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Hole dynamics in doped cuprates: HighT . superconductivity originated from antiferromagnetic
exchange as a direct attractive interaction
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A strong-coupling-limit theory of hole dynamics in copper oxide superconductors is developed. The theory
is based on théet’-J model and the diagrammatic technique for projection operators. For the normal state two
different phases at finite temperature are found. For the(fidsich is realized at low dopinga Fermi surface
(FS is formed by doped holes only and so has a volume proportiond) tehile d electrons are responsible
for a localized magnetism. For the secamehich is realized at intermediate dopjnghed electrons become
a part of the FS the volume of which is proportional t¢- & while the system loses the magnetic moments
associated withd electrons. A transition between the two phases is of first order and the FS changes abruptly
from a small to a large one. The phase with the small FS is unstable when lowering the temperature in as much
as a spin susceptibility divergeskat Qg Therefore, at low temperature within the doping range correspond-
ing to this phase, a long-range antiferromagnéfi€) ground state or quantum-disordered ground state is
realized depending on doping. Most attention in the paper is paid to the second state characterized by a saddle-
point (SP singularity and a large Fermi surface. Self-consistent calculations for the chemical potential show
that at some critical doping which depends on the ratio of hopping paranéterthe Fermi level crosses the
SP. For this phase, a short-distance supercondu¢E@gpairing of d-wave symmetry with a large amplitude
of the SC gap is found at low temperature. The critical temperature is very high. The superconducting pairing
has a magnetic origin but the mechanism is different from an exchange by spin waves. The mechanism is
related to the AF exchange between localized spins, turning out to be a direct attractive interaction between
carriers. The latter point is a consequence of the specific nature of carriers appearing as a result of strong
on-site Coulomb repulsion. On the other hand, the specific kinematic properties of the carriers create a strong
constraint on symmetry of the superconducting order parameter which eliminates all symmetries without nodes
and favors stronglyg-wave symmetry. In such a situation the existence of a saddle point close to the Fermi
level is a factor providing a maximum value of the effective interaction. An interrelation between an extension
of the SP singularity and a value of the amplitude of the SC gap is analyzed; a saturation effect is found.
[S0163-182696)05238-1

I. INTRODUCTION T. were characterized by a short-ran(®R) AF ordering
with a quite large magnetic correlation lengthe, (ii) the

Since the discovery of higfi; superconductivity, differ- intensity of the dynamic spin susceptibility in this state were
ent scenarios have been proposed to explain this phenorgensiderable and its variation with doping would correlate
enon. Recently the discussion has been concentrated on tgomehow with the doping dependenceTqf, and (iii) the
points: first, on the importance of a saddle point or an exdispersion law of carriers and their Fermi surf4E€) in the
tended saddle-point singularity in the electronic spectrum irmetallic state of interedi.e., for the hole concentration cor-
the normal state irrespective of the nature of the superconesponding to the existence of superconductjvitgre quali-
ducting (SO pairing and, second, on the potentially impor- tatively close to the dispersion law and FS of one hole on the
tant role of magnetic degrees of freedom in the pairingAF background.
mechanism. However, different experiments performed on the hole-

Apart from phenomenological studig¢see, for example, doped cuprates appear to prove the opposite. Angle-resolved
Refs. 1-5, a microscopic mechanism of magnetic origin photoemission electron spectroscoyRPES experiments
usually considered is a virtual exchange by spin waves whiclwvhich probe a hole dynamics show that the spectrum of a
leads to an attractive interaction between carfie?$n these  photohole on the antiferromagnetic background observed in
theoretical descriptions, both spin and hole degrees of fredgnsulating S,CuO,Cl, (Ref. 9 indeed corresponds to the
dom are considered on the basis of an antiferromagnetiES with the small hole pockets centered at+/2,= w/2).
(AF) state that implies long-rangéd.R) ordering for the Meanwhile, for the doping corresponding to the supercon-
localized-spin degrees of freedom and the Fermi surfé8e  ductivity, the picture is quite different; the large hole pockets
forming small hole pockets aroundt(w/2,+ 7/2) for the centered at £ 7,= ) are observed in the metallic state
charge degrees of freedom. Although superconductivity andbove T, .1%-® The difference between the hole dynamics
antiferromagnetism do not coexist in the hip-supercon- in the paramagnetic state abo¥g and aboveT, is espe-
ductors, such an approach could be considered as qualitaially impressive in the experiments performed on the same
tively relevant if (i) the paramagnetic metallic state abovecrystal in continuously changing dopiny, namely, in
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YBa,Cu;04., 4 (YBCO) with x=0.35 corresponding to the superconducting pairing of magnetic origin exists, different
insulating AF state and witk=0.4,0.5,0.7,0.9 correspond- from exchange by spin waves, but still related to the exist-
ing to the metallic state(In this series of experiments the ence of localized spins with a strong AF interaction in the
data for insulating, but not carrier-free, YB@u;Og4 35 are  CuO, plane. Moreover, this mechanism leads to a high value
consistent with the results in SEuO,Cl,, and the data for of the amplitude of the SC gap, and so Tf, and to the
the metallic YBaCu;Og. With x=0.4,0.5,0.7,0.9 are con- d,2_,2 symmetry of the superconducting order parameter
sistent with data for the other hole-doped cuprates in th€¢SC OB. This mechanism can be qualitatively explained as
metallic state. Thus, the ARPES data seem to indicate thatfollows. The first important point is the specific nature of the
condition (iii) is not satisfied. Nevertheless, the situationpropagating charged quasiparticles in the Gufdane. As
from ARPES is not absolutely clear due to the effect ofwas first shown by Zhang and Rféeand then by other
shadow bands observed in &ir,CaCu,0g_ , (Bi2212).1%%°  authors!>“®it is energetically favorable for a doped hole on
Being interpreted as a signature of SR AF orderiagd oxygen to create a singlet bound state with a hole on Cu
being assumed that this ordering is close to the LR AF orwithin the square plaquette. The motion of the extra hole
dering in the insulating statehis discovery just motivated through the lattice occurs as follows: The extra hole creates a
Refs. 6—-8.(It should be noticed, however, that the interpre-singlet on sitei, and when the carrier hops on another site
tation of the shadow-band effect is controversial; it can b, a free Cu spin is restored on sit&’ This way, the itinerant
merely explained as having a structural ori§tms has been charged quasiparticles are in a strong connection with the
noted in Refs. 19 and 20. On the other hand, even if it werdocalized-spin subsystem. As we show later on, this peculiar-
confirmed that the effect is a consequence of SR AF correity of the carriers, arising from the effect of strong electron
lations, there is no reason to identify the latter with spincorrelations, yields the second important poifite AF ex-
waves in the LR AF insulating state. It is more natural tochange between the localized spins turns out to be a direct
think about specific fluctuations of the quantum-spin-liquidattractive interaction between these quasiparticlelse next
type) point is the shape and the volume of the FS of the considered
There is, however, another type of experiment whichquasiparticles: Above some critical doping the FS is large,
clarifies the situation. This is a neutron scattering experimentontrary to the above-mentioned microscopical thed¥ids,
which probes directly the magnetic ordering and spin dy-and the spectrum is characterized by a saddle g&Bt or
namics. The results of such experiments indicate clearly than extended SRlepending on the values of hopping param-
conditions(i) and (ii) are not satisfied. Firstly, as has beeneters whose energy for the doping range=0.1-0.3 turns
discovered, the magnetic correlation lenggf in the normal  out to be close to the Fermi leveb (s the concentration of
state abovel, is extremely smalf?~2° For example, in the doped holes per Cu within the Cy(plane. Then, the an-
case of YBCO&ar~4 A (which is of the order obne unit  isotropy of the attractive interaction, on the one hand, to-
cell) for the dopingx=0.92 just corresponding to the maxi- gether with the large FS and the existence of the SP singu-
mum T, ( = 92 K).2 Second, the intensity of the observed larity close to Fermi level, on the other hand, lead to the
inelastic neutron scatteringNS) signal, which is propor- d,2_,2 symmetry of the superconducting order parameter
tional to the imaginary part of the dynamic spin susceptibil-and, moreover, to high values of the amplitude of the SC
ity, Imy(Qar, ), decreases with doping within the metallic gap?® The last important point is the evolution of this picture
staté* (while T, increasesand drops almost to zero for the with doping. The doping dependence of the chemical poten-
dopingx=1,26-28while the value ofT is almost maximum, tial occurs in such a way that it crosses the saddle point at
T.=90 K. Third, there is clear evidence for a strong quali-some dopings, whose value depends on the rattiét where
tative change of the spin dynamics between the LR AF statéis a nearest-neighbor hopping term d@hds a next-nearest-
and the metallic state aboVe (see, for example, the experi- neighbor hopping term. The maximum df; is reached
ments of the group of J. Rossat-Mignod which have beemround =6, and T, decreases at higher or lower doping.
progressively performed on the same crystal Y8a;O  The explicit doping dependencesTf turn out to be close to
6+« IN continuously changing doping from the insulating to those observed experimentally for monolayer and bilayer cu-
the superconducting statéor the insulating state see Refs. prates, as well as the values of the maximum amplitude of
29-31, for the weakly doped metallic state see Refs. 32—3the SC gap and the values of the maximunTof It is worth
and for the heavily doped state see Refs. 32 and 35-A%7 noting, in addition, that the evolution of the FS with doping
was emphasized in the review paper in Ref. 38, inelastién the normal state, namely, its abrupt change from a small
neutron scattering clearly indicates that the propagative spir-S with the volume proportional té to a large FS with the
wave excitations disappear when one passes from the LR A¥olume proportional to ¥ § obtained within the theory, is
state to the metallic state but instead a broad in energy aralso close to that observed experimentally. It allows us, as
weakly temperature-dependent spectrum is observed. we hope, to shed light on the striking change of the shape
All these features make doubtful, first, the use of the basigand volume of the FS between the insulating and metallic
corresponding to the LR AF state for a microscopical explastates observed by ARPES.
nation of highT; superconductivity phenomena and, second, The paper is organized as follows. In Sec. Il, we describe
more generally, the scenario of the exchange by spin waveake model, namely, thét'-J model which is the simplest
itself. On the other hand, a magnetic origin of superconductrelevant model for the Cu@ plane. We treat this model
ing pairing in highT, cuprates is believed to be more and within the diagrammatic techniquéDT) for Hubbard
more probable due to a mounting evidence fod-&vave operators?~>¢(So far as the present work is a continuation
symmetry of the superconducting order paramétet® of Ref. 57, details about the formalism can be found therein.
In the present paper we show that a natural mechanism fdrhe hole and spin dynamics in the normal state are analyzed
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in Sec. lll. In Sec. IV we present the equation for the SC gapare neither Fermi nor Bose operators; they form a complete
and its solutions for the cases of different FS’s. We analyzealgebra with specific multiplication rules
the symmetry of the SC OP and the amplitude of the SC gap

as a function of doping. Section V contains our conclusions. xini"Pz 5WX?P, (6)
Some mathematical details which are necessary to under- _ _
stand our results are presented in the Appendix. commutation relatior¥
A _ A
IIl. MODEL: LIE-HUBBARD OPERATORS [XH X712 = 61§ (XiP 6, =X 6p0), @)

We use the same model as in Refs. 6—8,ttheJ model  and a conservation rule
which is the simplest model incorporating the issue of strong
electron correlations within the Cuplane. It was derived E M1
from the realistic three-band Hubbard model for the GuO i '
plane with the idea of the local singlet and of the Wannier
representation for O staté%:*® Within this model, the [The conjugated operators are related as follows:
CuO, plane is treated as a lattice of square plaguettes cer(-)(?“)Jr:X{“.] For the same-site operators this algebra is a
tered on Cu sites with four surrounding oxygens, and onlyLie algebra S(B); different-siteX operators are Bose-like or
three low-energy states are taken into account. Those are ti@rmi-like depending on the sign in E¢).>°
two states corresponding to a single hole with spin up and The properties oK operators reflect the interrelation be-
down,|1) and|—1), and the one state corresponding to thetween different degrees of freedom, in our case between the
singlet state of two hole$0).>® Being the simplest one in the localized spins and the itinerant holes. Indeed, the localized-
family of strong-coupling-limit models, this model is quite spin operatoﬁfzxjfll can be represented as a product of
good for describing low-energy excitations in  the two-hole operatorsX; *'=X; ', and the hole operator
CuO, plane; the energy distances to other levels of thex0l a5 3 product of the spin operator and the hole operator

plaguette are very large. For example, the distance betwegfk, another Spinx]_lo: ngLflx_flo etc. The interrelation be-
the singlet and triplet two-hole states is approximately 3.6+

. . een different degrees of freedom is, however, lost when
3.7 eV; see the most recent and accurate calculations in Re}, o ayact algebré6)—(8) is reduced to the algebra of Bose-
48.

. S Fermi operators by using any auxiliary representationXor
. Like all othgr strong—couplmg—l!mn models, the) model operators, the slave boson, the slave fermion, and offers.
is formulated in terms of projection operatqia X opera-

) . " Depending on the type of auxiliary representation, the
Lors, or Hg.?fbard operatdrx:le;‘]lnedl as describing ransitions ., q4e| tyrns out to be reduced to different models corre-
etween different states of the plaquette, sponding to different limiting cases, for example, to the

normal-metal limit, to the spin-charge-separation limit, to the

®

A
X=N)ul. @ limit of long-range-ordered magnetic states, etc. This point
The Hamiltonian is written as has been analyZEd in Ref. 57; see Appendix A therein.
In fact, the problem is much more general. All models in
H=Ho+H;+H;, (2  different branches of physics which start with states of one

cluster(or one atom, one molecule, one spare formulated
in terms of projection operators. Those are, for example, the
He= 2t {XPX0+ XD %19, (3 models describing excitons in molecular crysfdlthe mod-
. els describing the propagating intramolecular excitations in
quantum molecular crystals, vibrons, and libr6hthe mod-
HJ:E Jij{xil’lxj’ll— Xiuxj—l—l}’ (4) els describing spin fluctuations in localized-spin systéins,
i the Heisenberg, th¥-Y, the Ising models, etc. The peculiar-
ity of the algebra ofX operators is intrinsic; it results in
0 1o Mo o intrinsic differences between quasiparticles associated with
Hoin EoXi™+Ea(Xi +X) - E(Xi =X ) Fermi-Bose operators and quasiparticles associated Xvith
) operator$? In the following we will call these operators Lie-
Hubbard (LH) operators for the following reasons. On the
Keeping in mind the definitiorfl) of X operators, one can one hand, their peculiarities and the peculiarities of quasipar-
see that the Hamiltoniam; describes the motion of the ticles associated with them for arbitrary models are com-
doped hole which creates a singlet state on one site and reletely determined by the properties of the Lie algebra. On
stores a free spin of the localized hole on another. Thehe other hand, in physics they are more known as Hubbard
HamiltonianH ; describes the exchange interaction betweeroperators after their introduction by Hubbard in his four-state
localized spins. The on-site Hamiltoniat, describes the particular model. We will also call the quasiparticles associ-
energies of the different states of the plaquette; it includes aated with LH operators lieons to emphasize their profound
well an external magnetic field term. In the paper we will difference from fermions and bosons. Depending on commu-
consider the model with the hopping between neargst ( tation relations for different-site operators, there are Bose-
next-nearestt(), and third neighborst(). like and Fermi-like LH operators. Spin operators are another
The point that the model is formulated in terms of the case of Bose-like LH operators and spin waves are particular
projection operatorgl) is very important. These operators case of lieons.
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In or.der to fully (_:omprehend the_ specifi(_:ity of kinematic VE: —t = — 4ty — 4t p, (13
properties of quasiparticles associated with LH operators )
lieons, it is very important to work accurately with the mod- for the case of the hole Green function, where
els formulated in terms of these operators, namely, to use a
formalism which does not destroy their algebteOne of
such formalism is the diagrammatic technidD&) for Hub-  The irreducible part should be calculated in some order of
bard operator§~>® which we will use in the present paper. the perturbation theory with respect ltg,,=H —H,, where
We will analyze simultaneously the hole and spin dynamicsH, includes on-site terms and,,; includes intersite terms.
which are associated with Matsubara’s hole and spin Greemhe perturbation theory with respect ky,, means in the
functions determined as follows: considered case the perturbation theory with respect to small

parameters ¥/ wherez is the number of nearest neighbors.

Yk=3(COKy+COKy), 7= COK,COK, . (14)

Go(K,iwn) =((XEIXZ0))iw,
5 A. Hole and spin Green functions in the case
_ J d7 expl —iw,7)(T,XI7(1)X79(0)), of the paramagnetic state
—h For the normal state without LR magnetic orderipara-
9 magnetic stafe the hole irreducible parE';U(k,i wyp) in
zero-order approximation is given By

Goo(kiiwn) =((X°I X200, o
5 30K i) =GP (iw)=———%, (15
=f dr exp( —i 0, 7)(T,XZ(7)X%%(0)). p—lon

and, respectively, the hole Green function determined by
(10) Eqgs.(11) and(13) is written as

In Egs.(9) and(10), w, are Matsubara frequencieE, is the G';U(k,iwn)=b“°K20(k,i op),
chronological operators is the imaginary timeXP9(7) are

X operators in the interaction representation, and h . 1

o,0=1,—1. The spin Green function describes the localized Koo(K,iwn) = g io (16)

spins whereas the hole Green function describes itinerant
guasiparticles which correspond to the motion of the doped 5
holes creating the singlet state on one site and restoring a ek‘,zT{(Zt(coskar cok,) +4t’ cok,cok,}. (17)
free spin of the localized hole on another site. We will use

the analytical expressions for the spin Green function and thgy Egs. (15)—(17), Gt‘,(f)(iwn) is a Green function corre-
normal-state hole Green function obtained in Refs. 69 and 5¢ponding to on-site HamiltoniaH, andb?® is a first-order
for the doped antiferromagnetic state in Cu@ane and the cymulant determined as

paramagnetic metallic state with short-range AF correlations,

respectively. Since the corresponding expressions for the b0=([X70 X977, ) =(X*+ X7) (18)
case of the doped AF state have been obtained in Ref. 69 b

using the auxiliary representation corresponding to LR A nd so given by

ordering, we show in the Appendix how these expressions 1+ 68
appear within the DT for LH operators. b"ozT, (19
IIl. HOLE DYNAMICS IN THE NORMAL STATE where § is the number of doped holes per unit cell within

_ _ CuO, plane (X% =), u is an effective chemical potential

.As was discussed in Rgf. 5?, the exact structure of. bo“@which includes also on-site energid, and E,), and
spin and hole Grt_aen func_tlons in the DT f¥roperators is wE:(ZnJrl)WT are Fermi-type Matsubara frequencies. The
given by the Larkin equation Green functiork”  describes some effective fermions which

S (Kiwp) have the same dispersion law as physical quasiparticles de-

- (11)  scribed byG"_."® This dispersion law is given by E¢17);
1=ViZ(kiwp) the factor (1+ 6)/2 related to the first-order cumulabf® is
which is an analog of the Dyson equation in the diagramimportant, for it leads to a narrowing of bandwidth and to its
matic technique for Bose or Fermi operators. In Et1),  dependence on doping as we discuss later on.
S (K,iwy) is an irreducible part of diagram which cannot be ~ The spin irreducible parE®(k,iw,) in a zero-order ap-
cut along an interaction linéin the contrast to the Dyson Proximation is written
equation where the self-energy is an irreducible part which —

oo

Gk,iwy) =

cannot be cut along a Green-function lin€, is an interac- S5O(K i w) =G (iw,) = (20)
tion potential which is equal to non " h—in’
Vi= —Je= —4dy, (12) whereG*) (i w,) is a spin Green function corresponding to

a zeroth on-site Hamiltonian, the first-order cumulafit is
for the case of the spin Green function and to determined as
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b7 =([X77 XT7]_)=(XI"— X7, (21) G=(1-3V) 13, (29

and the Matsubara frequencies of Bose-type are given byhe explicit expressions fovs and 35 are given in the
wB=2n7T. Calculations in the limit oh—0 give us Appendix; see EqgA3) and(A2). When this contribution is
dominant in comparison with other contributions3é (pure
OC(T) AF state in the undoped cuprateghe spin Green function
o)n, T 1

1
. 22 . .
2+exp(u/T) (22) acquires the usual spin-wave structure; see Eg4)—(A8)
in the Appendix.

Respectively, the spin Green function in this approximation The hole Green function in the AF state is & 2 matrix

is written as follows: as well. It is determined by the Larkin equati@8) with the
interaction matrix given by Eq(A14) and the irreducible
part which in the zero-order approximation is given by Eq.
(A17). Due to the fact that the first-order cumulasft® is

Expressions(16) and (23) for the hole and spin Green equal to qnit_y for a lattice site_ belongin_g to one sublattice,
functions correspond to a zero-order approximation for théut is vanishingly small for a site belonging to the other, the
hole and spin irreducible parts. This is the lowest approxi{€rm in the denominator of the Larkin equation associated
mation in the DT for Hubbard operato$iO’s) in which ~ With the interaction potential is vanishingly smasiee the
quasiparticles described by Green functions become prop&PPendix. The hole Green function is written as
gating. The first-order corrections td[‘m(k,iwn) and 29
>3(k,iw,) and the corresponding expressions for the hole (29

and spin Green functions are given in Ref. 57. The importanEWherezg(f) is determined by EqA17) ] and thus the holes
point for the present consideration is that the hole GreeRyre not propagating quasiparticles. The physical reason for
function is represented as a sum of coherent and incoheregls is that the existence of a rigid AF structure forbids a
parts: direct hopping of the doped hole to a nearest-neighbor site.
This occurs when’=0. The propagation of the doped hole

350=¢ C(T)=

Cc(Mm

S(k i = I
Go(K.i )= 30,0753 C T

(23

GO 5 h(0)

oo oo

G (K,iwn)=Gh(K,iwp) +Ghi"(K,iwy), (24)

whereG" has a structure similar to E6L6) with a renor-
malized residue and dispersion law:

. ZbaO

(Kjiwn) == -
€kg— M@

As to the spin Green function, there are also other contribu
tions to the irreducible paX® (we have analyzed the spin
dynamics in detail in Ref. 57 However, the most important
term for the present aim is just the simplest, static, contribu
tion 35 given by Eqs.(20)—(22), since just this term be-
haves qualitatively differently for two kinds of normal-state
hole dynamics as we shall see later on.

The equation for the chemical potential in the first-order
approximation with respect to A/and in the limit of low
temperatur€' has been obtained in Ref. 57. It is given By:

Gh(coh)

oo

= (25)

1
(X =m+ 2 {n"(e,—p) = (-}, (26)

1
T 142 exp—plT)’
wherenF(x) is the Fermi function. The first term in E¢R6)

arises from the on-site terms of the Hamiltonian while the
second one is related to the hole hopping.

m

(27)

B. Hole and spin Green functions in the case
of the antiferromagnetic ground state

For the AF ground state, an additional contribution to thei
zero-order spin irreducible pal® exists. It is related to the
internal magnetic field corresponding to the AF ordering. In
the case of two-sublattice AF ordering$® is a 2x2 ma-
trix and the Larkin equation has a matrix form

is, however, possible within the same sublattice, for in this
caseb? is of the order of unity for all sites. Such a propa-
gation occurs in the approximation considered when the hop-
ping to the next nearest neighbafsis not equal to zerfsee
Egs.(A19) and(A20) and Refs. 69 and 73and in a higher-
order approximation through virtual spin-flip processes even
in the case of’ =0.*">As a result, the dispersion law of the
band holes is given by

ko= Vet BYak, (30)

wherevy, is determined by Eq14). The prefactors are given
by

2

a=8t iZ(ZJ—t') ,
when the propagation of the holes occurs due to the direct
hopping ¢” is a hopping term corresponding to third neigh-
bors. They are proportional td when the propagation is due
to the virtual spin-flip processé&.”® For realistic values of
the parameters, the dispersion 1&80) is characterized by
minima located at the four pointsH(m/2,+ 7/2)."®

B=-2(t'—2t"), (3D

C. Fermi surfaces for different solutions

Let us analyze now the shape of the FS corresponding to
different solutions for the normal state. The shape of the
Fermi surface of the doped holes on the AF background
characterized by the dispersion 14@0) is well known. It is
represented by four small pockets around the points
(£ @/2,=w/2); see Fig. 1. The volume of the Fermi surface
is proportional to the number of doped holés

For the state without LR orderingparamagnetic phage
the FS of the quasiparticles with the dispersion [dw) de-
pends crucially on the value of chemical potential. The latter
is determined by solutions of E¢26). One can see that at
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T T T T . .
Solution | \\ [ Solution 1l
th = 0 1 tth=0

m2l 1L 1

LS > n/ 21 4 i
Ky (a) ]
- (] ©
X =Tt L Il 1 1
L saon 1\ o
n/2r 9
-TT
or 4
FIG. 1. Fermi surface of carriers in the AF state |
-n/2r 1 r 1
T=0 Eq.(25) for the chemical potential has two solutions for \ (b) f (d)
eachd: u<0 (solution ) and >0 (solution Il) (since at Ny e S R e
T=0 one hasn=1 for x>0 andm=0 for x©<<0). Solution
| is described by the equation K,
1 . . .
6= =2 nF(ep,—p) (32) FIG. 2. Hole Fermi surfaces in the PM state. Calculations are
Nz performed for the doping levei=0.1 and two cases of parameters

t/J=1.8,t'/t=0, (a) and(c), andt/J=1.8,t'/t=—0.4,(b) and(d).
The plots(a) and(b) correspond to solution I, the plots) and(d)
to solution II.

and solution Il by the equation

1
1+ 6= NKE n"(ex,— ), (33
7 cause of the close values of the free energies for these
whereg,,, is determined by Eq17). [To get these equations phases Important itself is the fact of the existence of the
one should not forget that the sum in E6) includes a first-order phase transition at some intermediate doping.
summation onr so that the last term equais2 in the case To understand the nature of the states described by solu-
of u>0.] The corresponding FS’s are shown in Fig. 2 for thetions | and Il let us analyze the behavior of the spin Green
same value of dopingg=0.1, and for two casef) t'=0  function corresponding to these solutions. As seen from Eq.
and (ii) t'/t#0 being negative. The FS is large in c488) (23), the spin Green function exhibits an AF instability as the
and small in cas€32). Another important observation is that temperature decreases in the case of solution | but does not
the shape of the large FS depends a lot on the ratio of hopn the case of solution Il. It is so becau€&T) is finite as
ping parameters while the shape of the small FS is practif—0 for solution | but C(T)—0 [and moreover
cally independent. C(T)/T—0] asT—0 for solution Il; see Eq(22). It means
At finite temperature, the dependeneéd) is obtained by  that the paramagnetic solution | is unstable against AF order-
a numerical solution of Eq(26). The results for the case ing when lowering the temperature. On the contrary, solution
t’=0 andt’#0 are shown in Figs.(@ and 3b) (together Il is stable against LR AF ordering & decreases, and the
with the results folT=0). One can see that at very low and metallic PM state described by solution Il existsTat0 as
very high doping only one solution exists in the caseTof well.”®
#0, | and Il, respectively, whereas at intermediate doping Hence, the two discussed solutions correspond to qualita-
two solutions coexist. The third solution which correspondstively different physical pictures. In the case of solution |,
to the parts of curves(5) with a negative slope is an un- the FS is formed by only doped holes whereas holes on
physical solution(in a direct analogy with the van der Waals copper are responsible for localized magnetism. In the case
equation. For the interval of doping where the three solu- of solution Il, holes on copper become a part of the FS while
tions coexist, the physical picture is the following. Within the system loses the localized magnetic moments associated
this interval, a critical doping,(T) exists at which a first- with d electrons.
order phase transition from solution | to solution Il takes Thus, what happens can be described as follows. At
place. This doping is determined by the condition of the*high” temperature and low doping, only one PM solution
equality of the free energies associated with solutions | anéxists, namely, solution | with a small FS. This solution,
Il. At very high temperature, however, only one solution however, is unstable against AF ordering when lowering the
persists for any dopinfsee curves fof =t in Figs. 3a) and  temperature so far as the spin susceptibility diverges at
3(b)]. This means that the line of the first-order RSp(T), k=Qar. Therefore, at low temperature and low doping, in-
terminates at some temperature by a critical point. We do nagtead of solution | the AF solutiofwhich we will call ") is
perform explicit calculations 08,(T) since in order to ob- realized, and the hole dynamics is described by the hole
tain reliable values of the free energies the calculationg&reen function(A18) and (A19). [Strictly speaking, for this
should be performed in a higher-order approximatibe-  solution the long-range AF order takes place only at0 for
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a volume proportional to5 to a large FS with a volume
proportional to H é. In the same way a number of carriers

3 —T=0 7
- — T =004t changes.
2 2 1loast :
.% 1 _fff? : t0.5 t ] D. Saddle-point singularity in the case of the large FS
g Let us consider now in more details the hole dynamics
g 0 ] corresponding to solution Il with a large FS. As we will see
§ later on, just the state corresponding to this solution reveals
§ - 1 ] the features close to experimental observations in the normal
state at doping levels corresponding to optimal superconduc-
-2 ()] tivity and, moreover, the itinerant quasiparticles of this solu-
‘ ‘ vt = 0, t"/,t =0 tion have a tendency of SC pairing of high amplitude when
Ty ' I lowering T.
3 [ —T=008t e As we have already seen, the shape of the large FS at
- - jl = g-g : ’ fixed doping depends strongly on the ratio of hopping param-
2 o2r. T=t eterst’/t. On the other hand, it depends on doping. In Fig. 4
g ; we show a doping evolution of the FS for three sets of
2 K t'/t.
_8- 0k T ] The first point, a sensibility of the shape of the FS to the
8 ;\"\\ - value oft’/t, has already been discussed in the literature in
§ -1 ) . connection with different shapes of the FS for
G by (b) La,_,Sr,Cu0Q, (LSCO) and YBCO families obtained by
“2h 4 P = 04 1t = 0 ] local-density-approximatiofiLDA) calculations and ARPES
N A S experiments. LDA calculatioi& ®reveal that for the family
0 02 04 06 0.8 1 of bilayer cuprates the FS shape is rotated by 45° relative to

doping, & that found in a nearest-neighbor tight-binding scheme. By
contrast, the same calculations show that for the LSCO fam-
FIG. 3. Doping dependence of chemical potential obtained byly the FS has a diamondiike shape. Thus, two families of
the solution of Eq.(26) for two cases of parametet&/t=0 and ~ cuprates have FS's which roughly speaking are related by
t'/t=—0.3. The parts of the curves wila<O correspond to solu- 45° rotation. The experiments confirm this, directly by
tion | while those withu>0 correspond to solution 1. The parts of ARPES measuremenits® for bilayer cuprates and indi-
the curves with a negative slope correspond to an unphysical soluectly by neutron scattering measurements for LSCO; the
tion (in direct analogy with the van der Waals equation latter reveal the existence of nested #She idea of fitting
these shapes by using different values of the rtio for
the two-dimensiona(2D) CuO, plane. Actually, however, these compounds, large and negative for YBCO and small
an exchange interaction between planes is always preseiibr LSCO, has appeared in many papers; see, for example,
leading to the stability of LR AF order at low temperature Refs. 82 and 83. Below we choose the ratitt=—0.1 to
below Ty(6).] Accordingly, the FS has the shape shown inmodel the LSCO family and we analyze a few possibilities,
Fig. 1. In its turn, the AF ground state becomes unstabléncludingt’/t=—0.3 andt’/t=— 0.4, for the YBCO family.
above the rather low critical concentration, The second point which we would like to discuss in more
5= 6§Df~v0.02— 0.03; see Ref. 69 in which the spin dynamics detail is the evolution of FS with doping and the related
corresponding to the solutior Is analyzed in detail. The features of the dispersion law of the itinerant quasiparticles.
reason for the instability is the following: Due to the scatter-In Fig. 5 we show the dispersion lawy,, given by Eq.(17)
ing by band holes with the dispersion [a{80), magnons in the directions (1,0) and #,1) for the parameters
with wave vectors close tQ g lose their identity and decay t'/t=—0.1(to model the LSCO familyandt’/t=—0.3 and
into electron-hole pair%cf Above this concentration but be- t'/t=—0.4 (to be analyzed for the YBCO family(We re-
low 64(0), i.e., at 5§|D< 6< 6y, the only possibility that ex- mind the reader thag,, is written in the hole representa-
ists is a quantum spin-liquid or quantum-disordered groundion.)
staté’ (another type of ground state associated with the The dispersions are similar to those in the band calcula-
localized-spin system with an AF interactjoit doping lev-  tions, but differ by the multiplier (¥ 6)/2. The latter is im-
els higher tharny,, the system exists in the metallic ground portant since it accounts for experimentally observed nar-
state described by solution II. For this solution, the FS isrowing of the bandwidth by a factor of 2 in comparison with
large even at small values &f see Fig. 2. band theory, as first noted by the Olson’s grétip.
Summarizing, ab= §, the low-temperature hole and spin ~ The dispersion is characterized by saddle po{i®B’9
dynamics change abruptly: from the picture of FS formationlocated at ¢- 7r,0) and (0 7) with the energy
by doped holes only whild-electrons are responsible for the
localized magnetism, to the picture when thelectrons be-
come a part of the FS while the system loses the magnetic
moments associated withelectrons. Accordingly the shape
and volume of the FS change abruptly from a small FS withNear the saddle points, the dispersion law can be written as

€= —2(1+ ", (34)
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x> 0 Q%
wxé 0
-T2
-5 | ]
-
(a)
-10 : : '
] (0, 0) (m, 0) (2m. 0)
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FIG. 5. Hole dispersion law corresponding to solution Il in the
directions (1,0) and (1) for three sets of hopping parameters.
Note that the dimensionless spectrum plotted,,/ t[(1
+ 6)/2] = 2 (cok,+cosk, ) +4t’ [tcok,cosk, + 2t"/t(Cos K+ Cos X)),
is also doping independent. The true spectrum depends on doping
by a factor of (1+ 8)/2.

next-next-nearest-neighbor hopping terhto force aki de-
pendence into the dispersion I&\The spectrune,,, for this
case is also shown in Fig. 5 for the values of hopping param-
eters proposed in Ref. 8@n the following section we will
FIG. 4. Evolution of the FS with doping in the case of solution analyze all sets of parameters in a relation with superconduc-
I for different sets of parameters. tivity phenomenon.
The important question is how far is the energy of the SP
€ko Lo ) ) , from the Fgrmi Ie_vel and how the distance between them
A+002 —At' k(1 2t) —kg(t=2t"), (39  changes with doping? In Fig. 6 we show two curéess)
calculated self-consistently based on E2f) andeg( ) from
wherea=x, =Yy for the points ¢ 7,0) anda=y,B=x for Eq. (34) for the cases’'/t=—0.1 andt’/t=—0.3. One can
the points (0= 7). Fort’#0 this dispersion law is charac- see that at some critical dopinty ., two curves intersect.
terized by a heavy masg);*1/(t—2|t’|), in one direction For the caset’/t=—0.1 (monolayer cuprat¢sone has
and by a light massm,x1/(t+2|t'|), in the other. As a §,~0.08, and for the casé/t=—0.3 (bilayer cupratesone
result for large enouglft’/t|, the spectrum around the saddle has 5,~0.27. For the doping rangé< &, the Fermi level
points is characterized by a flat minimum along tWd" lies below the saddle-point energgr above in the electron
direction and by a narrow maximum along tkeS direction  representation being very close to it. The fact that the dif-
(in the hole representatipnSuch a behavior is very close to ferenceZ=|eg— €4 is small and changes only little within
that observed by ARPES in different bilayer high-oxides the extended range of doping féx . for the case of the
YBa,Cu3;04., (YBCO123, YBa,Cu,O5 (YBCO124, and  bilayer cuprates is very important, for it allows one to under-
Bi,Sr,Ca;Cu,04 (Bi2212.1°-2° However, the experimen- stand the experimental observation for the bilayer com-
tally observed extension of the flat part in tiel’ direction ~ pounds in the underdoped regifffeln correspondence to
is larger than the calculated one seen in Fig. 5. To reproduciaese observations, the distance between the saddle point and
the experimental dispersion curve betteone can add a the Fermi level is smaller than 30 meV for all doping in the
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5 . ' There is also a singular behavior of the inverse relaxation
LSCO time related to impurity scattering which occurs as well at
th = -01, t/t =0 Z=0, Timp(@)~Inw for T>w.®" (We would like to emphasize
again that the intersection of the SP and FL discussed above
is not assumed but is obtained self-consistently.

In total, anomalies which occur &&= §, are signatures of
guantum critical behavior related to an electronic topological
transition(ETT) in the system of noninteracting carriers. A
general theory of such transitions related to the change in the
topology of FS’s is discussed in Ref. 96. Applications for 3D
systems are considered in Ref. 97. On our opinion, just the
proximity of the system to the quantum critical point related
to the ETT in the quasi-2D case of cuprates is responsible for

YBCO ' ‘ ’ the so-called “strange metal” behavior observed in the nor-

t/t = -0.3, t't =0 ] mal state abovel.. The details of such critical behavior
occurring in the system of interacting carriers are discussed
elsewheré’

Summarizing, solution Il which describes the normal-
state hole dynamics in the intermediate doping exhibits fea-
tures quite close to those observed experimentally. We
would like to emphasize that this starting picture of the hole
dynamics in the normal state is quite different from that ob-
tained in two types of microscopical theories based on the
t-J model; see Refs. 6-8, 98 and 99. In Refs. 6-8 the

0 , , ‘ normal-state hole dynamics coincides with the picture corre-
0 02 04 06 08 1 sponding to solution’l (in our notation. In Refs. 98 and 99,
doping, & the normal-state hole dynamics corresponds to solution I.
Both pictures are very different from that found in the

FIG. 6. Energies of the saddle point and of the Fermi level agppresent paper and from the picture observed experimentally.
functions of doping for parameters which model the monolayer and | et us consider now the possibility of a superconducting
bilayer cuprates. pairing of the discussed quasiparticles characterized by the

dispersion laws shown in Fig. 5 and by the FS shown in Fig.
underdoped regime. This observation cannot be understoag

within band calculations, as emphasized in Ref. 88. On the

contrary, as seen from Fig.(l§, our calculations give

7<0.14=0.251~30 meV for the doping range IV. SUPERCONDUCTING PAIRING
6=0.1-0.4%

The weak variation ofer— €| with doping in the under-
doped regime, i.e., al<§., results in a weak change of the
FS within the extended doping range from low doping to the The quasiparticles which we have discussed in Secs. I
critical one,8= 8. ; see Fig. 4. Such a weak change is also inand Ill are, on the one hand, close to the usual fermions so
good agreement with the photoemission experiment; see Refar as they are characterized by FS’s, etc. On the other hand,
11. by kinematic properties they belong to the family of the

The intersection of two curves-(5) and e,(5) has im-  lieons(see Sec. )land this results in various specific conse-
portant effects on the normal-state hole dynamics. The first iguences. The most important for us here is the point that due
the known zero-energy logarithmic singularity in the densityto this specificity of the quasiparticles, the hopping term of
of states(see, for example, Ref. 13 the Hamiltonian and the exchange interaction turn out to be

direct attractive interactions between them.
To understand this effect, it is necessary to comprehend
P(“’):gr 80— €= p)~Infw—2|, (38 the nature of vertex blocks representing a Lie-Hubbard op-
erator XP9 which are different from the vertex blocks for
occurring atZ=0 whereZ is the distance from the critical Bose and Fermi operators due to the intrinsic differences in
doping,Z= e;— e~ 5.— 6 when § tends toé,. This singu- the algebras(The graphs discussed below correspond to the
larity has an important influence on the thermodynamicDT for LH operators. To understand the details we address
properties. The second is the non-Fermi-liquislinw, be-  the reader to Ref. 57, Appendix)B/Ve show some vertices
havior of the inverse relaxation time related to electron-representing the spin-flip operat(xi”"/ and the charged-
electron scattering occurring =0 which transforms 1o quasiparticle operatot” in Figs. 7 and 8, respectively. The
usual Fermi-liquid behavior far from= . :*"* crucial point demonstrated by the figures is that in contrast to
the DT for Bose or Fermi operators, the LH operat8f can
37) be represented not only by simple vertex blocksédaiofrom)
which one Green-function line comes]ifigs. 7a) and §a)]

A. Direct attractive interaction between carriers
in the t-J model

o Inlo—2Z|, o—-Z<T,

(D= njw-2|, w-z>T, z<0.

-1
Te—¢
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FIG. 7. Vertex blocks corresponding to the spin-flip LH
operator X{7 . Here and later on we keep for the graph elements the
same notations as in Ref. 57: The double solid line corresponds to
the hole Green function K" defined by Eq. (16), the double dashed
line to a propagator-type spin Green function K5, The system of
pairing of operators by the Wick theorem corresponding to graph
(a) is given by (T X7(DX]7(r))o=K5(7— 1) {XT7=X{%)0

R a— &0 ar 00
and to graph (b)) by (T XT(r)X7(DX37(7))e
h h 00 To g
==Kz(1— DK, (17— 1){X35 +X377),. Graph (a) corresponds to
a direct spin flip, graph (b) to the spin flip associated with the
creation of one carrier with spin ¢ and the annihilation of the other
with spin o.

but also by complex vertex blocks in which several Gree

functions meet(without any interaction ling [Figs. 7b),

8(b), and §c)]. In other words, each LH operator carries an
interaction(an anharmonicityin itself. Mathematically this
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way in which the complex blocks appear. In more detail with
some examples we have discussed this procedure in Ref. 57,
Appendix B.

It should be emphasized again that the existence of such
complex blocks is intrinsic and it stems from the algebra of
X operators; the structure of the complex blocks depends
neither on the type of Hamiltonian or on the approximation
in which the latter is treated. Thus, the types of complex
vertex blocks come from the algebra; however, the type of
graph in which these blocks participate depends on the

Hamiltonian. Each interactiolvijxi')qxf'q' produces a line
(wavy line in the graphswhich joins a vertex block corre-
sponding to the operatofP? with a vertex block correspond-

ing to the operatob(jp'q' ; see for example Figs. 9—1BTo
read the graphs one has to remember that their elements have
a different meaning than those in the DT for Fermi-Bose
operators. Namely, here the interaction lines are very impor-
tant and they are shown by wavy lines not by a simple cross-
ing of Green-function lines. A simple crossing of the Green-
function lines corresponds to some LH operdsirown as an
open circlg.]

One can see now that the same interackign given by
the HamiltonianVinf’qXJf”q', plays a different role when it
joins different types of vertex blocks corresponding to the

operatorsXP9 and XP'9" Namely, in the considered case of
the t-J model, the HamiltoniaH ; plays the role of an ex-
change interaction between the localized spins whenJthe
line joins two vertex blocks of typés) in Fig. 7 and the role

of an interaction between two charged quasiparticles when

the J, line joins two blocks of typdb) in Fig. 7 as shown in
Fig. 9.H, plays the role of the propagation energy of carriers
when thet, line joins two blocks of typda) in Fig. 8 and the

is a consequence of their specific algebra, namely, of thgyle of an interaction between two charged quasiparticles

multiplication rules(6) and commutation relation&). Due

when it joins the vertex block of typ@) with that of type(c)

to these commutation relations, two LH operators after pairin Fig. 8 as shown in Fig. 9.

ing in correspondence to the Wick theorem give again a LH Thus, skeleton diagrams responsible for the interactions
operator in contrast to Bose-Fermi operators which give aftewhich can lead to SC pairing of charged quasiparticles are
pairing 1 or 0. Hence, after a first pairing, another LH operathe graphs shown in Fig. 80 Being dependent on wave
tor can participate in a second pairing with the initial LH vectors, these interactions are attractive in some regions of
operator, then again new operator can, and so on. This is thtke Brillouin zone and repulsive in othef3he possibility of

(a)

NN

(b) (c)

FIG. 8. Vertex blocks corresponding to the operator X ?" associated with the carrier creation. The system of pairing corresponding to graph
(a) is given by (T X7(7)XY(P))o=K" (1= H{XP+X7%,, to graph (b) by (T, X)X (PNXS%(1,))0 = KZ—(;( 1 — 1K= 715)
—_— —— el

(X$7=X3%,, and to graph (¢) by (T X7(r)X27(NXI()X3%(m3))o= K (7, — TV Klis(1y — DKz (71— 7){(XT7+X). Graph
—_——

[ S —
(a) corresponds to a direct creation of carrier, graphs (b) and (c) to higher-order processes through intermediate quasiparticles.
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FIG. 9. Graphs showing the origin of the attractive interaction between carriers.

an attraction between carriers due to a hopping term was]{gaz KN+ (kD I, KD +KkD o, kDT KD )
discussed early in Ref. 101 for the Hubbard model.

In order to feel the physical meaning, it is useful to recall + (KN T oK AT K+ ) =K
the situation for the more simpl@nd more knowpcase of - -
operators belonging to the LH family, spin operators. Indeed, + K[‘,{,H,,(,Kf',(ﬁr Kf‘mH,,j(%,. (41
for the case of spin operators a similar effect is well known. -
It appears in different formalisms. For example, in theln Egs.(40) and(41), K™ is an anomalous Green function,
Dyson-Maleev representation for spin operators, a nondiagak"” is a renormalized normal Green functiok!  is the
nal spin operator is written as the sum of the linear anchare normal Green function determined by Ef6), and
third-order terms on Bose operators so that the same efi__ and IT,; are normal and anomalous components of
change interaction produces an energy of spin waves angblarization operator.
their interaction. In another formalism, the DT for spin op-  |n the lowest approximatioffirst approximation with re-
erators, the same effect manifests itself as the simultaneogpect to 17) the latter are given by the graphs in Figs. 10 and
existence of the simple vertex block with one Green-functiom 1 taken without external Green-function lines and with in-
line and of the complex vertex block with three Green-ternal lines corresponding to the “dressed” Green functions
function lines, both representing the same opergfor(see R(hm and R%_lOZ The analytical expressions corresponding

Ref. 5. . _ o to these graphs are given by
The existence of the interactions shown in Fig. 9 allows

us to write down an equation for the anomalous hole Green 1
function, I1,5tk)=— NE 2(J—q—tq)Fq. (42
q

GM—(K,i wp) = ((XZOXD)) L
5 . - My(k) == 52 (230H Ik q— 2t 2tgNg, (43)
:j dr exp(—iw,m){T X7 (7)XZ"(0)), q
-
where the normal and anomalous correlation functibiys
(38) andF are related to the normal and anomalous Green func-

. . . . . ions b
associated with a SC pairing of carriers. As usual in the D11 Y
for X operators, in fact the graphical equation concern to the

Fermi-type anomalous hole Green functimﬁa— related to Ng= lim > G (q,w,)en, (44

the true Green functioﬁ;t}—o_ in the same way as it was in the 707 “n

case of the normal hole Green functipsee Eq.(16) and

Ref. 70, namely, by the relation Fq= lim D G';;(q,wn)e“"nf. (45)
=0~ “n

Gh-=boK". (39)

In other words N, andF, are normal and superconducting

Such an equation is given by order parameter€OP’s) which are Fourier transforms of fol-
lowing ones in real space:

K= (KN T, oK+ KD T oK T oK)

oo :" g ooea F,=(X7OX72, —X7OX7? ), (46)

+ (KI;'U'H(T(TKS'(THU;K”U- e )
~ ~ N, =(X7OX%7 . 4
KD R KD R o) el “

_ We omit in Eq.(42) the term corresponding to the last graph
whereK" _is given by in Fig. 10 since it vanishes due to the constraint
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next-nearest hopping, tAcosX,+cosk,)], A is the SC
gap, andll; (k) andII, (k) are determined by Eq$42)
and (43).

So far as the polarization operators entering56) and
(51) are written in terms of the order paramet&isand N,
determined in their turn by the Green functio®0) and
(51), the latter equations are the equations for the functions
F and Ny to be solved self-consistently. We will neglect
below the renormalization of the normal-state dispersion law
and takee,, = €, — u, S0 far as we have used in the disper-
sion law €., the effective values of hopping parameters
taken to fit the experimental dispersion law and FS. Within

FIG. 10. Graphs originated from vertex blocks in Fig. 9 and this approximation we get a single equation to be solved
contributing to the anomalous component of the polarization operaSelf-consistently, namely, the equation for the SC gap,

tor Il 5~ The latter is given by the graphs taken without external

Green-function lines.

% Fo=2 ZI X70X70=0, (48)

resulting from the multiplication rules for LH operators:
X70x 0=, (49)

By solving Eqgs.(40) and(41) one obtains for the normal
and anomalous hole Green functions:

~ U2 %
h i — hoO k k
G" (Kiwg)=h (Ek(,—iwnJrEk(,Jriwn’ (50)
" {Kiwg) = —bOUNVY =t =
U;( ,Iwn)_ k¥k Ekg—iwn Ekg+ia)n '
(51
where
Exo= VE 2.+ AZ, (52
’Ekuzeka'_nmr(k)_/-l’! Ak:_H(T;(k)’ (53)
T T
2_ 7 K 2__ " _ K
Ug=>| 1+ Ek,,)’ V2 2(1 e 9

In Egs.(50)—(54), E,, is the dispersion law of carriers in the
SC state.g,, is the dispersion law in the normal stdide-
fined by Eq.(16) with the additional term related to next-

1+6 1o Jeq—1q Eqo
KN > Eoy Aqtanl‘(z— , (55
whereE,,, is given by
Ero= V(eko— p) 2+ AL (56)

and the SC gap is related to the SC order paranfeiess
follows:

Ak=§p‘, (Je—p—tp)Fp. (57)
The latter is given by the equation
Fq=(1+ 80UV {1-2n"(Ey} (58)

(we omit here and later on the indexin the dispersion law
Eka’)'

Before to switch over solving Eq55) it is worth empha-
sizing that the considered graphs for the polarization opera-
tor are the simplest possible graphs in th& model. Other
graphs produced by the same vertex blocks and by the same
interaction lines are possible. One type of graph which could
lead to SC pairing appears if one assumes the existence of a
propagator-type spin Green function. These diagrams are

X
g,k a.K
g
3.9 ° 3.9
T
FIG. 11. Graphs which contribute to the nor-
mal component of the polarization operator
oq 5 5 I1,,. The latter is given by the graphs taken
. without external Green-function lines.
X% ok x% 5,9 Xo‘7 3.9
O',k 1@ . G',k 1@ v 0‘,'(
Yq t [
g,k o,k
X gq XcO XcO
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3, p-K G, K

0o 50 m\%/

X" p X X5y,

G,p-K b Y Z,p-k XE:U o
tk tk X oo . P . FIQ. 12. Qraphs for the attr.ac-
tive interaction between carriers
s,k ’5,k & ? J o) appearing through exchange by a

= 1 X virtual magnon.
K G, p+k
(a) (b)

produced by the skeleton graphs shown in Fig[th2 com-  namic spin susceptibility measured by inelastic neutron scat-
plex vertex blocks participating in the graph(&Ris of type  tering shows quite smooth behavior as a functionwgf-8
8(b) and §a) while in the graph 1) of type 7a) and 7b)]. which is another argument in favor of considering a hare
The graphs in Fig. 12 describe a standard interaction benteraction.
tween carriers through an exchange of an intermediate qua-
siparticle, here by the magnon. Just this type of interaction is
usually considered to be responsible for SC pairing of mag-
netic origin; see, for example, Refs. 6—8. The problem, how- The obtained equatiof®5) for the SC gap is similar to the
ever, is that vertex blocks of typeg¢t$ and qa), as well as  BCS equation except that it contains the anisotropic interac-
the propagator-type spin Green function itself, nonvanish fotion potentialJ,_,—t, in the place of an isotropic one. Re-
zero magnetic field only in the presence of LR AF ordering,cently, such types of anisotropic interactiamsve been as-
which is not the case abovi.. [The reason for the vanish- sumedn a few phenomenological theories for cupratese,
ing is the factorb”“ (proportional to on-site magnetization for example, Refs. 395A solution of the gap equation has
accompanying these vertices and the propagator-type splreen considered for the case when the dispersion law of car-
Green function. The existence of this factor reflects a generalers and their FS’s are taken in the weak-coupling lifné.,
structure of the Green functions determined on LH operatorsorrespond to those of bare electrpn&lthough the equa-
(see Ref. 70. Short-range AF correlations, even when tions for the SC gap look similarly in our case and in these
strong, do not lead to the appearence of the desired spileories, an important difference exists. In our strong-
Green-function lines. coupling limit, when the subject for pairing is the quasipar-
The latter correlations manifest themselves in anotheticle associated with the operat¥?, the constraint exists
class of diagrams appearing as a result of “dressing” of thegiven by Eq.(48) which results from the multiplication rules
J, interaction line as shown in Fig. 13. The correspondingfor LH operators. The conditiofd8) means that the SC OP

B. Equation for the superconducting order parameter

analytical expression for the renormalizédnteraction is of these quasiparticles must be sign reversal, with the inte-
‘ gral weight of positive and negative parts within the Bril-
3k, ) = k . X (59 louin zone being equal. This is a strong constraint which

1+ 3ok, @) *xo(k,®)’

where xo(K,®) is a normal-state zeroth susceptibility deter-
mined graphically by the loop in Fig. 13 and analytically by
the Lindhard function. The effect of such “dressing” will be
considered elsewhere. As one can see from(&9), in prin-
ciple, SR AF correlations could lead to an enhancement of X
the interaction), , i.e., of the interaction the effect of which _zs o

on SC pairing is considered in the present paper. We delib- 3o q

erately stay below in the approximation of the bdreter- —~ X

action since we would like to show that the pure effect of the J = J o+ _ t

AF interaction is sufficient to get a high; effect. In other g X

words, we do not want to mix two different effects, the bare y° x%

attractive interaction existing itself and a possible enhance- o5

ment coming from SR AF correlations. It is important to X

distinguish between them in view of the rather popular in

phenomenological theories scenario for hihas mediated FIG. 13. Graphs for effective exchange interaction “dressed” in
by SR correlations. On the other hand, the normal-state dythe presence of SR AF correlations.

forbids, as we will see, many symmetries of the SC OP
found in the weak-coupling limit. On the other hand, a for-
mally similar gap equation has been obtained in the strong-
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coupling limit for the t-J model based on a decoupling  Equationg65)—(67) describe a solution of a most general

scheme for two-time Green functioffs. However, the symmetry:AJ#0, AS+#0, A+0, if it exists. For a particular

normal-state hole dynamics obtained within the decouplingsut most important symmetry, whean2 (and soEy) is in-

scheme is very different from ours and from that observedariant into the symmetry operat|dq<—>k the system of

experimentally: Namely, it corresponds to solution | in ourequations is reduced to the equation

notation and is characterized by a small FS, as was dlSCUSSEg

in Sec. lll. Obviously, this changes the explicit solution of A3=3(B—C)Ad (69)

the gap equation completely. An additional important differ-

ence is a prefactor (4 5)/2 in the right-hand side of the gap and to the set of equations

equation which is absent in Ref. 98 and which is important

for the doping dependence of the SC gap. A5=J(B+C)A5+2DA, (70
Let us now analyze the equation for the SC gap. Using the

explicit momentum dependence &f_, andt for a square |t ) s
lattice, one can rewrite E@55) in the following way: A=- j+2t E]Ao—2CA, (71
A= cokyN,+ coskyNy + sink,M, +sinkyMy+ A, (600 whereB, C, D, andE are defined as follows:
with 1+ 52 cosk, |E ,
N _1+52 J cogy, A Eq 61 B 7 Ek Mot/ (72
TN 4T B, oMaT) (61
c 1+ 0 cokycok, Ey 73
1+6 Jcosqu Eq N - E, o7/
N, = ; E, tan 2T (62)
1+ 6« Co¥K, Ey
1+6 Eq D=—y2 £ tanf o7/, (74)
A=— —2 (t7k+t 7)tan (63 K k
2T
and My,=M,=0, the latter because of symmetry: _ 1+ 52 coszkxcosk anl‘(i) (75
A =A_,. Another(equivalent presentation of Eq(60) is K 2T)"
A=A+ A3y + Agak, (64)  This symmetry is consistent with a generalizk@vave sym-

metry of the SC gap,
in which A, is represented as a linear combination of a con- y gap

stant term, an extended-wave symmetry term, and a A= Ag a+A (76)
d-wave symmetry term. In EQqs(61)—(64), a,=3(cok, _ _

—cos) and y, and 7, are determined by Eq14). Substi- With a generalizes-wave symmetry

tuting Eq. (64) into Egs. (61)—(63), we obtain a set of

coupled equations for the amplitudes of the SC gap, A=Agyct+A, (77
d .
Ao, anda: and with ans+id symmetry
2J(1+6 ZAS+ a Y A3+ A E _
AS= ( )2 NAoF arBot nA JEx | A=A+ ASy +iada, . 79
N 4 E, 2T

(65 For these symmetries we finally have a set of three equa-
tions, two of which are given by

Ad_2J(1+5)2 aﬁA8+ak7kAS+akA+an E ;
o N XK Ex 2T/ (1+5)2 ZJaktan 3:1 79
(66) N € Eq 2T
S !
_ 8o _20(1+9) L0 [g 2t (E
J N N k Ey ’ 2T

A3+ pra AS+ 9 A E
XE Mk YkBo™ MR T 7k tan Bk . (67)
k Ek 2T

at’ Ex Ik Ex
zk: E tan)‘(ﬁ)H% ——tan > -1
2 t,7]k'yktan E
= T E, 2T

and the third one has to be chosen among E&®—(71).

In the case of’ =0, the system of three equations reduces to
a system of two equations while the amplitudgsandA are 1> 8 yktanr( Ek)
related as follows:

|

t (80
AZ - jAg (68)
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C. Solution of the gap equations in the cases of large

and small FS’s %5 Msomtion 1 R /I2J
Explicit solutions of the gap equations depend on the dis- 0.4 [ t/t =-01 d° ]
persion law of charged quasiparticles in the normal state and AR
on their FS. We analyze below the solutions of these equa- o8 a2,
tions for the two cases corresponding to the normal-state o2 [ - o]

hole dynamics described by solutions | and Il; see Sec. Il

1. Normal state corresponding to solution | (FS with volume
proportional to )

Amplitudes of the SC gap

We analyze below the case of solution | to get an idea
about the possibility of a SC pairing in the case of the small
FS. This analysis is going to be rather formal since as we t ? : :
will see the SC solution found for the doping range of the Solution | — A% /24

- . . g 04 L t/t=-04 o 3
stability of solution | does not satisfy the constrai@).
Nevertheless, it is worthwhile to understand the interrelation
between the size and shape of FS and the possibile symmetry
of the SC pairing.

We show in Fig. 14 the amplitudes of the SC gap found
for the two cases$’=—0.1 andt’=—0.4. One can see that
the gap equations have only tkavave solution(77) for low
and moderate doping and thilewave solution(76) (with
A=0) for high doping. For the-wave solution, the constant
term is always larger than the amplitude of the extended
s-wave termAj. Therefore, the SC gap has no nodes; i.e.,
the SC order parametét, does not change sign within the
Brillouin zone(see Fig. 1h It automatically follows that this
Eoluuoln does not fulfill the constrairit8) and thus should FIG. 14. Amplitudes of the SC gap in the case of solutiofal.

e omitted. a A =
. . corresponds tot/J=1.8, t'/t=—0.1 and (b) to t/J=1.8,
For thed-wave solution the constant term is equal to Zeroy ;i g4,

(see Fig. 14 and this solution matches the constraihg).
However, the doping range for thiswave solution is out of
the range of the existence of the solution | in the normal stat
(compare Fig. 14 with Fig.)3and thus thal-wave solution
also cannot be retained.

Amplitudes of the SC gap

0 0.2 0.4 0.6 0.8 1
doping, &

ependences as far as thginteraction is associated with
ree Green-function lines belonging to the same site and the
fourth line belonging to another site, and the  interaction
is associated with two Green-function lines belonging to the
same site and two lines belonging to another site.

Although the amplitudes of the SC gap turned out to be
large in all three cases of the above parameters, a strong
Let us concentrate now on the normal-state solution Ilquantitative difference exists. Namely, we found that the

characterized by the FS close to the observed experimenta”maximum value Ong is almost twice |arger in the case of
By solving Eq.(79), we have found the superconducting gapt’/t= —0.4 than in the case of/t=—0.1. It should be com-

of thed-wave symmetry76) with A=0, and this is the only  pined with the observation that for the cases presented in
solution which exists for the case of preserved symmetnyfigs 17 and 18, the maximum value Af is almost the
ky—ky . The doping dependence of the amplitude of the SC;ame although the extensions of the saddle point differ sig-
gap for the three sets of paramet@js’/t=—0.1,t"=0, (i)  pificantly.

t'/t=-04, t"=0, and (i) t'/t=-0.38, t"/t=0.06, is To understand the reasons for the very large values of the
shown in Figs. 16, 17, and 18 respectivfie remind the  ampjitudes of thed-wave SC gap and for the differences
reader here that set) has been chosen to model the FSpetween three cases discussed, let us analyze qualitatively

typical for monolayer cuprates and sétg and(iii ) to mimic Eq. (79 for the amplitude of thel-wave gap which simpli-
the situation for bilayer cupratdsThe corresponding wave fioq (at low T) version takes the form

vector dependences of the SC @R, are shown in Figs. 19

2. Normal state corresponding to solution Il (FS with volume
proportional to 1+ &)

and 20'°® One can see that the SC OP changes sign in the 1 4302
same manner as tlilewave SC gap; however, in contrast the 1= — —k, (81)
order parameter is different from zero only in the close vi- N% \/e§+(Agak)2

cinity of the FS, indicating that superconducting pairing
takes place close to the Fermi level. The conditidB) is 4
fulfilled. We stress here that the interaction responsible folo 9iven by

the obtained SC solution is tleinteraction as seen from Eq. p
(79), while thet interaction does not contribute. The reason = = Eko T M Ad— 0

is that theJ andt interactions have different wave vector K™ (1+68)/2’ 0 (1+6)/2

with an effective dispersion law, and an effective SC gap

(82
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FIG. 16. Amplitude of thed-wave gap (solution Il) for
t'/t=—0.1.

tion is considerable by a surfagN (the extension of the
interaction potential One can introduce also an effective
extension of the saddle poitBP T as a wave vector area
where the effect of the flat part of the spectrum is crucial for
the integral(81). This extension is determined by the exten-
sionr of the flat part of the spectrum itself and by the wave
vector distance between the flat part and the HL,

x (86— 8.)%. Then, a rough estimate of the integral in E8fl)
gives

Ad~4Jmin(s,r —1). (83

Let us analyze the three cases of parametg)siii), and
iii ).

In the case ot’/t=—-0.1,1t"=0, the extensionm of the
flat part is smaller thas and therefore Eq83) transforms to

‘ Ad~43(r—1). (84)
"““‘ In such a case, the effect of the SP is sensible and the maxi-
“:,t““‘n mum of the effective galztxg is reached at the doping. at
S5
':':‘:’, 0.5 T T T T
Solution 1l
t/t = -0.4, 1t = 0
0.4 y
S
[a\]
< 03| 1
a
o]
()}
FIG. 15. Superconducting order paramekgrfor solution I. § ]
Let us consider the range of doping around © 1
Z=|er— € =0, i.e., the range where the energy distance
between the flat part of the normal-state hole spectrum and
the Fermi levelFL) is small. A dominant contribution to the 0 — T
sum overk in Eqg. (81) is given by wave vectors around the 0 62 04 06 038 1
points (= ,0),(0£ 7) where, on the one hand, the saddle doping, &

points in the spectrura, are located and, on the other hand,
the effective attractive interactio]’aﬁ is maximum. One can FIG. 17. Amplitude of thed-wave gap (solution 1)) for
characterize the wave vector region where the latter interaa?/t=—0.4.
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FIG. 18. Amplitude of thed-wave gap (solution 1) for
t'/t=—0.38,t"/t=0.06.

which Eg crosses the SP. The value Eg decreases quite

quickly when one moves from this doping due to an increase
of . This explains the doping dependence of the effective

gapZd, obtained by numerical calculations; see Fig. 21 for

t'/t=—-0.1,t"=0. The maximum of the true gamg, is

reached at higher doping=6*>4,, due to the factor
(1+ 6)/2; compare the curves fof/t=—0.1 in Figs. 21 and

22.

In both casest’'/t=—0.4t"=0 and t'/t=-0.38,
t"=0.06, the extensiom of the flat part is larger thas.

Therefore, at the doping= 6. one has

Ad~4Js.

(89

FIG. 19. Superconducting order parameggrfor solution Il and

t'/t=-0.1.

FIG. 20. Superconducting order paraméterfor solution Il and
t'/t=—0.4.

The same equality is valid for some doping range around
dc as far ag —I=s. Therefore, the doping dependence of the
effective SC gapxg exhibits a kind of plateau or broad maxi-
mum. The high value of the SC gap within this doping range
is determined by the value and extension of the effective in-
teraction potential. Then, with further increasing of
|6— 8|, the quantityr=r—I| becomes smaller thas and
henceAg is determined by EQq(83); i.e., it decreases as
o— a(8— 8.)%. This analysis enables us to understand quali-
tatively the shape of the dependem\%(é) obtained by di-
rect calculations and presented in Fig. 21 for the parameters
considered. The doping dependence of the true zg&ps
shown in Fig. 22. The curve is asymmetric: The maximum of
A s realized at higher doping than the maximumAgfdue

to the factor & 4.

For the parameters corresponding to an intermediate situ-
ation, the shape afsg(ﬁ) evolves continuously between the
two cases considered above; see Fig. 21. The maximum
value of A§ increases until a critical extension of the SP is
reached. The maximum value of the true gk increases
even stronger due to the factor{1)/2. Once the equality
o=s s reached, a further increase of the extension of the SP
singularity, o, has no influence onmg)max which is still
determined by Eq(85). That is why the maximum values of
AS are almost the same for the two sets of parameters:
t'/t=-0.4, t"=0, on the one hand, and'/t=—0.38,
"=0.06, on the other, although the difference in the exten-
sion of the saddle-point singularities is important. The quan-
tity dependent on the extension of the saddle points is the
width of the doping range around. where Eq.(85) is ful-
filled. The larger is the extension of the SP, the larger is the
flat part ofAS(ﬁ). [So far as the extensiom is large in the
caset’/t=—0.38,t"=0.06, the flat part inA3(5) is quite
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FIG. 21. Doping dependence of the effectoevave gap&% for FIG. 23. Critical temperature as a function of doping for differ-
differentt’/t andt”/t ratios. entt’/t andt”/t ratios.

; 2 max ~
large] These two facts, the saturation ohg) and the  pondence of the effective SC gali(s), i.e., T™ saturates
increase of the doping range of the plateals) with an i, increasing the extension. In addition to the interesting

increase of the extension of SP singularity, lead to the dopinggtact of the saturation, the latter means first that in the case
dependence of the true ga shown in Fig. 22 for the two ¢ 1 optimal extensioiiYBCO casg, the ratioAY/ T, in-

Cases(") and(lg ) The opﬂmgl dopl_ng corresponding to the creases with doping, being maximum at optimal doping, and
maximum quO Increases with an increase of the eXIeNSIoNge . ond that this ratio taken at optimal doping is larger in the
_Of the SP singularity. As to the _ma&mgm valuezbg ,.then case of a large extensig¥BCO) than in the case of a small
in the cases V\(hen the saturation ztsﬂ is reached, |t' also _extension(LSCO).

increases with increase of the extension of the SP singularity |+l now we considered the situation where the symme-

SUE mu_ch (;Nealket; thtﬁn |fn tthe “u;s/gturr?ter? cahse,” forﬂ"t IStry ki« Kk, exists. This corresponds to a tetragonal lattice.
etermined only by the factor (16)/2 which enhances the We found that the large FS is compatible with tthavave

high-energy part of the plateau. L
To complete this discussion we show in Fig. 23 the dop-symmetry of the SC OP and that this is the only type of

ina dependence GF . obtained by numerical solution of E solution which exists in the case considered. The next point
g dep c - y OTED- that we would like to analyze is the following. What are the
(79). One can see that in the cases when the extension of the

SP is smaller than optimal on@.SCO casg the doping corydltlons_nec’e):ssary for the e_X|stence of mnseelq or i
o . s+id solutions? The answer which we have found is as fol
dependences df, resembles qualitatively the doping depen- ) ) i
) ; lows. These solutions appear only in the case when the sym
dence of the true SC gap. On the contrary, in approaching the . . i
. : : . metry k,« Ky is broken. This can occur due to a small an
optimal extension this dependence resembles the doping dles—Otropy in the dispersion lawand therefore in the BSor
due to the anisotropy in the interaction potential. Both fac-
r - . ; . tors can appear as a result of an orthorhombic distortion of
| Solution 11 the lattice. Even a small anisotropy is enough to drive a

i solution from the purel-wave symmetry to the+d sym-

0.5

[ — -th : -0.1
- 041 Tt - 02 ] metry. However, the amplitude of theeterm is small as far
a Lo Iﬁ - :312 as the anisotropy is small. For example, the solution found in
" oaf t/t = -0.38, t"t = 0.06 ] the case of a forced anisotropy of the dispersion law

€ko _

m 2t(coKk,+ a cok,) +4t’ cok,cok,, (86)

; with «=0.95, is found to be very close to tliewave solu-
L i tion existing in the case af=1. The ratio of the amplitudes
0 02 04 06 08 1 is AS/A8~ 10" 2. Thus, although formally the SC gap has an
doping, & s+d symmetry in the case of the orthorhombic distortion,
the amplitude of thes-wave component is so small that the
FIG. 22. Amplitude of the truel-wave SC gap as a function of gap can be considered as having almost lieave sym-
doping for differentt’/t andt”/t ratios. metry.
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V. DISCUSSION very close to the saddle-point energy. The distance between
In the present paper, we have analyzed the evolution Otpem,Z—eS— €F changgs very little with doping In the un-
hole dynamics in the CuPplane from low to high concen- derdoped _reglme_and in a much sharper way in the over-
tration of doped holes. We obtained stimulating results f0rdoloed regime. Jhis result !ets one understand the expenmen-
the normal and superconducting states. tal observauo_f‘i3 that_the distance betwe_en the saddle point
and the Fermi level is very smdihamely is smaller than 30
meV) in a wide region of doping in the underdoped regime
of the bilayer compound& fact which cannot be understood
In the normal state we have found two qualitatively dif- within the rigid band scheme, as emphasized in Ref). BB.
ferent states which we call phase | and phase Il. In the caseorrespondence with the weak variation |ef:— 5| with
of phase |, the FS is formed by doped holes only whereadoping, the FS also changes only a little in the underdoped
copper holes initially present are responsible for localizedegime. Such a weak change is also in good agreement with
magnetism. In the case of solution II, the holes on coppephotoemission experiments.
become a part of the FS while the system loses the localized We summarize all transition lines discussed above in the
magnetic moments associated with thelectrons. The vol- schematic phase diagram presented in Fig. 24.
ume of the FS is proportional té in the case of solution |
and to 1+ 4 in the case of solution Il. A first-order phase B. Superconducting state
transition between them is found at some critical doping . .
6= 6¢(T). The line of first-order phase transitions terminates S_ummar_lglng, we have found a short-dlsta_nce supercon-
at some temperature by a critical point. ducting pairing ofd,2_,2 symmetry. The amplltude. pf the
With lowering the temperature, phase | becomes unstablgC 9ap at low temperature and the value O.f the c.r|.t|cal tem-
as far as the spin susceptibility divergeskat Q,r. There- perature are very high. The supercpnd_uctmg pairing has a
fore, this solution transforms into a LR AF solutidh at magnetic origin but the mechanism IS dlfferen_t from the ex-
T=0 and low doping. The AF ground state in its turn is Chaf‘ge by Spin Waves. The m_echanls_m founq is related to the
stable only up to critical doping= 52°. Above this doping, AF interaction between localized spins tuming out fo be a
magnons with wave vectors close @ lose their identity dlrept attractive |nteract_|on_between itinerant charged quasi-
and decay into electron-hole paffs(According to Ref. 69, particles. The latter point is a consequence of the specific
this concentration is very low, of the order of 0.02-0.04 fornature of these qua3|pa'rt|cles appearing as a result of str'o.ng
relevant values of hopping parametgrEhere are two pos- on-site Coulomb repulsion. On the other hand, the specific

N : ; kinematic properties of the carriers create a strong constraint
sibilities for the ground state at doping higher thap. The .
first one is realized i5y= 6y(0). In this case, the first-order on the symmetry of the superconducting order parameter

e . which eliminates all symmetries without nodes and favors
phase transition from the LR AF state to the metallic state ”strongly thed-wave symmetry. In such a situation the exist-

gcsc\lljvrifha:‘?u_r g?rggl)l'pzzgettzecgri:ehraeggae:tsﬁ?g rgp:l}/z)frf())n:htehe ence of a saddle point close to FL is an additional important
. " factor which provides a maximum value of the effective at-

FS with Igr_g_e h_ole pqcket; centered ai#’ﬁ.:ﬂ)' The sec- tractive interaction. Below we discuss certain points cru-
ond_possmlllty is realized 'ﬁN<5°(.0)' .In t.h's case, for the cially important for superconductivity in more detail.
doping rangedy<8<8y(0), a spin liquid [or quantum-
disordered(QD) state in the classification of Ref. Yvakes
place. Properties of the hole subsystem in the latter groun
state are a subject of special investigation; anyway the vol-
ume of the FS is proportional t6. At a doping level higher The_ f_irst point is the relation between the symmetry of the
than &, the system exists in the metallic ground state de-SC pairing and the volume and shape of the FS. As we have
scribed by solution II. For this solution, the FS is large evenseen, for the case of the small FS, the solution of the gap
at small values of5; see Fig. 2. The two possibilities dis- equation has-wave symmetry, while in the case of the large
cussed above are presented in the schematic phase diagri®: it hasd-wave symmetry. The reason is simple. In the
in Figs. 24a) and 24b). case ofd-wave symmetry, the effective attractive interaction

As far as solution | exists only at low doping, the band-appearing in the numerator of the gap equatibw , has a
width of the quasiparticles is very narrow and one can argugonsiderable  magnitude only around the points
that in reality any additional interactiofiike impurity scat- (% ,0),(0.* 7). While SC pairing is possible only for qua-
tering, etc) leads to a localization of holes and makes thissiparticles in the vicinity of the FS, there is no significant
state an insulating one. State Il with a large bandwidth corattraction for them in the case of the small FS and there is a
responds to a metallic state. From this point of view, oneStrong attractive interaction when the FS is extended towards
could interpret the line of the first-order phase transitionghese points. On the contrary, in the case of extended
discussed abové= 8,(T), as a line of metal-insulator phase s-wave symmetry, the effective interaction has the form
transitions(this is, however, only a speculatipn Jyﬁ and is maximum around={ 7, = 7),(0,0) (while in the

We analyzed the metallic state Il by solving the equationcase of pures-wave symmetry, the effective interaction ex-
for the chemical potential self-consistently and found a criti-ists everywhere Therefore extended-wave symmetry is
cal doping 6, at which the Fermi level crosses the saddle-compatible with the small FS arounc: ¢z, + 7),(0,0). This
point singularity. The value of critical doping varies betweenis a purely geometrical effect which is common for all types
0.1 and 0.4 depending on the ratidt. We have also found of systems regardless of the nature of the quasiparticles cre-
that in the underdoped regim&< ., the Fermi level lies ating SC pairs.

A. Normal state

é. Relation between symmetry of the SC pairing and the volume
and shape of the FS
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tion operators; see E¢49). This leads to the constrai(48)
which eliminates many symmetries of the SC @Fom the
physical point of view this feature appears very natural if one

[ I remembers that the appearance of the new type of quasipar-
%ﬁ?ﬂzﬁm ticles is related to the strong on-site Coulomb repulsion

which obviously prevents the possibility of the existence of
two on-site carrier$.This very strong constraint eliminates
not only all symmetries without nodes but requires integrally
equal parts with positive and negative amplitudes of the OP.
It should be emphasized that such a constraint exists for all
strong-coupling-limit models as far as they are formulated in
terms of LH operators, for theeld model, for the one-band

Temperature

d-wave o Hubbard model, for the three-band Hubbard model, etc.
superconductivity (a) Summarizing, almost all symmetries of the SC OP possible
dopi in the case of fermions are eliminated in the case when qua-
oping . . - -
c siparticles are Fermi-like lieons.

3. Role of the nature of normal-state quasiparticles
for the existence of an attractive interaction

On the other hand, the specific nature of the normal-state
guasiparticleglieons results in the existence of a direct in-
teraction between them, which is hidden in the exchange and
open the hopping terms of the Hamilt_onian. Being momentum de-
hole pendent, these two types of interaction are attractive for
ES some range of wave vectors of quasiparticles. It is important
that the very fact of the existence of such attractions does not
depend on the approximation considered. This fact is a con-
sequence of neWin comparison with Bose-Fermi operatprs
d-wave o (b) types of vertex blocks characterizing LH operators, which in
superconductivity its turn is a direct consequence of the algebra of LH opera-
tors.

The wave vector range of attraction is different faand
J interactions. This results in different symmetries of pos-

FIG. 24. Schematic phase diagram summarizing our results. Theible SC pairing associated with pureand pureJ interac-
line 6= & is the line of the first-order phase transition between thetions, namely, in isotropis-wave andd-wave or extended
normal states described by solutions | and Il. The Bwed; is the  s-wave symmetries, respectively. When these interactions
line of electronic topological transitiongy is the doping of insta-  are considered simultaneously, thiateraction does not par-
bility of the LR AF ground state(The existence of the LR AF state ticipate in the creation of the-wave or extended-wave
at finite T is a consequence of the implied exchange interactioajring, and theJ interaction does not in the isotropic
between planesWe add also the lines which have not been Calcu’s-wave one. As far as only the symmetries with nodes are
lated in the paper but which are important for state |, namely, th3)os;sible, the antiferromagnetic interaction is a true interac-

i

Idasrll.ed d“ne.s of Ctrossover bet;{veedn ;j|ﬁgrer;tAr':eg|mgs for thet 2Bion responsible for the SC pairing in the considered strongly
ocalized-spin system, renormalized classical A" regime, quantuMy, o |ated electron system. As far as the amplitude of this
disordered QD) regime, and quantum critical regintthe classifi-

cation is given in a correspondence with Ref).7Vhe phase dia- interaction is very large, this leads to large value of the su-

ram (a) corresponds to the case whéig> Sy and (b) to the perconducting gap. . . .
gppos(it; case. P > o (b) The attractive interactioty,, although it exists, does not

lead to SC pairing. On the contrary, it prevents SC pairing,
since in its presence the extendedvave solution existing
o for t=t'=0 [see EQ.(80)] is replaced by a generalized
2. Role of the nature of normal-state quasiparticles s-wave pairing with a nonzero constant term. As we dis-
for the symmetry of the superconducting order parameter cussed above, in the presence of the constant 2eimthe k
The nature of quasiparticles which are the subjects fodependence of the SC gap, the constrédsy is not fulfilled
pairing is very important. In strong-coupling-limit theories, that eliminates this SC solution. A possibility to fulfill this
the quasiparticles in the normal state are associated witbonstraint(and therefore for the-wave solution to be al-
Fermi-like LH operators. In weak-coupling-limit theories, lowed) exists only for the very special interrelation between
they are fermions. Both types of operators are similar fort andt’.
different sites(they anticommutg which results in many
common properties like the existence of FS etc. However,
they are very different for the same site. Namely, two fermi-
ons with different spins can exist on the same site whereas
two quasiparticles associated with Lie-Hubbard operators The next point is a role of the SP and the interrelation
cannot. This is an intrinsic property of the algebra of projec-between the extension of the saddle point and the optimal

closed
hole
FS

Temperature

50 SC doping

4. Saddle point close to Fermi level: Interrelation between
the extension of the saddle point and the maximum value
of the SC gap
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value of the SC gap. We have found that the extension of th&16ssbauer spectroscof¥'% and of muon-spin-rotation
saddle point is indeed importafin agreement with a phe- studies:’® where the phase separation between local mag-
nomenological idea put forward in Refs. 13 and,ldow- netic and local honmagnetisuperconductingregions has
ever, its interrelation with the optimal value of the SC gap isbeen found in the SC states of YBau;Og,y

not trivial. The latter increases until some critical extension(0<x=<1),2%41% of YBa,(Cug 9ZNg 0Qs+x (0=x=<1)1%

of the SP is reached and theemains almost saturatedhis  and of La,_,Sr,Cu0,.1%

“saturated” value of \J)™®is determined by the amplitude

of the exchange interaction and by its extension within the ACKNOWLEDGMENT

Brillouin zone: ) ) ) )
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1+ 8* sions.
(ADMH=———Js, (87)
APPENDIX: HOLE AND SPIN GREEN FUNCTIONS
where 6* is the value of the optimal doping. The critical IN THE DOPED AF STATE
temperaturd . saturates upon reaching the critical extension . ,
of the saddle point as welAll the features discussed above N the case of a rigid two-sublattice AF structure of the
ground state, all characteristics describing the system are

are valid for the tetragonal lattice symmetry. In the case o , X , ,
the orthorhombic distortion, we have found a weak admix-2>2 matrices. The Larkin equation has the matrix form

ture of thes-wave component such that the symmetry of the S
SC gap iss+d. However, the ratidA$/AJ is so low that G=(1-3V)"%, (A)
there is only a small quantitative difference from the purewhereV is a matrix of the interaction potential aiis the
d-wave casp matrix of the irreducible part. The spin irreducible part in a

zero-order approximation is given by
5. Schematic phase diagram

In the main text of the paper, we have analyzed separately bg” 0
the possibility of SC pairing for quasiparticles corresponding . ha—i wE
to solutions I and Il. We have shown that in the case of phase 380= o (A2)
II, the self-consistency equation yields for the SC gap the 0 bg”
d-wave symmetry. The SC pairing corresponds to the short- hg—i wﬁ

distance pairing. There is no such pairing in the case of phase )

| since the required constraif8) is not fulfilled. Focusing whereb?? is determined as in Eq21) and is different for
on the evolution of the picture with doping from low to different sublattices, anth, g are internal magnetic fields
moderate doping, one has to keep in mind the change in theonjugated to the AF order parametéte values ohp g is
character of the normal-state hole dynamics, discussed iproportional to(SZ>§£?3). The matrix of the interaction poten-
Sec. V A. As aresult, we can complete our schematic phasgal for the case of the spin Green function is written as
diagram by the linél';(5) which terminates ab= §,, since

no superconductivityfgiven by the mechanism consideyed ~ o
exists for phase I. In correspondence with this phase dia-

gram, the disappearance of the short-distance superconduc-

tivity should be quite sharp at low doping due to the abruptif we neglect the intrasublattice interaction and take into ac-
disappearance of the “metallic’ solution Il. It has to be count only the intersublattice AF interaction. WhE&X® is
noted that the question of the existence of superconductivitdominant in comparison with other contributions to the spin
in the left part of the phase diagrafmorresponding to phase irreducible part(i.e., in the pure AF state of the undoped
) is open. As we discussed in Sec. IV A, the possibility of cuprateg the spin Green function given by E¢ALl) ac-
attraction mediated by a virtual magnon exists for this phaseuires the form

that in principle could lead to a long-distance SC pairing. A

(However there is a problem of the existence itself of such an G3=K?%b, (A4)
interaction in the phase without LR ordering, as we have

Vaa Vas 0 —J

~J, 0

: (A3)

S S
BA VBB

discussed in Sec. IV A We also leave open the question of . Kan Kag . bZ"' 0
the value of§, as far as it should be determined at Iavby K®= K Koo |? b= vo' |7 (AB)
comparing free energies for the metallic state Il and for the AB BB 0 bg

qguantum disordered state. To be reliable such calculations

should be done in a rather high approximation due to the ) Uﬁ vﬁ

well-known sensibility of the free energy. Crude estimations Kaa(kiwn)=

show however tha, is generally larger tha#éy and that its

value depends much on rati&/'t, namely it decreases when vi Uﬁ

[t'/t] increasegt’/t being negative Kga(k,io,)= . —,
We would like to note also that as far as the phase tran- w—log - otio,

sition between the states | and Il is of first order, this makes 1 1

the possibility of finding domains of another phase existing K ag(K,i@n)=Ugoy 4 : )

on both sides from5= .. This could explain the results of oy~ lo,  wogtlo,

(A6)

w—lw, ogtio,’

(A7)

(A8)
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In Egs.(A6)—(A8), the magnon dispersion lawy and the bé‘): b, 0= s, (A16)
functionsu, andv are given by i o .
so that the first-order cumulatt”™ is equal to unity for a

wk:b‘]w/l—yﬁ, (A9) lattice site belonging to one sublattice, but is vanishingly
small at low § for a site belonging to another sublattice.
1 1 Therefore, for lows, the zero-order spin irreducible part is
uﬁ,vﬁ=§( 1+ 2), (A10)  written as
1=
1
where . ——F 0
, , Sp0~| —pazion | (A17)

b=b3" =—bg” =2(S)p=1-46 (A11) 0 0

and y, is determined by Eq(14). ExpressiondA6)—(A10) it one neglects nearest-neighbor hopping in the maifix

are the usual spin wave equations for the spin Green functiog e, by Eq.(A14), i.e., if one putst.=0, then one gets
in the pure AF state; see, for example, Ref. 56. Note that il?5 o ke

- . rom the Larkin equation
the formalism of the DT for Lie-Hubbard operators they cor- q

respond to a zero-order approximation for the spin irreduc- ég =300 (A18)
ible part. 7
The hole Green function in the AF state is & 2 matrix The latter means that the holes are not propagating quasi-

as well. It is given by the Larkin equatiofA1) with a hole  particles in the puré-J model. Ift’ #0, one obtains for the
irreducible part which in a zero-order approximation is writ- diagonal components of the hole Green function the follow-

ten as ing expression:
by’ 0 . 1-0(9)
— . F = ———F (f=AB), (A19)
Sh(o M Iwn €xg— M Iwn
300 = o |- (A12)
0 —= ko= Yt BYak, (A20)
—MBT g ,
whereb?? is determined by Eq18), and is given by a=8t’+2(2 ) B=—2(t'—2t") (A21)
—2(23-t")’ '
ba%G=(X%+X ") a5 (A13)

(t” is a hopping term corresponding to third neighbpors.

The matrix of the interaction potential for the hole Green In this case, the holes are propagating quasiparticles with
function is written as the dispersion lawA20). It is the known result: Such a dis-
persion law for one hole on the AF background has been
obtained earlier in the-J model(see, for example, Refs. 73,
74, 75, and 69 Here we have shown how this result arises in
the DT for Lie-Hubbard operators, since we wish to describe
The term in the denominator of the Larkin equation responall possible phases within the same formaliéth.

sible for thek dependence of the hole Green function and of  Thus, a propagation of the doped holes on the AF back-
its poles depends strongly on values of the first-order cumuground is only possible within the same sublattice. Such a
IantSbZ?B entering in Eq(A12). To calculate their values, let propagation occurs due to the hopping to the next nearest
us assume that the spins are uwp=1) on sublatticeA and  neighbors as we have shown above or through virtual spin-
down (o=-1) on sublattice B. It means that flip processe$*’®In the former case, the band parameters
(X 1, =(XMg=0 and therefore (X, =(X 11 & andp are determined by EqA21). In the latter casey

t, ty

te b

Vh_

(A14)

=1- 6. Then, one has from EqGA13) and B are proportional tol.”® For realistic values of the
B parameters, the dispersion la@@20) is characterized by
b’=bg %=1, (A15)  minima located at the pointsH{m/2,+ m/2).
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