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Vortex pairs in charged fluids
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The motion of a vorteXantivortex pair is studied numerically in the framework of a dynamical Ginzburg-
Landau model, relevant to the description of a superconductor or of an idealized bosonic plasma. It is shown
that up to a fine “cyclotron” internal motion, also studied in detail, two vortices that are brought together
rotate around each other, while a vortex and an antivortex move in formation parallel to each other. The
velocities of the vortices in both cases are measured to be in remarkable agreement with recent theoretical
predictions, down to intervortex distances as small as their characteristic diaf8&&63-18206)05541-5

[. INTRODUCTION Galilean invariance, due for instance to the presence of a
crystal lattice, properties shared by the superconductor.
The dynamics of flux vortices in ordindryas well as Encouraged by this success, we propd$es a modest

high-T superconducting filnfsunder the influence of a va- first step to ignore finite-temperature and impurity effects
riety of external probes and for a wide range of temperatureand study the physics of flux vortices within the framework
has been an area of vigorous experimental and theoreticaf a phenomenological effective field theoretic motfel,
research during the past few decades. Their pinning by thehich in the terminology of Refs. 8 and 6 should describe
impurities of the lattice, the role of their motion in energy the large friction limit of a pure superconductor at zero tem-
dissipation, their contribution to the thermodynamic proper-perature. On the other hand, the model may also be thought
ties of a superconductor, and the statistical mechanics of af as the natural coupling to electromagnetism of the com-
vortex lattice or of a vortex glass have received considerablplex bosonic field of the Gross-Pitaevskii model for the su-
attention. perfluid, and as such it describes the dynamics of a charged
However, due to both experimental and theoretical diffi-bosonic plasma with the positive ions assumed infinitely
culties, no consensus on the equation of motion of an isoheavy and frozen to form a homogeneous background. In a
lated vortex has been reached to da@orrespondingly, is-  slightly formal jargon, the model considered is the most gen-
sues related to the existence and interpretation of the Magnwsal one consistent with gauge symmetry and with a fixed
force on a vortekor to the origin of the so-called “opposite homogeneous background which breaks Galilean invariance.
sign Hall effect” reported in all types of superconducting More recent attempts towards a formal derivation of the ef-
materials’ as they are cooled below their critical tempera-fective action for the superconductbare quite encouraging
ture, have not yet been clarifi€cExperimentally, it is hard for the physical relevance of the model at hand.
to isolate and directly observe the motion of a particular It was argued on general grounds that the model should
vortex in a superconducting filfiSo their dynamics is de- support the existence of absolutely stable flux vorfitesth
cided by an indirect interpretation of the measurements. Thénite energy per unit length, similar in nature to the previ-
model that has often been used in the analysis of the experusly known Abrikosov vorticés of the static Ginzburg-
ments in the case of the superconductor is the effectivkandau theory. The solutions were found numerically and
model derived from the fundamental theory by Schhod  their static properties as well as the properties of pairs of
some of its subsequent variations and extensiofi®e equa- them, including their interaction potential, were studied in
tions get very involved and the analytical treatment not pardetail'® They carry zero total electric charge, but have non-
ticularly transparent.In addition, the theoretical uncertainty vanishing charge density and electric field and thus differ
over the proper incorporation of dissipation or over the presignificantly from the ones studied before.
cise role of “dirt” and impurities allows for little confidence The equation of motion of thguiding centeiof the vortex
in the details about vortex motion in fully realistic systems.under the influence of any external force was then
Nevertheless, the overriding suggestion of all experiments iglerived'?'® without any further assumption or approxima-
that vortex dynamics is in many ways contrary to intuition. tion. For external forces weak relative to the characteristic
The overall picture is reminiscent of the one that arises in thescales of the system the guiding center is expected to de-
dynamics of analogous solitofihe magnetic bubble®fthe  scribe accurately the position of the vortex. The precise
experimentally much simpler thin ferromagnetic filfls. quantitative condition though on the magnitude of the exter-
Here, we were able to derive from first principles the equanal force not to wildly deform the soliton and to guarantee a
tion of motion of the magnetic bubblésthe semiempirical given accuracy is beyond our present analytical capabilities.
golden rule of bubble dynamics, as it has been called in th@herefore, to clarify these issues, which is the main purpose
literature. In fact it became clear that the resulting “Hall of the present work, one has to rely on a numerical treatment
motion” is a generic characteristic of soliton dynamics in of the equations. As a first step, in this paper we consider a
systems with nontrivial topology and spontaneously brokervortex pair and a vortex-antivortex system in order to study
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the motion of the vortex under the influence of the force due 1~ ~ ~ -~ - 1~ -
to another nearbyantivortex. L= W (i0i—Ag)P+c.cl+Ag— §|Di‘1’|2
The paper is organized as follows: Sec. Il contains a gen-
eral introduction to the model as well as the study of the 11~ =)\ 1, ~~ 5
spectrum of small fluctuations around the vacuum. lIts rel- +3 EE —BY— gk (V¥ -1)%, 3

evance to the physics of a superconductor is also commented
el reden of e theorelcal naele f v 67, E -7 7%, and 5,71 The
tr?le uidin cg;]enter is resFe):nted here to eihe.r with the maitWO remaining parameters, the quartic self-couplirigand

) 9 P ) e couplingB (notice that we have changed the namwe

predictions about the motion of the vortices in a vortex pair . )

. . ' , used in Ref. 16 for the second parameteigtoin order to
or in a vortex-antivortex system. The field equations of mo-_" . . . : .
! : . avoid confusion with the standard notation of the penetration
tion are subsequently solved numerically for a large variety )

L - . depth of a superconducjoof the scalar field to the electro-
of initial configurations and parameter values, and the results, .. . )

. . tatic potential, are defined by
are presented in detail in Sec. IV. A remarkable agreemen%
was established of the mean motion of each vortex with the 5 5 34
theoretical formulas even when the solitons overlap consid- 2= 3me 5= mTc
erably. Furthermore, regular patterns were observed in the 4mqy* 4weq2y4\P§'

vortex trajectories. They are reminiscent of the cyclotron
motion of an electron pair in a perpendicular magnetic field With the identification of the field? as the condensate

and are also studied in detail. wave function of the Cooper pairs, and correspondingly with
v=H, m= 2m,, and q= 2e/f, Eq. (1) becomes a rather
Il. MODEL: GENERAL PROPERTIES realistic phenomenological model of a superconductor. It of-

] . .. . fers a natural explanation of the Meissner and the Josephson
The model describes the dynamics of a nonrelativistiGeftects, and it predicts the correct value of the quantum

cha}rged scqlar field, minimally coupled to thgz e_Iectromag- $o=2.09x10"7 G cn? of the vortex magnetic flui® As
netic potential fo,A;). The Lagrangian density is follows from Egs.(2), the units of length and time depend
only on the paramete¥, which is fixed by the condensate
number density. For values of the latter equal to a few per-
cent of the valence electron density, the characteristic length
falls in the range 100-1000 A, while the time unit is
10 1°-10"8 sec. In these units the penetration deptlis
equal to 1[see Eq.(15) below]. The coherence length on

the other hand depends on both parameteend 8. For «

The magnetic and the electric fields are, respectivelymuch smaller than 1 it varies g8 ¥4 while for 8 much
B=VXA and E;=(—1/c)dA—diAs, while DW¥=(d;, smaller than 1 its dependencexs™.}” Thus, one way to fit
+iqAg) V¥, DyW=[d;—i(q/c)A;]¥. A quartic phenomeno- a realistic ratioé/A =0.25 of a type-Il superconductor is to
logical potentialV(|¥|)=3g(¥¥* —\I'S)2 may or may not take x small andB~4*. As we will demonstrate, though in
be present, depending on the physical system of integest. the sequel, the main features of vortex motion are robust and
m, €, g, andq are parameterg, is the speed of light, and the independent of the particular parameter values.

spatial indices andj range from 1 to the dimensionality of The actionS, the integral of{ over space and time, is
space. For simplicity we did not include an arbitrary param-invariant under the gauge transformatigio simplify nota-

eter in front of the termB2. Up to this inessential for our tion all tilde shall be dropped from now pn

purposes restriction, the model is the most general theory

possessing translational, rotational, and gauge symmetry. To v =exdiA(x,t)]¥,

make the model consistent we have included a background
(positive-ion charge densit}q‘lfé to neutralize the system.

4

H 2
Iy Y
L=Z{v*D¥-ccl+ yq¥5A.— ﬁm«w?

1
+ 5 (eE2—B2) V(| W)). ®
a

We work in the limit where ions are very heavy and the AT =At A, )
background is taken nondynamical.
We switch to dimensionless fields and coordinates by the Ay =Ag— A,

rescalings
for arbitrary functionA (x,t), and its extremization with re-
Jme m2c2 spect toA, leads to the Gauss constraint

X Rt
L amvaqy 47V 5a%y?

1
vowT A AmWigy®~ Vaa¥oy~
TRoE Mo ez Ry AT Jm We shall only be interested in configurations with vanishing

(2) total electric charge. The equations of motion derived by
varying S (under this constraihtwith respect to¥* andA,
and write the Lagrangian in the form read
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W= 1 D2W 4 AW+ Li2(WEW - 1)W The plane waves Aj=Ale i(eat=kX) and
? o e ’ ® =P (@at=kX) gheying the dispersion relations
1.
FE=VxB-J, (7) wh=pB+ i K?k2+ 5 K|, (17)
2 _ 2
with the currentl=[V*DW¥ —c.c]/2i. The energyw of an wp=B(1+[k|%), (18)

arbitrary configuration of the system is the spatial integral ofform a complete set of solutions of the equations of motion
the energy densityw, which is the sumw=wg+W,  of @ and A; above. Notice that both spectiag(k) and

+Wwe+w, of the four positive definite terms wa(k) have an energy gap= /8. Finally, the solutions for
1 1 1 O andA, are obtained by solving Eq€l2) and(14), respec-
Wd:§|Di\I}|2’ WbZEBZ, We:ﬁEzi tlvely.

Ill. VORTEX DYNAMICS

1
szng(‘P‘I’* -1)% (8) The model under study, with or without the potential term
V(|¥|) present, supports the existence of flux vortex solu-
tions. They are infinitely long, localized in the transverse

The vacuum direction, smooth, cylindrically symmetricz-independent
Equations(6) and (7) admit the one-parameter family of configurations with finite energy per unit length, whose static
equivalent vacuum solutions properties, together with the properties of pairs of them, have
been studied in detaif We wish to study their dynamics
T=e* A=0, Ay=0, (9) numerically and to verify the approximate analytical predic-
_ tions about their motiof? reviewed briefly in the present
parametrized by the constant angular parameter section. We will ignore the-dependent excitations of the

To study the spectrum of small fluctuations around thegiring and consequently the formalism reduces to purely
vacuum solution we choose the one witk=0 and the Cou- 5 1 dimensional. Spatial indices will from now on take the

lomb conditionV - A=0 to remove the gauge arbitrariness of \3jyes 1 and 2, while the magnetic field will only have its
the model. We then parametrize the generic deviatio of  hirg component nonvanishing and will be simply denoted by
from its vacuum valuel =1 by B. Correspondingly, we will be thinking of the vortices as
i finite-energy “particlelike” localized objects in two spatial
— i0

V=(1+)e™. (10 dimensions. Any finite-energy configuration is characterized
For the discussion of small fluctuations the magnitudes ofy an absolutely conserved integer numhienwhich counts
®, O, Ay, andA, will all be taken much smaller than 1. theé number of times the phase of the scalar field at spatial

Keeping only up to quadratic terms in these small fields, thdnfinity, a function of the polar angl®, winds around the
Lagrangian becomes circle of vacua, Eq(9), as @ varies from zero to 2. It is

evaluated for the given configuration by integrating over
1 ) 5 2 space a topological density(x). Among the various possi-
L==00(1+2P)=2dA;— 5(507+ 3 P+ A7) bilities the most useful form of is, for our purposes, the
manifestly gauge invariant expression
1
2B

and the equations of motion read

1 1
+ (aiAg+atA$)—§BZ——K2cp2 (12)

1
2 7= 5l €(Dx¥)* (DY) —IB(W*¥—1)].  (19)

As will be shown immediately, this quantity appears in the
g d+ 5?0 =0, (120  formulas for the conserved momentum and angular momen-
tum of the theory.
Indeed, it was pointed out in Ref. 12 that the naive Noe-
ther expressions for the linear and the angular momentum of

the model are ambiguous for any configuration with nonzero
1, topological charge, and that the correct formulas for these
_ai Ao+ Z(D:O, (14) !

00 =3 ?Dd—Ag— 3 K’D, (13

B gquantites are
1, 5 P, = d?x| 2 ! E.B 20
GO A=A (15) =€ | A 2mTt o E (20
The field A; decouples at this level. Acting with the time and
derivative on Eq(12), with the Laplacian on Eq(13) and 1
using Eq.(14), one obtains the following equation of motion | = —f d?x| w27+ Ex- EB), (21)
of &:

respectively. They differ from the naive expressions by sur-
2D =1 k?2*D—BD— L gD, (16)  face terms, which are important in topologically nontrivial
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sectors. The presence of the first and the second moments of 1 )
the topological density in the above formulas inherits them Q(d)= W|Uw(d)| (25
with an entirely different physical meaning. Let us consider

the momentum. Rotate it by 90° and divide by the constannd its direction is counterclockwigelockwise for NA-F

27N to obtain the new conserved quantity positive (negative, respectively. The vectak joins the cen-
ter of the system to the approximate position of any one of
R—_ Lé.. b 22 the two vortices, whileF denotes the force acting on it.
! 27N In the same spirit, a vortex-antivortex pair with( — N)

flux units, respectively, is expected to move in formation in a
The value ofR for an isolated axially symmetric vortex so- direction perpendicular to the line connecting them, and with
lution is exactly the center of the vortex, and a rigid displace-a speed given by
ment by c of any given configuration as a whole changes
R by c. Thus, the natural interpretation & is the “mean 1
position” of a generic localized configuration and this justi- V(d)= mw\ﬁdﬂ- (26)
fies the name@uiding centeffor it. Similarly, the first term of
the angular momentum is a measure of the size of the localfhe direction of their motion coincides with that o 2,

ized configuration and not of its rotational motion. wherer=R, —R_ the vector joining the negative to the
Finally, one should mention the fact that the two compO-positive-flux vortex, and the unit vector out of the plane.
nents of the momentum, the generators of translations in thgycidentally, one may check that, like in the relativistic
x and they directions, do not commute. Instead, their Pois-Apelian-Higgs modet? the vortex and the antivortex attract
son brackets are at all distances, a fact used above in the determination of the
direction of motion of the pair.
{P1,Po}=27N, (23 Clearly, formulas(25) and (26) should nota priori be

ST Lo 9N€lGnallerd’s make such approximations questionable. It will
f'ﬁld' Ulp to ha mlIJItlpI]Jc?]twe constlant, the t(;pcl)loglfcarll be shown though in the next section, through a direct quan-
¢ a§ge paysdt Ie role of the external magnetic field of th&;iasive comparison of these formulas with our numerical re-
analogue model. sults, that Eqs(25) and (26) are reliable and describe quite

In the absence of e_xternal forcesis constant and SO IS accurately the vortexantijvortex motion even at distances
R. Thus, a free localized vortex whose mean position iS¢ small as their characteristic diameter

given by R will be spontaneously pinned at its initial posi-
tion. No free translational motion of a vortex is possible.

Under the influence of an external forée the momentum IV. NUMERICAL RESULTS

evolves according to Newton’s lawP,/dt=F, and this A. Discretization
translates into the following equation of motion of the vor- . .
tex: We now turn to the numerical treatment of the motion of
a pair of vortices and of a vortex-antivortex system due to
d 1 their mutual interaction. We choose to discretize the system
=— =——eqF: (24) in a way that preserves as much of the symmetry of the
dt 2mN continuous theory as possible. In particular, as explained in

the Appendix, it is convenient to preserve the gauge invari-
ance of the model. Otherwise one has difficulty in imposing
Gauss’ local constraint, and this leads to integration instabili-
ties. But then naive discretization of the model is not appro-

riate and one has instead to use techniques developed in the
study of lattice gauge theorié$.

i.e., the vortex moves with sped8|/27|N| and at+90°
relative to the force for positive and negatiMerespectively.
We see that the vortices exhibit the Hall behavior known
from the analog electric charge system mentioned abov
This is how the analogy of the canonical structures of th

two systems is reflected in the dynamics. Space is replaced by a two-dimensional square lattice

Based on Eq(24), one may immediately conclude that with lattice spacinga. The scalar field is replaced by the

the vortices of a vortex pair will rotate around each other. A _ o0\ ™ o1 finctions of time. which live on the ver-
1] ’

lr(?;?h gtlheicsnrceaggﬁl e(fkgltgi?wts dOfetsheeg; r"resvsﬁgg'%%t?]ngglrz::gseﬁces of the lattice. Similarly, the spatial components of the
y y » €SP y gauge field are represented By; and A?; and live on the

carry the same numbé¥ of flux quanta. Define for each one corresponding oriented link connectingj) to (i+1,) and
of the two vortices its approximate guiding center by Eqs'to (i,j+1), respectively. At this stage time is left continuous

(22) and (20) with the integral taken over the corresponding . . X .
half-plane. For localized vortices separated by a distahce and the electrostatic potentlaﬁj lives on the vertices of the

large compared to their characteristic size, this is a reasorffd: . _ _ L
able definition of their positions. Let us further assume that 1€ lattice version of the covariant derivative is
each vortex behaves more or less like a rigid body living in .

a potential equal to the vortex-vortex interaction energy DLW == (UKW . .

U, (d). Then, the magnitude d® is given by i =g (Vi ¥y sk i)
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where B. Vortex pair

Let us consider two vortices witN units of magnetic flux
each, formed initially at a distanat from one another. In
terms of the fieldsP andA, it is most convenient to take for
the initial configuration the “product ansatz” of the corre-
sponding two axially symmetric vortex solutidfis

i=exp(— |aAk (27

and the lattice action takes the form

fdtaZE [ SV (ia—AY)Y +c.cl

d d
. . \p(x)=«p<N>< X=3 )\If“\‘) +§‘ (32
+Ai0,j_§|Dk‘I’i,j|2+ BEZ'——KZ(‘I’ -1)?
d
1 . . , A(X)ZA(N)( X=3 +AN (33
—ﬁ{l—COS{a(Ai,j+Ai,j+1_Ai+1,j_Ai,j)]}v (28)

The field A, is consistently set to zero, while the solution of

where Ek = (1/a)(A )k A(I ). In thea—0  Gauss’ constraint for the givelf configuration provides us
limit the Iast term of Eq(28) becomes thad2 term of the  With the initial data for the electric fielet 9,A;(x,t=0), nec-
continuous model. essary for the integration of the equations of motion.
The action(28) is indeed invariant under the discrete ver- Although for large separations this configuration is some-
sion of the gauge transformatidB): what special, being close to the minimum of the energy un-
der the constraint of two zeros in the scalar field, for smaller
Wy —expliA )V, d it imitates reasonably well the rather random production of

the vortices in a realistic situatiofin fact, the axial symme-
try of the “individual vortices” was relaxed in several runs.
No deviations from the picture presented below were ob-
served). Thus, the initial configuration consists essentially of
AL A+ A :

TN T O two lumps of energy and topological charge, concentrated
round two local maxima at a distandefrom one another.
trictly speaking, there is no unique definition of a vortex

A=A A i A (29

ijo

Correspondingly, the system obeys the discretized form o

Gauss’ law: oS . . ; : e
position in a generic multivortex configuration. The positions
1 k k *
- (E . k_ Ei J) = ,8(\If, J‘P| i~ 1), (30) Maximum of energy density Maximum of topological density
aysi, s b+ ' R 25 : 25 ,

wherek is the unit lattice step in the spatial directidn
Varlatlon of the lattice actiori28) with respect to¥"; ; and

; leads to the equations of motion 00

Y(t)

-2.56
-2.5

=g kE {UE D jy-id— (D))}

1 X(t) X(t)
Z2(WEAY. 1\
+ AW D)W (a) N
1 ‘K | K K 25 Zero of the Higgs
— ~ 'k 8 T
BN = 2g Ui~ U )
+i2 {sina(A¥, A A —AlL )] .
Za3|¢k |J+k i,j+1 £ oot i
k
—S|r[a(A| J- i+A| ke T_A —AI - l)]} (31
Equations(31) will be integrated numerically, in order to 23,5 00 25

follow the time evolution of any set of initial data obeying X

the local constraint30). Notice that noA, appears in the
equations above. They are written in thg=0 gauge, which
simplifies considerably the equations of motion and makes
the numerical task more tractable. We leave for the Appen- FIG. 1. The trajectory of one vortex in the pair as determined by
dix the details about the lattice size, the time discretizationthe location of the maximum of the energy density, of the maximum
and the integration algorithm used, and proceed with the presf the topological density, and of the zero of the scalar fi#ld
sentation of our results. Time durationt=800.

(©)
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FIG. 2. Four snapshots of the energy density contours during the motion of the vortex pair. The values of the energy density on the

contours, the time and the distances onXhandY axes are given in the units defined by E).

of the individual vortices are defined only approximately,the run was interrupted after about 800 time units, when the
either as the positions of the zeros of the scalar field, or asortices had each completed a full rotation around the origin.
the positions of the local maxima of the energy density or ofThe picture that emerges is identical to the one obtained in
the topological density, or finally as the approximate guidingthe study of the motion of a pair of electrons in the plane and
centers discussed in the previous section. All these are rein the presence of a perpendicular magnetic ftéftf. Apart
sonable definitions and their differences become less and lef®m an overall rotation around the origin, a finer periodic
significant as one increases the vortex separation. Havingiotion can be perceived in the trajectory of each vortex,
specified the initial configuration one is ready to proceedshown in Fig. 1. Borrowing the terminology from the two-

with the numerical study of its time evolution. electron analog, we give the name “cyclotron” to this finer
We take for the parameters the values1.5 andB=0.04  motion of the vortices and we will study it in detail later on.
and consider first the case of two mininfd=1 vortices. The fact that the trajectories shown in Fig. 1 are so similar

Figures 1 and 2 show the results of the numerical integratioindicates that the vortices move like rigid bodies, without
with the two vortices placed initially &t-2.0, 0 and(+2.0,  significant oscillatory activity in their interiors. This is dem-
0), respectively. At this distance the vortices already interacbnstrated beyond any doubt also in Fig. 2, where we plot
significantly, while retaining their individuality. In Fig. 1 the four snapshots of the energy density contours, corresponding
trajectory of the second vortex is plotted. The first one fol-to timest=0, t=200,t=500, andt= 700, respectively. In
lows the image of the above trajectory under reflection withagreement with our previous conclusion, the shape of the
respect to the origin. To avoid overlapping of the trajectoriesgnergy profile in each of the two lumps seems to remain
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FIG. 3. The time dependence of the various components of the FIG. 4. The two pieces of the angular momentum and their sum.
energy of the vortex pair and of the total eneiyy Note the high  The conservation of the total angular momentum to within 2% is
accuracy in the conservation of the total energy of the system. quite satisfactory.

unchanged during the rotation. A more detailed examinatio " it retains that value for the whole duration of the run. Its
though, including animation of succesive snapshots, revealeggVviation from the continuum valug=2 is due to the spa-
a small oscillation in the sizes of the two energy lumps. Theyfial discretization of the system. Finally, the position of the
spread a little and shrink periodically with a period equal toguiding center of the systefor equivalently its total linear
that of the cyclotron motion. mo.menturm is considered. This is a cor_lserved .quan.nty,
An estimate of the accuracy of the results presented aboyshich, due to the symmetry of the starting configuration,
is obtained by examining the precision of the validity of the initially coincides W'th. the origin of t'he poordlnate system. It
conservation laws during the evolution. Thus we considetV@s checked to be pinned there with impressive accuracy at
next the time dependence of the theoretically conservedll times. _ _ _ _
quantities: energy, linear momentum, angular momentum, Thus,_ the p|ct_ure that arises clearly conflrms the theoreti-
and topological charge, as well as the local constraint give/g@l predictions discussed in the previous section. All the con-
by Gauss’ law. After a complete period, the total deviation inSe€"ved quantities of the continuum are respected with high
Gauss’ law(the sum over all points of the grid of the abso- &ccuracy. Furthermore the system is characterized by peri-
lute values of the local deviationwas less than 1¢°. From odic p_att(_erns manifested in the trajectory _plots, one example
the time evolution of the total energy of the system, de- ©Of which is what we called “cyclotron motion.” This whole
picted in Fig. 3, one sees that it was conserved with an acdualitative picture is generic. It was verified in all our runs,
curacy better than one part in0n contrast to the vividly for a large variety of initial configurations and for a wide
oscillating four componentsV,, W,, Wy, andW,, also ange of parameter values.
plotted in the same figure, the total energy is on the same
scale a perfect straight line parallel to the time axis. The
same is true for the total angular momentlirand its two 2.02 — T
gauge-invariant piecels andl,, all plotted in Fig. 4. Al-
though the two individual terms undergo rather wild oscilla-
tions, their sum is conserved to within a few percent. The
first terml, of the angular momenturi21) is — & times the
second moment of the topological density, a measure of the
size of the vortex pair. Thus, the oscillatory nature of the
cyclotron motion of the two vortices, shown in Fig. 1 above,
is expected to induce a similar behavior in the time evolution
of I, while the conservation of the total angular momentum
implies the same fot,, all with the same period. This is
trivially verified by a comparison of Figs. 1 and 4. Note that
a periodical pattern with the same period can also be detected
in the energy plots after careful examination. It seems that
this oscillatory behavior is a general feature of the system.
We turn next to the total topological charje whose time
evolution is plotted in Fig. 5N starts at=0 with the value FIG. 5. The time evolution of the total topological charge of the
1.993, and up to a small fluctuation of less than one part ivortex pair.

2.00

Topological charge

1 L L N
400 800
time

1.98
0
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0.75 : : : : 0.2 : .

k=0.5

0.50

0.25

0.00 ; 0 10 20

FIG. 8. The interaction potential of the two vortices for0.5
and =0.005. The potential is attractive for small distances and
repulsive ford> 7.

FIG. 6. The interaction energy of twdl= 1 vortices for
«=1.5 andB=0.04 as a function of their separatidn

We proceed next to the quantitative comparison of our ) ) ) ) )
numerical results with the rough theoretical predicti@s) responding period. The result is represented by the little tri-

of the angular velocity of the vortex rotation. For that one@ngdles in Fig. 7. The agreement is quite remarkable, down to
needs the interaction potentidl,,(d) between the two vor- distances of the order of the vortex characteristic diameter, at

tices as a function of their distance. Define Which the two vortices overlap almost to the point of losing
U(d)=E(d)— 2E_,, with E(d) the minimum of the en- their individuality. _

ergy in theN=2 sector with the constraint that the scalar 't Was pointed outin Ref. 16 that in contrast to the vortex-
field vanishes at two points, a distarg@part, ancEy_, the  antivortex which always attract each oththe interaction
energy of the single-vortex solution. The result fer1.5  €nergy U, (d) between two vortices is not in general a
and 3=0.04 is plotted in Fig. 6. One sees that for the valuegnonotonically decreasing function of their distance. For in-
of the parameters chosen aboug,(d) is repulsive at all ~Stance, the potentid,,(d) for the model with«=0.5 and
distances, falling to zero very quickly. With the interaction 8=0-005 shown in Fig. 8 increases up to a local maximum
energyU,,(d) at hand one may calculate numerically its at d=7 and decreases beyond that. !n agreement with Eq.
derivative and plot the theoretical prediction for the period of(25) one then expects the tw=1 vortices to rotate coun-
revolution derived from the right-hand side of Eg5). This  terclockwise when put at a distance greater than 7, and
is illustrated by the continuous curve in Fig. 7. One thenclockwise when the initial separation is smaller than 7. This
simulates numerically the motion of the vortex pair for vari- IS €xactly what is observed for two vortices placed initially
ous initial separations and from the time it takes for them toPn thex axis, symmetrically with respect to the origin at a

cover a full circle around each other one determines the coidistanced=8 andd=4.5, respectively. The trajectories of
the vortices initially on the right, as determined by the zero

of the scalar field, are shown for both cases in Fig. 9. The
absolute values of the corresponding angular velocities are
also in agreement with E§25). The rather vivid fluctuations

in the details of the two interacting vortices is a general

feature in smallk models.

Before we move on to the discussion of the vortex-
antivortex system, and in order to improve one’s intuition
about the behavior of the vortex pair, we would like to push
7 a bit further its qualitative analogy with the two-electron
system. For that we will study and compare the details of
their cyclotron motions. The simplicity of the electron sys-
tem allows for a complete analytical treatment and for a de-
tailed description of their trajectories. One fiht® that ge-
nerically the corresponding guiding centers perform circular
motion, while the orbits of the electrons themselves exhibit
patterns similar to those of Fig. 1. Furthermore, it can be
shown that for given initial conditions, the characteristic
wavelength and width of their cycloid motions increase

FIG. 7. The period of revolution of the vortices around eachwhen one decreases the strength of the external magnetic
other as a function of their separation, computed from the theoretifield, or as one increases their mutual interaction by decreas-
cal formula using the slope of the curve of Fig(®lid line) and  ing their separation, or by increasing their electric charge. A
from the numerical experimentgriangles. very similar picture emerges in the vortex-pair case. To
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FIG. 9. In agreement to the theoretical prediction, when the
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N= 1 vortices attract each other, they rotate clockwise, while when
they repel, they rotate counterclockwise.

-25 L

-2.5 L .
-25 0.0 25

study it we first performed a series of numerical experiments 25 0.0 25

for various d’'s, for the same values of the parameters
x=1.5 andB=0.04. The results depicted in Fig. 10, com-
bined with Fig. 6, clearly confirm the claim that the cyclo-
tron wavelength and width both decrease with the vortex-
vortex force. Next, we variegg and followed the trajectory FIG. 11. The trajectory of the vortex, as determined from the
of the energy maximum corresponding to one of the twoposition of the corresponding energy maximum, for various values
vortices for the same time interval in all cases. From theof the parameteB and for the same total duration in all runs.
results shown in Fig. 11, it becomes apparent that an increase

of B leads to a decrease of the corresponding cyclotron chagration for an initial vortex-vortex separatiah=3.5. The
acteristics. Notice also from the same figure and &%),  cyclotron oscillations are now suppressed, the period has
that the intervortex force increases wjh changed, but the vortices still move on a circle.

So far we have dealt with small values of the paramgter
mainly in order to study the details of the cyclotron motion.
As explained in Sec. IlI, though, a possible realistic set of
parameters for a type-ll superconductor #s small and We next replace one of the vortices of the pair by an

B=100. Figure 12 depicts the result of the numerical inteN=—1 antivortex and let it evolve. Like in the analog
electron-positron planar system with the external magnetic

field and for reasonable initial velocities, we expect that,
again up to a small cyclotron motion, the vortex and the

C. Vortex-antivortex system

2.0 T T
e ]
= =00
£ 00t X .
> B =100
Vortex |
o, e Vortex (I
-2.0 L
-2.0 0.0 20
FIG. 10. The trajectory of the maximum of the energy density of X(t)

one of the two vortices of the pair. The dependence of the charac-

teristic wavelength and width of the cyclotron motion of each vor-
tex on their separatiod is qualitatively identical to the one ob-
tained in the two-electron system.

FIG. 12. The trajectories of the two vortices for half a period
and for parameter valug@= 100 andx=0.0.
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antivortex will move in formation along parallel trajectories. the vortex-antivortex case implies a potential between them

This picture contradicts naive intuition, according to which steeper in absolute value than the one in Fig. 6.

the vortex and the antivortex would as a result of their at- Apart from the parallel transport of vortices, one sees a

traction approach each other and gradually annihilate intdiner oscillating motion, the “cyclotron motion” we men-

elementary excitations. tioned in the preceding paragraphs. We performed several
A series of numerical experiments was performed withruns to study its details for various valuestand 8. As in

the vortex-antivortex system. The initial field configuration the vortex pair system, both wavelength and width of the

used was the product superposition of B 1 and an oscillation are decreasing functions dfand 3, in perfect

N=—1 axially symmetric vortex solutions, according to the qualitative agreement with the dependence of the cycloid

ansatz patterns in the electron-positron analogue.

We would like to end the discussion of the results with a
final comment about boundary effects. As follows from Fig.

' 13, if we neglect the cyclotron motion, the paths of the two
vortices are perfect straight lines parallel to theaxis. A
slight convergence of the trajectories towards each other ap-

, (34) pears, though, when the vortices come close to the bound-

aries. Actually, if they start 6—7 space units away from the

boundaries, the initial convergence disappears, to appear
again when the vortices get close to the negagilmundary.

By trying different sizes of grids, one concludes that this

. J . .~ _behavior is a boundary effect sensitive to the absolute sepa-

initial Yalues _Of th_e electric field are obtained by solving ration between the vortices and the boundaries, but insensi-

Gauss eq.“a“of‘ with the abovk. . . . tive to the size of the grid. In the case of relatively small

The trajectories of t.he vortex and the antivortex in a tyF"'grids, the convergence of the paths could be misleadingly
pal run are illustrated in Fig. 1.3' Both the approxmatg guld'interpreted as a generic feature of vortex dynamics. To avoid
ing centers and the local maxima of the energy density WeTthis effect in our numerical experiments we always placed

followed and are shown on the same pl(_)t_. The parameterge \ortices sufficiently away from the boundaries of the
were set tak=1.5 andB=0.04, while the initial positions of

the vortex and the antivorte(zeros of the scalar fieldvere
taken at(—2,10 and (2,10, respectively. The vortices
moved in the negativg direction for 20 space units, i.e., V. DISCUSSION

about 16 times their size, while retaining their initial shape ) ) ) ) )

and keeping their initial separation constant. They moved 1he direct numerical integration of the motion of a ge-
with constant spee®=0.025. The vortex velocity in the Neric vortexfantivortex configuration confirms the Hall be-
vortex-vortex pair for the same values of parameters andavior, predicted analytically in a previous publication. The

separation was found to h&=0.016. The higher velocity in quantitative agreement persists even when the two solitons
overlap to the point that they can hardly be considered as

two. Physically, this behavior may not be entirely surprising.

It might be described as the well-known Hall effect. After all
10 : : : the vortex of the model is microscopicaifya nonvanishing
electric charge density, which is sustained by the nonlinear
forces(attractive electrostatic anél self-interactionsof the
model, to circulate around its center, thus giving rise to the

d
__ (-1
X 2)‘1’

d
\I'(x)=\If<l)< x+§‘

A(x)=AY +ACD

d +d
X_E X E

where¥ ) and A are the static fields of thN=1 vortex
and V(=1 and AC"D are those of theN=—1 antivortex.
Like in the vortex-vortex cased, is set to zero and the

— Energy Den. Max vortex magnetic field. The current is locally perpendicular to
=== Guiding Center the electric field and hence consistent with the absence of

0 . energy dissipation. Thus, the overall situation looks similar

= =15 ! to the ordinary Hall setting; only the circulating charges are
> B=0.04 ! immersed in their own magnetic field and repelled by it,

instead of being kept in orbit by an externally prescribed one
and, quite naturally, a vortex is expected to exhibit the Hall
i behavior described here. One may push the picture even fur-
-10 - = ther by noticing that since the charges as described by the
wave functionV, are spread over the entire region of the
vortex, and they feel the integral of the magnetic field, i.e.,
the winding number of the configuration, which makes plau-
sible the appearance of in formulas(24) and (23).
Mathematically, on the other hand, one is dealing with the
most general model describing the dynamics of a condensate
FIG. 13. The evolution of a typical initial vortex-antivortex con- Wave function" coupled to the electromagnetic potential,
figuration. The wavy and the straight lines are the trajectories of th@nd restricted only by the translational, rotational, and gauge
energy density maxima and of the approximate guiding centerdnvariance of the system. The ion lattice assumed frozen,
respectively. defines a preferred reference frame, and breaks the Poin-

-3 l (I) I 3
Xt
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careinvariance of the underlying fundamental system. Topo-Cconservation of the energy, which in all our runs remained
logical or metastable nontopological solitéhsn models constant to a degree better than 0.1% over a full period. We
with just these symmetriésare expecteld to exhibit iden-  imposed Neumann boundary conditions by setting, the cova-
tical Hall behavior. This is indeed what happens in all theriant derivative in the normal to the boundary direction,
systems examined so fat?* even in ferromagnets which equal to zero. To do so we fixed the value of the Higgs field
have no physical similarity to a system of charges interactingit each point of the external layer of the grid equal to their
with the electromagnetic fieft!:*> first inner neighbour. Also the values of the gauge fields,
Clearly, the next step is to test the predictions of thewhich live at the links which connect those neighbors, were
model at hand against more realistic experimental situationset equal to zero. To test our results we repeated our runs on
One should study the static properties of vortices in thingrger grids 25% 251 with the same or smaller lattice spac-
films with finite thickness, and then analyze their response t%g’ say,a= 0.1, and the results obtained were all perfectly
an extern_al current in _the_ context possibly of an impmve‘jconsistent. We used a larger grid 256251 anda=0.15 in
model to incorporate dissipation. the vortex-antivortex experiments in order to follow the or-
bits of the solitons for longer distances. The time sk¢pve
used in most of our runs was 0.001 or 0.002 but the algo-
ACKNOWLEDGMENTS rithm was stable and accurate for even larger time steps. All
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CT93-0340, by the Greek General Secretariat of Researdi@rmalism developed in the study of lattice gauge theories.
and Technology Grant No. 8IENEA 358, and by a research One may envisage two discretization schemes to convert the
fund from the University of Crete. equations of motion of our theory into difference equations:

the conventional discretization schef@DS) and the lattice

gauge formalism(LGF). We experimented with both and
APPENDIX: THE NUMERICAL ALGORITHM finally adopteq the latter for its elegance and functionality. It.

should be pointed out that both methods have been used in

To solve the initial value problem defined by the systemthe study of vortex dynamics in relativistic modéf<’-3°
of equations(31) and a starting configuration of the form with satisfactory and consistent results. The LGF, especially
(33) or (34) we considered in this paper, we used a leapfrogiesigned to preserve the local constraint, is certainly more
updating schenf where the time levels in the time deriva- natural to use in a gauge theory, but for our problem there
tive term “leapfrog” over the time levels in the space de- was another more serious issue to face. Use of any CDS
rivative term. Equationg31) are a mixed system of first- explicitly violates gauge invariance. Without the gauge in-
order and second-order differential equations in time. Avariance there is no reason for the local constraint to be
leapfrog algorithm for a second-order equation is equivalengatisfied. In fact, a violation of the equation of continuity and
to the updating of fields and momenta successively, but thef Gauss’ law was obtained, which in addition was accumu-
coupling of that equation to a first-order equation demandsative in the runs based on any CDS we tried. Whenever the
special care in the construction of the algorithm. Nevertheerror in those became significant, the integration routine de-
less, the leapfrog algorithm gives marked improvement irstabilized. The way out in the context of a CDS would be to
stability over the simpler approach of updating both fieldsuse a sufficiently small time grid spacing to retain the error at
and their momenta at the same time level. sufficiently small values all during the time interval required

To achieve sufficient accuracy in our computations wefor the study of the phenomenon of interest. This has worked
used a 16X161 grid, with lattice spacingg=0.15. The reasonably well in the study of vortex scattering in relativis-
space resolution of that grid is estimated by calculating nutic models?”?® since the process takes very little time and
merically the total topological chardé of Eq.(33) and com-  one is able to see the phenomenon on the computer without
paring it to the exact valud=2. Using formula(19) for the  an excessive consumption of CPU time. In our case though
topological charge one find$=1.993. Interestingly, the al- this did not work. The vortices rotate very slowly around
ternative formula forN=(1/27) [d?xB is less sensitive to each other and in order to see a full turn one has to wait for
the discretization and gives=1.999 for the initial configu- a long time. In fact for a much too long time for any CDS we
ration. The accuracy of our results is further estimated by théried to be stable.
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