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The motion of a vortex-~anti!vortex pair is studied numerically in the framework of a dynamical Ginzburg-
Landau model, relevant to the description of a superconductor or of an idealized bosonic plasma. It is shown
that up to a fine ‘‘cyclotron’’ internal motion, also studied in detail, two vortices that are brought together
rotate around each other, while a vortex and an antivortex move in formation parallel to each other. The
velocities of the vortices in both cases are measured to be in remarkable agreement with recent theoretical
predictions, down to intervortex distances as small as their characteristic diameter.@S0163-1829~96!05541-5#

I. INTRODUCTION

The dynamics of flux vortices in ordinary1 as well as
high-TC superconducting films2 under the influence of a va-
riety of external probes and for a wide range of temperatures
has been an area of vigorous experimental and theoretical
research during the past few decades. Their pinning by the
impurities of the lattice, the role of their motion in energy
dissipation, their contribution to the thermodynamic proper-
ties of a superconductor, and the statistical mechanics of a
vortex lattice or of a vortex glass have received considerable
attention.

However, due to both experimental and theoretical diffi-
culties, no consensus on the equation of motion of an iso-
lated vortex has been reached to date.3 Correspondingly, is-
sues related to the existence and interpretation of the Magnus
force on a vortex4 or to the origin of the so-called ‘‘opposite
sign Hall effect’’ reported in all types of superconducting
materials,5 as they are cooled below their critical tempera-
ture, have not yet been clarified.6 Experimentally, it is hard
to isolate and directly observe the motion of a particular
vortex in a superconducting film.7 So their dynamics is de-
cided by an indirect interpretation of the measurements. The
model that has often been used in the analysis of the experi-
ments in the case of the superconductor is the effective
model derived from the fundamental theory by Schmid8 or
some of its subsequent variations and extensions.9 The equa-
tions get very involved and the analytical treatment not par-
ticularly transparent.6 In addition, the theoretical uncertainty
over the proper incorporation of dissipation or over the pre-
cise role of ‘‘dirt’’ and impurities allows for little confidence
in the details about vortex motion in fully realistic systems.
Nevertheless, the overriding suggestion of all experiments is
that vortex dynamics is in many ways contrary to intuition.
The overall picture is reminiscent of the one that arises in the
dynamics of analogous solitons~the magnetic bubbles! of the
experimentally much simpler thin ferromagnetic films.10

Here, we were able to derive from first principles the equa-
tion of motion of the magnetic bubbles,11 the semiempirical
golden rule of bubble dynamics, as it has been called in the
literature. In fact it became clear that the resulting ‘‘Hall
motion’’ is a generic characteristic of soliton dynamics in
systems with nontrivial topology and spontaneously broken

Galilean invariance, due for instance to the presence of a
crystal lattice, properties shared by the superconductor.

Encouraged by this success, we proposed12 as a modest
first step to ignore finite-temperature and impurity effects
and study the physics of flux vortices within the framework
of a phenomenological effective field theoretic model,13

which in the terminology of Refs. 8 and 6 should describe
the large friction limit of a pure superconductor at zero tem-
perature. On the other hand, the model may also be thought
of as the natural coupling to electromagnetism of the com-
plex bosonic field of the Gross-Pitaevskii model for the su-
perfluid, and as such it describes the dynamics of a charged
bosonic plasma with the positive ions assumed infinitely
heavy and frozen to form a homogeneous background. In a
slightly formal jargon, the model considered is the most gen-
eral one consistent with gauge symmetry and with a fixed
homogeneous background which breaks Galilean invariance.
More recent attempts towards a formal derivation of the ef-
fective action for the superconductor14 are quite encouraging
for the physical relevance of the model at hand.

It was argued on general grounds that the model should
support the existence of absolutely stable flux vortices12 with
finite energy per unit length, similar in nature to the previ-
ously known Abrikosov vortices15 of the static Ginzburg-
Landau theory. The solutions were found numerically and
their static properties as well as the properties of pairs of
them, including their interaction potential, were studied in
detail.16 They carry zero total electric charge, but have non-
vanishing charge density and electric field and thus differ
significantly from the ones studied before.

The equation of motion of theguiding centerof the vortex
under the influence of any external force was then
derived,12,16 without any further assumption or approxima-
tion. For external forces weak relative to the characteristic
scales of the system the guiding center is expected to de-
scribe accurately the position of the vortex. The precise
quantitative condition though on the magnitude of the exter-
nal force not to wildly deform the soliton and to guarantee a
given accuracy is beyond our present analytical capabilities.
Therefore, to clarify these issues, which is the main purpose
of the present work, one has to rely on a numerical treatment
of the equations. As a first step, in this paper we consider a
vortex pair and a vortex-antivortex system in order to study
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the motion of the vortex under the influence of the force due
to another nearby~anti!vortex.

The paper is organized as follows: Sec. II contains a gen-
eral introduction to the model as well as the study of the
spectrum of small fluctuations around the vacuum. Its rel-
evance to the physics of a superconductor is also commented
upon. A brief review of the theoretical analysis of vortex
dynamics is given for completeness in Sec. III. The notion of
the guiding center is presented here together with the main
predictions about the motion of the vortices in a vortex pair
or in a vortex-antivortex system. The field equations of mo-
tion are subsequently solved numerically for a large variety
of initial configurations and parameter values, and the results
are presented in detail in Sec. IV. A remarkable agreement
was established of the mean motion of each vortex with the
theoretical formulas even when the solitons overlap consid-
erably. Furthermore, regular patterns were observed in the
vortex trajectories. They are reminiscent of the cyclotron
motion of an electron pair in a perpendicular magnetic field
and are also studied in detail.

II. MODEL: GENERAL PROPERTIES

The model describes the dynamics of a nonrelativistic
charged scalar fieldC, minimally coupled to the electromag-
netic potential (A0 ,Ai). The Lagrangian density is

L5
ig

2
@C*DtC2c.c.#1gqC0

2A02
g2

2m
uDiCu2

1
1

8p
~eE22B2!2V~ uCu!. ~1!

The magnetic and the electric fields are, respectively,
B5¹3A and Ei5(21/c)] tAi2] iA0, while DtC5(] t
1 iqA0)C, DiC5@] i2 i (q/c)Ai #C. A quartic phenomeno-
logical potentialV(uCu)5 1

8g(CC*2C0
2)2 may or may not

be present, depending on the physical system of interest.g,
m, e, g, andq are parameters,c is the speed of light, and the
spatial indicesi and j range from 1 to the dimensionality of
space. For simplicity we did not include an arbitrary param-
eter in front of the termB2. Up to this inessential for our
purposes restriction, the model is the most general theory
possessing translational, rotational, and gauge symmetry. To
make the model consistent we have included a background
~positive-ion! charge densityqC0

2 to neutralize the system.
We work in the limit where ions are very heavy and the
background is taken nondynamical.

We switch to dimensionless fields and coordinates by the
rescalings

xi→
Amc

A4pC0qg
x̃i , t→

m2c2

4pC0
2q2g3 t̃,

C→C0C̃, A0→
4pC0

2qg3

m2c2
Ã0 , Ai→

A4pC0g

Am
Ãi ,

~2!

and write the Lagrangian in the form

L5
1

2
@C̃* ~ i ]̃ t2Ã0!C̃1c.c.#1Ã02

1

2
uD̃ iC̃u2

1
1

2 S 1b Ẽ22B̃2D2
1

8
k2~C̃C̃*21!2, ~3!

with B̃5“̃3Ã, Ẽi52 ]̃ tÃi2 ]̃ i Ã0, and D̃ i5 ]̃ i2 iÃ i . The
two remaining parameters, the quartic self-couplingk2 and
the couplingb ~notice that we have changed the namel we
used in Ref. 16 for the second parameter tob, in order to
avoid confusion with the standard notation of the penetration
depth of a superconductor! of the scalar field to the electro-
static potential, are defined by

k25
gm2c2

4pq2g4 , b5
m3c4

4peq2g4C0
2 . ~4!

With the identification of the fieldC as the condensate
wave function of the Cooper pairs, and correspondingly with
g5\, m5 2me , and q5 2e/\, Eq. ~1! becomes a rather
realistic phenomenological model of a superconductor. It of-
fers a natural explanation of the Meissner and the Josephson
effects, and it predicts the correct value of the quantum
f052.0931027 G cm2 of the vortex magnetic flux.13 As
follows from Eqs.~2!, the units of length and time depend
only on the parameterC0 which is fixed by the condensate
number density. For values of the latter equal to a few per-
cent of the valence electron density, the characteristic length
falls in the range 100–1000 Å, while the time unit is
10210–1028 sec. In these units the penetration depthl is
equal to 1@see Eq.~15! below#. The coherence lengthj on
the other hand depends on both parametersk andb. For k
much smaller than 1 it varies asb21/4, while for b much
smaller than 1 its dependence isk21.17 Thus, one way to fit
a realistic ratioj/l50.25 of a type-II superconductor is to
takek small andb'44. As we will demonstrate, though in
the sequel, the main features of vortex motion are robust and
independent of the particular parameter values.

The actionS, the integral ofL over space and time, is
invariant under the gauge transformation~to simplify nota-
tion all tilde shall be dropped from now on!

C85exp@ iL~x,t !#C,

Ai85Ai1] iL, ~5!

A085A02] tL,

for arbitrary functionL(x,t), and its extremization with re-
spect toA0 leads to the Gauss constraint

1

b
] iEi5CC*21. ~6!

We shall only be interested in configurations with vanishing
total electric charge. The equations of motion derived by
varyingS ~under this constraint! with respect toC* andAi
read

12 494 54G. N. STRATOPOULOS AND T. N. TOMARAS



i Ċ52 1
2 D

2C1A0C1 1
4k2~C*C21!C,

1

b
Ė5¹3B2J, ~7!

with the currentJ5@C*DC2c.c.#/2i . The energyW of an
arbitrary configuration of the system is the spatial integral of
the energy densityw, which is the sumw5wd1wb
1we1wv of the four positive definite terms

wd5
1

2
uDiCu2, wb5

1

2
B2, we5

1

2b
E2,

wv5
1

8
k2~CC*21!2. ~8!

The vacuum

Equations~6! and ~7! admit the one-parameter family of
equivalent vacuum solutions

C5eia, Ai50, A050, ~9!

parametrized by the constant angular parametera.
To study the spectrum of small fluctuations around the

vacuum solution we choose the one witha50 and the Cou-
lomb condition“•A50 to remove the gauge arbitrariness of
the model. We then parametrize the generic deviation ofC
from its vacuum valueC51 by

C5~11F!eiQ. ~10!

For the discussion of small fluctuations the magnitudes of
F, Q, A0, andA1 will all be taken much smaller than 1.
Keeping only up to quadratic terms in these small fields, the
Lagrangian becomes

L52] tQ~112F!22FA02
1

2
~] iQ

21] iF
21Ai

2!

1
1

2b
~] iA0

21] tAi
2!2

1

2
B22

1

2
k2F2 ~11!

and the equations of motion read

] tF1] i
2Q50, ~12!

] tQ5 1
2 ] i

2F2A02
1
2 k2F, ~13!

1

b
] i
2A012F50, ~14!

1

b
] t
2Ai5]k

2Ai2Ai . ~15!

The field Ai decouples at this level. Acting with the time
derivative on Eq.~12!, with the Laplacian on Eq.~13! and
using Eq.~14!, one obtains the following equation of motion
of F:

] t
2F5 1

4 k2] i
2F2bF2 1

4 ] i
4F. ~16!

The plane waves Ai5Ai
0e2 i (vAt2k•x) and

F5F0e2 i (vFt2k•x), obeying the dispersion relations

vF
2 5b1 1

4 k2uku21 1
4 uku4, ~17!

vA
25b~11uku2!, ~18!

form a complete set of solutions of the equations of motion
of F and Ai above. Notice that both spectravF(k) and
vA(k) have an energy gapG5Ab. Finally, the solutions for
Q andA0 are obtained by solving Eqs.~12! and~14!, respec-
tively.

III. VORTEX DYNAMICS

The model under study, with or without the potential term
V(uCu) present, supports the existence of flux vortex solu-
tions. They are infinitely long, localized in the transverse
direction, smooth, cylindrically symmetric,z-independent
configurations with finite energy per unit length, whose static
properties, together with the properties of pairs of them, have
been studied in detail.16 We wish to study their dynamics
numerically and to verify the approximate analytical predic-
tions about their motion,12 reviewed briefly in the present
section. We will ignore thez-dependent excitations of the
string and consequently the formalism reduces to purely
211 dimensional. Spatial indices will from now on take the
values 1 and 2, while the magnetic field will only have its
third component nonvanishing and will be simply denoted by
B. Correspondingly, we will be thinking of the vortices as
finite-energy ‘‘particlelike’’ localized objects in two spatial
dimensions. Any finite-energy configuration is characterized
by an absolutely conserved integer numberN, which counts
the number of times the phase of the scalar field at spatial
infinity, a function of the polar angleu, winds around the
circle of vacua, Eq.~9!, asu varies from zero to 2p. It is
evaluated for the given configuration by integrating over
space a topological densityt(x). Among the various possi-
bilities the most useful form oft is, for our purposes, the
manifestly gauge invariant expression

t5
1

2p i
@ekl~DkC!* ~DlC!2 iB~C*C21!#. ~19!

As will be shown immediately, this quantity appears in the
formulas for the conserved momentum and angular momen-
tum of the theory.

Indeed, it was pointed out in Ref. 12 that the naive Noe-
ther expressions for the linear and the angular momentum of
the model are ambiguous for any configuration with nonzero
topological charge, and that the correct formulas for these
quantites are

Pk5ekiE d2xS 2pxit1
1

b
EiBD ~20!

and

l52E d2xS px2t1
1

b
x•EBD , ~21!

respectively. They differ from the naive expressions by sur-
face terms, which are important in topologically nontrivial
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sectors. The presence of the first and the second moments of
the topological densityt in the above formulas inherits them
with an entirely different physical meaning. Let us consider
the momentum. Rotate it by 90° and divide by the constant
2pN to obtain the new conserved quantity

Ri[2
1

2pN
e i j Pj . ~22!

The value ofR for an isolated axially symmetric vortex so-
lution is exactly the center of the vortex, and a rigid displace-
ment by c of any given configuration as a whole changes
R by c. Thus, the natural interpretation ofR is the ‘‘mean
position’’ of a generic localized configuration and this justi-
fies the nameguiding centerfor it. Similarly, the first term of
the angular momentum is a measure of the size of the local-
ized configuration and not of its rotational motion.

Finally, one should mention the fact that the two compo-
nents of the momentum, the generators of translations in the
x and they directions, do not commute. Instead, their Pois-
son brackets are

$P1 ,P2%52pN, ~23!

a property suggesting a deep algebraic similarity of the
model under study to a system of electric charges moving in
a plane and in the presence of a perpendicular magnetic
field.11 Up to a multiplicative constant, the topological
charge plays the role of the external magnetic field of the
analogue model.

In the absence of external forcesP is constant and so is
R. Thus, a free localized vortex whose mean position is
given byR will be spontaneously pinned at its initial posi-
tion. No free translational motion of a vortex is possible.
Under the influence of an external forceF, the momentum
evolves according to Newton’s lawdPk /dt5Fk and this
translates into the following equation of motion of the vor-
tex:

d

dt
Rk52

1

2pN
eklFl ; ~24!

i.e., the vortex moves with speedzFz/2puNu and at690°
relative to the force for positive and negativeN, respectively.
We see that the vortices exhibit the Hall behavior known
from the analog electric charge system mentioned above.
This is how the analogy of the canonical structures of the
two systems is reflected in the dynamics.

Based on Eq.~24!, one may immediately conclude that
the vortices of a vortex pair will rotate around each other. A
rough theoretical estimate of the corresponding angular ve-
locity V is easily obtained, especially when both vortices
carry the same numberN of flux quanta. Define for each one
of the two vortices its approximate guiding center by Eqs.
~22! and~20! with the integral taken over the corresponding
half-plane. For localized vortices separated by a distanced,
large compared to their characteristic size, this is a reason-
able definition of their positions. Let us further assume that
each vortex behaves more or less like a rigid body living in
a potential equal to the vortex-vortex interaction energy
Uvv(d). Then, the magnitude ofV is given by

V~d!5
1

puNud
uUvv8 ~d!u ~25!

and its direction is counterclockwise~clockwise! for ND•F
positive~negative!, respectively. The vectorD joins the cen-
ter of the system to the approximate position of any one of
the two vortices, whileF denotes the force acting on it.

In the same spirit, a vortex-antivortex pair withN(2N)
flux units, respectively, is expected to move in formation in a
direction perpendicular to the line connecting them, and with
a speed given by

V~d!5
1

2puNu
uUvv̄8 ~d!u. ~26!

The direction of their motion coincides with that ofr3 ẑ,
where r[R12R2 the vector joining the negative to the
positive-flux vortex, andẑ the unit vector out of the plane.
Incidentally, one may check that, like in the relativistic
Abelian-Higgs model,18 the vortex and the antivortex attract
at all distances, a fact used above in the determination of the
direction of motion of the pair.

Clearly, formulas~25! and ~26! should nota priori be
trusted for very small separations of the two solitons. Al-
though ford much larger than their characteristic size the
hypotheses behind their derivation are physically sound,
smallerd’s make such approximations questionable. It will
be shown though in the next section, through a direct quan-
titative comparison of these formulas with our numerical re-
sults, that Eqs.~25! and ~26! are reliable and describe quite
accurately the vortex-~anti!vortex motion even at distances
as small as their characteristic diameter.

IV. NUMERICAL RESULTS

A. Discretization

We now turn to the numerical treatment of the motion of
a pair of vortices and of a vortex-antivortex system due to
their mutual interaction. We choose to discretize the system
in a way that preserves as much of the symmetry of the
continuous theory as possible. In particular, as explained in
the Appendix, it is convenient to preserve the gauge invari-
ance of the model. Otherwise one has difficulty in imposing
Gauss’ local constraint, and this leads to integration instabili-
ties. But then naive discretization of the model is not appro-
priate and one has instead to use techniques developed in the
study of lattice gauge theories.19

Space is replaced by a two-dimensional square lattice
with lattice spacinga. The scalar field is replaced by the
variablesC i , j , all functions of time, which live on the ver-
tices of the lattice. Similarly, the spatial components of the
gauge field are represented byAi , j

1 andAi , j
2 and live on the

corresponding oriented link connecting (i , j ) to (i11,j ) and
to (i , j11), respectively. At this stage time is left continuous
and the electrostatic potentialAi , j

0 lives on the vertices of the
grid.

The lattice version of the covariant derivative is

DkC i , j5
1

a
~Ui , j

k C~ i , j !1 k̂2C i , j !
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where

Ui , j
k 5exp~2 iaAi , j

k !, ~27!

and the lattice action takes the form

S5E dta2(
i , j

H 12 @C i , j* ~ i ] t2Ai , j
0 !C i , j1c.c.#

1Ai , j
0 2

1

2
uDkC i , j u21

1

2b
Ei , j
2 2

1

8
k2~C i , j* C i , j21!2

2
1

2a4
$12cos@a~Ai , j

1 1Ai , j11
2 2Ai11,j

1 2Ai , j
2 !#%J , ~28!

where Ei , j
k 52] tAi , j

k 2(1/a)(A
( i , j )1 k̂

0
2A( i , j )

0 ). In the a→0
limit the last term of Eq.~28! becomes theB2 term of the
continuous model.

The action~28! is indeed invariant under the discrete ver-
sion of the gauge transformation~5!:

C i , j→exp~ iL i , j !C i , j ,

Ai , j
k →Ai , j

k 1L~ i , j !1 k̂2L i , j , ~29!

Ai , j
0 →Ai , j

0 1] tL i , j .

Correspondingly, the system obeys the discretized form of
Gauss’ law:

1

a (
k51,2

~E
~ i , j !1 k̂

k
2Ei , j

k !5b~C i , j* C i , j21!, ~30!

where k̂ is the unit lattice step in the spatial directionk.
Variation of the lattice action~28! with respect toC i , j* and
Ai , j
k leads to the equations of motion

i Ċ5
1

2a (
k51,2

$U
~ i , j !2 k̂

k* ~DkC~ i , j !2 k̂!2~DkC~ i , j !!%

1
1

4
k2~C i , j* C i , j21!C i , j ,

1

b
Ėi , j
k 5

i

2a
@Ui , j

k C i , j1 k̂C i , j* 2Ui , j
k*C

i , j1 k̂
* C i , j #

1
1

2a3(lÞk
$sin@a~Ai , j

k 1A
i , j1 k̂

l
2A

i , j1 l̂

k
2Ai , j

l !#

2sin@a~Ai , j2 l̂

k
1A

i , j1 k̂2 l̂

l
2Ai , j

k 2A
i , j2 l̂

l
!#%. ~31!

Equations~31! will be integrated numerically, in order to
follow the time evolution of any set of initial data obeying
the local constraint~30!. Notice that noA0 appears in the
equations above. They are written in theA050 gauge, which
simplifies considerably the equations of motion and makes
the numerical task more tractable. We leave for the Appen-
dix the details about the lattice size, the time discretization,
and the integration algorithm used, and proceed with the pre-
sentation of our results.

B. Vortex pair

Let us consider two vortices withN units of magnetic flux
each, formed initially at a distanced from one another. In
terms of the fieldsC andAi it is most convenient to take for
the initial configuration the ‘‘product ansatz’’ of the corre-
sponding two axially symmetric vortex solutions16

C~x!5C~N!S Ux2
d

2 U DC~N!S Ux1
d

2 U D , ~32!

A~x!5A~N!S Ux2
d

2 U D1A~N!S Ux1
d

2 U D . ~33!

The fieldA0 is consistently set to zero, while the solution of
Gauss’ constraint for the givenC configuration provides us
with the initial data for the electric field2] tAi(x,t50), nec-
essary for the integration of the equations of motion.

Although for large separations this configuration is some-
what special, being close to the minimum of the energy un-
der the constraint of two zeros in the scalar field, for smaller
d it imitates reasonably well the rather random production of
the vortices in a realistic situation.~In fact, the axial symme-
try of the ‘‘individual vortices’’ was relaxed in several runs.
No deviations from the picture presented below were ob-
served.! Thus, the initial configuration consists essentially of
two lumps of energy and topological charge, concentrated
around two local maxima at a distanced from one another.
Strictly speaking, there is no unique definition of a vortex
position in a generic multivortex configuration. The positions

FIG. 1. The trajectory of one vortex in the pair as determined by
the location of the maximum of the energy density, of the maximum
of the topological density, and of the zero of the scalar fieldC.
Time durationt5800.
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of the individual vortices are defined only approximately,
either as the positions of the zeros of the scalar field, or as
the positions of the local maxima of the energy density or of
the topological density, or finally as the approximate guiding
centers discussed in the previous section. All these are rea-
sonable definitions and their differences become less and less
significant as one increases the vortex separation. Having
specified the initial configuration one is ready to proceed
with the numerical study of its time evolution.

We take for the parameters the valuesk51.5 andb50.04
and consider first the case of two minimalN51 vortices.
Figures 1 and 2 show the results of the numerical integration
with the two vortices placed initially at~22.0, 0! and~12.0,
0!, respectively. At this distance the vortices already interact
significantly, while retaining their individuality. In Fig. 1 the
trajectory of the second vortex is plotted. The first one fol-
lows the image of the above trajectory under reflection with
respect to the origin. To avoid overlapping of the trajectories,

the run was interrupted after about 800 time units, when the
vortices had each completed a full rotation around the origin.
The picture that emerges is identical to the one obtained in
the study of the motion of a pair of electrons in the plane and
in the presence of a perpendicular magnetic field.17,20 Apart
from an overall rotation around the origin, a finer periodic
motion can be perceived in the trajectory of each vortex,
shown in Fig. 1. Borrowing the terminology from the two-
electron analog, we give the name ‘‘cyclotron’’ to this finer
motion of the vortices and we will study it in detail later on.

The fact that the trajectories shown in Fig. 1 are so similar
indicates that the vortices move like rigid bodies, without
significant oscillatory activity in their interiors. This is dem-
onstrated beyond any doubt also in Fig. 2, where we plot
four snapshots of the energy density contours, corresponding
to times t50, t5200, t5500, andt5700, respectively. In
agreement with our previous conclusion, the shape of the
energy profile in each of the two lumps seems to remain

FIG. 2. Four snapshots of the energy density contours during the motion of the vortex pair. The values of the energy density on the
contours, the time and the distances on theX andY axes are given in the units defined by Eq.~2!.
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unchanged during the rotation. A more detailed examination
though, including animation of succesive snapshots, revealed
a small oscillation in the sizes of the two energy lumps. They
spread a little and shrink periodically with a period equal to
that of the cyclotron motion.

An estimate of the accuracy of the results presented above
is obtained by examining the precision of the validity of the
conservation laws during the evolution. Thus we consider
next the time dependence of the theoretically conserved
quantities: energy, linear momentum, angular momentum,
and topological charge, as well as the local constraint given
by Gauss’ law. After a complete period, the total deviation in
Gauss’ law~the sum over all points of the grid of the abso-
lute values of the local deviations! was less than 1026. From
the time evolution of the total energyW of the system, de-
picted in Fig. 3, one sees that it was conserved with an ac-
curacy better than one part in 103. In contrast to the vividly
oscillating four componentsWe , Wb , Wd , andWv , also
plotted in the same figure, the total energy is on the same
scale a perfect straight line parallel to the time axis. The
same is true for the total angular momentuml and its two
gauge-invariant piecesl 1 and l 2, all plotted in Fig. 4. Al-
though the two individual terms undergo rather wild oscilla-
tions, their sum is conserved to within a few percent. The
first term l 1 of the angular momentum~21! is 2p times the
second moment of the topological density, a measure of the
size of the vortex pair. Thus, the oscillatory nature of the
cyclotron motion of the two vortices, shown in Fig. 1 above,
is expected to induce a similar behavior in the time evolution
of l 1, while the conservation of the total angular momentum
implies the same forl 2, all with the same period. This is
trivially verified by a comparison of Figs. 1 and 4. Note that
a periodical pattern with the same period can also be detected
in the energy plots after careful examination. It seems that
this oscillatory behavior is a general feature of the system.
We turn next to the total topological chargeN, whose time
evolution is plotted in Fig. 5.N starts att50 with the value
1.993, and up to a small fluctuation of less than one part in

103 it retains that value for the whole duration of the run. Its
deviation from the continuum valueN52 is due to the spa-
tial discretization of the system. Finally, the position of the
guiding center of the system~or equivalently its total linear
momentum! is considered. This is a conserved quantity,
which, due to the symmetry of the starting configuration,
initially coincides with the origin of the coordinate system. It
was checked to be pinned there with impressive accuracy at
all times.

Thus, the picture that arises clearly confirms the theoreti-
cal predictions discussed in the previous section. All the con-
served quantities of the continuum are respected with high
accuracy. Furthermore the system is characterized by peri-
odic patterns manifested in the trajectory plots, one example
of which is what we called ‘‘cyclotron motion.’’ This whole
qualitative picture is generic. It was verified in all our runs,
for a large variety of initial configurations and for a wide
range of parameter values.

FIG. 3. The time dependence of the various components of the
energy of the vortex pair and of the total energyW. Note the high
accuracy in the conservation of the total energy of the system.

FIG. 4. The two pieces of the angular momentum and their sum.
The conservation of the total angular momentum to within 2% is
quite satisfactory.

FIG. 5. The time evolution of the total topological charge of the
vortex pair.
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We proceed next to the quantitative comparison of our
numerical results with the rough theoretical prediction~25!
of the angular velocity of the vortex rotation. For that one
needs the interaction potentialUvv(d) between the two vor-
tices as a function of their distance. Define
Uvv(d)5E(d)22EN51, with E(d) the minimum of the en-
ergy in theN52 sector with the constraint that the scalar
field vanishes at two points, a distanced apart, andEN51 the
energy of the single-vortex solution. The result fork51.5
andb50.04 is plotted in Fig. 6. One sees that for the values
of the parameters chosen above,Uvv(d) is repulsive at all
distances, falling to zero very quickly. With the interaction
energyUvv(d) at hand one may calculate numerically its
derivative and plot the theoretical prediction for the period of
revolution derived from the right-hand side of Eq.~25!. This
is illustrated by the continuous curve in Fig. 7. One then
simulates numerically the motion of the vortex pair for vari-
ous initial separations and from the time it takes for them to
cover a full circle around each other one determines the cor-

responding period. The result is represented by the little tri-
angles in Fig. 7. The agreement is quite remarkable, down to
distances of the order of the vortex characteristic diameter, at
which the two vortices overlap almost to the point of losing
their individuality.

It was pointed out in Ref. 16 that in contrast to the vortex-
antivortex which always attract each other,18 the interaction
energyUvv(d) between two vortices is not in general a
monotonically decreasing function of their distance. For in-
stance, the potentialUvv(d) for the model withk50.5 and
b50.005 shown in Fig. 8 increases up to a local maximum
at d.7 and decreases beyond that. In agreement with Eq.
~25! one then expects the twoN51 vortices to rotate coun-
terclockwise when put at a distance greater than 7, and
clockwise when the initial separation is smaller than 7. This
is exactly what is observed for two vortices placed initially
on thex axis, symmetrically with respect to the origin at a
distanced58 andd54.5, respectively. The trajectories of
the vortices initially on the right, as determined by the zero
of the scalar field, are shown for both cases in Fig. 9. The
absolute values of the corresponding angular velocities are
also in agreement with Eq.~25!. The rather vivid fluctuations
in the details of the two interacting vortices is a general
feature in smallk models.

Before we move on to the discussion of the vortex-
antivortex system, and in order to improve one’s intuition
about the behavior of the vortex pair, we would like to push
a bit further its qualitative analogy with the two-electron
system. For that we will study and compare the details of
their cyclotron motions. The simplicity of the electron sys-
tem allows for a complete analytical treatment and for a de-
tailed description of their trajectories. One finds17,20 that ge-
nerically the corresponding guiding centers perform circular
motion, while the orbits of the electrons themselves exhibit
patterns similar to those of Fig. 1. Furthermore, it can be
shown that for given initial conditions, the characteristic
wavelength and width of their cycloid motions increase
when one decreases the strength of the external magnetic
field, or as one increases their mutual interaction by decreas-
ing their separation, or by increasing their electric charge. A
very similar picture emerges in the vortex-pair case. To

FIG. 6. The interaction energy of twoN5 1 vortices for
k51.5 andb50.04 as a function of their separationd.

FIG. 7. The period of revolution of the vortices around each
other as a function of their separation, computed from the theoreti-
cal formula using the slope of the curve of Fig. 6~solid line! and
from the numerical experiments~triangles!.

FIG. 8. The interaction potential of the two vortices fork50.5
and b50.005. The potential is attractive for small distances and
repulsive ford. 7.
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study it we first performed a series of numerical experiments
for various d’s, for the same values of the parameters
k51.5 andb50.04. The results depicted in Fig. 10, com-
bined with Fig. 6, clearly confirm the claim that the cyclo-
tron wavelength and width both decrease with the vortex-
vortex force. Next, we variedb and followed the trajectory
of the energy maximum corresponding to one of the two
vortices for the same time interval in all cases. From the
results shown in Fig. 11, it becomes apparent that an increase
of b leads to a decrease of the corresponding cyclotron char-
acteristics. Notice also from the same figure and Eq.~25!,
that the intervortex force increases withb.

So far we have dealt with small values of the parameterb,
mainly in order to study the details of the cyclotron motion.
As explained in Sec. II, though, a possible realistic set of
parameters for a type-II superconductor isk small and
b5100. Figure 12 depicts the result of the numerical inte-

gration for an initial vortex-vortex separationd53.5. The
cyclotron oscillations are now suppressed, the period has
changed, but the vortices still move on a circle.

C. Vortex-antivortex system

We next replace one of the vortices of the pair by an
N521 antivortex and let it evolve. Like in the analog
electron-positron planar system with the external magnetic
field and for reasonable initial velocities, we expect that,
again up to a small cyclotron motion, the vortex and the

FIG. 9. In agreement to the theoretical prediction, when the
N5 1 vortices attract each other, they rotate clockwise, while when
they repel, they rotate counterclockwise.

FIG. 10. The trajectory of the maximum of the energy density of
one of the two vortices of the pair. The dependence of the charac-
teristic wavelength and width of the cyclotron motion of each vor-
tex on their separationd is qualitatively identical to the one ob-
tained in the two-electron system.

FIG. 11. The trajectory of the vortex, as determined from the
position of the corresponding energy maximum, for various values
of the parameterb and for the same total duration in all runs.

FIG. 12. The trajectories of the two vortices for half a period
and for parameter valuesb5100 andk50.0.
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antivortex will move in formation along parallel trajectories.
This picture contradicts naive intuition, according to which
the vortex and the antivortex would as a result of their at-
traction approach each other and gradually annihilate into
elementary excitations.

A series of numerical experiments was performed with
the vortex-antivortex system. The initial field configuration
used was the product superposition of anN5 1 and an
N521 axially symmetric vortex solutions, according to the
ansatz

C~x!5C~1!S Ux2
d

2 U DC~21!S Ux1
d

2 U D ,
A~x!5A~1!S Ux2

d

2 U D1A~21!S Ux1
d

2 U D , ~34!

whereC (1) andA(1) are the static fields of theN51 vortex
and C (21) and A(21) are those of theN521 antivortex.
Like in the vortex-vortex case,A0 is set to zero and the
initial values of the electric field are obtained by solving
Gauss’ equation with the aboveC.

The trajectories of the vortex and the antivortex in a typi-
cal run are illustrated in Fig. 13. Both the approximate guid-
ing centers and the local maxima of the energy density were
followed and are shown on the same plot. The parameters
were set tok51.5 andb50.04, while the initial positions of
the vortex and the antivortex~zeros of the scalar field! were
taken at ~22,10! and ~2,10!, respectively. The vortices
moved in the negativey direction for 20 space units, i.e.,
about 16 times their size, while retaining their initial shape
and keeping their initial separation constant. They moved
with constant speedV50.025. The vortex velocity in the
vortex-vortex pair for the same values of parameters and
separation was found to beV50.016. The higher velocity in

the vortex-antivortex case implies a potential between them
steeper in absolute value than the one in Fig. 6.

Apart from the parallel transport of vortices, one sees a
finer oscillating motion, the ‘‘cyclotron motion’’ we men-
tioned in the preceding paragraphs. We performed several
runs to study its details for various values ofd andb. As in
the vortex pair system, both wavelength and width of the
oscillation are decreasing functions ofd and b, in perfect
qualitative agreement with the dependence of the cycloid
patterns in the electron-positron analogue.

We would like to end the discussion of the results with a
final comment about boundary effects. As follows from Fig.
13, if we neglect the cyclotron motion, the paths of the two
vortices are perfect straight lines parallel to they axis. A
slight convergence of the trajectories towards each other ap-
pears, though, when the vortices come close to the bound-
aries. Actually, if they start 6–7 space units away from the
boundaries, the initial convergence disappears, to appear
again when the vortices get close to the negative-y boundary.
By trying different sizes of grids, one concludes that this
behavior is a boundary effect sensitive to the absolute sepa-
ration between the vortices and the boundaries, but insensi-
tive to the size of the grid. In the case of relatively small
grids, the convergence of the paths could be misleadingly
interpreted as a generic feature of vortex dynamics. To avoid
this effect in our numerical experiments we always placed
the vortices sufficiently away from the boundaries of the
grid.

V. DISCUSSION

The direct numerical integration of the motion of a ge-
neric vortex-~anti!vortex configuration confirms the Hall be-
havior, predicted analytically in a previous publication. The
quantitative agreement persists even when the two solitons
overlap to the point that they can hardly be considered as
two. Physically, this behavior may not be entirely surprising.
It might be described as the well-known Hall effect. After all
the vortex of the model is microscopically16 a nonvanishing
electric charge density, which is sustained by the nonlinear
forces~attractive electrostatic andC self-interactions! of the
model, to circulate around its center, thus giving rise to the
vortex magnetic field. The current is locally perpendicular to
the electric field and hence consistent with the absence of
energy dissipation. Thus, the overall situation looks similar
to the ordinary Hall setting; only the circulating charges are
immersed in their own magnetic field and repelled by it,
instead of being kept in orbit by an externally prescribed one
and, quite naturally, a vortex is expected to exhibit the Hall
behavior described here. One may push the picture even fur-
ther by noticing that since the charges as described by the
wave functionC, are spread over the entire region of the
vortex, and they feel the integral of the magnetic field, i.e.,
the winding number of the configuration, which makes plau-
sible the appearance ofN in formulas~24! and ~23!.

Mathematically, on the other hand, one is dealing with the
most general model describing the dynamics of a condensate
wave functionC coupled to the electromagnetic potential,
and restricted only by the translational, rotational, and gauge
invariance of the system. The ion lattice assumed frozen,
defines a preferred reference frame, and breaks the Poin-

FIG. 13. The evolution of a typical initial vortex-antivortex con-
figuration. The wavy and the straight lines are the trajectories of the
energy density maxima and of the approximate guiding centers,
respectively.
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caréinvariance of the underlying fundamental system. Topo-
logical or metastable nontopological solitons21 in models
with just these symmetries22 are expected16 to exhibit iden-
tical Hall behavior. This is indeed what happens in all the
systems examined so far,23,24 even in ferromagnets which
have no physical similarity to a system of charges interacting
with the electromagnetic field.11,25

Clearly, the next step is to test the predictions of the
model at hand against more realistic experimental situations.
One should study the static properties of vortices in thin
films with finite thickness, and then analyze their response to
an external current in the context possibly of an improved
model to incorporate dissipation.
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APPENDIX: THE NUMERICAL ALGORITHM

To solve the initial value problem defined by the system
of equations~31! and a starting configuration of the form
~33! or ~34! we considered in this paper, we used a leapfrog
updating scheme26 where the time levels in the time deriva-
tive term ‘‘leapfrog’’ over the time levels in the space de-
rivative term. Equations~31! are a mixed system of first-
order and second-order differential equations in time. A
leapfrog algorithm for a second-order equation is equivalent
to the updating of fields and momenta successively, but the
coupling of that equation to a first-order equation demands
special care in the construction of the algorithm. Neverthe-
less, the leapfrog algorithm gives marked improvement in
stability over the simpler approach of updating both fields
and their momenta at the same time level.

To achieve sufficient accuracy in our computations we
used a 1613161 grid, with lattice spacinga50.15. The
space resolution of that grid is estimated by calculating nu-
merically the total topological chargeN of Eq. ~33! and com-
paring it to the exact valueN52. Using formula~19! for the
topological charge one findsN51.993. Interestingly, the al-
ternative formula forN5(1/2p)*d2xB is less sensitive to
the discretization and givesN51.999 for the initial configu-
ration. The accuracy of our results is further estimated by the

conservation of the energy, which in all our runs remained
constant to a degree better than 0.1% over a full period. We
imposed Neumann boundary conditions by setting, the cova-
riant derivative in the normal to the boundary direction,
equal to zero. To do so we fixed the value of the Higgs field
at each point of the external layer of the grid equal to their
first inner neighbour. Also the values of the gauge fields,
which live at the links which connect those neighbors, were
set equal to zero. To test our results we repeated our runs on
larger grids 2513251 with the same or smaller lattice spac-
ing, say,a5 0.1, and the results obtained were all perfectly
consistent. We used a larger grid 2513251 anda50.15 in
the vortex-antivortex experiments in order to follow the or-
bits of the solitons for longer distances. The time stepDt we
used in most of our runs was 0.001 or 0.002 but the algo-
rithm was stable and accurate for even larger time steps. All
our studies were performed on various HP workstations in
Crete. A typical run of durationT'800 time units, with
Dt50.002 on a 1613161 grid, needed about 80 hours of
CPU time on a HP-735 machine.

Finally we wish to comment on our choice to use the
formalism developed in the study of lattice gauge theories.
One may envisage two discretization schemes to convert the
equations of motion of our theory into difference equations:
the conventional discretization scheme~CDS! and the lattice
gauge formalism~LGF!. We experimented with both and
finally adopted the latter for its elegance and functionality. It
should be pointed out that both methods have been used in
the study of vortex dynamics in relativistic models,19,27–30

with satisfactory and consistent results. The LGF, especially
designed to preserve the local constraint, is certainly more
natural to use in a gauge theory, but for our problem there
was another more serious issue to face. Use of any CDS
explicitly violates gauge invariance. Without the gauge in-
variance there is no reason for the local constraint to be
satisfied. In fact, a violation of the equation of continuity and
of Gauss’ law was obtained, which in addition was accumu-
lative in the runs based on any CDS we tried. Whenever the
error in those became significant, the integration routine de-
stabilized. The way out in the context of a CDS would be to
use a sufficiently small time grid spacing to retain the error at
sufficiently small values all during the time interval required
for the study of the phenomenon of interest. This has worked
reasonably well in the study of vortex scattering in relativis-
tic models,27,28 since the process takes very little time and
one is able to see the phenomenon on the computer without
an excessive consumption of CPU time. In our case though
this did not work. The vortices rotate very slowly around
each other and in order to see a full turn one has to wait for
a long time. In fact for a much too long time for any CDS we
tried to be stable.
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