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A strong-coupling-limit theory of hole dynamics in copper oxide superconductors is developed. The theory
is based on thet-t8-J model and the diagrammatic technique for projection operators. For the normal state two
different phases at finite temperature are found. For the first~which is realized at low doping!, a Fermi surface
~FS! is formed by doped holes only and so has a volume proportional tod, while d electrons are responsible
for a localized magnetism. For the second~which is realized at intermediate doping!, thed electrons become
a part of the FS the volume of which is proportional to 11d, while the system loses the magnetic moments
associated withd electrons. A transition between the two phases is of first order and the FS changes abruptly
from a small to a large one. The phase with the small FS is unstable when lowering the temperature in as much
as a spin susceptibility diverges atk5QAF. Therefore, at low temperature within the doping range correspond-
ing to this phase, a long-range antiferromagnetic~AF! ground state or quantum-disordered ground state is
realized depending on doping. Most attention in the paper is paid to the second state characterized by a saddle-
point ~SP! singularity and a large Fermi surface. Self-consistent calculations for the chemical potential show
that at some critical doping which depends on the ratio of hopping parameterst8/t, the Fermi level crosses the
SP. For this phase, a short-distance superconducting~SC! pairing ofd-wave symmetry with a large amplitude
of the SC gap is found at low temperature. The critical temperature is very high. The superconducting pairing
has a magnetic origin but the mechanism is different from an exchange by spin waves. The mechanism is
related to the AF exchange between localized spins, turning out to be a direct attractive interaction between
carriers. The latter point is a consequence of the specific nature of carriers appearing as a result of strong
on-site Coulomb repulsion. On the other hand, the specific kinematic properties of the carriers create a strong
constraint on symmetry of the superconducting order parameter which eliminates all symmetries without nodes
and favors stronglyd-wave symmetry. In such a situation the existence of a saddle point close to the Fermi
level is a factor providing a maximum value of the effective interaction. An interrelation between an extension
of the SP singularity and a value of the amplitude of the SC gap is analyzed; a saturation effect is found.
@S0163-1829~96!05238-1#

I. INTRODUCTION

Since the discovery of high-Tc superconductivity, differ-
ent scenarios have been proposed to explain this phenom-
enon. Recently the discussion has been concentrated on two
points: first, on the importance of a saddle point or an ex-
tended saddle-point singularity in the electronic spectrum in
the normal state irrespective of the nature of the supercon-
ducting ~SC! pairing and, second, on the potentially impor-
tant role of magnetic degrees of freedom in the pairing
mechanism.

Apart from phenomenological studies~see, for example,
Refs. 1–5!, a microscopic mechanism of magnetic origin
usually considered is a virtual exchange by spin waves which
leads to an attractive interaction between carriers.6–8 In these
theoretical descriptions, both spin and hole degrees of free-
dom are considered on the basis of an antiferromagnetic
~AF! state that implies long-range~LR! ordering for the
localized-spin degrees of freedom and the Fermi surface~FS!
forming small hole pockets around (6p/2,6p/2) for the
charge degrees of freedom. Although superconductivity and
antiferromagnetism do not coexist in the high-Tc supercon-
ductors, such an approach could be considered as qualita-
tively relevant if ~i! the paramagnetic metallic state above

Tc were characterized by a short-range~SR! AF ordering
with a quite large magnetic correlation lengthjAF , ~ii ! the
intensity of the dynamic spin susceptibility in this state were
considerable and its variation with doping would correlate
somehow with the doping dependence ofTc , and ~iii ! the
dispersion law of carriers and their Fermi surface~FS! in the
metallic state of interest~i.e., for the hole concentration cor-
responding to the existence of superconductivity! were quali-
tatively close to the dispersion law and FS of one hole on the
AF background.

However, different experiments performed on the hole-
doped cuprates appear to prove the opposite. Angle-resolved
photoemission electron spectroscopy~ARPES! experiments
which probe a hole dynamics show that the spectrum of a
photohole on the antiferromagnetic background observed in
insulating Sr2CuO2Cl 2 ~Ref. 9! indeed corresponds to the
FS with the small hole pockets centered at (6p/2,6p/2).
Meanwhile, for the doping corresponding to the supercon-
ductivity, the picture is quite different; the large hole pockets
centered at (6p,6p) are observed in the metallic state
aboveTc .

10–18 The difference between the hole dynamics
in the paramagnetic state aboveTN and aboveTc is espe-
cially impressive in the experiments performed on the same
crystal in continuously changing doping,11 namely, in
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YBa2Cu3O61x ~YBCO! with x50.35 corresponding to the
insulating AF state and withx50.4,0.5,0.7,0.9 correspond-
ing to the metallic state.~In this series of experiments the
data for insulating, but not carrier-free, YBa2Cu3O6.35 are
consistent with the results in Sr2CuO2Cl 2 , and the data for
the metallic YBa2Cu3O61x with x50.4,0.5,0.7,0.9 are con-
sistent with data for the other hole-doped cuprates in the
metallic state.! Thus, the ARPES data seem to indicate that
condition ~iii ! is not satisfied. Nevertheless, the situation
from ARPES is not absolutely clear due to the effect of
shadow bands observed in Bi2Sr2CaCu2O81x ~Bi2212!.19,20

Being interpreted as a signature of SR AF ordering~and
being assumed that this ordering is close to the LR AF or-
dering in the insulating state! this discovery just motivated
Refs. 6–8.~It should be noticed, however, that the interpre-
tation of the shadow-band effect is controversial; it can be
merely explained as having a structural origin,21 as has been
noted in Refs. 19 and 20. On the other hand, even if it were
confirmed that the effect is a consequence of SR AF corre-
lations, there is no reason to identify the latter with spin
waves in the LR AF insulating state. It is more natural to
think about specific fluctuations of the quantum-spin-liquid
type.!

There is, however, another type of experiment which
clarifies the situation. This is a neutron scattering experiment
which probes directly the magnetic ordering and spin dy-
namics. The results of such experiments indicate clearly that
conditions~i! and ~ii ! are not satisfied. Firstly, as has been
discovered, the magnetic correlation lengthjAF in the normal
state aboveTc is extremely small.22–25 For example, in the
case of YBCO,jAF'4 Å ~which is of the order ofone unit
cell! for the dopingx50.92 just corresponding to the maxi-
mum Tc ~ 5 92 K!.23 Second, the intensity of the observed
inelastic neutron scattering~INS! signal, which is propor-
tional to the imaginary part of the dynamic spin susceptibil-
ity, Imx(QAF ,v), decreases with doping within the metallic
state24 ~while Tc increases! and drops almost to zero for the
dopingx51,26–28while the value ofTc is almost maximum,
Tc590 K. Third, there is clear evidence for a strong quali-
tative change of the spin dynamics between the LR AF state
and the metallic state aboveTc ~see, for example, the experi-
ments of the group of J. Rossat-Mignod which have been
progressively performed on the same crystal YBa2Cu3O
61x in continuously changing doping from the insulating to
the superconducting state~for the insulating state see Refs.
29–31, for the weakly doped metallic state see Refs. 32–34
and for the heavily doped state see Refs. 32 and 35–37!. As
was emphasized in the review paper in Ref. 38, inelastic
neutron scattering clearly indicates that the propagative spin-
wave excitations disappear when one passes from the LR AF
state to the metallic state but instead a broad in energy and
weakly temperature-dependent spectrum is observed.

All these features make doubtful, first, the use of the basis
corresponding to the LR AF state for a microscopical expla-
nation of high-Tc superconductivity phenomena and, second,
more generally, the scenario of the exchange by spin waves
itself. On the other hand, a magnetic origin of superconduct-
ing pairing in high-Tc cuprates is believed to be more and
more probable due to a mounting evidence for ad-wave
symmetry of the superconducting order parameter.39–43

In the present paper we show that a natural mechanism for

superconducting pairing of magnetic origin exists, different
from exchange by spin waves, but still related to the exist-
ence of localized spins with a strong AF interaction in the
CuO2 plane. Moreover, this mechanism leads to a high value
of the amplitude of the SC gap, and so ofTc , and to the
dx22y2 symmetry of the superconducting order parameter
~SC OP!. This mechanism can be qualitatively explained as
follows. The first important point is the specific nature of the
propagating charged quasiparticles in the CuO2 plane. As
was first shown by Zhang and Rice44 and then by other
authors,45,46 it is energetically favorable for a doped hole on
oxygen to create a singlet bound state with a hole on Cu
within the square plaquette. The motion of the extra hole
through the lattice occurs as follows: The extra hole creates a
singlet on sitei , and when the carrier hops on another site
j , a free Cu spin is restored on sitei .47 This way, the itinerant
charged quasiparticles are in a strong connection with the
localized-spin subsystem. As we show later on, this peculiar-
ity of the carriers, arising from the effect of strong electron
correlations, yields the second important point:The AF ex-
change between the localized spins turns out to be a direct
attractive interaction between these quasiparticles.The next
point is the shape and the volume of the FS of the considered
quasiparticles: Above some critical doping the FS is large,
contrary to the above-mentioned microscopical theories,6–8

and the spectrum is characterized by a saddle point~SP! or
an extended SP~depending on the values of hopping param-
eters! whose energy for the doping ranged50.1–0.3 turns
out to be close to the Fermi level (d is the concentration of
doped holes per Cu within the CuO2 plane!. Then, the an-
isotropy of the attractive interaction, on the one hand, to-
gether with the large FS and the existence of the SP singu-
larity close to Fermi level, on the other hand, lead to the
dx22y2 symmetry of the superconducting order parameter
and, moreover, to high values of the amplitude of the SC
gap.49 The last important point is the evolution of this picture
with doping. The doping dependence of the chemical poten-
tial occurs in such a way that it crosses the saddle point at
some dopingdc whose value depends on the ratiot8/t where
t is a nearest-neighbor hopping term andt8 is a next-nearest-
neighbor hopping term. The maximum ofTc is reached
aroundd5dc and Tc decreases at higher or lower doping.
The explicit doping dependences ofTc turn out to be close to
those observed experimentally for monolayer and bilayer cu-
prates, as well as the values of the maximum amplitude of
the SC gap and the values of the maximum ofTc . It is worth
noting, in addition, that the evolution of the FS with doping
in the normal state, namely, its abrupt change from a small
FS with the volume proportional tod to a large FS with the
volume proportional to 11d obtained within the theory, is
also close to that observed experimentally. It allows us, as
we hope, to shed light on the striking change of the shape
and volume of the FS between the insulating and metallic
states observed by ARPES.

The paper is organized as follows. In Sec. II, we describe
the model, namely, thet-t8-J model which is the simplest
relevant model for the CuO2 plane. We treat this model
within the diagrammatic technique~DT! for Hubbard
operators.54–56 ~So far as the present work is a continuation
of Ref. 57, details about the formalism can be found therein.!
The hole and spin dynamics in the normal state are analyzed
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in Sec. III. In Sec. IV we present the equation for the SC gap
and its solutions for the cases of different FS’s. We analyze
the symmetry of the SC OP and the amplitude of the SC gap
as a function of doping. Section V contains our conclusions.
Some mathematical details which are necessary to under-
stand our results are presented in the Appendix.

II. MODEL: LIE-HUBBARD OPERATORS

We use the same model as in Refs. 6–8, thet-t8-J model
which is the simplest model incorporating the issue of strong
electron correlations within the CuO2 plane. It was derived
from the realistic three-band Hubbard model for the CuO2
plane with the idea of the local singlet and of the Wannier
representation for O states.44–48 Within this model, the
CuO2 plane is treated as a lattice of square plaquettes cen-
tered on Cu sites with four surrounding oxygens, and only
three low-energy states are taken into account. Those are the
two states corresponding to a single hole with spin up and
down, u1& and u21&, and the one state corresponding to the
singlet state of two holes,u0&.58 Being the simplest one in the
family of strong-coupling-limit models, this model is quite
good for describing low-energy excitations in the
CuO2 plane; the energy distances to other levels of the
plaquette are very large. For example, the distance between
the singlet and triplet two-hole states is approximately 3.6–
3.7 eV; see the most recent and accurate calculations in Ref.
48.

Like all other strong-coupling-limit models, thet-J model
is formulated in terms of projection operators~or X opera-
tors, or Hubbard operators! defined as describing transitions
between different states of the plaquette,

Xi
lm5ul&^mu. ~1!

The Hamiltonian is written as

H5H01Ht1HJ , ~2!

Ht5(
i j

t i j $Xi
01Xj

101Xi
021Xj

210%, ~3!

HJ5(
i j

Ji j $Xi
121Xj

2112Xi
11Xj

2121%, ~4!

H05(
i
E0Xi

001Es~Xi
21211Xi

11!2
h

2
~Xi

112Xi
2121!.

~5!

Keeping in mind the definition~1! of X operators, one can
see that the HamiltonianHt describes the motion of the
doped hole which creates a singlet state on one site and re-
stores a free spin of the localized hole on another. The
HamiltonianHJ describes the exchange interaction between
localized spins. The on-site HamiltonianH0 describes the
energies of the different states of the plaquette; it includes as
well an external magnetic field term. In the paper we will
consider the model with the hopping between nearest (t),
next-nearest (t8), and third neighbors (t9).

The point that the model is formulated in terms of the
projection operators~1! is very important. These operators

are neither Fermi nor Bose operators; they form a complete
algebra with specific multiplication rules

Xi
lmXi

nr5dmnXi
lr , ~6!

commutation relations59

@Xi
lm ,Xj

nr#65d i j ~Xi
lrdmn6Xi

nmdrl!, ~7!

and a conservation rule

(
l

Xi
ll51. ~8!

@The conjugated operators are related as follows:
(Xi

lm)15Xi
ml.# For the same-site operators this algebra is a

Lie algebra SU~3!; different-siteX operators are Bose-like or
Fermi-like depending on the sign in Eq.~7!.59

The properties ofX operators reflect the interrelation be-
tween different degrees of freedom, in our case between the
localized spins and the itinerant holes. Indeed, the localized-
spin operatorSj

2[Xj
211 can be represented as a product of

two-hole operators,Xj
2115Xj

210Xj
01, and the hole operator

Xj
01 as a product of the spin operator and the hole operator

with another spin,Xj
105Xj

121Xj
210 etc. The interrelation be-

tween different degrees of freedom is, however, lost when
the exact algebra~6!–~8! is reduced to the algebra of Bose-
Fermi operators by using any auxiliary representation forX
operators, the slave boson, the slave fermion, and others.60

Depending on the type of auxiliary representation, thet-J
model turns out to be reduced to different models corre-
sponding to different limiting cases, for example, to the
normal-metal limit, to the spin-charge-separation limit, to the
limit of long-range-ordered magnetic states, etc. This point
has been analyzed in Ref. 57; see Appendix A therein.

In fact, the problem is much more general. All models in
different branches of physics which start with states of one
cluster~or one atom, one molecule, one spin! are formulated
in terms of projection operators. Those are, for example, the
models describing excitons in molecular crystals,61 the mod-
els describing the propagating intramolecular excitations in
quantum molecular crystals, vibrons, and librons,62 the mod-
els describing spin fluctuations in localized-spin systems,63

the Heisenberg, theX-Y, the Ising models, etc. The peculiar-
ity of the algebra ofX operators is intrinsic; it results in
intrinsic differences between quasiparticles associated with
Fermi-Bose operators and quasiparticles associated withX
operators.64 In the following we will call these operators Lie-
Hubbard~LH! operators for the following reasons. On the
one hand, their peculiarities and the peculiarities of quasipar-
ticles associated with them for arbitrary models are com-
pletely determined by the properties of the Lie algebra. On
the other hand, in physics they are more known as Hubbard
operators after their introduction by Hubbard in his four-state
particular model. We will also call the quasiparticles associ-
ated with LH operators lieons to emphasize their profound
difference from fermions and bosons. Depending on commu-
tation relations for different-site operators, there are Bose-
like and Fermi-like LH operators. Spin operators are another
case of Bose-like LH operators and spin waves are particular
case of lieons.
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In order to fully comprehend the specificity of kinematic
properties of quasiparticles associated with LH operators,
lieons, it is very important to work accurately with the mod-
els formulated in terms of these operators, namely, to use a
formalism which does not destroy their algebra.65 One of
such formalism is the diagrammatic technique~DT! for Hub-
bard operators54–56 which we will use in the present paper.
We will analyze simultaneously the hole and spin dynamics
which are associated with Matsubara’s hole and spin Green
functions determined as follows:

Gs~k,ivn!5^^Xk
ss̄uX2k

s̄s&& ivn

5E
2b

b

dt exp~2 ivnt!^TtXk
ss̄~t!X2k

s̄s~0!&,

~9!

Gss
h ~k,ivn!5^^Xk

s0uX2k
0s && ivn

5E
2b

b

dt exp~2 ivnt!^TtXk
s0~t!X2k

0s ~0!&.

~10!

In Eqs.~9! and~10!, vn are Matsubara frequencies,Tt is the
chronological operator,t is the imaginary time,Xpq(t) are
X operators in the interaction representation, and
s,s̄51,21. The spin Green function describes the localized
spins whereas the hole Green function describes itinerant
quasiparticles which correspond to the motion of the doped
holes creating the singlet state on one site and restoring a
free spin of the localized hole on another site. We will use
the analytical expressions for the spin Green function and the
normal-state hole Green function obtained in Refs. 69 and 57
for the doped antiferromagnetic state in CuO2 plane and the
paramagnetic metallic state with short-range AF correlations,
respectively. Since the corresponding expressions for the
case of the doped AF state have been obtained in Ref. 69 by
using the auxiliary representation corresponding to LR AF
ordering, we show in the Appendix how these expressions
appear within the DT for LH operators.

III. HOLE DYNAMICS IN THE NORMAL STATE

As was discussed in Ref. 57, the exact structure of both
spin and hole Green functions in the DT forX operators is
given by the Larkin equation

G~k,ivn!5
S~k,ivn!

12VkS~k,ivn!
, ~11!

which is an analog of the Dyson equation in the diagram-
matic technique for Bose or Fermi operators. In Eq.~11!,
S(k,ivn) is an irreducible part of diagram which cannot be
cut along an interaction line~in the contrast to the Dyson
equation where the self-energy is an irreducible part which
cannot be cut along a Green-function line!. Vk is an interac-
tion potential which is equal to

Vk
s52Jk524Jgk ~12!

for the case of the spin Green function and to

Vk
h52tk524tgk24t8hk ~13!

for the case of the hole Green function, where

gk5
1
2 ~coskx1cosky!, hk5coskxcosky . ~14!

The irreducible part should be calculated in some order of
the perturbation theory with respect toH int5H2H0, where
H0 includes on-site terms andH int includes intersite terms.
The perturbation theory with respect toH int means in the
considered case the perturbation theory with respect to small
parameters 1/z, wherez is the number of nearest neighbors.

A. Hole and spin Green functions in the case
of the paramagnetic state

For the normal state without LR magnetic ordering~para-
magnetic state!, the hole irreducible partSss

h (k,ivn) in
zero-order approximation is given by57

Sss
h~0!~k,ivn!5Gss

h~0!~ ivn!5
bs0

2m2 ivn
F , ~15!

and, respectively, the hole Green function determined by
Eqs.~11! and ~13! is written as

Gss
h ~k,ivn!5bs0Kss

h ~k,ivn!,

Kss
h ~k,ivn!5

1

eks2m2 ivn
F , ~16!

eks5
11d

2
$~2t~coskx1cosky!14t8coskxcosky%. ~17!

In Eqs. ~15!–~17!, Gss
h(0)( ivn) is a Green function corre-

sponding to on-site HamiltonianH0 andb
s0 is a first-order

cumulant determined as

bs05^@Xi
s0 ,Xi

0s#1&5^Xi
001Xi

ss& ~18!

and so given by

bs05
11d

2
, ~19!

whered is the number of doped holes per unit cell within
CuO2 plane (̂ X

00&5d), m is an effective chemical potential
~which includes also on-site energiesE0 and Es), and
vn
F5(2n11)pT are Fermi-type Matsubara frequencies. The

Green functionKss
h describes some effective fermions which

have the same dispersion law as physical quasiparticles de-
scribed byGss

h .70 This dispersion law is given by Eq.~17!;
the factor (11d)/2 related to the first-order cumulantbs0 is
important, for it leads to a narrowing of bandwidth and to its
dependence on doping as we discuss later on.

The spin irreducible partSs(k,ivn) in a zero-order ap-
proximation is written as57

Ss~0!~k,ivn!5Gs~0!~ ivn!5
bss̄

h2 ivn
B , ~20!

whereGs(0)( ivn) is a spin Green function corresponding to
a zeroth on-site Hamiltonian, the first-order cumulantbss̄ is
determined as
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bss̄5^@Xi
ss̄ ,Xi

s̄s#2&5^Xi
ss2Xi

s̄ s̄&, ~21!

and the Matsubara frequencies of Bose-type are given by
vn
B52npT. Calculations in the limit ofh→0 give us

Ss~0!5dvn,0

C~T!

T
, C~T!5

1

21exp~m/T!
. ~22!

Respectively, the spin Green function in this approximation
is written as follows:

Gs~k,ivn!5dvn,0

C~T!

T1JkC~T!
. ~23!

Expressions~16! and ~23! for the hole and spin Green
functions correspond to a zero-order approximation for the
hole and spin irreducible parts. This is the lowest approxi-
mation in the DT for Hubbard operators~HO’s! in which
quasiparticles described by Green functions become propa-
gating. The first-order corrections toSss

h (k,ivn) and
Ss(k,ivn) and the corresponding expressions for the hole
and spin Green functions are given in Ref. 57. The important
point for the present consideration is that the hole Green
function is represented as a sum of coherent and incoherent
parts:

Gss
h ~k,ivn!5Gss

h~coh!~k,ivn!1Gss
h,~ inc!~k,ivn!, ~24!

whereGss
h(coh) has a structure similar to Eq.~16! with a renor-

malized residue and dispersion law:

Gss
h~coh!~k,ivn!5

Zbs0

ẽks2m2 ivn
F
. ~25!

As to the spin Green function, there are also other contribu-
tions to the irreducible partSs ~we have analyzed the spin
dynamics in detail in Ref. 57!. However, the most important
term for the present aim is just the simplest, static, contribu-
tion Ss(0) given by Eqs.~20!–~22!, since just this term be-
haves qualitatively differently for two kinds of normal-state
hole dynamics as we shall see later on.

The equation for the chemical potential in the first-order
approximation with respect to 1/z and in the limit of low
temperature71 has been obtained in Ref. 57. It is given by:72

^X00&5m1
1

N(
k,s

$nF~eks2m!2nF~2m!%, ~26!

m5
1

112 exp~2m/T!
, ~27!

wherenF(x) is the Fermi function. The first term in Eq.~26!
arises from the on-site terms of the Hamiltonian while the
second one is related to the hole hopping.

B. Hole and spin Green functions in the case
of the antiferromagnetic ground state

For the AF ground state, an additional contribution to the
zero-order spin irreducible partSs exists. It is related to the
internal magnetic field corresponding to the AF ordering. In
the case of two-sublattice AF ordering,Ss(0) is a 232 ma-
trix and the Larkin equation has a matrix form

Ĝ5~ Î2ŜV̂!21Ŝ. ~28!

The explicit expressions forV̂s and Ŝs(0) are given in the
Appendix; see Eqs.~A3! and~A2!. When this contribution is
dominant in comparison with other contributions toSs ~pure
AF state in the undoped cuprates!, the spin Green function
acquires the usual spin-wave structure; see Eqs.~A4!–~A8!
in the Appendix.

The hole Green function in the AF state is a 232 matrix
as well. It is determined by the Larkin equation~28! with the
interaction matrix given by Eq.~A14! and the irreducible
part which in the zero-order approximation is given by Eq.
~A17!. Due to the fact that the first-order cumulantbs0 is
equal to unity for a lattice site belonging to one sublattice,
but is vanishingly small for a site belonging to the other, the
term in the denominator of the Larkin equation associated
with the interaction potential is vanishingly small~see the
Appendix!. The hole Green function is written as

Gss
h~0!'Sss

h~0! ~29!

@whereSss
h(0) is determined by Eq.~A17! # and thus the holes

are not propagating quasiparticles. The physical reason for
this is that the existence of a rigid AF structure forbids a
direct hopping of the doped hole to a nearest-neighbor site.
This occurs whent850. The propagation of the doped hole
is, however, possible within the same sublattice, for in this
casebs0 is of the order of unity for all sites. Such a propa-
gation occurs in the approximation considered when the hop-
ping to the next nearest neighborst8 is not equal to zero@see
Eqs.~A19! and~A20! and Refs. 69 and 73# and in a higher-
order approximation through virtual spin-flip processes even
in the case oft850.74,75As a result, the dispersion law of the
band holes is given by

eks5agk
21bg2k , ~30!

wheregk is determined by Eq.~14!. The prefactors are given
by

a58t86
dt2

2~2J2t8!
, b522~ t822t9!, ~31!

when the propagation of the holes occurs due to the direct
hopping (t9 is a hopping term corresponding to third neigh-
bors!. They are proportional toJ when the propagation is due
to the virtual spin-flip processes.74,75 For realistic values of
the parameters, the dispersion law~30! is characterized by
minima located at the four points (6p/2,6p/2).73

C. Fermi surfaces for different solutions

Let us analyze now the shape of the FS corresponding to
different solutions for the normal state. The shape of the
Fermi surface of the doped holes on the AF background
characterized by the dispersion law~30! is well known. It is
represented by four small pockets around the points
(6p/2,6p/2); see Fig. 1. The volume of the Fermi surface
is proportional to the number of doped holesd.

For the state without LR ordering~paramagnetic phase!,
the FS of the quasiparticles with the dispersion law~17! de-
pends crucially on the value of chemical potential. The latter
is determined by solutions of Eq.~26!. One can see that at
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T50 Eq.~25! for the chemical potential has two solutions for
eachd: m,0 ~solution I! andm.0 ~solution II! ~since at
T50 one hasm51 for m.0 andm50 for m,0). Solution
I is described by the equation

d5
1

N(
ks

nF~eks2m! ~32!

and solution II by the equation

11d5
1

N(
ks

nF~eks2m!, ~33!

whereeks is determined by Eq.~17!. @To get these equations
one should not forget that the sum in Eq.~26! includes a
summation ons so that the last term equals22 in the case
of m.0.# The corresponding FS’s are shown in Fig. 2 for the
same value of doping,d50.1, and for two cases~i! t850
and ~ii ! t8/tÞ0 being negative. The FS is large in case~33!
and small in case~32!. Another important observation is that
the shape of the large FS depends a lot on the ratio of hop-
ping parameters while the shape of the small FS is practi-
cally independent.

At finite temperature, the dependencem(d) is obtained by
a numerical solution of Eq.~26!. The results for the case
t850 and t8Þ0 are shown in Figs. 3~a! and 3~b! ~together
with the results forT50). One can see that at very low and
very high doping only one solution exists in the case ofT
Þ0, I and II, respectively, whereas at intermediate doping
two solutions coexist. The third solution which corresponds
to the parts of curvesm(d) with a negative slope is an un-
physical solution~in a direct analogy with the van der Waals
equation!. For the interval of doping where the three solu-
tions coexist, the physical picture is the following. Within
this interval, a critical dopingd0(T) exists at which a first-
order phase transition from solution I to solution II takes
place. This doping is determined by the condition of the
equality of the free energies associated with solutions I and
II. At very high temperature, however, only one solution
persists for any doping@see curves forT5t in Figs. 3~a! and
3~b!#. This means that the line of the first-order PT,d0(T),
terminates at some temperature by a critical point. We do not
perform explicit calculations ofd0(T) since in order to ob-
tain reliable values of the free energies the calculations
should be performed in a higher-order approximation~be-

cause of the close values of the free energies for these
phases!. Important itself is the fact of the existence of the
first-order phase transition at some intermediate doping.

To understand the nature of the states described by solu-
tions I and II let us analyze the behavior of the spin Green
function corresponding to these solutions. As seen from Eq.
~23!, the spin Green function exhibits an AF instability as the
temperature decreases in the case of solution I but does not
in the case of solution II. It is so becauseC(T) is finite as
T→0 for solution I but C(T)→0 @and moreover
C(T)/T→0# asT→0 for solution II; see Eq.~22!. It means
that the paramagnetic solution I is unstable against AF order-
ing when lowering the temperature. On the contrary, solution
II is stable against LR AF ordering asT decreases, and the
metallic PM state described by solution II exists atT50 as
well.76

Hence, the two discussed solutions correspond to qualita-
tively different physical pictures. In the case of solution I,
the FS is formed by only doped holes whereas holes on
copper are responsible for localized magnetism. In the case
of solution II, holes on copper become a part of the FS while
the system loses the localized magnetic moments associated
with d electrons.

Thus, what happens can be described as follows. At
‘‘high’’ temperature and low doping, only one PM solution
exists, namely, solution I with a small FS. This solution,
however, is unstable against AF ordering when lowering the
temperature so far as the spin susceptibility diverges at
k5QAF. Therefore, at low temperature and low doping, in-
stead of solution I the AF solution~which we will call I8) is
realized, and the hole dynamics is described by the hole
Green function~A18! and ~A19!. @Strictly speaking, for this
solution the long-range AF order takes place only atT50 for

FIG. 1. Fermi surface of carriers in the AF state I8.

FIG. 2. Hole Fermi surfaces in the PM state. Calculations are
performed for the doping leveld50.1 and two cases of parameters
t/J51.8, t8/t50, ~a! and~c!, andt/J51.8, t8/t520.4,~b! and~d!.
The plots~a! and~b! correspond to solution I, the plots~c! and~d!
to solution II.
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the two-dimensional~2D! CuO2 plane. Actually, however,
an exchange interaction between planes is always present,
leading to the stability of LR AF order at low temperature
below TN(d).# Accordingly, the FS has the shape shown in
Fig. 1. In its turn, the AF ground state becomes unstable
above the rather low critical concentration,
d5dN

2D'0.0220.03; see Ref. 69 in which the spin dynamics
corresponding to the solution I8 is analyzed in detail. The
reason for the instability is the following: Due to the scatter-
ing by band holes with the dispersion law~30!, magnons
with wave vectors close toQAF lose their identity and decay
into electron-hole pairs.69 Above this concentration but be-
low d0(0), i.e., atdN

2D,d,d0, the only possibility that ex-
ists is a quantum spin-liquid or quantum-disordered ground
state77 ~another type of ground state associated with the
localized-spin system with an AF interaction!. At doping lev-
els higher thand0, the system exists in the metallic ground
state described by solution II. For this solution, the FS is
large even at small values ofd; see Fig. 2.

Summarizing, atd5d0 the low-temperature hole and spin
dynamics change abruptly: from the picture of FS formation
by doped holes only whiled-electrons are responsible for the
localized magnetism, to the picture when thed electrons be-
come a part of the FS while the system loses the magnetic
moments associated withd electrons. Accordingly the shape
and volume of the FS change abruptly from a small FS with

a volume proportional tod to a large FS with a volume
proportional to 11d. In the same way a number of carriers
changes.

D. Saddle-point singularity in the case of the large FS

Let us consider now in more details the hole dynamics
corresponding to solution II with a large FS. As we will see
later on, just the state corresponding to this solution reveals
the features close to experimental observations in the normal
state at doping levels corresponding to optimal superconduc-
tivity and, moreover, the itinerant quasiparticles of this solu-
tion have a tendency of SC pairing of high amplitude when
loweringT.

As we have already seen, the shape of the large FS at
fixed doping depends strongly on the ratio of hopping param-
eterst8/t. On the other hand, it depends on doping. In Fig. 4
we show a doping evolution of the FS for three sets of
t8/t.

The first point, a sensibility of the shape of the FS to the
value of t8/t, has already been discussed in the literature in
connection with different shapes of the FS for
La22xSrxCuO4 ~LSCO! and YBCO families obtained by
local-density-approximation~LDA ! calculations and ARPES
experiments. LDA calculations78–80reveal that for the family
of bilayer cuprates the FS shape is rotated by 45° relative to
that found in a nearest-neighbor tight-binding scheme. By
contrast, the same calculations show that for the LSCO fam-
ily the FS has a diamondlike shape. Thus, two families of
cuprates have FS’s which roughly speaking are related by
45° rotation. The experiments confirm this, directly by
ARPES measurements13–20 for bilayer cuprates and indi-
rectly by neutron scattering measurements for LSCO; the
latter reveal the existence of nested FS.81 The idea of fitting
these shapes by using different values of the ratiot8/t for
these compounds, large and negative for YBCO and small
for LSCO, has appeared in many papers; see, for example,
Refs. 82 and 83. Below we choose the ratiot8/t520.1 to
model the LSCO family and we analyze a few possibilities,
including t8/t520.3 andt8/t520.4, for the YBCO family.

The second point which we would like to discuss in more
detail is the evolution of FS with doping and the related
features of the dispersion law of the itinerant quasiparticles.
In Fig. 5 we show the dispersion laweks given by Eq.~17!
in the directions (1,0) and (p,1) for the parameters
t8/t520.1 ~to model the LSCO family! andt8/t520.3 and
t8/t520.4 ~to be analyzed for the YBCO family!. ~We re-
mind the reader thateks is written in the hole representa-
tion.!

The dispersions are similar to those in the band calcula-
tions, but differ by the multiplier (11d)/2. The latter is im-
portant since it accounts for experimentally observed nar-
rowing of the bandwidth by a factor of 2 in comparison with
band theory, as first noted by the Olson’s group.84

The dispersion is characterized by saddle points~SP’s!
located at (6p,0) and (0,6p) with the energy

es522~11d!t8. ~34!

Near the saddle points, the dispersion law can be written as

FIG. 3. Doping dependence of chemical potential obtained by
the solution of Eq.~26! for two cases of parameterst8/t50 and
t8/t520.3. The parts of the curves withm,0 correspond to solu-
tion I while those withm.0 correspond to solution II. The parts of
the curves with a negative slope correspond to an unphysical solu-
tion ~in direct analogy with the van der Waals equation!.
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eks

~11d!/2
524t81ka

2~ t12t8!2kb
2~ t22t8!, ~35!

wherea5x,b5y for the points (6p,0) anda5y,b5x for
the points (0,6p). For t8Þ0 this dispersion law is charac-
terized by a heavy mass,m1}1/(t22ut8u), in one direction
and by a light mass,m2}1/(t12ut8u), in the other. As a
result for large enoughut8/tu, the spectrum around the saddle
points is characterized by a flat minimum along theY-G
direction and by a narrow maximum along theY-S direction
~in the hole representation!. Such a behavior is very close to
that observed by ARPES in different bilayer high-Tc oxides
YBa2Cu3O61x ~YBCO123!, YBa2Cu4O8 ~YBCO124!, and
Bi 2Sr2Ca1Cu2O6 ~Bi2212!.10–20 However, the experimen-
tally observed extension of the flat part in theY-G direction
is larger than the calculated one seen in Fig. 5. To reproduce
the experimental dispersion curve better85 one can add a

next-next-nearest-neighbor hopping termt9 to force aka
4 de-

pendence into the dispersion law.86 The spectrumeks for this
case is also shown in Fig. 5 for the values of hopping param-
eters proposed in Ref. 86.~In the following section we will
analyze all sets of parameters in a relation with superconduc-
tivity phenomenon.!

The important question is how far is the energy of the SP
from the Fermi level and how the distance between them
changes with doping? In Fig. 6 we show two curveseF(d)
calculated self-consistently based on Eq.~26! andes(d) from
Eq. ~34! for the casest8/t520.1 andt8/t520.3. One can
see that at some critical dopingd5dc , two curves intersect.
For the caset8/t520.1 ~monolayer cuprates! one has
dc'0.08, and for the caset8/t520.3 ~bilayer cuprates! one
hasdc'0.27. For the doping ranged,dc , the Fermi level
lies below the saddle-point energy~or above in the electron
representation!, being very close to it. The fact that the dif-
ferenceZ5ueF2esu is small and changes only little within
the extended range of doping ford,dc for the case of the
bilayer cuprates is very important, for it allows one to under-
stand the experimental observation for the bilayer com-
pounds in the underdoped regime.88 In correspondence to
these observations, the distance between the saddle point and
the Fermi level is smaller than 30 meV for all doping in the

FIG. 4. Evolution of the FS with doping in the case of solution
II for different sets of parameters.

FIG. 5. Hole dispersion law corresponding to solution II in the
directions ~1,0! and (p,1! for three sets of hopping parameters.
Note that the dimensionless spectrum plotted,eks / t@(1
1d)/2#52(coskx1cosky)14t8/tcoskxcosky12t9/t(cos2kx1cos2ky),
is also doping independent. The true spectrum depends on doping
by a factor of (11d)/2.
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underdoped regime. This observation cannot be understood
within band calculations, as emphasized in Ref. 88. On the
contrary, as seen from Fig. 6~b!, our calculations give
Z,0.14t50.25J'30 meV for the doping range
d50.1–0.4.89

The weak variation ofueF2esu with doping in the under-
doped regime, i.e., atd,dc , results in a weak change of the
FS within the extended doping range from low doping to the
critical one,d5dc ; see Fig. 4. Such a weak change is also in
good agreement with the photoemission experiment; see Ref.
11.

The intersection of two curveseF(d) and es(d) has im-
portant effects on the normal-state hole dynamics. The first is
the known zero-energy logarithmic singularity in the density
of states~see, for example, Ref. 13!,

r~v!5(
ks

d~v2eks2m!; lnuv2Zu, ~36!

occurring atZ50 whereZ is the distance from the critical
doping,Z5es2eF;dc2d whend tends todc . This singu-
larity has an important influence on the thermodynamic
properties. The second is the non-Fermi-liquid,v lnv, be-
havior of the inverse relaxation time related to electron-
electron scattering occurring atZ50 which transforms to
usual Fermi-liquid behavior far fromd5dc :

87,93,94

te2e
21 ~v!5H v lnuv2Zu, v2Z!T,

v2lnuv2Zu, v2Z@T, Z,0.
~37!

There is also a singular behavior of the inverse relaxation
time related to impurity scattering which occurs as well at
Z50, t imp

21 ~v!;lnv for T@v.87 ~We would like to emphasize
again that the intersection of the SP and FL discussed above
is not assumed but is obtained self-consistently.!

In total, anomalies which occur atd5dc are signatures of
quantum critical behavior related to an electronic topological
transition~ETT! in the system of noninteracting carriers. A
general theory of such transitions related to the change in the
topology of FS’s is discussed in Ref. 96. Applications for 3D
systems are considered in Ref. 97. On our opinion, just the
proximity of the system to the quantum critical point related
to the ETT in the quasi-2D case of cuprates is responsible for
the so-called ‘‘strange metal’’ behavior observed in the nor-
mal state aboveTc . The details of such critical behavior
occurring in the system of interacting carriers are discussed
elsewhere.87

Summarizing, solution II which describes the normal-
state hole dynamics in the intermediate doping exhibits fea-
tures quite close to those observed experimentally. We
would like to emphasize that this starting picture of the hole
dynamics in the normal state is quite different from that ob-
tained in two types of microscopical theories based on the
t-J model; see Refs. 6–8, 98 and 99. In Refs. 6–8 the
normal-state hole dynamics coincides with the picture corre-
sponding to solution I8 ~in our notation!. In Refs. 98 and 99,
the normal-state hole dynamics corresponds to solution I.
Both pictures are very different from that found in the
present paper and from the picture observed experimentally.

Let us consider now the possibility of a superconducting
pairing of the discussed quasiparticles characterized by the
dispersion laws shown in Fig. 5 and by the FS shown in Fig.
4.

IV. SUPERCONDUCTING PAIRING

A. Direct attractive interaction between carriers
in the t-J model

The quasiparticles which we have discussed in Secs. II
and III are, on the one hand, close to the usual fermions so
far as they are characterized by FS’s, etc. On the other hand,
by kinematic properties they belong to the family of the
lieons~see Sec. II! and this results in various specific conse-
quences. The most important for us here is the point that due
to this specificity of the quasiparticles, the hopping term of
the Hamiltonian and the exchange interaction turn out to be
direct attractive interactions between them.

To understand this effect, it is necessary to comprehend
the nature of vertex blocks representing a Lie-Hubbard op-
eratorXi

pq which are different from the vertex blocks for
Bose and Fermi operators due to the intrinsic differences in
the algebras.~The graphs discussed below correspond to the
DT for LH operators. To understand the details we address
the reader to Ref. 57, Appendix B.! We show some vertices

representing the spin-flip operatorXi
ss8 and the charged-

quasiparticle operatorXi
0s in Figs. 7 and 8, respectively. The

crucial point demonstrated by the figures is that in contrast to
the DT for Bose or Fermi operators, the LH operatorXi

pq can
be represented not only by simple vertex blocks to~or from!
which one Green-function line comes in@Figs. 7~a! and 8~a!#

FIG. 6. Energies of the saddle point and of the Fermi level as
functions of doping for parameters which model the monolayer and
bilayer cuprates.
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but also by complex vertex blocks in which several Green
functions meet~without any interaction line! @Figs. 7~b!,
8~b!, and 8~c!#. In other words, each LH operator carries an
interaction~an anharmonicity! in itself. Mathematically this
is a consequence of their specific algebra, namely, of the
multiplication rules~6! and commutation relations~7!. Due
to these commutation relations, two LH operators after pair-
ing in correspondence to the Wick theorem give again a LH
operator in contrast to Bose-Fermi operators which give after
pairing 1 or 0. Hence, after a first pairing, another LH opera-
tor can participate in a second pairing with the initial LH
operator, then again new operator can, and so on. This is the

way in which the complex blocks appear. In more detail with
some examples we have discussed this procedure in Ref. 57,
Appendix B.

It should be emphasized again that the existence of such
complex blocks is intrinsic and it stems from the algebra of
X operators; the structure of the complex blocks depends
neither on the type of Hamiltonian or on the approximation
in which the latter is treated. Thus, the types of complex
vertex blocks come from the algebra; however, the type of
graph in which these blocks participate depends on the
Hamiltonian. Each interactionVi jXi

pqXj
p8q8 produces a line

~wavy line in the graphs! which joins a vertex block corre-
sponding to the operatorXi

pq with a vertex block correspond-

ing to the operatorXj
p8q8 ; see for example Figs. 9–13.@To

read the graphs one has to remember that their elements have
a different meaning than those in the DT for Fermi-Bose
operators. Namely, here the interaction lines are very impor-
tant and they are shown by wavy lines not by a simple cross-
ing of Green-function lines. A simple crossing of the Green-
function lines corresponds to some LH operator~shown as an
open circle!.#

One can see now that the same interactionVi j , given by
the HamiltonianVi jXi

pqXj
p8q8, plays a different role when it

joins different types of vertex blocks corresponding to the
operatorsXi

pq andXj
p8q8. Namely, in the considered case of

the t-J model, the HamiltonianHJ plays the role of an ex-
change interaction between the localized spins when theJk
line joins two vertex blocks of type~a! in Fig. 7 and the role
of an interaction between two charged quasiparticles when
theJk line joins two blocks of type~b! in Fig. 7 as shown in
Fig. 9.Ht plays the role of the propagation energy of carriers
when thetk line joins two blocks of type~a! in Fig. 8 and the
role of an interaction between two charged quasiparticles
when it joins the vertex block of type~a! with that of type~c!
in Fig. 8 as shown in Fig. 9.

Thus, skeleton diagrams responsible for the interactions
which can lead to SC pairing of charged quasiparticles are
the graphs shown in Fig. 9.100 Being dependent on wave
vectors, these interactions are attractive in some regions of
the Brillouin zone and repulsive in others.~The possibility of
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an attraction between carriers due to a hopping term was
discussed early in Ref. 101 for the Hubbard model.!

In order to feel the physical meaning, it is useful to recall
the situation for the more simple~and more known! case of
operators belonging to the LH family, spin operators. Indeed,
for the case of spin operators a similar effect is well known.
It appears in different formalisms. For example, in the
Dyson-Maleev representation for spin operators, a nondiago-
nal spin operator is written as the sum of the linear and
third-order terms on Bose operators so that the same ex-
change interaction produces an energy of spin waves and
their interaction. In another formalism, the DT for spin op-
erators, the same effect manifests itself as the simultaneous
existence of the simple vertex block with one Green-function
line and of the complex vertex block with three Green-
function lines, both representing the same operatorSi

1 ~see
Ref. 56!.

The existence of the interactions shown in Fig. 9 allows
us to write down an equation for the anomalous hole Green
function,

Gss̄
h ~k,ivn!5^^Xk

s0X2k
s̄0&&

5E
2b

b

dt exp~2 ivnt!^TtXk
s0~t!Xk

s̄0~0!&,

~38!

associated with a SC pairing of carriers. As usual in the DT
for X operators, in fact the graphical equation concern to the
Fermi-type anomalous hole Green functionKss̄

h related to
the true Green functionGs̄s

h in the same way as it was in the
case of the normal hole Green function@see Eq.~16! and
Ref. 70#, namely, by the relation

Gss̄
h 5bs0Kss̄

h . ~39!

Such an equation is given by

K̃ss̄
h 5~Kss

h Pss̄K s̄ s̄
h 1Kss

h Pss̄K s̄ s̄
h Ps̄s̄K s̄ s̄

h 1••• !

1~Kss
h PssKss

h Pss̄K s̄ s̄
h 1••• !

5Kss
h Pss̄K̃ s̄ s̄

h 1Kss
h PssK̃ss̄

h , ~40!

whereK̃ss
h is given by

K̃ss
h 5Kss

h 1~Kss
h PssKss

h 1Kss
h PssKss

h PssKss
h 1 . . . !

1~Kss
h Pss̄K s̄ s̄

h Ps̄sKss
h 1 . . . !5Kss

h

1Kss
h PssK̃ss

h 1Kss
h Pss̄K̃ s̄s

h . ~41!

In Eqs.~40! and ~41!, K̃ s̄s
h is an anomalous Green function,

K̃ss
h is a renormalized normal Green function,Kss

h is the
bare normal Green function determined by Eq.~16!, and
Pss and Pss̄ are normal and anomalous components of
polarization operator.

In the lowest approximation~first approximation with re-
spect to 1/z) the latter are given by the graphs in Figs. 10 and
11 taken without external Green-function lines and with in-
ternal lines corresponding to the ‘‘dressed’’ Green functions
K̃ss
h and K̃ s̄s

h .102 The analytical expressions corresponding
to these graphs are given by

Pss̄~k!52
1

N(
q
2~Jk2q2tq!Fq , ~42!

Pss~k!52
1

N(
q

~2J01Jk2q22tk22tq!Nq , ~43!

where the normal and anomalous correlation functionsNq
andFq are related to the normal and anomalous Green func-
tions by

Nq5 lim
t→02

(
vn

Gss
h ~q,vn!e

ivnt, ~44!

Fq5 lim
t→02

(
vn

Gss̄
h ~q,vn!e

ivnt. ~45!

In other words,Nq andFq are normal and superconducting
order parameters~OP’s! which are Fourier transforms of fol-
lowing ones in real space:

Fh5^Xi
s0Xi1h

s̄0 2Xi
s̄0Xi1h

s0 &, ~46!

Nh5^Xi
s0Xi1h

0s &. ~47!

We omit in Eq.~42! the term corresponding to the last graph
in Fig. 10 since it vanishes due to the constraint

FIG. 9. Graphs showing the origin of the attractive interaction between carriers.
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(
p
Fp52 (

i
Xi

s0Xi
s̄050, ~48!

resulting from the multiplication rules for LH operators:

Xi
s0Xi

s̄050. ~49!

By solving Eqs.~40! and~41! one obtains for the normal
and anomalous hole Green functions:

G̃ss
h ~k,ivn!5bs0S Uk

2

Eks2 ivn
1

Vk
2

Eks1 ivn
D , ~50!

G̃ss̄
h ~k,ivn!52bs0UkVkS 1

Eks2 ivn
1

1

Eks1 ivn
D ,

~51!

where

Eks5Aẽ ks
2 1Dk

2, ~52!

ẽks5eks2Pss~k!2m, Dk52Pss̄~k!, ~53!

Uk
25

1

2 S 11
ẽk
Eks

D , Vk
25

1

2 S 12
ẽk
Eks

D . ~54!

In Eqs.~50!–~54!, Eks is the dispersion law of carriers in the
SC state,eks is the dispersion law in the normal state@de-
fined by Eq.~16! with the additional term related to next-

next-nearest hopping, 2t9(cos2kx1cos2ky)#, Dk is the SC
gap, andPs̄s(k… andPss(k… are determined by Eqs.~42!
and ~43!.

So far as the polarization operators entering in~50! and
~51! are written in terms of the order parametersFk andNk
determined in their turn by the Green functions~50! and
~51!, the latter equations are the equations for the functions
Fk andNk to be solved self-consistently. We will neglect
below the renormalization of the normal-state dispersion law
and takeẽks5eks2m, so far as we have used in the disper-
sion law eks the effective values of hopping parameters
taken to fit the experimental dispersion law and FS. Within
this approximation we get a single equation to be solved
self-consistently, namely, the equation for the SC gap,

Dk5
11d

2

1

N(
q

Jk2q2tq
Eqs

DqtanhSEqs

2T D , ~55!

whereEks is given by

Eks5A~eks2m!21Dk
2 ~56!

and the SC gap is related to the SC order parameterFp as
follows:

Dk5(
p

~Jk2p2tp!Fp . ~57!

The latter is given by the equation

Fq5~11d!UqVq$122nF~Eq!% ~58!

~we omit here and later on the indexs in the dispersion law
Eks).

Before to switch over solving Eq.~55! it is worth empha-
sizing that the considered graphs for the polarization opera-
tor are the simplest possible graphs in thet-J model. Other
graphs produced by the same vertex blocks and by the same
interaction lines are possible. One type of graph which could
lead to SC pairing appears if one assumes the existence of a
propagator-type spin Green function. These diagrams are

FIG. 10. Graphs originated from vertex blocks in Fig. 9 and
contributing to the anomalous component of the polarization opera-
tor Pss̄ . The latter is given by the graphs taken without external
Green-function lines.

FIG. 11. Graphs which contribute to the nor-
mal component of the polarization operator
Pss . The latter is given by the graphs taken
without external Green-function lines.
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produced by the skeleton graphs shown in Fig. 12@the com-
plex vertex blocks participating in the graph 12~a! is of type
8~b! and 8~a! while in the graph 12~b! of type 7~a! and 7~b!#.
The graphs in Fig. 12 describe a standard interaction be-
tween carriers through an exchange of an intermediate qua-
siparticle, here by the magnon. Just this type of interaction is
usually considered to be responsible for SC pairing of mag-
netic origin; see, for example, Refs. 6–8. The problem, how-
ever, is that vertex blocks of types 8~b! and 7~a!, as well as
the propagator-type spin Green function itself, nonvanish for
zero magnetic field only in the presence of LR AF ordering,
which is not the case aboveTc . @The reason for the vanish-
ing is the factorbss̄ ~proportional to on-site magnetization!
accompanying these vertices and the propagator-type spin
Green function. The existence of this factor reflects a general
structure of the Green functions determined on LH operators
~see Ref. 70!#. Short-range AF correlations, even when
strong, do not lead to the appearence of the desired spin
Green-function lines.

The latter correlations manifest themselves in another
class of diagrams appearing as a result of ‘‘dressing’’ of the
Jk interaction line as shown in Fig. 13. The corresponding
analytical expression for the renormalizedJ interaction is

J̃~k,v!5
Jk

11Jkx0~k,v!
[Jk

x~k,v!

x0~k,v!
, ~59!

wherex0(k,v) is a normal-state zeroth susceptibility deter-
mined graphically by the loop in Fig. 13 and analytically by
the Lindhard function. The effect of such ‘‘dressing’’ will be
considered elsewhere. As one can see from Eq.~59!, in prin-
ciple, SR AF correlations could lead to an enhancement of
the interactionJk , i.e., of the interaction the effect of which
on SC pairing is considered in the present paper. We delib-
erately stay below in the approximation of the bareJ inter-
action since we would like to show that the pure effect of the
AF interaction is sufficient to get a high-Tc effect. In other
words, we do not want to mix two different effects, the bare
attractive interaction existing itself and a possible enhance-
ment coming from SR AF correlations. It is important to
distinguish between them in view of the rather popular in
phenomenological theories scenario for high-Tc as mediated
by SR correlations. On the other hand, the normal-state dy-

namic spin susceptibility measured by inelastic neutron scat-
tering shows quite smooth behavior as a function ofv,32,38

which is another argument in favor of considering a bareJ
interaction.

B. Equation for the superconducting order parameter

The obtained equation~55! for the SC gap is similar to the
BCS equation except that it contains the anisotropic interac-
tion potentialJk2q2tq in the place of an isotropic one. Re-
cently, such types of anisotropic interactionshave been as-
sumedin a few phenomenological theories for cuprates~see,
for example, Refs. 3–5!. A solution of the gap equation has
been considered for the case when the dispersion law of car-
riers and their FS’s are taken in the weak-coupling limit~i.e.,
correspond to those of bare electrons!. Although the equa-
tions for the SC gap look similarly in our case and in these
theories, an important difference exists. In our strong-
coupling limit, when the subject for pairing is the quasipar-
ticle associated with the operatorX0s, the constraint exists
given by Eq.~48! which results from the multiplication rules
for LH operators. The condition~48! means that the SC OP
of these quasiparticles must be sign reversal, with the inte-
gral weight of positive and negative parts within the Bril-
louin zone being equal. This is a strong constraint which
forbids, as we will see, many symmetries of the SC OP
found in the weak-coupling limit. On the other hand, a for-
mally similar gap equation has been obtained in the strong-

FIG. 12. Graphs for the attrac-
tive interaction between carriers
appearing through exchange by a
virtual magnon.

FIG. 13. Graphs for effective exchange interaction ‘‘dressed’’ in
the presence of SR AF correlations.

12 476 54F. ONUFRIEVA, S. PETIT, AND Y. SIDIS



coupling limit for the t-J model based on a decoupling
scheme for two-time Green functions.98 However, the
normal-state hole dynamics obtained within the decoupling
scheme is very different from ours and from that observed
experimentally: Namely, it corresponds to solution I in our
notation and is characterized by a small FS, as was discussed
in Sec. III. Obviously, this changes the explicit solution of
the gap equation completely. An additional important differ-
ence is a prefactor (11d)/2 in the right-hand side of the gap
equation which is absent in Ref. 98 and which is important
for the doping dependence of the SC gap.

Let us now analyze the equation for the SC gap. Using the
explicit momentum dependence ofJk2q and tk for a square
lattice, one can rewrite Eq.~55! in the following way:

Dk5coskxNx1coskyNy1sinkxMx1sinkyMy1D, ~60!

with

Nx5
11d

N (
q

J cosqxDq

Eq
tanhS Eq

2TD , ~61!

Ny5
11d

N (
q

J cosqyDq

Eq
tanhS Eq

2TD , ~62!

D52
11d

N (
q

2Dq

Eq
~ tgk1t8hk!tanhS Eq

2TD , ~63!

and Mx5My50, the latter because of symmetry:
Dk5D2k . Another~equivalent! presentation of Eq.~60! is

Dk5D1D0
sgk1D0

dak , ~64!

in whichDk is represented as a linear combination of a con-
stant term, an extendeds-wave symmetry term, and a

d-wave symmetry term. In Eqs.~61!–~64!, ak5
1
2 (coskx

2cosky) andgk andhk are determined by Eq.~14!. Substi-
tuting Eq. ~64! into Eqs. ~61!–~63!, we obtain a set of
coupled equations for the amplitudes of the SC gap,D0

s ,
D0
d , andD:

D0
s5

2J~11d!

N (
k

H gk
2D0

s1akgkD0
d1gkD

Ek
tanhS Ek

2TD J ,
~65!

D0
d5

2J~11d!

N (
k

H ak
2D0

d1akgkD0
s1akD

Ek
tanhS Ek

2TD J ,
~66!

D52
tD0

s

J
2
2t8~11d!

N

3(
k

H hkgkD0
s1hkakD0

d1hkD

Ek
tanhS Ek

2TD J . ~67!

In the case oft850, the system of three equations reduces to
a system of two equations while the amplitudesD0

s andD are
related as follows:

D52
t

J
D0
s . ~68!

Equations~65!–~67! describe a solution of a most general
symmetry:D0

dÞ0, D0
sÞ0, DÞ0, if it exists. For a particular

but most important symmetry, whenDk
2 ~and soEk) is in-

variant into the symmetry operationkx↔ky , the system of
equations is reduced to the equation

D0
d5J~B2C!D0

d ~69!

and to the set of equations

D0
s5J~B1C!D0

s12DD, ~70!

D52S tJ12t8EDD0
s22CD, ~71!

whereB, C, D, andE are defined as follows:

B5
11d

N (
k

cos2ka

Ek
tanhS Ek

2TD , ~72!

C5
11d

N (
k

coskxcosky
Ek

tanhS Ek

2TD , ~73!

D5
11d

N (
k

coska

Ek
tanhS Ek

2TD , ~74!

E5
11d

N (
k

cos2kxcosky
Ek

tanhS Ek

2TD . ~75!

This symmetry is consistent with a generalizedd-wave sym-
metry of the SC gap,

Dk5D0
dak1D, ~76!

with a generalizeds-wave symmetry

Dk5D0
sgk1D, ~77!

and with ans1 id symmetry

Dk5D1D0
sgk1 iD0

dak . ~78!

For these symmetries we finally have a set of three equa-
tions, two of which are given by

~11d!

N (
k

2Jak
2

Ek
tanhS Ek

2TD51, ~79!

15
11d

N H F(
k

2~Jgk
22tgk!

Ek
tanhS Ek

2TD G
1F(

k

4t8hk

Ek
tanhS Ek

2TD GF(
k

Jgk
2

Ek
tanhS Ek

2TD 21G
2F(

k

8Jgk

Ek
tanhS Ek

2TD GF(
k

t8hkgk

Ek
tanhS Ek

2TD G J ,
~80!

and the third one has to be chosen among Eqs.~69!–~71!.
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C. Solution of the gap equations in the cases of large
and small FS’s

Explicit solutions of the gap equations depend on the dis-
persion law of charged quasiparticles in the normal state and
on their FS. We analyze below the solutions of these equa-
tions for the two cases corresponding to the normal-state
hole dynamics described by solutions I and II; see Sec. III.

1. Normal state corresponding to solution I (FS with volume
proportional tod…

We analyze below the case of solution I to get an idea
about the possibility of a SC pairing in the case of the small
FS. This analysis is going to be rather formal since as we
will see the SC solution found for the doping range of the
stability of solution I does not satisfy the constraint~48!.
Nevertheless, it is worthwhile to understand the interrelation
between the size and shape of FS and the possibile symmetry
of the SC pairing.

We show in Fig. 14 the amplitudes of the SC gap found
for the two casest8520.1 andt8520.4. One can see that
the gap equations have only thes-wave solution~77! for low
and moderate doping and thed-wave solution~76! ~with
D50) for high doping. For thes-wave solution, the constant
term is always larger than the amplitude of the extended
s-wave termD0

s . Therefore, the SC gap has no nodes; i.e.,
the SC order parameterFp does not change sign within the
Brillouin zone~see Fig. 15!. It automatically follows that this
solution does not fulfill the constraint~48! and thus should
be omitted.

For thed-wave solution the constant term is equal to zero
~see Fig. 14!, and this solution matches the constraint~48!.
However, the doping range for thisd-wave solution is out of
the range of the existence of the solution I in the normal state
~compare Fig. 14 with Fig. 3! and thus thed-wave solution
also cannot be retained.

2. Normal state corresponding to solution II (FS with volume
proportional to11d…

Let us concentrate now on the normal-state solution II,
characterized by the FS close to the observed experimentally.
By solving Eq.~79!, we have found the superconducting gap
of thed-wave symmetry~76! with D50, and this is the only
solution which exists for the case of preserved symmetry
kx↔ky . The doping dependence of the amplitude of the SC
gap for the three sets of parameters~i! t8/t520.1, t950, ~ii !
t8/t520.4, t950, and ~iii ! t8/t520.38, t9/t50.06, is
shown in Figs. 16, 17, and 18 respectively.@We remind the
reader here that set~i! has been chosen to model the FS
typical for monolayer cuprates and sets~ii ! and~iii ! to mimic
the situation for bilayer cuprates.# The corresponding wave
vector dependences of the SC OP,Fk , are shown in Figs. 19
and 20.103 One can see that the SC OP changes sign in the
same manner as thed-wave SC gap; however, in contrast the
order parameter is different from zero only in the close vi-
cinity of the FS, indicating that superconducting pairing
takes place close to the Fermi level. The condition~48! is
fulfilled. We stress here that the interaction responsible for
the obtained SC solution is theJ interaction as seen from Eq.
~79!, while thet interaction does not contribute. The reason
is that theJ and t interactions have different wave vector

dependences as far as thetq interaction is associated with
three Green-function lines belonging to the same site and the
fourth line belonging to another site, and theJk2q interaction
is associated with two Green-function lines belonging to the
same site and two lines belonging to another site.

Although the amplitudes of the SC gap turned out to be
large in all three cases of the above parameters, a strong
quantitative difference exists. Namely, we found that the
maximum value ofD0

d is almost twice larger in the case of
t8/t520.4 than in the case oft8/t520.1. It should be com-
bined with the observation that for the cases presented in
Figs. 17 and 18, the maximum value ofD0

d is almost the
same although the extensions of the saddle point differ sig-
nificantly.

To understand the reasons for the very large values of the
amplitudes of thed-wave SC gap and for the differences
between three cases discussed, let us analyze qualitatively
Eq. ~79! for the amplitude of thed-wave gap which simpli-
fied ~at low T) version takes the form

15
1

N(
k

4Jak
2

Aẽk
21~D̃0

dak!
2
, ~81!

with an effective dispersion lawẽk and an effective SC gap
D̃0
d given by

ẽk5
eks2m

~11d!/2
, D̃0

d5
D0
d

~11d!/2
. ~82!

FIG. 14. Amplitudes of the SC gap in the case of solution I.~a!
corresponds to t/J51.8, t8/t520.1 and ~b! to t/J51.8,
t8/t520.4.
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Let us consider the range of doping around
Z5ueF2esu50, i.e., the range where the energy distance
between the flat part of the normal-state hole spectrum and
the Fermi level~FL! is small. A dominant contribution to the
sum overk in Eq. ~81! is given by wave vectors around the
points (6p,0),(0,6p) where, on the one hand, the saddle
points in the spectrumẽk are located and, on the other hand,
the effective attractive interactionJak

2 is maximum. One can
characterize the wave vector region where the latter interac-

tion is considerable by a surfacesN ~the extension of the
interaction potential!. One can introduce also an effective
extension of the saddle point~SP! r̃ as a wave vector area
where the effect of the flat part of the spectrum is crucial for
the integral~81!. This extension is determined by the exten-
sion r of the flat part of the spectrum itself and by the wave
vector distance between the flat part and the FL,l
}(d2dc)

2. Then, a rough estimate of the integral in Eq.~81!
gives

D̃0
d'4Jmin~s,r2 l !. ~83!

Let us analyze the three cases of parameters:~i!, ~ii !, and
~iii !.

In the case oft8/t520.1, t950, the extensionr of the
flat part is smaller thans and therefore Eq.~83! transforms to

D̃0
d'4J~r2 l !. ~84!

In such a case, the effect of the SP is sensible and the maxi-
mum of the effective gapD̃0

d is reached at the dopingdc at

FIG. 15. Superconducting order parameterFk for solution I.

FIG. 16. Amplitude of thed-wave gap ~solution II! for
t8/t520.1.

FIG. 17. Amplitude of thed-wave gap ~solution II! for
t8/t520.4.

54 12 479HOLE DYNAMICS IN DOPED CUPRATES: . . .



which EF crosses the SP. The value ofD̃0
d decreases quite

quickly when one moves from this doping due to an increase
of l . This explains the doping dependence of the effective
gap D̃0

d , obtained by numerical calculations; see Fig. 21 for
t8/t520.1, t950. The maximum of the true gap,D0

d , is
reached at higher dopingd5d*.dc , due to the factor
(11d)/2; compare the curves fort8/t520.1 in Figs. 21 and
22.

In both cases t8/t520.4,t950 and t8/t520.38,
t950.06, the extensionr of the flat part is larger thans.
Therefore, at the dopingd5dc one has

D̃0
d'4Js. ~85!

The same equality is valid for some doping range around
dc as far asr2 l>s. Therefore, the doping dependence of the
effective SC gapD̃0

d exhibits a kind of plateau or broad maxi-
mum.The high value of the SC gap within this doping range
is determined by the value and extension of the effective in-
teraction potential. Then, with further increasing of
ud2dcu, the quantityr̃5r2 l becomes smaller thans and
hence D̃0

d is determined by Eq.~83!; i.e., it decreases as
s2a(d2dc)

2. This analysis enables us to understand quali-
tatively the shape of the dependenceD̃0

d(d) obtained by di-
rect calculations and presented in Fig. 21 for the parameters
considered. The doping dependence of the true gapD0

d is
shown in Fig. 22. The curve is asymmetric: The maximum of
D0
d is realized at higher doping than the maximum ofD̃0

d due
to the factor 11d.

For the parameters corresponding to an intermediate situ-
ation, the shape ofD̃0

d(d) evolves continuously between the
two cases considered above; see Fig. 21. The maximum
value of D̃0

d increases until a critical extension of the SP is
reached. The maximum value of the true gapD0

d increases
even stronger due to the factor (11d)/2. Once the equality
s5s is reached, a further increase of the extension of the SP
singularity, s, has no influence on (D̃0

d)max which is still
determined by Eq.~85!. That is why the maximum values of
D̃0
d are almost the same for the two sets of parameters:

t8/t520.4, t950, on the one hand, andt8/t520.38,
t950.06, on the other, although the difference in the exten-
sion of the saddle-point singularities is important. The quan-
tity dependent on the extension of the saddle points is the
width of the doping range arounddc where Eq.~85! is ful-
filled. The larger is the extension of the SP, the larger is the
flat part of D̃0

d(d). @So far as the extensions is large in the
caset8/t520.38, t950.06, the flat part inD̃0

d(d) is quite

FIG. 18. Amplitude of thed-wave gap ~solution II! for
t8/t520.38, t9/t50.06.

FIG. 19. Superconducting order parameterFk for solution II and
t8/t520.1.

FIG. 20. Superconducting order parameterFk for solution II and
t8/t520.4.
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large.# These two facts, the saturation of (D̃0
d)max and the

increase of the doping range of the plateau inD̃0
d(d) with an

increase of the extension of SP singularity, lead to the doping
dependence of the true gapD0

d shown in Fig. 22 for the two
cases~ii ! and ~iii !. The optimal doping corresponding to the
maximum ofD 0

d increases with an increase of the extension
of the SP singularity. As to the maximum value ofD0

d , then
in the cases when the saturation ofD̃0

d is reached, it also
increases with increase of the extension of the SP singularity
but much weaker than in the ‘‘unsaturated case,’’ for it is
determined only by the factor (11d)/2 which enhances the
high-energy part of the plateau.

To complete this discussion we show in Fig. 23 the dop-
ing dependence ofTc obtained by numerical solution of Eq.
~79!. One can see that in the cases when the extension of the
SP is smaller than optimal one~LSCO case!, the doping
dependences ofTc resembles qualitatively the doping depen-
dence of the true SC gap. On the contrary, in approaching the
optimal extension this dependence resembles the doping de-

pendence of the effective SC gap,D̃0
d(d), i.e.,Tc

max saturates
with increasing the extension. In addition to the interesting
effect of the saturation, the latter means first that in the case
of the optimal extension~YBCO case!, the ratioD0

d/Tc in-
creases with doping, being maximum at optimal doping, and
second that this ratio taken at optimal doping is larger in the
case of a large extension~YBCO! than in the case of a small
extension~LSCO!.

Until now we considered the situation where the symme-
try kx↔ky exists. This corresponds to a tetragonal lattice.
We found that the large FS is compatible with thed-wave
symmetry of the SC OP and that this is the only type of
solution which exists in the case considered. The next point
that we would like to analyze is the following. What are the
conditions necessary for the existence of mixeds1d or
s1 id solutions? The answer which we have found is as fol-
lows. These solutions appear only in the case when the sym-
metry kx↔ky is broken. This can occur due to a small an-
isotropy in the dispersion law~and therefore in the FS! or
due to the anisotropy in the interaction potential. Both fac-
tors can appear as a result of an orthorhombic distortion of
the lattice. Even a small anisotropy is enough to drive a
solution from the pured-wave symmetry to thes1d sym-
metry. However, the amplitude of thes term is small as far
as the anisotropy is small. For example, the solution found in
the case of a forced anisotropy of the dispersion law

eks

~11d!/2
52t~coskx1a cosky!14t8coskxcosky , ~86!

with a50.95, is found to be very close to thed-wave solu-
tion existing in the case ofa51. The ratio of the amplitudes
is D0

s/D0
d'1022. Thus, although formally the SC gap has an

s1d symmetry in the case of the orthorhombic distortion,
the amplitude of thes-wave component is so small that the
gap can be considered as having almost pured-wave sym-
metry.

FIG. 21. Doping dependence of the effectived-wave gapD̃0
d for

different t8/t and t9/t ratios.

FIG. 22. Amplitude of the trued-wave SC gap as a function of
doping for differentt8/t and t9/t ratios.

FIG. 23. Critical temperature as a function of doping for differ-
ent t8/t and t9/t ratios.
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V. DISCUSSION

In the present paper, we have analyzed the evolution of
hole dynamics in the CuO2 plane from low to high concen-
tration of doped holes. We obtained stimulating results for
the normal and superconducting states.

A. Normal state

In the normal state we have found two qualitatively dif-
ferent states which we call phase I and phase II. In the case
of phase I, the FS is formed by doped holes only whereas
copper holes initially present are responsible for localized
magnetism. In the case of solution II, the holes on copper
become a part of the FS while the system loses the localized
magnetic moments associated with thed electrons. The vol-
ume of the FS is proportional tod in the case of solution I
and to 11d in the case of solution II. A first-order phase
transition between them is found at some critical doping
d5d0(T). The line of first-order phase transitions terminates
at some temperature by a critical point.

With lowering the temperature, phase I becomes unstable
as far as the spin susceptibility diverges atk5QAF. There-
fore, this solution transforms into a LR AF solutionI 8 at
T50 and low doping. The AF ground state in its turn is
stable only up to critical dopingd5dN

2D . Above this doping,
magnons with wave vectors close toQAF lose their identity
and decay into electron-hole pairs.69 ~According to Ref. 69,
this concentration is very low, of the order of 0.02–0.04 for
relevant values of hopping parameters.! There are two pos-
sibilities for the ground state at doping higher thandN . The
first one is realized ifdN>d0(0). In this case, the first-order
phase transition from the LR AF state to the metallic state II
occurs atd5d0(0), and the FSchanges abruptly from the
FS with four small pockets centered at (6p/2,6p/2) to the
FS with large hole pockets centered at (6p,6p). The sec-
ond possibility is realized ifdN,d0(0). In this case, for the
doping rangedN,d,d0(0), a spin liquid @or quantum-
disordered~QD! state in the classification of Ref. 77# takes
place. Properties of the hole subsystem in the latter ground
state are a subject of special investigation; anyway the vol-
ume of the FS is proportional tod. At a doping level higher
than d0, the system exists in the metallic ground state de-
scribed by solution II. For this solution, the FS is large even
at small values ofd; see Fig. 2. The two possibilities dis-
cussed above are presented in the schematic phase diagram
in Figs. 24~a! and 24~b!.

As far as solution I exists only at low doping, the band-
width of the quasiparticles is very narrow and one can argue
that in reality any additional interaction~like impurity scat-
tering, etc.! leads to a localization of holes and makes this
state an insulating one. State II with a large bandwidth cor-
responds to a metallic state. From this point of view, one
could interpret the line of the first-order phase transitions
discussed above,d5d0(T), as a line of metal-insulator phase
transitions~this is, however, only a speculation!.

We analyzed the metallic state II by solving the equation
for the chemical potential self-consistently and found a criti-
cal dopingdc at which the Fermi level crosses the saddle-
point singularity. The value of critical doping varies between
0.1 and 0.4 depending on the ratiot8/t. We have also found
that in the underdoped regimed,dc , the Fermi level lies

very close to the saddle-point energy. The distance between
them,Z5es2eF, changes very little with doping in the un-
derdoped regime and in a much sharper way in the over-
doped regime. This result lets one understand the experimen-
tal observation88 that the distance between the saddle point
and the Fermi level is very small~namely is smaller than 30
meV! in a wide region of doping in the underdoped regime
of the bilayer compounds~a fact which cannot be understood
within the rigid band scheme, as emphasized in Ref. 88.! In
correspondence with the weak variation ofueF2esu with
doping, the FS also changes only a little in the underdoped
regime. Such a weak change is also in good agreement with
photoemission experiments.

We summarize all transition lines discussed above in the
schematic phase diagram presented in Fig. 24.

B. Superconducting state

Summarizing, we have found a short-distance supercon-
ducting pairing ofdx22y2 symmetry. The amplitude of the
SC gap at low temperature and the value of the critical tem-
perature are very high. The superconducting pairing has a
magnetic origin but the mechanism is different from the ex-
change by spin waves. The mechanism found is related to the
AF interaction between localized spins turning out to be a
direct attractive interaction between itinerant charged quasi-
particles. The latter point is a consequence of the specific
nature of these quasiparticles appearing as a result of strong
on-site Coulomb repulsion. On the other hand, the specific
kinematic properties of the carriers create a strong constraint
on the symmetry of the superconducting order parameter
which eliminates all symmetries without nodes and favors
strongly thed-wave symmetry. In such a situation the exist-
ence of a saddle point close to FL is an additional important
factor which provides a maximum value of the effective at-
tractive interaction. Below we discuss certain points cru-
cially important for superconductivity in more detail.

1. Relation between symmetry of the SC pairing and the volume
and shape of the FS

The first point is the relation between the symmetry of the
SC pairing and the volume and shape of the FS. As we have
seen, for the case of the small FS, the solution of the gap
equation hass-wave symmetry, while in the case of the large
FS, it hasd-wave symmetry. The reason is simple. In the
case ofd-wave symmetry, the effective attractive interaction
appearing in the numerator of the gap equation,Jak

2 , has a
considerable magnitude only around the points
(6p,0),(0,6p). While SC pairing is possible only for qua-
siparticles in the vicinity of the FS, there is no significant
attraction for them in the case of the small FS and there is a
strong attractive interaction when the FS is extended towards
these points. On the contrary, in the case of extended
s-wave symmetry, the effective interaction has the form
Jgk

2 and is maximum around (6p,6p),(0,0) ~while in the
case of pures-wave symmetry, the effective interaction ex-
ists everywhere!. Therefore extendeds-wave symmetry is
compatible with the small FS around (6p,6p),(0,0). This
is a purely geometrical effect which is common for all types
of systems regardless of the nature of the quasiparticles cre-
ating SC pairs.

12 482 54F. ONUFRIEVA, S. PETIT, AND Y. SIDIS



2. Role of the nature of normal-state quasiparticles
for the symmetry of the superconducting order parameter

The nature of quasiparticles which are the subjects for
pairing is very important. In strong-coupling-limit theories,
the quasiparticles in the normal state are associated with
Fermi-like LH operators. In weak-coupling-limit theories,
they are fermions. Both types of operators are similar for
different sites~they anticommute!, which results in many
common properties like the existence of FS etc. However,
they are very different for the same site. Namely, two fermi-
ons with different spins can exist on the same site whereas
two quasiparticles associated with Lie-Hubbard operators
cannot. This is an intrinsic property of the algebra of projec-

tion operators; see Eq.~49!. This leads to the constraint~48!
which eliminates many symmetries of the SC OP.~From the
physical point of view this feature appears very natural if one
remembers that the appearance of the new type of quasipar-
ticles is related to the strong on-site Coulomb repulsion
which obviously prevents the possibility of the existence of
two on-site carriers.! This very strong constraint eliminates
not only all symmetries without nodes but requires integrally
equal parts with positive and negative amplitudes of the OP.
It should be emphasized that such a constraint exists for all
strong-coupling-limit models as far as they are formulated in
terms of LH operators, for thet-J model, for the one-band
Hubbard model, for the three-band Hubbard model, etc.
Summarizing, almost all symmetries of the SC OP possible
in the case of fermions are eliminated in the case when qua-
siparticles are Fermi-like lieons.

3. Role of the nature of normal-state quasiparticles
for the existence of an attractive interaction

On the other hand, the specific nature of the normal-state
quasiparticles~lieons! results in the existence of a direct in-
teraction between them, which is hidden in the exchange and
the hopping terms of the Hamiltonian. Being momentum de-
pendent, these two types of interaction are attractive for
some range of wave vectors of quasiparticles. It is important
that the very fact of the existence of such attractions does not
depend on the approximation considered. This fact is a con-
sequence of new~in comparison with Bose-Fermi operators!
types of vertex blocks characterizing LH operators, which in
its turn is a direct consequence of the algebra of LH opera-
tors.

The wave vector range of attraction is different fort and
J interactions. This results in different symmetries of pos-
sible SC pairing associated with puret and pureJ interac-
tions, namely, in isotropics-wave andd-wave or extended
s-wave symmetries, respectively. When these interactions
are considered simultaneously, thet interaction does not par-
ticipate in the creation of thed-wave or extendeds-wave
pairing, and theJ interaction does not in the isotropic
s-wave one. As far as only the symmetries with nodes are
possible, the antiferromagnetic interaction is a true interac-
tion responsible for the SC pairing in the considered strongly
correlated electron system. As far as the amplitude of this
interaction is very large, this leads to large value of the su-
perconducting gap.

The attractive interactiontq , although it exists, does not
lead to SC pairing. On the contrary, it prevents SC pairing,
since in its presence the extendeds-wave solution existing
for t5t850 @see Eq.~80!# is replaced by a generalized
s-wave pairing with a nonzero constant term. As we dis-
cussed above, in the presence of the constant termD in thek
dependence of the SC gap, the constraint~48! is not fulfilled
that eliminates this SC solution. A possibility to fulfill this
constraint~and therefore for thes-wave solution to be al-
lowed! exists only for the very special interrelation between
t and t8.

4. Saddle point close to Fermi level: Interrelation between
the extension of the saddle point and the maximum value

of the SC gap

The next point is a role of the SP and the interrelation
between the extension of the saddle point and the optimal

FIG. 24. Schematic phase diagram summarizing our results. The
line d5d0 is the line of the first-order phase transition between the
normal states described by solutions I and II. The lined5dc is the
line of electronic topological transitions.dN is the doping of insta-
bility of the LR AF ground state.~The existence of the LR AF state
at finite T is a consequence of the implied exchange interaction
between planes.! We add also the lines which have not been calcu-
lated in the paper but which are important for state I, namely, the
dashed lines of crossover between different regimes for the 2D
localized-spin system, renormalized classical AF regime, quantum-
disordered~QD! regime, and quantum critical regime~the classifi-
cation is given in a correspondence with Ref. 77!. The phase dia-
gram ~a! corresponds to the case whend0.dN and ~b! to the
opposite case.
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value of the SC gap. We have found that the extension of the
saddle point is indeed important~in agreement with a phe-
nomenological idea put forward in Refs. 13 and 14!, how-
ever, its interrelation with the optimal value of the SC gap is
not trivial. The latter increases until some critical extension
of the SP is reached and thenremains almost saturated. This
‘‘saturated’’ value of (D0

d)max is determined by the amplitude
of the exchange interaction and by its extension within the
Brillouin zone:

~D0
d!max5

11d*

2
Js, ~87!

where d* is the value of the optimal doping. The critical
temperatureTc saturates upon reaching the critical extension
of the saddle point as well.~All the features discussed above
are valid for the tetragonal lattice symmetry. In the case of
the orthorhombic distortion, we have found a weak admix-
ture of thes-wave component such that the symmetry of the
SC gap iss1d. However, the ratioD0

s/D0
d is so low that

there is only a small quantitative difference from the pure
d-wave case!.

5. Schematic phase diagram

In the main text of the paper, we have analyzed separately
the possibility of SC pairing for quasiparticles corresponding
to solutions I and II. We have shown that in the case of phase
II, the self-consistency equation yields for the SC gap the
d-wave symmetry. The SC pairing corresponds to the short-
distance pairing. There is no such pairing in the case of phase
I since the required constraint~48! is not fulfilled. Focusing
on the evolution of the picture with doping from low to
moderate doping, one has to keep in mind the change in the
character of the normal-state hole dynamics, discussed in
Sec. V A. As a result, we can complete our schematic phase
diagram by the lineTc(d) which terminates atd5d0, since
no superconductivity~given by the mechanism considered!
exists for phase I. In correspondence with this phase dia-
gram, the disappearance of the short-distance superconduc-
tivity should be quite sharp at low doping due to the abrupt
disappearance of the ‘‘metallic’’ solution II. It has to be
noted that the question of the existence of superconductivity
in the left part of the phase diagram~corresponding to phase
I! is open. As we discussed in Sec. IV A, the possibility of
attraction mediated by a virtual magnon exists for this phase
that in principle could lead to a long-distance SC pairing.
~However there is a problem of the existence itself of such an
interaction in the phase without LR ordering, as we have
discussed in Sec. IV A!. We also leave open the question of
the value ofd0 as far as it should be determined at lowT by
comparing free energies for the metallic state II and for the
quantum disordered state. To be reliable such calculations
should be done in a rather high approximation due to the
well-known sensibility of the free energy. Crude estimations
show however thatd0 is generally larger thandN and that its
value depends much on ratiot8/t, namely it decreases when
ut8/tu increases~t8/t being negative!.

We would like to note also that as far as the phase tran-
sition between the states I and II is of first order, this makes
the possibility of finding domains of another phase existing
on both sides fromd5dc . This could explain the results of

Mössbauer spectroscopy104,105 and of muon-spin-rotation
studies,106 where the phase separation between local mag-
netic and local nonmagnetic~superconducting! regions has
been found in the SC states of YBa2Cu3O61x
(0<x<1),104,106 of YBa2~Cu0.94Zn0.06O61x (0<x<1),105

and of La22xSrxCuO4.
106
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APPENDIX: HOLE AND SPIN GREEN FUNCTIONS
IN THE DOPED AF STATE

In the case of a rigid two-sublattice AF structure of the
ground state, all characteristics describing the system are
232 matrices. The Larkin equation has the matrix form

Ĝ5~ Î2ŜV̂!21Ŝ, ~A1!

whereV̂ is a matrix of the interaction potential andŜ is the
matrix of the irreducible part. The spin irreducible part in a
zero-order approximation is given by

Ŝs~0!5F bA
ss8

hA2 ivn
B

0

0
bB

ss8

hB2 ivn
B

G , ~A2!

wherebss8 is determined as in Eq.~21! and is different for
different sublattices, andhA,B are internal magnetic fields
conjugated to the AF order parameter~the values ofhA,B is
proportional tô Sz&A,B

(0) ). The matrix of the interaction poten-
tial for the case of the spin Green function is written as

V̂s5FVAA
s VAB

s

VBA
s VBB

s G5F 0 2Jk

2Jk 0 G , ~A3!

if we neglect the intrasublattice interaction and take into ac-
count only the intersublattice AF interaction. WhenSs(0) is
dominant in comparison with other contributions to the spin
irreducible part~i.e., in the pure AF state of the undoped
cuprates!, the spin Green function given by Eq.~A1! ac-
quires the form

Ĝs5K̂sb̂, ~A4!

K̂s5FKAA KAB

KAB KBB
G , b̂5FbAss8 0

0 bB
ss8G , ~A5!

KAA~k,ivn!5
uk
2

vk2 ivn
1

vk
2

vk1 ivn
, ~A6!

KBB~k,ivn!5
vk
2

vk2 ivn
1

uk
2

vk1 ivn
, ~A7!

KAB~k,ivn!5ukvkH 1

vk2 ivn
1

1

vk1 ivn
J . ~A8!
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In Eqs.~A6!–~A8!, the magnon dispersion lawvk and the
functionsuk andvk are given by

vk5bJ0A12gk
2, ~A9!

uk
2 ,vk

25
1

2 S 16
1

A12gk
2D , ~A10!

where

b5bA
ss852bB

ss852^Sz&A,B
~0! 512d ~A11!

andgk is determined by Eq.~14!. Expressions~A6!–~A10!
are the usual spin wave equations for the spin Green function
in the pure AF state; see, for example, Ref. 56. Note that in
the formalism of the DT for Lie-Hubbard operators they cor-
respond to a zero-order approximation for the spin irreduc-
ible part.

The hole Green function in the AF state is a 232 matrix
as well. It is given by the Larkin equation~A1! with a hole
irreducible part which in a zero-order approximation is writ-
ten as

Ŝ0s
h~0!5F bA

s0

2mA2 ivn
F 0

0
bB

s0

2mB2 ivn
F

G , ~A12!

wherebs0 is determined by Eq.~18!, and is given by

bA,B
s0 5^X001Xss&A,B . ~A13!

The matrix of the interaction potential for the hole Green
function is written as

V̂h52F tk8 tk

tk tk8
G . ~A14!

The term in the denominator of the Larkin equation respon-
sible for thek dependence of the hole Green function and of
its poles depends strongly on values of the first-order cumu-
lantsbA,B

s0 entering in Eq.~A12!. To calculate their values, let
us assume that the spins are up (s51) on sublatticeA and
down (s521) on sublattice B. It means that
^X2121&A5^X11&B50 and therefore ^X11&A5^X2121&B
512d. Then, one has from Eq.~A13!

bA
105bB

21051, ~A15!

bB
105bA

2105d, ~A16!

so that the first-order cumulantbs0 is equal to unity for a
lattice site belonging to one sublattice, but is vanishingly
small at low d for a site belonging to another sublattice.
Therefore, for lowd, the zero-order spin irreducible part is
written as

Ŝ01
h~0!'F 1

2mA2 ivn
F 0

0 0
G . ~A17!

If one neglects nearest-neighbor hopping in the matrixV̂h

given by Eq.~A14!, i.e., if one putstk850, then one gets
from the Larkin equation

Ĝ0s
h 5S0s

h~0! . ~A18!

The latter means that the holes are not propagating quasi-
particles in the puret-J model. If t8Þ0, one obtains for the
diagonal components of the hole Green function the follow-
ing expression:

Gf f
h 5

12O~d!

eks
f 2m2 ivn

F ~ f5A,B!, ~A19!

eks
f 5agk

21bg2k , ~A20!

a58t86
dt2

2~2J2t8!
, b522~ t822t9!. ~A21!

(t9 is a hopping term corresponding to third neighbors.!
In this case, the holes are propagating quasiparticles with

the dispersion law~A20!. It is the known result: Such a dis-
persion law for one hole on the AF background has been
obtained earlier in thet-J model~see, for example, Refs. 73,
74, 75, and 69!. Here we have shown how this result arises in
the DT for Lie-Hubbard operators, since we wish to describe
all possible phases within the same formalism.107

Thus, a propagation of the doped holes on the AF back-
ground is only possible within the same sublattice. Such a
propagation occurs due to the hopping to the next nearest
neighbors as we have shown above or through virtual spin-
flip processes.74,75 In the former case, the band parameters
a andb are determined by Eq.~A21!. In the latter case,a
and b are proportional toJ.75 For realistic values of the
parameters, the dispersion law~A20! is characterized by
minima located at the points (6p/2,6p/2).
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