Sec. III the model
which is to be investigated. In Sec. IV we describe the main
ideas which enable us eventually to treat the problem using a
Monte Carlo~MC! algorithm. The results and fundamental
limitations of this algorithm are outlined as well. We con-
clude with some remarks concerning the applicability of the
MC algorithm for related problems.

II. HYPERBOLIC SUPERPLANE „HSP…

Geometry of the HSP

The HSP is a supersymmetric homogeneous spaceG/K
of rank one and real dimension~2,2! and can be viewed as a
real, supersymmetric extension of the~upper! hyperboloid
H25SO~2,1!/SO~2!. It shares several important aspects with
Efetov’s supermatrix spaces,11 more precisely, with the
model I for the case of orthogonal symmetry. These are~be-
sides the reality constraint! ~i! its structure as coset space
G/K , ~ii ! perfect grading, i.e., equal numbers of bosonic
~commuting, even! and fermionic~anticommuting, odd! de-
grees of freedom,~iii ! noncompactness, and~iv! a positive
~super-!Riemannian curvature.

A detailed introduction of the HSP—in particular, a pre-
cise definition as a homogeneous spaceG/ K—was given in
Ref. 20 ~see also Ref. 21!; the complex counterpart of the
real HSP was introduced in Ref. 22. These definitions will
not be repeated here. Instead, for our purposes it will be
sufficient to give a brief idea of the HSP and to put forward
a useful parametrization.

An elementc of the real HSP can be viewed as a five-
component supervectorcT5(c0 ,c1 ,c2 ,c3 ,c4), where
c0 ,c1 ,c2 are even~bosonic! and c3 ,c4 are odd~fermi-
onic!. We will use an involution~adjoint, complex conjuga-
tion! of the second kind which means that for odd elements
j i ,j j we define

~ j̄ i !52j i and ~j ij j !5 j̄ i j̄ j .

Using this involution we can express the reality condition for
the HSP as

c0 ,c1 ,c2PR, c̄35c4 .

The supervectorc obeys a~nonlinear! constraint

c†uc51,

wherec†5c̄ T and the metricu is given by

u5diag~1,214!. ~1!

Moreover, we require for the body@the bodym(x) of an
even elementx denotes the ordinary part ofx, which results
after subtraction of all nilpotent terms ofx# m(c0) of c0 the
conditionm(c0)>1. We now introduce polar coordinates

c5S c0

A

c4

D 5S coshrsinhreD , e5S cosf~12h̄h!

sinf~12h̄h!

h

h̄

D , ~2!

with r ,f even, 0<r , 0<f,2p, and odd elementsh,h̄. Let
us denote the ‘‘radial’’ part of a supervectorc by c r ,

c rT5~coshr ,sinhr ,0,0,0!, ~3!

and the origin of the HSP byo,

oT5~1,0,0,0,0!. ~4!

~The above coordinates are motivated on a group-theoretical
level in Ref. 20.!

III. THE MODEL

A. Definition and motivation of the model

In this section we introduce and motivate the model
which is to be investigated; we also define some correlation
functions of interest and specify the order parameter func-
tion. Finally we show how physical quantities can be ex-
tracted from the model.

The model Efetov used14 is a system of impure metal
granules~with a large number of states! which are in contact
with each other. The~macroscopic! conductivity is then es-
sentially governed by the probability of the electron jumping
from one granule to a neighboring one. This ‘‘granular’’
model is closely related to Wegner’sN-orbital model.4 There
is some evidence23 that the Anderson model and the
N-orbital model ~or the granular model! exhibit the same
critical behavior. The above model of disordered metal gran-
ules can be described by a supersymmetric nonlinears
model on a lattice; its free energy~for identical granules! is
written in the form14

F@Q#52J(
i , j

strQiQj2b(
i
strLQi . ~5!

Here, the first sum runs over nearest-neighbor granules,J is
related to the coupling between the granules, and the param-
eterb is given byb5( i /4)(v1 i e)pnV, whereV denotes
the volume of a granule,n the average DOS,e→01, and
v is a frequency. The supermatricesQ andL have dimen-
sion 838. Their precise forms can be found in Refs. 11 and
14.

The correlation function of the DOS,K1, and the density-
density correlatorK2 are given by

K1~x,y;E!5G1~x,x;E!G2~y,y;E!, ~6!

K2~x,y;E;v!5G1~x,y;E!G2~y,x;E2v!, ~7!

where the overbar stands for the disorder average andG1

and G2 are the retarded and advanced Green functions.
These correlators can be calculated via

K1~x,y;E!}E )
i
dQiQ11

11~x!Q11
22~y!exp2F@Q#, ~8!
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K2~x,y;E;v!}E )
i
dQiQ13

12~x!Q31
21~y!exp2F@Q#. ~9!

Here, upper indices denote 434 submatrices of theQ ma-
trices and lower indices the corresponding entries within
these blocks.

Now let us consider the following statistical toy model:
At each sitex of a given lattice attach a fieldc(x) where
c is an element of the HSP. We define the action~respec-
tively, the free energy! of the model as follows:

S@c#5g(
x^y

@c†~x!uc~y!21#1b(
x

@c0~x!21#

[S0@c#1S1@c#, b52 i ~v1 i e!nV, e→01,

~10!

whereu was defined in Eq.~1! and the notationx^y means
here and henceforth thatx andy are nearest neighbors. The
‘‘interaction term’’ S0@c# contains a sum over all nearest-
neighbor pairs with an inverse coupling constantg.0 which
is a measure for the disorder of the system. Of central im-
portance are the symmetry properties ofS@c#: The term
S0 is invariant under a ‘‘global’’ transformation
c(x)°g•c(x), gPG . The second termS1 breaks this sym-
metry, but it leaves a residual symmetry unbroken. Namely,
S1 is invariant under the action of the stability group
K,G, i.e., under global transformations of the form
c(x)°k•c(x), kPK . @The action of elements of the stabil-
ity groupK leaves the origin~4! invariant.# Expectation val-
ues of functionsA(c) are defined in the usual way:

^A~c!&5Z21E @Dc#A~c!exp2S@c#,

@Dc#5)
i51

N

Dc~xi !.

Here,N is the number of lattice sites, and for the partition
functionZ we have

Z5E @Dc#exp2S@c#5exp2S@c#uc~x!5o51

because of theK invariance which remains unbroken.
In order to motivate the present model~10! we note that a

detailed analysis of the supermatrix models of the form~5!
has revealed13,14 that thecritical properties of these models
depend crucially on their symmetry structure with respect to
the groupsG andK . The toy model~10! on the HSP imitates
exactly this symmetry structure and is therefore expected to
yield a qualitatively correct description of the critical behav-
ior of the localization transition.

The use of the HSP which has only one~noncompact!
radial coordinate is further motivated by the observation that
the critical behavior of the order parameter function~see be-
low! is governed by just this noncompact variable; the other
~compact! radial coordinate~s! of the supermatrix models are
of no interest in this case. This allows for a description of the
MIT using the simplified toy model.@Of course, one cannot
hope to use this toy model successfully in situations where

the compact radial sector of the supermatrix spaces is of
equal importance as the noncompact one.#

B. Correlation functions and physical quantities

Notwithstanding the formal analogy between the model
~10! and spin models, some usual methods which are used in
phase transition theory are not applicable here. These include
in particular mean-field methods, which involve the magne-
tization, which is nonvanishing only in the ferromagnetic
phase and identically zero in the paramagnetic phase. The
reason is the equalitŷc&5o which follows from the unbro-
kenK invariance so that the mean DOS is clearly not criti-
cal. @This is in accordance with the situation in the superma-
trix models where the expectation value ofQ equalsL and is
therefore a constant.#

The only nontrivial two-point function of our model is

K~x,y;g,b!5K~x2y;g,b!5~2 ! umu^cm~x!cm~y!&,
~11!

with

mP1, . . . ,4, umu5H 0, cmeven,

1, cmodd.

@Note that ^c0(x)c0(y)& is not critical. This is a conse-
quence of the fact that the considered model has less degrees
of freedom than Efetov’s supermatrix models.#

The value of the coupling constantg decides whether the
system is in the phase of localized or extended states~if both
phases exist!. Let gc be the value ofg at which a possible
phase transition occurs. Then we have the correspondence

localized states↔g,gc , extended states↔g.gc .

Both phases differ from each other with respect to the
symmetry-breaking behavior.13 In the disordered phase~in-
sulating phase, phase of localized states! the brokenG in-
variance is restored in the limitb→0. The conducting phase
~metallic phase, phase of extended states!, however, exhibits
a scenario of spontaneous symmetry breaking: TheG invari-
ance remains broken even after the symmetry-breaking term
S1 vanishes in the limitb→0. As was shown in Ref. 13 in
the context of the supermatrix models this different symme-
try behavior together with the noncompactness ofG/K im-
plies a different behavior of the correlation functions. One
finds

limb→0bK~x2y;g,b!5H const, localized states,

0, extended states.
~12!

The two phases of the system can be distinguished by an
order parameter, more precisely by an order parameter
function.13 Let F„c(x)… be that function which is obtained if
one integrates the statistical weight exp2S@c# over all sites
of an ~infinitely extended! lattice except the sitex,

F„c~x!…5E )
yÞx

Dc~y!exp2S@c#. ~13!

For symmetry reasonsF depends only on the radial partc r

Eq. ~3!, of c and can be used to discriminate the two phases,
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lim
b→0

F~c r !}H 1~ the constant function!, g,gc

a for r→` decaying function, g.gc .

A physical meaning of the above functionF was given in
Refs. 18 and 23 where it was shown thatF is closely related
to the distribution function of the local densities of states
~LDOS!.

For future reference let us define

L~c,c8!5exp@2g~c†uc821!#, ~14!

Db~c!5exp@2b~c021!#. ~15!

These functions show the following important symmetries:

L~c,c8!5L~gc,gc8! ;gPG,

Db~c!5Db~kc! ;kPK ,

which means thatDb is aK radial function,

Db~c!5Db~c r ![Db~r !.

In addition to the correlator~11!, we will also frequently be
interested in ‘‘diagonal’’ correlators of the type

Kq~g,b!5Nl ,m
21^c1

l~x!c2
m~x!&,

Nl ,m5~ l1m!
1

p

G„~ l11!/2)G„~m11!/2…

G„~ l1m12!/2…
~ l1m22!!,

~16!

where l , m are integers larger than or equal to zero,
q5 l1m>2, andx is an arbitrary lattice site. The normal-
ization factor is chosen so that the dependence ofKq on l
andm enters only via the sumq5 l1m and that forg→0
Kq approaches unity.@For q52 and l52, m50 ~or vice
versa! this correlator reduces—sincec1 andc2 are real—to
the correlation functionK(0;g,b), Eq. ~11!.#

Let us now demonstrate how we can~at least formally!
extract physical quantities from the above defined correlation
functions. Motivated by the unusual properties of the MIT on
the BL we will focus our interest mainly on the following
quantities: the IPR~and its higher moments! and the diffu-
sion coefficientD.

Let us start from a tight-binding model with lattice sites
x,y, . . . , normalized eigenstatesck , and an average level
densityr̄(E) per site at energyE. The inverse participation
ratios ~IPR’s! Pq(E),qPR,

Pq~E!5E ddr uc~r !u2q5
1

r̄~E!
(
k

uck~x!u2qd~E2Ek!,

are a very sensitive measure for the degree of localization in
the system.24 To what extent the states are localized can be
inferred from the dependence ofPq on the lengthL of the
system~we setN5Ld, whered is the spatial dimension!. For
extended states~deep in the metallic region!, Pq scales like

Pq}N
2~q21!}L2~q21!d, ~17!

whereas for strong disorder~which means that the localiza-
tion lengthj is much smaller thanL) Pq is rather indepen-
dent of L. In the limit of extremely localized states allPq

tend towards unity. Thus, the IPR’s can be used to discrimi-
nate localized from extended states.

Around the critical pointgc ~i.e., in the range wherej
exceeds by far any microscopic length scalelmic) one makes
the following ansatz, relying on the assumption of one-
parameter scaling~1PS! ~of course, this 1PS ansatz has to be
checked explicitly by a numerical investigation!:

Pq~g;L !}L2t~q! f qS Lj D , t~q![~q21!d* ~q!, ~18!

with some scaling functionsf q . The ‘‘generalized dimen-
sion~s!’’ d* (q) differs from the spatial dimensiond and is a
function of q. For L→` Pq must become independent of
L; therefore the scaling functionsf q must~for L@j) satisfy
f q(L/j)}(L/j)

t(q). Thus,Pq(g.gc ;L→`)}j2t(q). Using
the relationj}(gc2g)2n ~for g&gc) one concludes there-
fore thatPq scales like

Pq~g&gc ;L→`!}~gc2g!p~q!, p~q!5nt~q!, ~19!

and the multifractality of the system is reflected in a non-
trivial dependence ofp(q) on q. One can show in a rather
general context~see, for example, Ref. 25 and references
herein! thatt(q) is a monotonically increasing function with
negative curvature.

The IPR’s can be rewritten in terms of Green
functions,24,26

P2~E!5 lim
h→0

h

pr̄~E!
G1~x,x;E!G2~x,x;E!,

Pq~E!5 lim
h→0

i l2m~2h!q21

2pr̄

~ l21!! ~m21!!

~ l1m22!!

3@G1~x,x;E!# l@G2~x,x;E!#m,

whereq5 l1m and l ,mPN.
Using in a second step the techniques of supersymmetry,

the above averaged products of Green functions can be rep-
resented in terms of certain correlators, i.e., expectation val-
ues of the bosonic blocks of theQ matrices with respect to
the generating functionalF(Q); see, for instance, Eqs.~6!–
~9! and Ref. 26. Because our model~10! is only a toy model,
there exists, however, no such immediate physical interpre-
tation of the correlatorsK, Eq. ~11!, andKq(g;b), Eq. ~16!.
Nevertheless,K corresponds formally to the correlator~9!,
which in turn is related to the density-density correlation
functionK2(x,y;E;v), Eq. ~7!. Further, the identity13

lim
h→0

hK1~x,y;E!5 lim
h→0

hK2~x,y;E;0!

relates the correlation functions~6! and ~7! in the localized
regime. ThereforeK playsalso the role ofK1, and we obtain

P2~g!5 lim
b→0

bK~0;g,b!. ~20!

Similarly, concerning the whole set of IPR’s (q>2), we can
formally identify
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Pq~g!5 lim
b→0

bq21Kq~g,b!, ~21!

which relates~at least, formally! the IPR’sPq to expectation
values of the model~10!. Let us note, however, that due to
the reduced number of variables in our toy model~compared
with the supermatrix spaces!, the correlatorKq is nontrivial
only for even landm. Thus, we can only hope to calculate
IPR’s with an evenq within our model.

The diffusion coefficientD(g) can be extracted by com-
parison with the long-range behavior of the correlator~7!—
or, equivalently, Eq.~11!—on the conducting side of the
transition. More precisely, its Fourier transform reads

K~k,v;g!}
1

D~g!k22 iv
, k→0, v→0, ~22!

from which D(g) can be inferred. Consequently, we can
calculatePq(g) and D(g) by consideration of thesingle
functionK.

C. Simple illustration

The simplest case which can be considered is a lattice
with just N52 lattice sites,x andy, with attached fieldsc
andc8, respectively. Let us evaluate the correlator~21! and
the IPR’s~21! for this particular case. We have

Pq~g!5Nl ,m
21 lim

b→0
bq21E Dcc̄ 1

l c2
mF~c r !,

F~c r !5Db~c r !E Dc8L~c r ,c8!Db~c8!.

We can use polar coordinates~2! and easily integrate out the
variables (f,h,h̄) at the sitex which yields~for l ,m even
and greater than or equal to zero! a factor Nl ,m /
( l1m22)!. In order to integrate out the remaining variables
note that because of the infinitesimalbq21 only the asymp-
totic domains r ,r 8→` contribute (coshr,coshr8;b21);
hence we substitute

v5bcoshr , v85bcoshr 8,

w85f8/b, x85h8/b. ~23!

Pq(g) becomes then, using standard integral identities,27

Pq~g!5 lim
b→0

bq21

~q22!! E0
`dv

b S v

b D q22

e2v

3E
0

`dv8

b S b

v8
D 2e2v8E bdw8

] x̄ 8]x8
b2

3L0~v,v8,w8!~12gvv8x̄8x8!

5E
0

`dvvq22

~q22!!
expFg2v22Ag

2 S v1
g

2D G ,
~24!

with

L0~v,v8,w8!5exp2gF12S v

v8
1

v8

v D211
1

2
vv8w82G .

~25!

Note that all powers ofb have canceled. After a straightfor-
ward calculation one obtains for the last remaining integral

Pq~g!5
~2 !q22gq22

~q22!!
~]g!q22

3H 12dA p

2g
e~g1d!2/2gF12fS g1d

A2g
D G J

d5g

,

wheref is the error function. In particular, forq52 the
result is

P2~g!512Apg

2
e2g@12f~A2g!#.

The limiting behavior ofPq(g) for g→0 and g→` can
easily be read off,

Pq~g!→H 1, g→0,

22~q21!, g→`,

as required in Eq.~17!.
Let us now turn our attention to the three-dimensional

case where integrals of the above type can, of course, be
solved only numerically.

IV. MONTE CARLO SIMULATION

In this section we introduce a MC algorithm which allows
us to calculate some correlation functions of the model~10!
numerically. For simplicity, we will restrict ourselves todi-
agonal correlation functions; specifically we will calculate
the set of IPR’sPq(g), Eq.~21!. In principle the algorithm is
capable of calculating nondiagonal correlation functions as
well.

In order to apply MC techniques it is absolutely neces-
sary, however, to find a method which treats the fermionic
variables appropriately. It is well known that attempts to
study systems which include dynamical fermions by means
of MC simulations face severe problems. This is mainly due
to the so-called ‘‘minus sign’’ problem which arises from the
presence of Grassmann variables that make a definition of a
positive-definite probability measure problematic.28 How-
ever, it turns out that a MC simulation of the model~10! is
possible in spite of the presence of fermionic variables, be-
cause of the self-terminating property of the Grassmann
polynomials.

The underlying idea of the algorithm was suggested some
years ago13 but has never been pursued. Thus, no numerical
simulations of the kind below have yet been performed.

A. Derivation of the algorithm

To begin with, letx be an arbitrary lattice site with at-
tached fieldc. We write the IPRPq(g), Eq.~21!, in the form
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Pq~g!5Nl ,m
21 lim

b→0
bq21E Dcc̄1

lc2
mF~c r !,

F~c r !5Db~c r !E )
yÞx

Dc~y!Db„c
r~y!…

3 )
x8^x

L„c r ,c~x8!… )
xi ,xjÞx

L„c~xi !,c~xj !…, ~26!

where q5 l1m. @Pq(g) does not depend on the specific
choice ofx, of course.# Similarly as in Sec. III C we integrate
out the angular and fermionic variables at the sitex. The
substitutionv5bcoshr leads afterwards to~in the limit
b→0 no boundary terms arise when one changes to polar
coordinates; thev integrations run from 0 tò )

Pq~g!5 lim
b→0

E dv~x!e2v~x!
v~x!q22

~q22!! E )
yÞx

Dc~y!e2v~y!

3 )
x8^x

L„c r~x!,c~x8!… )
xi ,xjÞx

L„c~xi !,c~xj !…

5Z21K K v~x!q22

~q22!! )yÞx
e2v~y!L L ,

with

^^ . . . &&[E dv~x!e2v~x!I „c r~x!…~ . . . !,

I „c r~x!…5E )
yÞx

Dc~y! )
x8^x

L„c r~x!,c~x8!…

3 )
xi ,xjÞx

L„c~xi !,c~xj !….

Note that the normalization of this average is

Z5^^1&&5E dv~x!e2v~x!I „c r~x!…51,

becauseI „c r(x)…51 due to the absence of symmetry-
breaking terms.

Thus, the correlation functions can be expressed as ‘‘ther-
modynamic’’ expectation values, similar to the concept of
statistical mechanics. Thus, the following scheme becomes
apparent.

~i! Generate configurations according to a certain distribu-
tion function which will be specified below.

~ii ! Average the symmetry-breaking terms

v~x!q22

~q22!! )yÞx
e2v~y!

over these configurations.
Next comes the problem of how to deal with the Grass-

mann variables. Performing at each lattice site the substitu-
tion @compare Eq.~23!#

~r ,f,h̄,h!°~v5b coshr ,w5f/b,x̄5h̄/b,x5h/b!,

we integrate out all remaining Grassmann variables (x̄,x):
First note that as a direct generalization of Eq.~25! we find

L~c i ,c j !5L0~v i ,v j ,w i2w j !~12gv iv jDx i jDx i j !,
~27!

whereDx i j[x i2x j . Now let us call a bond between

c i and c j H nonoccupiedoccupied J ,
if the ‘‘interaction term’’ according to Eq.~27! is given by

H L0

2gv iv j D̄x i jDx i j L0
J .

Then, after integrating out the Grassmann variables, one can
expressI „c r(x)… as a sum over all possible graphs~consist-
ing of occupied and unoccupied bonds! on the underlying
lattice. The following simple graphical rules for the evalua-
tion of I (c r(x)) hold.

~1! Each graph which contains a loop of occupied bonds
vanishes.The reason for this is the identity

Dx12Dx23•••Dxn150.

Thus, only tree graphs contribute toI „c r(x)….
~2! Each graph that is not linked to the site x (via a

cluster of occupied bonds) vanishes.The reason for this is
that for a nonvanishing contribution the number of Grass-
mann variables~provided by the occupied bonds! must
match exactly the number of fermionic integrations~pro-
vided by the verticesexceptby the sitex).

Thus, only tree graphs that emerge out of the sitex can
contribute. Let us denote this set of contributing tree con-
figurations by$G%.

After we have integrated out the Grassmann variables, the
partition sum can be rewritten as

Z5(
$G%

E dv~x!e2v~x!E )
yÞx

dv~y!

v2~y!

dw~y!

2p

3 )
xi^xj

L0~v i ,v j ,w i2w j ! )
xk^xl

P$G%

gvkv l .

In order to circumvent the—from a numerical point of
view—inconvenient conditionv>0 together with the singu-
larity of the measure atv50 the following substitution ap-
pears useful:

l~x!5exp2v~x!, t~y!5 lnv~y! ~ for yÞx!.

Thus, we have

Pq~g!5(
$G%

E D@f#Aq~f!V~f,G!,

E D@f#5E
0

1

d~e2v~x!!)
yÞx

E
2`

`

d„lnv~y!…E
2`

` dw~y!

2p
,

Aq~f!5
v~x!q22

~q22!! )yÞx
exp2v~y!,
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V~f,G!5gN21v~x!z~x!)
yÞx

v~y!z~y!21

3 )
xi^xj

L0~v i ,v j ,w i2w j !,

wherez(xk) is the local coordination number of the sitek,
i.e., the number of occupied bonds atk.

In principle one could now calculatePq(g) via a MC
algorithm on the configuration space$(v i ,w i),$G%% . How-
ever, such simulations have revealed that the relaxation into
equilibrium is—even upon small lattices—very slow, and far
from being satisfactory. It is therefore expedient to reduce
the number of degrees of freedom of the model further, by
integrating out the angular variablesw. This integration is
just an (N21)-dimensional Gaussian integral with the addi-
tional constraintw(x)50 and yields

)
kÞx

E
2`

` dwk

2p
expS 2

g

2(i^ j
v iv j~w i2w j !

2D uwx50

5S )
kÞx

vk
21D ~2pg!2

N21
2 ~detAx!

21/2.

Here, the matrixAx results from the real, symmetric, positive
definite matrixA with

Ai j55
ai

21, i5 j ,

21, i^ j , ai5
v i

2( j^ iv j

0, otherwise,

, ~28!

by erasing the line and column corresponding to the lattice
site x. ~Note that detAx.0.! Therefore we can reduce the
configuration space to (@V#5$v1 , . . . ,vN%,$G%), and ob-
tain finally

Pq~g!5(
$G%

E D@V#Aq~V!W~V,G!, ~29!

E D@V#5E
0

1

d~e2v~x!!)
yÞx

E
2`

`

d„lnv~y!…, ~30!

Aq~V!5
v~x!q22

~q22!! )yÞx
exp2v~y!, ~31!

W~V,G!5S g

2p D
N21
2

~detAx!
21/2v~x!z~x!

3)
yÞx

v~y!z~y!22)
i^ j

Lg~v i ,v j !, ~32!

Lg~v i ,v j !5exp2
g

2

~v i2v j !
2

v iv j
. ~33!

Notice that($G%*D@V#W(V,G)51 and that the appearance
of the exponentsz(y)22 is ‘‘natural’’ because the average
~local! coordination numberz̄ of a tree configuration is given
by

z̄52
N21
N →

N→`

2.

The scheme of a MC simulation is now~see, for example,
Ref. 29! to approximate the integral~29! by its importance
sampled average

Āq5
1

M(
i51

M

Aq~V i !, ~34!

where theM configurations (V i ,Gi) are distributed accord-
ing to their statistical weight, i.e., with probability
P(V i ,Gi)}W(V i ,Gi) .

The above considerations motivate the following MC al-
gorithm.

~1! Choose an arbitrary lattice, a sitex, and a start con-
figuration (@V#,G) of fields and bonds~the latter exhibiting
a tree structure!.

~2! Generate~locally, i.e., by changing the value of a
single, randomly chosenv) a new field configuration
(@V8#,G). Calculate the weight ratioW(V8,G)/W(V,G)
and accept the new configuration with probability
psite5min„1,W(V8,G)/W(V,G)….

~3! Choose randomly a nearest-neighbor pair (r 1 ,r 2)
wherer 1 and r 2 arenot linked with each other by an occu-
pied bond. Generate a new tree configurationG8 by breaking
the bond betweenr 2 and its predecessor and linkingr 1 and
r 2 if r 2 is notan ‘‘ancestor’’ ofr 1, which means that the path
from r 1 towardsx along occupied bonds does not visitr 2.
This procedure is illustrated in Fig. 1; it guarantees that the
new bond configuration is again of tree type. Calculate the
weight ratio of the new and the old bond configuration,

W~V,G8!

W~V,G!
5

v~r 1!

v~predecessor ofr 2!
,

and accept the new configuration with probabilitypbond
5min{1,@W(V,G8)#/@W(V,G) #}. Note that all possible
tree configurations can be attained within this procedure.

FIG. 1. Example of contributing bond configurations which rep-
resent trees emerging from the sitex. Left, r 2 is an ancestor of
r 1; right, r 2 is no ancestor ofr 1, therefore a new tree configuration
evolves.
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Before I present the results of numerical simulations, it
seems reasonable to get first a qualitative understanding of
the model~29!–~33!. I will discuss this point taking the one-
dimensional~1D! chain as an example.

B. Qualitative discussion for a 1D chain

In a one-dimensional chain withN lattice sites the sum
over trees reduces to a triviality since only one tree, namely,
the chain itself, contributes. We will therefore omit the index
$G% in the sequel.

Consider first the limitg→` . In this case the factors
Lg(v i ,v j ) in the weightW(V) force allv i to take roughly
the same value which I denote byv̄. Consequently one can
approximate

A g

2p
Lg~v i ,v j !.v̄d~v i2v j !,

and up to factors which are independent ofv̄ one finds

W~V! →
g→`

const3v̄N21)
i^ j

d~v i2v j !.

In the evaluation of the quantityPq all integrals except the
integral overv(x) break down due to thed function and one
arrives at

Pq~g!5E
0

`

dv̄exp~2Nv̄ !
v̄q22

~q22!!
5N2~q21!,

which is the correct limiting behavior.
For finite values ofg the statistical mechanics of the

model is governed by two competing effects: On the one
hand, the variablevx takes values of order unity, since
*D@V#W(V) contains the factorv(x)2exp2v(x). On the
other hand, the radial coordinates at the boundaries of the
chain,v1 and vN , say, show a strong singularity of type
1/v in Eq. ~32! and tend therefore to zero. The inverse
square root of detAx does not resolve this singularity. De-
pending on the value ofg the intermediate sites ‘‘feel’’ the
effect of the dynamics ofvx , v1, andvN and balance it. For
small g the effect of thev ‘‘fixing’’ of the site x is only
weak, and consequently allv i—exceptvx—are pushed to
zero. Thus, all IPR’sPq tend to unity.

For lattices which are of nontree type~for instance, hy-
percubic lattices ind>2) the qualitative picture is similar; in
addition to the previous discussion any sitei with an ~at the
moment! large value ofv i ~compared to the other lattice
sites! will accumulate occupied bonds at the cost of those
sites j with a small value ofv j . Conversely, a large number
of occupied bonds at a given lattice sitei will favor a large
value ofv i .

–

C. Calculation of the determinant

This section deals with the ‘‘bottleneck’’ of the algorithm,
namely, the~technical, but numerically extremely important!
question how to evaluate efficiently the determinant detAx ,
which appears inW(V,G), Eq. ~32!. For the one-
dimensional chain withN sites it can be calculated with
O(N) multiplications. However, for a hypercubic lattice of

sizeN5L3L3L and skew-symmetric~i.e., helical! bound-
ary conditions@by skew-symmetric boundary conditions we
mean that the lattice sites are numbered from 0 toN21
where for each sitek its nearest neighbors are located at the
positions k61, k6L, and k6L2 ~modulo L3)#, a naive
implementation using standard libraries would take
O(N3)5O(L9) steps, which is clearly unacceptable. The
reason is that although the matrixA itself is sparse, it be-
comes in general dense after anLU decomposition~which is
used for the calculation of its determinant!. Such a decom-
position generatesO(N2) ‘‘fills’’ in the matrix; i.e., entries
that were originally zero become nonzero after theLU de-
composition.

In a first improvement, one can modify the boundary con-
ditions in such a way that the matrixA displays a band
structure with bandwidthO(L2). This modification affects
only a fraction ofO(N21/3) lattice sites—for which the
boundary conditions are changed from periodic to free
~hard!—and is therefore negligible in the thermodynamic
limit. We can then use a standard Cholesky factorization for
the determinant of areal, symmetric, positive definite,
bandedmatrix. But since the CPU time in this case is still of
O(L7), such algorithms are practicable only for very small
systems (L&5).

One can, however, calculate the determinant ofAx in an
approximate but controlled manner inO(L3) time. First, one
splits the matrixA, Eq. ~28!, into its diagonal and off-
diagonal parts:

A5B2C,Bi j5ai
21d i j ,Ci j5d i^ j[H 1, i^ j ,

0, otherwise.

For each matrixT, let Tx denote the matrix which results
from erasing the line and columnx. Using the identity
det5exptrln, and expanding the logarithm, one then has

detAx5detBxdet~12Bx
21Cx!

5detBxexpS 2 (
n51

`
1

n
trMx

nD ,
Mi j5Aaiajd i^ j . ~35!

It remains to calculate trMx
n for n51,2, . . . . Note thatMx

does not display a simple structure, due to the effect of eras-
ing one line and column. However, if we redefine

Mi j5Aaiajd i^ j , ax :50 ~36!

~i.e., the line and column which are to be erased are replaced
by a zero line and column!, then it holds true that
trMx

n5trMn. Thus, we need not bother about the somewhat
unpleasant structure ofMx ; instead, the problem of calculat-
ing detAx is essentially reduced to the evaluation of

trMn5(
i
M ii

n5 (
i^k1^k2^•••^kn21^ i

aiak1ak2•••akn21

for positive n. The latter sum can be interpreted as a sum
over all closed paths of lengthn starting at~and returning to!
a site i on the underlying hypercubic lattice. Having this
picture in mind, one clearly recognizes that
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trM2n2150, n51,2,•••.

In addition, it can be shown that the series~35! converges at
least like (1/n)22n, which allows one to truncate the series
after a finite value ofn. In practice, 2n54 is sufficient for an
accuracy of better than 1%. Consequently, we can express
the determinant ofAx by

detAx.S )
y51,yÞx

N

ai
21D exp2S 12trM21

1

4
trM4D ,

Mi j5Aaiajd i^ j , ai5
v i

2( j^ iv j
, ax50. ~37!

Moreover, the remaining error largely cancels itself out when
one calculates the ratioW(V8,G)/W(V,G), so that we end
up with a relative accuracy of about 1023 . @In order to
achieve a performance ofO(L3) essential multiplications in
the calculation of detAx , it is, of course, necessary to use the
sparsity of the matrixM in the implementation of the matrix
multiplications in Eq.~37!.#

D. Results of the Monte Carlo simulation

We have now gained a qualitative understanding of how
the model works and how a numerical implementation is in
principle done. I will therefore present the results of the
above algorithm.

The algorithm has been checked at the example of a one-
dimensional chain withN sites, since exact results for
Pq(g) are available for bothN52 andN5`. The agree-
ment between analytical and numerical results is very good.

From the analytical calculations of the model~10! on the
BL,19 we expect the critical disordergc for the 3D hypercu-
bic lattice in the range between 1022 and 1021. We focus
our attention therefore on this order of magnitude ofg and
calculatePq(g;L) for system sizesL54,5,6,7,8,10.@It turns
out to be somewhat disadvantageous that the precise value of
gc is not yet known which hampers a direct investigation of
the critical regime right from the beginning.# This is done as

follows. To obtain a set ofPq(g;L) ~for fixed g andL, but
variable q52,4,6,. . . ) we perform typically some
1062107 Monte Carlo steps~MCS!, where each step repre-
sents a complete sweep, i.e., consists ofN5L3 random up-
dates of sites and bonds as described in Sec. IV A. We store
the pair„v(x),exp2(yÞxv(y)… after each tenth MCS. From
this data one can afterwards average@see Eq.~34!#, the ex-
pressionAq(V), Eq. ~31!, for eachq separately, and obtain
thusPq(g;L) for all q. In order to make sure that the above
data pointsAq(V i) ~where i labels the MCS!, which are to
be averaged, are statistically independent, we calculate the
autocorrelation function

C~n!5Aq~V i !Aq~V i1n!2Aq
2 , ~38!

and take for averaging only each (Ncorr)th data point
Aq(V i). Here,Ncorr is defined as the length on whichC(n)
has collapsed to a relative value of 10%. Given these
Neff5Ntotal/Ncorr data points, the statistical error scales like
Neff

21/2.
After we have produced for eachq andL the ‘‘raw data’’

yi5Pq(g i ;L) ~for discreteg i) together with their statistical
errorss i , these data are subjected to ax2-fit procedure. This
procedure yields a continuous functionPq(g;L) that inter-
polates between the valuesyi by a least-squares fit~see, for
instance, Ref. 30, or an appropriate textbook!. As an illustra-
tion Fig. 2 shows the resulting set of functions forq52 and
L54,5,6,7,8,10.

These functions tend in fact to the correct limits for
g→0 andg→` and do not intersect each other.

E. Multifractal analysis

The goal of this section is to investigate the expected
multifractal structure of the MIT, by extracting from the set
of functionsPq(g;L) the generalized dimensionsd* (q), Eq.
~18!, and the correlation length exponentn via a finite-size
analysis.

We determinegc and the sett(q) @from which d* (q)
follows immediately# by multiplying each function

FIG. 2. The ‘‘raw data’’P2(g i ;L) together
with their statistical errors, and the interpolating
function P2(g;L) as calculated from ax2 fit.
System sizes areL54,5,6,7,8,10~from top to
bottom!.
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Pq(g;L) by a factorL t̃ (q)—with a ‘‘guess’’ t̃(q). If ~and
only if! t̃(q)5t(q) then all curvesL t̃ (q)Pq(g;L) ~for fixed
q and variableL) intersect in one single point at a nontrivial
valueg5gc . This is due to the expected 1PS behavior in the
critical regime~wherej@ lmic),

Pq~g;L !}L2t~q! f „~g2gc!L
1/n
…; ~39!

compare Eq.~18!. @t(q) does not depend ong.# Usually, the
above ‘‘fitting’’ procedure is not very accurate, since the
critical coupling constantgc is not known and thereforetwo
parameters@t(q) and gc# are determined simultaneously,
which might yield quite a large uncertainty. Note, however,
that gc must take the same value for allq; therefore this
approach allows for a rather precise estimation ofgc . Thus,
for eachq, effectively only one parametert(q) is fitted.
@Once the value ofgc is known, one could alternatively ex-
tract the sett(q) from a plot of lnPq(gc ;L) versus lnL,

lnPq~gc ;L !52t~q!lnL1const,

which is a straight line with~negative! slopet(q).#
Proceeding along this scheme we observe indeed 1PS and

multifractality at the critical point: The dimensions
d* (q)5t(q)/(q21) are not constant but fall off with in-
creasingq, approaching a saturation valued`.0.3. In Fig. 3
we show as an example the 1PS behavior forq54. Here, we
have multiplied the functionP4(g,L) with a factor
t(4).1.8 which results~roughly! in a single intersection
point aroundgc.0.04.

We find

gc50.03860.004,

where for differentq the numerically obtained values for
gc fluctuate a little bit around that value. The sett(q) is
displayed in Fig. 4.

In principle we can from these data determine the so-
called f (a) spectrum25

f ~a!5a~q!q2t~q!,a~q!5
dt~q!

dq
. ~40!

In our approach, however,q is not a continuous variable, as
we do not calculate the quantum mechanical wave function
~from which Pq for any value of q could be deduced!. In-
stead,q takes only discrete~and even! values. We therefore
omit the calculation of thef (a) spectrum, since the regime
a.a0 @the maximum of f (a)# cannot be probed by our
approach.

The localization length exponentn can be obtained if one
makes a guessñ and plotsPq(g;L)L

t(q) versusL1/ñ for
g.gc and fixedq. For, from Eq.~39!, one recognizes that, if
ñ5n, then the curvesPq(g;L)L

t(q) have for differentL ~but
fixed q) the same dependence ong2gc and fall together, as
long as the criticality conditionj@ lmic is satisfied.

We obtain

n51.1560.15;

compare Fig. 5.
Although this value ofn @and the findings ford* (q)# is

surely not the result of a high-precision calculation, it fits
well into the ‘‘landscape’’ of estimates forn for the 3D

FIG. 3. The curvesLt(q)Pq(g;L) for q54, L54,5,6,7,8,10, and
t(4)51.8.

FIG. 4. The obtained values for t(q) with
q52,4,6,8,10,12,14. The trivial resultst(0)52d andt(1)50 are
added.

FIG. 5. Lt(2)P2(g;L) vs (g2gc)L
1/n @t(2)51.45,n51.15# for

differentL.
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Anderson model that have been obtained in the past by
means of several different methods; see, for instance Refs.
31–35. These values range—roughly—fromn.0.97 to
n.1.5 together with some quite strongly deviating esti-
mates. It is, of course, not guaranteed that the localization
exponents of our toy model and of the Anderson model co-
incide exactly. But the qualitative agreement of its numerical
values is a further indication that the above toy model yields
a qualitatively correct description of the localization transi-
tion.

F. Limitations of the algorithm

Let us briefly discuss the limitations of the applicability of
the above outlined algorithm. A natural limitation is given by
a maximal system sizeL&15, because of restrictions in CPU
time. Further, because of the ‘‘critical slowing down’’ one
needs more and more MCS to investigate the critical point.
Apart from that, there are other restrictions which are spe-
cific to our model.

First, for g→0, all v i tend to zero, butnonuniformly.
Thus, the exponent ofLg , Eq. ~33!, fluctuates strongly—in
spite of the smallness ofg—due to the ‘‘almost singularity’’
which appears inv i /v j . Consequently, the weight ratio
W(V8,G)/W(V,G) might take very small or large values
and produce a numerical underflow or overflow. This prob-
lem can be resolved if one chooses in each MCS only small
deviations from the previous configuration so that the large
numbers cancel each other mostly. This is, of course, at the
cost of CPU time, since one needs more MCS to ‘‘scan’’ the
configuration space. Fortunately, these ‘‘precursors’’ of the
singularity atg50 do not affect the present analysis too
seriously, sincegc is still large enough so that simulations
aroundg.gc are not plagued by this feature.

More problematic seems the structure of the model at the
opposite limit, that is, forg*gc and largeL. As the sym-
metry breaking termAq , Eq. ~31!, which is to be averaged,
is essentially of the form exp2(ivi , the fluctuations of this
quantity become enormously large ifL is large and thev i
are not small, which means thatg is not small. Therefore one
needs a large number of MCS, since—roughly speaking—
the distribution ofAq is essentially of log-normal type, and
thus the less probable values dominate its average.

One might ask whether this problem cannot be circum-
vented if—speaking in general terms—instead of averaging a
strongly fluctuating quantityAi according to a weight distri-
butionWi one averages, say,AAi according toWiAAi ,

Ā[
( iAiWi

( iWi
°

( iAi
1/2Vi

( iAi
21/2Vi

,Vi}WiAi
1/2,

and hopes that the fluctuations are damped by the square
root. However, numerical tests have shown that this proce-
dure yields no improvement. Instead, the problem of expo-
nentially large fluctuations seems to be inherent to the MIT
~at least in the formulation of a nonlinears model!.

It is the last restriction that hampers me from investigat-
ing systems withL*13, say. However, as we have seen, the
1PS sets in already forL&10 so that the investigation of still
larger systems seems to be unnecessary.

V. DISCUSSION

In this work, we have put forward a nonlinears toy
model which we assume to give a qualitatively correct de-
scription of the localization transition. After a short discus-
sion of a simple case, in which this model is exactly solv-
able, we outlined a MC algorithm and provided numerical
data which demonstrate that the localization transition within
the supersymmetric formulation is a continuous phase tran-
sition which can be described by 1PS. The multifractal na-
ture of the transition has been confirmed.

It would be an interesting future task to transfer the MC
algorithm from the toy model of the present work onto the
supermatrix models, for instance, onto the unitary model. It
seems that the additional degrees of freedom that arise in
such a transfer are not too difficult to handle.@However, due
to the presence of more than one Grassmann variables to-
gether with their conjugates, the contributing bond configu-
rations in Sec. IV are no more necessarily of tree type.# The
essential features of these models are already encountered in
the present MC algorithm. Such a transfer would be advan-
tageous in the sense that a direct connection between physi-
cal quantities and correlation functions of the model is avail-
able. Moreover, one can calculate the IPR’sPq for all
~positive integer! q not only forq even.

One could also utilize the above MC algorithm in a very
similar way in order to calculate the order parameter function
F(c r), Eq. ~26! in d53. This yields directly the distribution
function of the local amplitudes of wave functions36,37! in-
stead of each of its moments. Further, one can investigate the
cased52 ~see, for example, Ref. 38! where it is possible to
simulate systems of larger~linear! size than in three dimen-
sions.
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6L. Schäfer and F. Wegner, Z. Phys. B38, 113 ~1980!.

7K.B. Efetov, A.I. Larkin, and D.I. Khmelnits-kii, Zh. E´ksp. Teor.
Fiz. 79, 1120~1980! @Sov. Phys. JETP52, 568 ~1980!#.
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