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Charge-density waves and superconductivity as an alternative to phase separation
in the infinite-U Hubbard-Holstein model
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We investigate the density instabilities present in the infibitétubbard-Holstein model both at zero and
finite momenta as well as the occurrence of Cooper instabilities with a specific emphasis on the role of
long-range Coulomb forces. In carrying out this analysis special attention is devoted to the effects of the strong
local e-e interaction on thee-ph coupling and particularly to both the static and dynamic screening processes
dressing this coupling. We also clarify under which conditions in strongly correlated electron systems a weak
additional interaction, e.g., a phonon-mediated attraction, can give rise to a charge instability. In the presence
of long-range Coulomb forces, the frustrated phase separation leads to the formation of incommensurate charge
density waves. These instabilities, in turn, lead to strong residual scattering processes between quasiparticles
and to superconductivity, thus providing an interesting clue to the interpretation of the physics of the copper
oxides.[S0163-182606)02137-9

[. INTRODUCTION (LRC) forces spoil PS as a static thermodynamic phenom-
enon, the frustrated tendency towards PS may still be impor-
Besides large critical temperatures, the superconductintant and give rise to large-amplitude collective density fluc-
copper oxides display many anomalous normal-statéuations. Approaching the problem within a coarse-grained
properties: The understanding of these properties is not onlymodel, they suggested that these fluctuations may be respon-
a fascinating theoretical challenge, but would also shed lighsible for the anomalous behavior of the normal phase and for
on the pairing mechanism leading to high-temperature supethe superconducting pairing. In a recent wdrkyo of us
conductivity. assessed the relevance of charge instabil{fRS or charge
The anomalous properties of the normal phase have beatensity wavesas a mechanism for anomalous scattering, by
interpreted along two distinct theoretical lines. The low di-determining the dynamical effective scattering interactions
mensionality of these highly anisotropic systems and theiamong Fermi-liquid quasiparticles close to a charge instabil-
correlated nature have been proposed to be at the origin ofity, both in the presence and in the absence of LRC forces.
breakdown of the Fermi liqui@FL). In particular the concept This analysis consisted in a microscopic treatment of the
of a Luttinger liquid in two dimensiohwas put forward as a Hubbard-Holstein model in the infinite- limit, finding that,
new paradigm for the normal state of copper oxides and iboth in the presence and in the absence of LRC forces, the
was intensively investigatet.However, it was recently dynamic effective interaction has a singular behavior,
showrf that the Luttinger liquid is only stable in one dimen- strongly affecting the single-particle and the transport scat-
sion. Above one dimension, the Fermi-liquid picture is re-tering time. This scenario is obviously sensibléijfthe con-
covered when the bare electron-electrere] interaction is  sidered microscopic model displays PS for some parameter
nonsingular. This result would support the alternative apti+tegion and(ii) the real copper-oxide systems actually are in
tude, which has been to accept the Landau theory of normahe proximity of a charge instabili}f. As far as point(i) is
FL’'s as a suitable starting point. The anomalous propertiesoncerned, PS seems to be a rather generic and robust phe-
would then arise as a consequence of singular scattering proomenon in the context of strongly interacting systéins.
cesses at low energy between the quasiparticles. Along thisdeed, after PS was shown to be present in the phase dia-
line magnetic scattering has been considered to be respogram of thet-J model!*~*#it was pointed out that PS com-
sible for both the anomalous properties of the normal phaseonly occurs in models with short-range interaction®*2°
and for the superconducting pairiRdt was also proposed provided the strong loca-e repulsion inhibits the stabiliz-
that excitonic scattering could give rise to the so-called maring role of the kinetic energy. Moreover, it was repeatedly
ginal FL® and provide a pairing mechanism. Singular scat-claimed that PS and superconductivity can be related phe-
tering is also obtained by gauge fieldsyhich arise by nomena irrespective of the nature of the short-range
implementing the resonating-valence-bond idea in thle  interaction'!
model. On the other hand, the frequent occurrence of PS in mod-
The above theoretical lines have more recently beerls of strongly interacting electrons is made intriguing by the
joined by a different scenario suggesting phase separatiasbservation of PS in oxygen-doped superconducting copper
(PS as a possible source of anomalous scattering and, therexides (LgCuQ,, ) of the 214 clas® Although the elec-
fore, of anomalous normal-state behaWidrEmery and tronic origin of PS in these cuprates is still to be established,
Kivelsorf suggested that, although long-range Coulombthe contemporary presence of a strang interaction and of
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PS in a real system and the robustness of the PS concept iiesponsible for vertex corrections, which are strongly depen-
theoretical models is suggestive. The reason why onhdent on thevq/w ratio, wherev g is the Fermi velocity and
La,CuO, ., seems to phase separate is that LRC forces efg and » are the transferred momentum and frequency, re-
fectively oppose the separation of charged particles. Onlgpectively. These corrections generically lead to a strong
when the negatively charged oxygen ions are sufficientlysuppression of the effective coupling between quasiparticles
mobile can the positive holes separate, being accompaniatediated by(a single phonon exchange in therq/w>1

by the oxygen countercharges which compensate for thémit. However, such an effect is not present when
charge unbalance. Nevertheless, even in those systems wheteg/ w<1, which is the relevant limit for the effective inter-
LRC forces are present to prevent a thermodynamic instabilactions entering the Fermi-liquid expression for the com-
ity, phase separation may remain in the system in the form ofressibility. In these effective interactions in the dynamical
a tendency toward charge aggregation, possibly giving rise thmit, the e-ph coupling is therefore not effectively screened,
superconductivity'®~***+2> or to anomalous normal gpening the way to a possible violation of the stability crite-
properties’® In particular it might well happen that the long- rion for the Fermi liquid in some regions of the parameter
wavelength density fluctuations associated with PS are SURpace. In Ref. 20 a detailed analysis was then carried out
pressed in favor of shorter-wavelength density fluctuationsusing a slave-boson approach for the infiritethree-band

giving rise either to dynamical slow density mofles to H o :
: . o1 s ubbard model describing the basic structure of a £uO
incommensurate charge density wav@®W's).” This lat- plane in copper oxides. In the presence of a coupling be-

ter possibility was recently put forward to explain neutron- . ; . :

. . 2 . tween the local hole density and a dispersionless optical pho-
scattering results in a |agNdy.Sto 1CuO, sample In this non, it explicitly confirmed the strong dependence of the
case it was proposed that tlilew-temperature tetragonal ' plicitly cc g dep

hole-phonon coupling on the transferred momentum versus

lattice structure and the fillingclose to 11/8 holes per ¢ , di Iso found that th h ¢
CuO;, cell) were suited to pin the density fluctuations giving FeqUency ratio and it was aiso found that the exchange o
phonons leads to an unstable phase with negative compress-

rise to a static CDW phase. The formation of striped patterns”'*
in the CuQ planes of Bi-2212 compounds was also showniPility already at rather small values of the bare hole-phonon

experiment$? Local density fluctuations could also account Poth ins- andd-wave channels were detected, supporting a
for some results of neutron scattering experiments in 12®ossible connection between phase separation and supercon-
materials?*2° ductivity in strongly correlated systems.

Based on the observation of an antiferromagnetic phase We now start from the infinitéJ single-band Hubbard
close to the superconducting one in the phase diagram of theodel in the presence of an optical phonon coupled to the
copper oxides, previous analyses put emphasis on the role tifcal electron densit$® Due to its relative simplicity with
magnetic coupling in originating the slow density respect to the three-band Hubbard moeled, will be able to
fluctuations’ However, the generic occurrence of PS in theo-extend the model in a rather direct and straigthforward way
retical models with different interactions indicates that asg as to include the LRC forces between the electrohis
definite choice of the mechanism leading to PS could bextension is particularly important since, as mentioned
misleading or premature in the absence of more stringenipove, LRC forces obviously affect the occurrence of PS
expepmental |nd|cat|ons_. !\/Ioreqver, Wh||e in thl? modelsjnstanilities and could provide a clue in explaining the rela-
mentioned above the additional interactions inducing PS arg, ¢ rarity of this phenomenon in the real materials. In this
of purely electronic origin, it was sho_wn in Ref. 20 that, In way, as briefly reported in Ref. 9, we also provide a micro-
the presence of a strong local repulsion, also the lattice may,

introduce an effective attraction determining PS in the FermrCOpiC derivation of an incommensurate CDW instability di-
- . o D ectly from a system of strongly correlated electrons with all
liquid. This latter result showed within an infinité-three- y y gy

band Hubbard model that the instability occurred for reason'Ehe physical implications indicated above. Therefore this

able values of the-ph coupling, indicating that PS by no topic represents a key issue of our investigation and may

means requires unlikely parameters, unusual mechanisms, g?ﬁmtely be cons!dered as the main point of our analysls.
purely electronic interactions, but it can simply result from In Sec. Il we mtroduce the model anld the fo.rmal|sm..
the interplay between the strong local repulsion and th&xeaders who are not interested in technical details can di-
(weak additional attraction provided by the lattice. This Fectly move to Sec. lll, where we present the results concern-
theoretical observation is accompanied by some experimer?d the physical properties of the model in the absence of
tal evidence that the lattice can play a non-negligible role in-RC forces. The effects of LRC interactions are reported in
determining the physics of the superconducting cuprites. Sep. v, which thus represents the core of the present paper,
particular a sizable coupling between some phonons and tH@hHe in Sec. V we discuss the results and draw our conclu-
carriers is implied by the presence of polaronic efféctsr ~ S'ONS.
the very lightly doped compounds, by the copper and oxygen
isotopic effect present in La ,Sr,CuQ,, by the Fano line
shapes in Raman spectra, and by the rather large frequency
shift and linewidth broadening of some phonongrat Il. HUBBARD-HOLSTEIN MODEL

In the present paper we pursue the investigation along the
route opened in Ref. 20. The occurrence of a phase- Our starting point Hamiltonian is the two-dimensional
separation instability was justifyied within a general Fermi-Hubbard model with an additional dispersionless phonon
liquid analysis, demonstrating that the strong interaction isnodeA coupled in the manner of Holstein:
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The mean-field self-consistency equations are obtained by
H=—t > (cl,ci,+Hc)—t" > (clcj,+H.c) requiring the stationarity of the mean-field free energy and

(i) (e they determine the values ob3=Nr3=(b;)?> and of
No=i{\;). Then the mean-field Hamiltonian reads

1
rS— E) ,
6)

where(i,j) and((i,j)) indicate nearest-neighb¢NN) and  where E,=-2tr2s, is the quasiparticle band with
next-nearest-neighbor sites, respectively, ang=c/ c;, is £ =(CoK,+Ccok,)+af cosk,+k,)+cosk,—k)] (we define
the local electron density. Since we are interested in the limity=t'/t). In particular it turns out that the square of the
of strong local repulsion, we take the limif—c, which  mean-field value of the slave-boson fieldb,,
gives rise to the local constraint of no double occupatioan:NrS:N(;/z, multiplicatively reduces the hopping,
,Ni,=1. To implement this constraint we use a standarg _, th2, thus enhancing the effective mass of the quasiparti-
;Iave-t;osonTtechnlqﬁ% Tby performing the usual substitu- cjes. Moreover, at this level the single-particle self-energy
tion cj,—ci,bi, ci,—bjci,. We also use a largh-  goes not introduce a finite quasiparticle lifetime. Then, in
this model the single-particle Green function of the physical

_MO% ni(,-l—UEi niTnil-i-wOZ AITAl

HMF:E Ekclgcka_(ﬂo_)\o)z Clngg‘f' NAg
+9i2 (AT+A) (N, = (i), (1) ko ko

expansiof’ in order to introduce a small parameter, allowing
for a systematic perturbative expansion without any assumiermions atN=2 has a quasiparticle pole with a finite resi-
tion on the smallness of any physical quantity. Within theqye given by the square of the mean-field value of the slave-

largeN scheme, the spin inde>§ runs fgom 1roand the  poson fieldoZ. Thus for any finite doping the system is a
constraint assumes the fork,c;,ci,+b;bj=N/2. A suit- 1-0 Fermi liquid.

able rescaling of the hoppings-t/N andt’—t'/N must, in On the other hand, at half-filling,= 6=0 and the system

this model, be joined by the similar rescaling of ta@h s insulating with a vanishing value of both the quasiparticle
couplingg—g/+N in order to compensate for the presencepandwidth(i.e., an infinite quasiparticle effective mase)

of N fermionic degrees of freedom. The model can then bexnd a vanishing residuum of the polar part in the single-

represented as a functional integral particle Green function.
As far as\ is concerned, this quantity rigidly shifts in a
Z:f Dchchb*DbD)\DADATex _ fBqu- , doping-d(_ependent way t_he bare chemical_potemiaand is
0 self-consistently determined by the equation
2
—\0 1
ac; ab; A No=AQ+ arg=2t2 f(Epe
- P gt a2t k
S 2| [; Cio or +b; z?7'+A' or
N =2t f(E)(Bctand), ©®)
; T K
+Zi ixi| bibi— = | [+H, (€)
wheref(E) is the Fermi function ang,=cos,+cos, and
) _ t ) ) Y= C0osk,+k)+cosk—ky). _ _ _
H= E Ci,Cic(—mot+iN)— N E [¢i,Cjobjbi+c.c] The presence of the coupling with the phonons introduces
Lo (if).o new physical effects when one considers the fluctuations of
t’ the bosonic fields. Since only a particular combination
N > [clc.blbi+c.cl a=(AT+A)/(2JN) of the phonon fieldsA and A" is
(iio coupled to the fermions, it is more natural to use the field

g a and to integrate out the orthogonal combination
——=> (A+AN (N, — (i) +we ATA, (4  a=(A-A")/(2\N). Then the quadratic action for the boson
N ' field a reads

where a local Lagrange multiplier field, has been intro- 2. 2
duced to implement the local constraint. Hopo NS “’n+"’oa7al @

At the mean-field =) level, the model of Eqs(2)— phon™ e = gpg T
(4) is equivalent to the standard, purely electrokle=
Hubbard model without coupling to the phonons, which hagvhere we have transformed the imaginary time into Matsub-
been widely considered in the literatuteln fact, at the ara frequencies. Moreover, it is convenient to work in the
mean-field level no role is played by the phonons becauseadial gaug€’ the phase of the fielth = Nr,exp(—i¢) is
our electron-lattice coupling depends on the difference begauged away, and only the modulus fieldis kept, while
tween the local and the average density and this differenck; acquires a time dependenkg—\;+d,¢;. Thus one can
naturally vanishes in the mean-field approximatiorthe define a three-component field”*=(&r,8\,a) where the
average number of particles per cellns=(1—5)N/2 and time- and space-dependent components are the fluctuating
6=0 corresponds to half-filling, when one-half electron perpart of the boson fields;=ry(1+ ér;), N\j=—iNg+ 6\,
cell and per spin flavor is present in the system. anda; .
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Hin= 20 Cleqrar A (KOG qzrA (@) (12

The quasiparticle-boson interactions give rise to self-energy
corrections to the boson propagators, which, at leading order
in 1/N, are just fermionic bubbles with insertion of
quasiparticle-boson vertices:

H“”(q,wm)=2 f(Ek+q/2)_f(Ek—q/2) A'“(k,C{)

K Ekrqo— Ek—q2—1on

XA”(k,—Q). (13

Once these self-energy corrections are taken into account,
the boson propagator at leading order assumes the form

FIG. 1. Leading-order self-energy contribution to the boson v —/An v
propagator from the four-leg vertex .. D"(q, wm) =(A*(q, 0m) A"(— 04, — @)

=N"1[2B+11(q, 0], - (14)

Writing the Hamiltonian of coupled fermions and bosons
asH=Hye+ Hpost Hine, whereH e is the above mean-field The factor of 2 multiplying the boson matr& arises from
Hamiltonian, which is quadratic in the fermionic fields, the fact that the bosonic fields in the presently used radial
Hypos is the purely bosonic part, also including the terms withgauge are real.
the a, r, and\ bosons appearing in the acti@8) and, in The above formal scheme allows us to calculate the
Hpnon» EQ. (7). Hiy; contains the fermion-boson interaction leading-order expressions of the effective scattering ampli-
terms. The single-band = Hubbard model also contains a tude both in the particle-hole channel,
four-leg vertex arising from the hopping part of the Hamil-
tonian[see the second term on tkRHS) of Eq. (4)]. The
two fermionic legs of this vertex can be contractede Fig. I'(kk';0,0)= _EV A¥(K',—q)D*"(q,0)A"(k,q),
1) giving rise to a leading-order self-energy contribution to # (15)
the quadratic part of the bosonic Hamiltonian:

and in the particle-particle channel,

E(q): —2Nr(2)t§k: 8k+qf(Ek)

k+k'
ICkk';w)=—2 M( 5 ,k’—k)D”"(k—k’,w)
2 %
= 008, andye] ®)
2 LhoPaT a%oYal k+k’
XA —T,k—k’ . (16)

Fourier transforming to the momentum space, the bosonic
part of the action reads It should be noted that the boson propagators are of order 1/

N while the occurrence of a bare fermionic bubble leads to a

_ u uv v _ spin summation and is therefore associated with a fadtor
Hlbos N% AH QBT A(~a), Thus, in this 1IN approach, the quasiparticle scattering am-

plitudes are residual interactions of ordeN1/

without explicitly indicating the frequency dependence for  The form of the static density-density correlation function
the sake of simplicity and wherg,v=r,\,a. The matrix  at the leading order is
B#” can be explicitly determined from Eg®)—(8) and it is
found that all elements are zero except ®r'=r3[A\J(1 1
—(1/2)By)+ arg(1—(1/2)yy)], B =B '=irj, and P(q,w=0)= NE, (n (@), (—q))
Ba'a=(wﬁ+ wé)/wo. 79

The last ingredients of our perturbation theory are the

vertices coupling the quasiparticles to the bosons, = Po(q,w=0)+§y Xﬂﬂ(q,w=0)
AT(K,Q)= = 2tr§(es gt Ex—gr) ) XD#"(q,0=0)x0n(0,@=0), 17)
ANk, =1, (10 ~Wwhere
_ 1
Ak =-2g, D PO(g, @)= 52 (No(@)Nyr (=)o (18

allowing us to write the interaction part of the Hamiltonian
in the form is the orbital bare density-density correlation function and
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1 Ig"=11*"(q—0, wy=0) can easily be evaluated by notic-
Xﬁu(q’w)ZNE, ”o(Q)E Cror A*(K, Q) Cics g0 | ing that atT=0
oo 0
19 IF(Ey)
o . . 1#"(4—0, wy=0)=2, A*(k,0)A"(k,0)
A simple inspection of the diagrammatic structure of the k  JEk

scattering amplitude$’ and of the response functiorn, (21
together with the observation that the static fermionic
bubbles are nonsingular functionsafallows us to conclude

that both quantities provide the same amount of information - _Ek S(E—Ep)A#(k,0)A"(k,0)
as far as the occurrence of the instabilities is concerned. In
fact one can immediately recognize that, since a diverging =—v* A*(kg,00A7(kg,0), (22

response function can only arise from a diverging boson ) ) ] ) ]
propagator, also the scattering amplitude mediated by thwhere v* is the quaS|part|cIe density of states at the Fe.rm|
same boson propagator would diverge at the same time. THgvel. In the last equality we use the property that the vertices
same holds for the static Cooper scattering amplitude in th&re constant over the Fermi surface. Once the expressions for
particle-particle channel, which, within our leading-order the bubbles are substituted in E0) one obtains the final

1/N expansion, coincides with the particle-hole amplitdtle. €xpression for the static scattering amplitude between the
quasiparticles:

lll. PHYSICAL PROPERTIES OF THE HUBBARD- N T AtvF e, —\
HOLSTEIN MODEL NPT =@ A (23
9 1+Nw»*I, 1+(4tr*er.—Ng)’

A. Static properties

The model introduced in the previous section is characwhere we introduced the effective phonon-mediategicou-
terized by the contemporary presence of a very strong localling A g=2v*g?/w,. In Eq. (23) the dynamical effective
interaction and a phonon-mediated attraction. The main poiricattering ~ amplitude  between the  quasiparticles,
to be addressed here is the subtle interplay between the df-,=1'(kg,ke; =0, w—0), is identified by
tractive and repulsive forces so as to clarify the origin of the
effective interactions arising between the quasiparticles giv- 1 Ag
ing rise to instabilities for some values of the parameters. We Fw:ﬁ( ey~ V_*) : (24
will first analyze the static properties, so that we first focus
on thew=0 limit of the effective interaction in the particle- This latter quantity represents the residual interaction be-
hole channel, Eq(15), between quasiparticles on the Fermi tween the quasiparticles on the Fermi surface when their mu-
surface k=kg, k' =Kkg). tual screening is not taken into account. This screening effect

Since in general this quantity involves the calculation ofis instead included i’y .*® The above expression fér,, can
the fermionic bubbles, Eq13), entering the expression of also be easily obtained from the direct evaluation of @G)
the boson propagator, E¢L4), an explicit analytic evalua- by noticing that in the dynamical limit the fermionic bubbles
tion of this scattering amplitude at finite momentum is notvanish identically. Thus, using*”=0 in Eq.(14) one again
possible. The finite momentum analysis of the static scattefindsNv*I',=4tv*e,_—\g.
ing amplitude is then carried out numerically. However, we At this point one recognizes that an instability can in prin-
find it instructive to present first the analytic results, whichciple take place when the Landau-Pomeranchuk criterion for
can be obtained in the small transferred momentum limithe stability of a Fermi liquidF§=Nv*T',>—1, is vio-

(q—0): lated, leading to a negatively diverging totatatio scatter-
Ty=lim lim (ke k2 1, 0) ing amplitudel’y:
q~>0w~>0
FS=Nv*Fw=4tV*8kF—)\g$—1. (25
2EF . . -y .
__ E i As a consequence a divergent compressibility is found,
N
-29 an (1 T Nv* 26
K=E—=V -V = ——5—FS_,_1%,
H(r:]r i2r(2)+1—[(rq>\ H(r]a -1 i q 1+ Fg Fo 1
x| i2r§+ I my Iy which signals the occurrence of a PS. It is worth noting that
I8 T 2wt 132 the phonon parameters only enter the condition for PS via
a a 0" g the combination\ 3=2v*g% w. This implies that, for a
2E; given electronic band structure, i.e., for a given thestatic
. instability is obtained for any phonon frequency provided
X : ' (20) is suitably rescaled to keep thg fixed (of course too large
—29 e-ph couplings put in jeopardy our weak coupling approach,

where vertex corrections beyond the Migdal theorem are not
where the static g—0 limit of the bubbles, included.
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FIG. 2. () Doping dependence of the maBs [cf. Eq. (33) FIG. 3. Phase diagram-ph couplingg vs dopingd tne=0.5
below] in the static effective scattering amplitude close to the PSgy /= —(1/6)t, and wg prye=0.04 V. On the solid line the com-

instability. The open squares i@ indicate the values oD at  pressibility diverges, whereas the dotted line arises from the Max-
various dopings anci:’phys:gcphys:O-]-gzjfl\/E ev, tphys:()-5 ev, well construction.
t'=—(1/6)t, and wqpns=0.04 eV. For these parameters
5,=0.195. The solid line is a linear fitb) Static scattering ampli- thus calling for a more general investigation. This latter has
tude for the same parameters as(@ as a function of the trans- been carried out numerically through the explicit calculation
ferred momentumqg in the (1,0 direction. The dopingé=0.2,  of both the static scattering amplitude at finite transferred
0.205, 0.22, 0.25, and 0.28 increases from the lower solid line to thenomentum and the density-density response function. In Fig.
upper solid line. 2 we report the full static scattering amplitude in the particle-
. ) _ particle channel. We choose this quantity because it will also
It is worth remarking that the quantity enter the calculation of the Cooper instability reported be-
ek = (CoOKyr+Coskyp) +2a(CoK,cokyr) is rather small at  |ow. We performed the calculation for various different val-
low doping®” We carried out a detailed investigation of ues of the doping at a value of larger than the minimum
ek, as a function of the doping and of the hopping ratio  value required to have a PS instability. Here and throughout
determining the most appropriate valuestofin order to  this paper we express the various quantities in physical units
reproduce within our single-band model Fermi surfacetranslated from the N formalism with N=2: ty,=t/N,
shapes in reasonable agreement with those observed in soigys=t'/N, Gphys= 9/ VN, and wophys= wo.
superconducting copper oxides. According to previous From the reported results it is natural to conclude that the
analyses® we found that the values af giving rise to rea-  divergent particle-particle scattering amplitude., a diver-
sonably shaped Fermi surfaces for 214 compounds are neggent boson propagator and a consequently diverging density-
tive with t'=—0.16%. t'=—0.4% was instead adopted to density response functipoccurs at a zero momentum trans-
reproduce Fermi surfaces in agreement with those observder. According to Eq(26) this divergence I ;— — =) leads
in 123 and 2212 compounds. For these Va|UeS’Of8kF to a diverging compressibility, signaling a PS instability.

remains rather small in the low-doping regime. Therefore, AS, can be seen in thg vs 6 phase diagram of Fig. 3, for
although a minumum critical valug, of thee-ph coupling is tf’1et =—0.167 case(a similar diagram is obtained when
needed for the phase-separation instability to occur, its valuk = —0-43), we found that this behavior is rather generic at

can be small and it does not really provide a difficult condi-loW and intermediate dopingsolid line).™ The instability
tion to be satisfied in the real systefis. line drawn in the phase diagram indicates where the static

The main point to be stressed here is that, despite the€nsity-density response of the system becomes singular. A
infinite bare repulsion between the bare particles, a hugBarrow dip in the_|nstab_|llty solid Ime is due to the_presence
screening takes place in the system, introducing attractivef @ van Hove singularity enhancing", thus favoring the
forces almost exactly balancing the repulsion and giving riséStability. However, the system becomes unstable and phase
to a finite scattering amplitud€,, between the quasiparti- Separates before the solid line is reached, where=. A
cles. This residual effective interaction is repulsive in theMaxwell construction(dotted ling is needed to determine
absence of the-ph coupling, whereas it may turn into an the region where PS starts. The Appendix brlefly describes
attraction when\ is large enough. In this situation, which the procedure to carry out the Maxwell construction. _
arises from the strongly interacting nature of the system, e complete the static analysis of the model by investi-
even this additional attraction can drive the system to b&ating the possibility of Cooper pairing. As already pointed

unstable. This finding matches well previous results obtained tagLE |. Extendeds- and d-wave superconducting couplings
in different models and it emphasizes the general robustnesg, tos=0.5 €V, t=—1/6', gu,=0.192A2 eV, and
of the PS concept in the context of strongly interacting SYSwopnye=0.04 eV at various dopings. The instability is at
tems. Moreover, this finding supports the choice of thes.=0.193.

Hubbard-Holstein model as a simple paradigm to describe

the physics of PS in the context of strongly interacting sys-s 0.194 0.200 0.205 0.210 0.225
tems. Ns, 0.458  —0.065
In principle the above analysis cannot exclude that an, 1.284 0.137 0.092 0.076 0.052

instability at a finite momentum can take place before PS
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out, in various models with strorgte correlations supercon-

ductivity can appear in the proximity of a PS instability. This

can easily be understood by looking at the large attraction = +

arising in the particle-particle effective scattering amplitude

close to the instabilitieésee Fig. 2 According to this simple

observation and according to the previous experience in

other strongly interacting models, we therefore investigated FIG. 4. Leading order in the W diagrammatic structure of the

the Fermi surface average of the particle-particle scatteringffective e-ph vertex dressed by electronic processes only: The

amplitude defined in Eq.16): wavy line is the slave-boson propagator only involvingand A
bosons, the solid circle is the dressegh vertex, the open circle is

9 -1 the baree-ph vertex, and the grey circles are the quasiparticle—
N=—| | dké(E—p)ai(k) dkdk slave-boson vertices.
X[Gi(KT(k,k";0=0)g (k") 8(Ex— p) 8(Eyr — p)], .
(27) Z°A (q—>0,w:0)=1+—F8(e), (29)

with gs, (k) =coskg+cosky) and gq, (k) =cosk)—cosk))  whereF$®=2,*T® andT® are the Landau parameter and
projecting the interaction onto tleewave andd-wave chan-  the dynamic =0, w—0) effective e-e scattering ampli-

nels.(Notice that\;>0 means attractiop. tude between the quasiparticles, respectively, when only the
The results are tabulated at various doping concentrations-e repulsion is taken into account. To explicitly keep
for the case with t,,=05 eV, t=-1/8',  memory of this limitation we append a sufexto I',, and to

gphyS:O.192/\/§ eV, andwgpns=0.04 eV in Table I. With  any quantity not involving phononic processes.
the set of parameters of Table | the critical doping for the In our specific model and within our leading-ordeiN1/
occurrence of the instability i6.=0.192. Whereas the cou- approximation one can recognize that the static and dynami-
plings Ay are found to be generally attractive néand in-  cal e-ph verticesA, and A, are related by
side the unstable regions-wave Cooper instabilities are
found only very close to the instability lirfe. Ae— AG,

At first sight it may seem strange to investigate and to q_1+Nv*F‘Z’
look for superconductivity in a phase-diagram region, which . . .
is made unaccessible by the Maxwell construction. Howevethere I' is the first term in the RHS of Eq(24) and
one should remember that the phase diagram of Fig. 3 mag;,=1. Equation(30) shows the difference between the dy-
be modified by several effects. First of all long-range Cou-namic and static limits, which can be substantial for large
lombic forces will spoil PS. This issue is the main topic of »*. This is a generic feature of strongly correlated systems,
the present paper and will be discussed in Sec. IV. Seconayhich one has to take into account since it can strongly af-
temperature effects could restore the uniformity of the sysfect the relevance of the-ph coupling.
tem. This issue cannot be reliably addressed within a slave- The above smalit and smalle analysis can easily be
boson formalism and is beyond the scope of our work. Mosextended to finite momenta and frequencies by an explicit
importantly superconductivity itself can give rise to a morenumerical evaluation of the diagrams of Fig. 4. In these dia-
stable phase competing with and stabilizing PS. In this lattegrams one considers the effects of thie and S\; boson
scenario a complex interplay between the PS instability anfluctuations, keeping track at leading order ilN16f the
superconductivity will likely arise: The incipient instability original infinite Hubbard repulsiotd. More explicitly one
originates superconductivity, which, in turn, prevents the in-has to evaluate
stability to occur®? To substantiate these ideas a consistent
analysis would be required of the feedback effects, which,, e—ph/(, . _Aa _ u v
however, only appear at higher order in the 1/N expansion.A (kg om) =A%k,Q) NW;X A%k, @)D*"(g, om)
Work in this direction is in progress.

(30

XTI1"3(q, wp,). (31

B. Dynamical properties For w,,=0 our slave-boson result is in perfect quantitative

The analysis carried out in the previous sections wadgreement with the _stati_c analysis carried out in Refs._4:_3—45
purely static. From this analysis it turned out that the subtid®r the single-band infinité) Hubbard model treated within
balancing between repulsive forces and attractive screenirfy2rgeN expansion by means of Hubbard projectors.
processes may have relevant physical effects. In this regard a 1€ results of a dynamical analysis of tagh vertex vs
dynamical investigation immediately appears to be of greatf@nsferred Matsubara frequencies are reported in Figs. 5
interest in order to fully clarify the way the various screening@d 3b) for t'=—1/6 for a small[q=(0.2,0)] and a sizable
effects contribute to the physics of the system. [lq=(2.0.,0).] value of the tran;ferred momentum, respec-

From the standard Fermi-liquid thecﬂ@pne obtains the t|v¢Iy. Similar rgsult.s are obtained for tﬂlé: —-0.45 case.
two relations connecting the density vert&&(q,») and the It is worth noting in Fig. %a) how rapidly the effective

wave function renormalizatioa® in the dynamic and static €-Ph vertex increases as soon as the transferred frequency
limits: becomes larger than some screening sealeof the order of

vEq, with vE= 5. A much larger scale of the order of the
Z°A%(q=0,0—0)=1, (28) bare bandwidth is involved in the slower increase of the
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Wh FIG. 6. Effective scattering amplitude as a function of the trans-

ferred Matsubara frequency foty,,—0.5 eV, t'=—(1/6},
FIG. 5. Effectivee-ph vertex as a function of the transferred gphys=0.194/\/§ eV, wgpns=0.04 eV, ands=0.205. Solid line,

Matsubara frequency fdr,, =0.5 eV,t'=—(1/6)t, wopnys=0.04  small transferred momentuny= (0.15,0); dashed line, large trans-
eV, and §=0.205. In (a) the transferred momentum is small, ferred momentumg=(1.75,0). In the insets the attractive parts
g=(0.2,0), and it is largeg=(2.0,0), in(b). I'aw=T —T ¢ (See text are reported for both smalsolid line) and

large momentddashed ling

vertex at large momenfdeig. 5(b)]. A detailed discussion of h torg@) 1 al ishes for | ¢ i
the screening scales is deferred to the next section, whefZ'onon propagato .) also vanishes for farge frequen
this analysis will also be carried out in the presence of LRCC'.eS]' A simple calc_ulatlon based on EQ.6) _and on Eq(14)
forces. Since dynamical effects strongly modify the behavimwIth H.(q’w)ﬁ(.) gives the larges saturatlor? value of the
of the e-ph interaction, it seems natural to extend the dy_scatterlng amplitude in the Cooper channel:
nam_ical analys_is to qther relevan_t quantities of the system. 'ﬁ*c(kp Ke 3 w—0)
particular we investigated the finite-frequency behavior of
the effective Cooper scattering amplitudes between the qua- 1 )\8(1_ %Bq)+a?\é(1— %Yq)
siparticles on the Fermi surfad® (ke kg7, ;). The results =N Atgy + 512 ,
are reported in Fig. 6 for the particle-particle scattering am- 0
plitudes as a function of the transferred Matsubara frequenwhere\3* are defined in Eq(6) and B4 and y, are given
cies both for small and large momenta. In this case the bargfter Eq.(6). A direct inspection of Fig. 6 shows that this
e-ph coupling gyn,s=0.194A2 eV and the doping saturation value is reached more rapidly in the small momen-
6=0.205 are tuned in order to place the system in the proxtum transfer case, whereas a slower ris€ ofw) is found in
imity of a q=0 instability occurring forgcphys=0.194/\/§ the large momentum transfer case of Fig. 6. This result is a
and 6,=0.195. For clarity we also represent in the inset thenatural consequence of the disappearance of the phonons
difference between the total and the purely repulgive,,  from the high-frequency processes at,{> wg). Then only
involving ther and A bosons only part of the scattering electronic processes determine the scattering like in the
amplitude. For any momentum, this attractive part of thescreening of the-ph vertex described abovef. Figs. 5a)
interaction lives on a frequency range of the order of theand gb)]. Again two energy scales appear to be relevant: a
phononic energy. However, as expected, the large and themall v~ 69 at small momenta and a large.~t at large
small-momentum behaviors are strikingly different. At smallmomenta. These two scales set the frequency region above
momenta the attraction mediated by the phonons is strongeavhich the scattering tends to saturate.
because the-ph coupling is largefcf. Fig. 5 and, close to As far as the dynamic behavior of the scattering ampli-
the instability, it gives rise to a large attraction at low fre- tude in the proximity of a PS instability, we also like, for
quencies. This attraction is the vestige of the huge staticompleteness sake, to recall that a recent Watko showed
attraction found close to the PS instability also in thethat, close to @=0 instability, the effective dynamical scat-
particle-particle channdlcf. Fig. 2. On the other hand the tering amplitude for real frequencies has a strongly singular
attractive contribution in the large-momentum cadetted  behavior. In particular the effective interaction assumes the
curve in the inset of Fig.)6is quite small for any frequency, form
because the effective coupling between the quasiparticles ~ 1
and the phonons is greatly reduced by the large-momentum I'(q,0)~U~— BG?—iwC/qi D’ (33
screenindcf. Fig. 5b)].

We finally would like to comment on the behavior of the similar to the one obtained within the gauge-theory treatment
scattering amplitude for frequencies that are larger than botaf thet-J model/ with a massD«(5— &), which vanishes
the phononic and electronic energy scales. In this case it cdinearly when, by varying the doping, one approaches the
be easily checked that the fermionic polarization bubblegy=0 instability line. U represents the almost-momentum-
vanish aSwer, thereby leading to a scattering amplitude independent repulsive contribution 1o mediated by the
determined by the bare slave-boson propagaiittre bare and N bosons. According to the spirit of the Fermi-liquid

(32)
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theory, it may be interpreted as the residual repulsion surviv- €
ing between the quasiparticles and arising from the infinite ~ A(0x,dy) = W[Cos(aqucos{aqy)—Z]—l :
repulsionU between the bare electrons. Equat{86) estab- (39)
lishes a connection between the presence Q=@ charge
instability and singular scattering, which could determine theSince we are interested in the effects of the Coulomb poten-
anomalous normal-state properties of the copper oxides. tial on the square-lattice planar system, we now transform
The analysis summarized in Figs. 5 and 6 is of obvious§rom g, to real space for the plane a&0, obtaining
pertinence in a complete Eliashberg treatment of the super-

conductivity problem. In particular it is evident that the huge ed 1

enhancement of the attractive part of the scattering amplitude bq(2=0)=—5— —AZ( =0 (39
near the instability line can be responsible for large critical * GGy

temperatures despite the smedph coupling. Notice that this is the potential between electrons in a two-

The closeness to a phase-separation instability appeagimensional lattice embedded in a three-dimensional space
therefore as a favorable condition in order to obtain high-and it diverges ag ™! for small transferred momenta, rather
temperature superconductivity from a phonon-mediated aihan q=2 as happens for three-dimensional electronic sys-
traction similarly to what suggested in the context of purelytems. This potential can be used in the Coulombic part of the

electronic pairing mechanism,. Hamiltonian
IV. EFFECT OF LONG-RANGE INTERACTIONS Ve 1
| He=oN2 Tr——"PaP—aq (40
A. Formal extension q \/Az(q)— 1

Although we expect the effect of LRC forces to be MOStwherep =3y UCLq ,Ck » and the Coulombic coupling con-
effective in the small transferred momentum case, where th§tantvcze2d/(2qéz).' It should be noted that, as is cus-
underlying lattice structure is less visible, we explicitly kept qomarily done, the sum does not include the zero-momentum
into account the real symmetry of the square-lattice system:omponent, since we are supposing that the diverging
Therefore, to derive an explicit expression for the CoulombiGnteraction between the electrons is canceled by the contri-
potential in the spirit of the point-charge approximation Wepytion of a uniform positively charged ionic background.
started from the discretized form of the Laplace equationyaying in mind the superconducting copper oxides of the
Moreover, since we assume that our two-dimensional mode}14 type, whered~3a, t,,~0.5 eV, €/~30, ande, ~5
represents planes of a truely three-dimensional lattice Wgne sees thaV, has to F;aynge from roughly 0.5-3 eV in
also include a third spatial dimension. For clarity in this sec-y;qer to have holes in neighboring Cueells repelling each
tion we restore the explicit dependence of the lattice spacinginer with a strength of 0.1-0.6 eV.

a, which in the previous sections was set to unity in the  The Hamiltonian(40) can then be added to the Hamil-
square two-dimensional lattice. In the third space directionygnian of the Hubbard-Holstein modél) and the product of
instead, we assume the unit cell to have a lattice spaging foyr fermionic fields can be decoupled by means of a stan-
(iLe., we assume a tetragonal three-dimensional lattice  §arg Hubbard-Stratonovich transformation. In this way one
this scheme, the Laplace equation reads introduces a new real bosonic fie to be integrated over
in the functional integral. Although this spatially fluctuating
€ 2 Di—jryt ¢i—2j—77_ 2¢>i—j) field does not have its own dynamics, it acquires a frequency
7=Xy a

(34) dependence via its coupling to the fermionic degrees of free-

dom. In particular, extending the bosonic space
o o4 A#(Q)=(6rq,0Nq,8q,Yq) (we dropped for simplicity the
¢|—J+z+¢|—]—z 2¢I—j _ P P
5 =—ed(i—j), (35 Matsubara frequency dependence of the bosonic jields
d can extend the formalism of Sec. Il to include the effects of
the Coulomb potential represented by théoson. A direct

wherei,j are lattice sites and, and ¢ are the dynamic . S ;
. . : calculation shows that the quasiparticle-boson vertex is
dielectric constants perpendicularly and along the planes, re-

+e€

spectively. Fourier transforming one can easily obtain AY(k,q)=i, (41)
€ 2¢€, as expected since the Coulomb potential couples to the local
(a/d)z[cos(aqx) +cogady) —2]+cogda,) — 1|~ g electronic density in the same way as the bosatoes. The
bare boson propagator becomes>a# matrix with an addi-
=—e, (36)  tional nonzero element:
with e= €//€, , from which one gets the expression of the /Az(q)—l
LRC potential in the three-dimensional momentum space: BY'Y=T. (42)
C

3 We stress again that thé boson does not have any uniform

- -1
bq= 2. [A(Qy,qy)+cogq,d) ], (37) g=0 component, which was discarded from the beginning in
the sum of Eq(40) and therefore it does not affect the mean-
where we defined field results.
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and clearly displays the vanishing of the LR vertex for

021 g—0, when the Coulombic potential diverges
016 [A%(q)—-1]"'=[ql .

The important physical consequence of the above sup-

= 012 o pression of the effective-ph vertex is that in the presence of
z“ LRC forces the long-wavelength density fluctuations are de-
< 0.08 coupled from the phonons and become unable to drive a

low-momentum instability. Nevertheless, the possibility of

0.04 finite-momentum instabilities still remains open and a de-
tailed reanalysis of the phase diagram in the presence of the
0-00 0 05 10 15 20 25 30 L_RC potentia_l is needed: This analysis can _be carri_ed out by

) ‘ ’ q ’ ’ direct numerical evaluation of th&tatic density-density re-

sponse function and of its divergences. A direct inspection to

FIG. 7. Static effective-ph vertex(in units ofgyy,d as a func-  the diagrammatic structure of leading order in theN 1/
tion of the transferred momentum in thel,0) direction for  density-density response function shows that one can include

tonys=0.5 eV,t' = — (1/6)t, andwg pnye=0.04 V. The dotted line is the Coulombic effects both by extending ther summa-
in the absence of LRC forced/¢n,<=0); the solid line is in the ~ tions in Eq.(17) to include theY boson or, alternatively, by
presence of LRC forces Witk <= 0.55 eV. first calculating the short-range response funct®ii by
only including ther, \, anda bosons and then to resum with
B. Static properties the bare(Y'Y) propagator. The result is then

The introduction of a LRC potential greatly affects the s
coupling between phonons and electrons particularly for PLR(q,w=0)= PS(q,0=0) _
s_maII momenta, Where the Coulombic for<_:es are most effec- 1+{Vc/[NVAZ(q)—1]}PSR(q,w=0)
tive. In fact, since in the Hubbard-Holstein model phonons (45)
couple to the local electron densities like the Coulombic po- ) i _ N
tential, thee-ph coupling is effectively screened by particle- From this expression one can easily see that a positively
hole pairs created by theee Coulombic scattering processes diverging PS{(g,«=0) no longer gives a diverging LR
and the effectivee-ph vertex is largely suppressed in the density-density response function. In particular, since
small-momentum limit. This effect appears in a direct calcu-Vc/[ VA*(q) —1]—< for q—0, the compressibility always

lation of the expressiofB1) for the effectivee-ph vertex in ~ vanishes as it should in a Coulomb gas and a PS instability is
the presence of LRC forcesA®P(k,q;wy). Now — NOW ruled out. However, some finitginstabilities are still

w,v=r,\,Y in Eq.(31), so as to include the screening due to POssible in the system when

the fluctuations of the “long-range” bosovi. In particular
Fig. 7 shows the momentum dependence of the static PSN(9,0=0)=—N[VA*(q)—1]/Vc, (46)

(©n=0) e-ph vertex. The comparison with the same quaM 0 ading to a divergenP'R. This is possible, in principle,

tity in the absence of LRC forces shows a striking difference_; g : :
in the low-momentum region, where the Coulombic screenSince inside the PS region for the model without LRC forces,

: . T PSR has a simple pole. TherefoR®R has a negative branch
ing leads to a vanishing-ph vertex. This difference can . ;
. . rom zero momentum up to sizable momefifathe param-
easily be understood by a three-step evaluation o o :
e-ph ) . . eters are choosen to be inside enough into the unstable re-
ATR(K,g; o). One can first go through the calculation of

) gion) and the conditior(46) can be satisfied. At this point,
the yertex in the abse_nce of L.RC forc.[disq..(31)]. Then one then, an instability occurs despite the stabilizing effect of the
can introduce a density-density fermionic bubble dressed b

) YRC potential and an incommensurate charge-density-wave
all electronic short-range processes, (CDW) phase takes place in the system.
200 The g vs 6 phase diagram for various values Wt is
_ 4rgP (g, wm) reported in Fig. 8, where the solid line represents the place at
" deDZ(q,wpy) | @3 Wwhich PR(g=q., w=0) diverges, separating the stable

uniform region from the unstable region where an incom-

WhereD2X2 is the 2x 2 sector of the boson propagator 0n|y mensurate CDW is expected to form. Itis important to notice
including ther and\ bosons, representing the purely elec-that, when the settling of a CDW phase is given by a second-
tronic Short_range processes. Fma”y one performs a resunﬁ).rder quantum transition, no Maxwell construction is needed

mation only includingY-boson fluctuations dressed by the t0 determine the stability region. _
HESR density_density fermionic bubbles. The result is As can be seen the effect of LRC forces is Stronger at low

doping. This is so because in this region the poledf
tend to occur at low momenta and are more effectively sta-

HESR(qvwm)

-ph, .
ASPN(K Qi) = APk, 0m) bilized by the Coulombic potential.
R TTeSR(q; i) Ve [[VAX(Q) — 1] We found that the momentg, at which the divergences
(44 in PR occur obviously depend on the poigtvs 6 and on

the strength of the Coulomb foréé., but are generically
This expression readily shows the suppression of the shorsizable, indicating that the wavelength of the expected CDW
range-only e-ph vertex appearing in the numerator phase is of a few unit cells.
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FIG. 8. Phase diagrane-ph couplingg vs doping § with
tonys=0.5 eV, t’=—(1/6)t, and wg ynys=0.04 eV, and in the pres-
ence of LRC forces withVcp,,—0.55 eV (lowest curve,
Vphys= 1.65 eV (middle curve, andVcgn= 3.3 eV (upper curve

We performed an extensive analysis of the fimjt@ista-
bilities for various values of doping,/t, g, andV. It turns
out that, for reasonable values of these parameters, the insta- FIG. 10. Momentum dependence of the static scattering ampli-
bilities always occur at or close to thi#,0 and(0,1) direc-  tude for the same parameters as in Fig. $at0.195.
tions. This effect is due to the momentum structure of the
short-range density-density response function, which is enp those of a finitey instability. It is evident that a deep
hanced by the large density of states in th¢d) and (0,1)  attractive interaction between the quasiparticles arises on a
directions. broad momentum region. This fact is particularly remarkable

It is interesting to notice that, close to the fingeinsta-  in relation to the occurrence of Cooper instabilities. As seen
bility, the static effective scattering amplitude in the particle-in Sec. Il A, a static Cooper instability takes place when the
hole as well as in the particle-particle channel diverges atermi-surface average of I'°(kg k., w=0) becomes posi-
finite momentum transfer like tive [cf. Eq. (27)] and this seems likely to occur close to

finite-momentum instabilities. The resulting coupling con-
D - (47) stants are reported in Table Il. As expected, positive.,

D'+B'|g—q attractivg coupling constants arise close to the incommensu-
with D'« (85— 6.) being a mass linearly vanishing by ap- rate CDW instability, once more supporting th_e idea that
proaching .. The evolution of ['(ke k. w=0) in ap- _hlgh-temperature s_uperc_o_nductl_vlty could arise in the_p_rox-
proaching the unstable region by doping variations is dis!Mity 9f a charge m;ta@hty. It is also worth.em_phasa.llng

C e : . ’ that, like in the proximity of PS, such a pairing instability
played in Fig. 9. Figure 10 displays(kg ,kg,w=0) over a . r
large portion of the Brillouin zone for parameter values closetakes place as an effect ofcpmdepende_nt ph(_)r_won induced
attraction, which, close to the CDW instability, becomes
highly structured in momentum space, thereby opening the

I'(q,w=0)=U—

1.0 way to pairing symmetries other than the simglevave.
This fact accounts for the attractive couplings also found in
0.8 the d-wave channel. In particular it turns out that the
06 ~ d-wave symmetry of the order parameter is able to take good
. 4 advantage of the strong smajlattraction and of the local
Qo4 < (largeq) repulsion.
5.20.194 = In the region of small to intermediatgs and dopings our
021 /% ¢ analysis indicates the sure existencedeivave pairing in
00V @ sizable regions near the instability, whereas the occurrence
of s-wave pairing takes place in a much narrower region.
0.0 %_%2 0.04 However, it should be emphasized that the presence of a

FIG. 9. (a) MassD' of the effective static scattering amplitude ~ TABLE Il. Extendeds- andd-wave superconducting couplings
as a function of5— &, for tyne=0.5 eV,t'=—1/8t, Vcpn,e=0.55  fOr tyn,s=0.5 eV,t=—1/6t', Gynys=0.2604/2 eV, wopny=0.04 €V,
eV, wopnys=0.04 eV, andg,n,s=0.24042 eV. The open squares and Vgpn,s=0.55 eV at various dopings. The instability is at
indicate the values db at various dopings and the straight line is a 6.=0.299.
linear fit. (b) Static scattering amplitude for the same parameters as
in (@ as a function of the transferred momentugnin the & 0.300 0.305 0.310 0.330 0.360  0.400
0.~(*0.28/a,+0.86/a) direction. The doping5=0.195, 0.2, s, 0.134 0.076 0.048 -0.024
0.205, and 0.22 increases from the lower solid line to the UppeR g, 0.372 0.206 0.174 0.110 0.070 0.045
dotted line.
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s-wave static Cooper instability only in a narrow region by
no means excludes the possibility of haviegvave super- 2
conductivity in a much larger area of our phase diagram. An
appropriate Eliashberg dynamical analysis would be required ol
to draw a firm conclusion, especially in the light of the re- ~ ,
sults reported in the next section showing a strong frequency ga -
dependence of the effective interaction between the quasipar- = -2 32
ticles. Of course the same applies to the attraction in the Tl
d-wave channels, which could also be greatly favored by 4 =)
dynamical effects. Qo om oo o0
. i -6
C. Dynamical properties @ 0.0 0.2 0.4 " 0.6 0.8 1.0
n

We carried out a dynamical analysis of the effective
e-ph vertex in the presence of LRC forces. The dynamical
behavior of thee-ph vertex in the presence of LRC forces is 6
not very different from the behavior observed f6¢=0. In
both cases two different screening regimes take place for

small and large momenta. Specifically, when LRC forces are ~4
absent, we found that at small momenta the screening energy ?,z
wsc IS proportional to the doping and depends linearly on the = 5
exchanged momentums.~vFq. Instead, in the presence of /
LRC forces, it is found that o0 oot oos 012 01602
0
Wse~ VUED. (48)
00 01 02 03 04 05 06
The linear momentum dependence in the short-range-only Wn

case is compatible with screening processes associated with ) ) ) _
both the particle-hole continuum and the zero sound. In the FIG. 11. Effective scattering amplitude as a function of the
presence of LRC forces, the square-root momentum depeff@nsferred Matsubara frequency fy,=0.5 eV, t'=—(1/6)t,
dence is a clear indication that the plasmon collective rffode Jpnys=0-240K/2 €V, wopnys=0.04 €V, andVpp,s=0.55 eV. The
sets the cutoff energy at which small-momentum Screeningomng 6=0.2 is close to the critical valué.,=0.195. Solid line,
processes cease to be relevant otal effective scattering amplitude; dashed line, repulsivéslave
On the other hand, we found that at large momenta,
different energy scale rules the screening processes, whic
both with and without LRC forces, is of the order of the rection (0.28,0.86. (3 Sizable transferred momentum

bare-electron hoppingy ws.~ yt. This indicates that the lo- la/=|a=0.9; (b) small transferred momentufi|=0.15 The in-

cal (largeq) physics is governed by incoherent bare-electronyeys are enlargements of the attractive parts of the effective scatter-
processes with typical energies of ordemuch larger than jng amplitudes.

the typical energies of ordarfq~té ruling the coherent
quasiparticle processes. We conclude this subsection by recalling the result of Ref.
The Screening effects Ieading to different behaviors of th@ where a rea|-frequency ana|ysis was carried out f|nd|ng
effectivee-ph vertex at small and large momenta also affecistrong singular scattering between the quasiparticles of the
the dynamical scattering amplitude. This generic effect iSorm
more evident in the proximity of an instability. Therefore, in ~
Fig. 11, we show the numerical evaluation of the dynamical I'(g,w)~U—
scattering amplitude. A large attraction at low frequency is
found for transferred momenta close dg as a remnant of wherew,=D"+B’|q— 0c|? with D’ (8— 8,). This scatter-
the infinite static attraction taking place at the instability.ing is of the form proposed in Ref. 5 to explain the anoma-
This attraction is, however, rapidly spoiled by increasing thdous normal-state properties of the superconducting copper
Matsubara frequency. This is so because at figitag. the  oxides. Some substantial differences are, however, worth be-
dynamical screening of the-ph vertex strongly suppresses ing emphasized. First of all the origin of the singular behav-
the phononic attractive part of the scattering amplitudeior is not necessarily related to a magnetic scattering mecha-
Therefore, as soon as the frequency spoils the static attracism, in so far it arises from the closeness to a charge
tion due to the instability, the attractive part Bf (dotted  instability. The mechanism driving the instability can be of
line in Fig. 11 rapidly vanishes. An opposite behavior oc- various nature, magnetic, excitonic, or, as in the present
curs at small momenta, where no instability occurs andnodel, phononic. Second, as can be seen in Fig. 10, a much
therefore no static attraction is present. The usiph at- more isotropic region of large scattering arises in the present
traction only appears at a finite frequency aroundcontext, thereby bypassing the objection raised in Ref. 47
wo> we~q38, Where thee-ph vertex is not severely sup- that only a few “hot” points on the Fermi surface undergo
pressed. such strong scattering processes.

nd Coulomb force bosons onleffective scattering amplitude
epy dotted lines, attractive part of the scattering amplitude

ar=1 —T'rep. The transferred momenta are in the instability di-

A

H ’
(,L)q lw
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to 214 systemlat and above the critical doping value. In

0.03 Fig. 12b) the phonon dispersions are reported for the
0.025 (*x1,£1) direction for the same values of doping. Far from
0.02 the critical momentum the phonon frequency is sizably re-
- duced with respect to its bare value. However, only a minor
370015 doping dependence of this substantial reduction is visible in
0.01 generic positions in the Brillouin zone, making the observa-
0.005 tion of the softening effect rather difficult. On th_e othe_r ha_md,
a strong doping dependence of the phonon dispersion is ap-
0000 parent in the proximity of the critical momentum. In this

momentum region the phonon completely softens at

6=6.=0.195. By increasing the doping, i.e., by moving
FIG. 12. Phonon dispersion curve® in the instability —away from the instability, the softening becomes incomplete

(0.28,0.86 direction andb) in the (1,1) direction, fort,y,.=0.5 eV, and progressively less important although it seems to stay

t'=—(16)t, Qpnys=0.24002 eV, wopme=0.04 eV, and Substantial up t&=0.3. . _
Vcpnys= 0.55 eV. The solid curves correspond to the critical doping Some considerations are in order on the above analysis of

5.=0.195; the dot-dashed and dotted curves correspond téhe collective modes in the proximity of charge instabilitites.

6=0.21 ands=0.3, respectively. First of all a clear distinction can be made between the be-
havior of the phonon mode in the absence and in the pres-
D. Collective modes ence of LRC forces. At a PS instability, the phonon always

The analysis of the dynamical behavior of the model carstays massive and only mixes strongly with a low-energy
be completed by investigating the collective modes preseréro-sound mode at finite but very small momenta
in the system. This study is particularly relevant for a deefd<wo/vg). On the contrary the phonon becomes com-
understanding of the dynamical mechanisms ruling the instePletely soft at the CDW instability. Therefore it would be
bility formation. To emphasize similarities and differencesnatural to indicate neutron-scattering experiments in copper
we consider both the cases with and without the LRC potenoXides as crucial tests in order to determine how close these
tial. material are to @honon-mediate@€DW instability: If a sub-

It was repeatedly pointed out, in the context of modelsstantial softening of some phonon mode is found at some
with Short-range interactions on|y' that PS occurs without dnomenta, this would be a clear indication of a frustrated PS
softening of a massive collective mode. This was first estabdlmost leading to CDW. Unfortunately, our schematic
lished for the charge-transfer mode in a three-band Hubbargingle-band Hubbard-Holstein model is not detailed enough
model with NN Coulombic repulsion between copper andto provide indications of the modes which could undergo a
oxygen hole¥ and it was also confirmed in the case of a Vvisible softening in real materials. Moreover, the strong re-
three-band Hubbard-Holstein model with holes coupled to aluction of the phonon frequency is substantial on a sizable
optical phonorf® A real-frequency analysis of both the Mmomentum range, but is only found for doping close to the
imaginary part of the dynamical density-density Corre|ationcritica| Oc, and this fact could render the search for such an
function, |n'(nn>(q,w), and of the p0|es of the phonon effect qUite a difficult task. An additional dlfflCUlty is that,
propagator,D®2(q,w), shows that also in the single-band due to the strong mixing of electronic and phononic degrees
infinite-U Hubbard-Holstein model, PS occurs due to theof freedom, the softened phonon modes would be greatly
phonon-mediated attraction between quasiparticles, whicRroadened and they could well be seen only as an increase of
pulls the zero-sound mode into the particle-hole continuumsPectral weight at low frequencies, quite differently from the
When the attraction is large enough, the velocity of thistheoretical 1N picture reported in Fig. 12.
strongly damped mode vanishes, eventually driving the sys-
tem unstable at zero momentum. On the contrary, the phonon
frequency, although sizably renormalized by taeh inter-
action, stays finite over the entire Brillouin zone. In this paper we analyzed the screening processes and the

The scenario is strongly modified in the presence of LRCoccurrence of instabilities in the Hubbard-Holstein model in
forces, when the instability takes place at finite momentathe framework of Fermi-liquid theory. In particular we inves-
For such finite momenta, in the absencesgdh interactions tigated the role of LRC forces in stabilizing PS and produc-
the phonon is the mode at lower energy. With the introducing incommensurate CDW instabilities.
tion of a finitee-ph coupling, it turns out that the phonon is  However, some limitations should be kept clear for a cor-
somewhat softened. In particular the softening is completerect understanding of the scenario here presented. We carried
i.e., the phonon energy vanishes, when the CDW instabilityout a leading order analysis inNl/ which definitely neglects
takes place. Again a comparative real-frequency analysis cfome effects which are relevant in a complete gquantitative
Im{nn)(q,w) and of IND*?(q,w) allows us to identify the understanding of the real materials. First of all our approach
nature of the mode entering the continuum and producing this designed to deal with charge degrees of freedom, but lacks
large enhancement of the absorption at low-frequency. Figa correct treatment of the spin degrees of freedom, which
ure 12a) reports the behavior of the phonon frequefieyx-  turn out to be crucial in the low-doping phase of the copper
tracted from InD*4(q,w)] as a function of momenta in the oxides. Therefore antiferromagnetic correlations and the in-
specific direction at which the CDW instability takes placeterplay between spin and phonon degrees of freedom are
[(=0.2,£0.8) and (0.8,=0.2) for the parameters related absent in our larg&4, slave-boson model. These effects only

V. DISCUSSION AND CONCLUSIONS
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appear at higher order inN/ Second, our leading-order ex- IV D, we mention that indications of anomalous lattice be-
pansion does not allow for phonon vertex corrections beyonthavior are indeed reported by Kohatal.[Phys. Rev. Lett.
the Migdal theorem, although in the low-doping region the70, 3447(1993], (we thank Professor V. J. Emery for indi-
quasiparticle bands become very narrow, thus leading to eating this reference to wsand L. Pintschoviuset al.
violation of the conditiorEg> w,. The absence of these ver- [Physica C185-189 156 (1991)].

tex corrections obviously rules out the possibility of a correct

observation of multiphonon polaronic effects. ACKNOWLEDGMENTS
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main features observed here drea generic suppression of
the e-ph vertex due to electronic screening also resulting in a
strong dependence on theg/ o ratio, (ii) the persistent pos-
sibility of PS arising from the phonon-mediated attraction, In order to perform the Maxwell construction, we modify
and (i) a singular behavior of the effective interaction be-the model in Eq(1), coupling the phonons to the full elec-
tween quasiparticles at low momenta close to the PS regionron density rather than to the density fluctuations. In this
The main achievement of the present work is, howeverway ane-ph coupling is effective already at the mean-field
the analysis of the model in the presence of LRC forces. Inevel, where a nonzero mean-field value of the phonon field,
particular it is remarkable that, when LRC forces are in-a,=(a)=(a'), arises. The mean-field Hamiltonian acquires
cluded in the model, PS is spoiled, but finite-momentum inthe form
stabilities still take place on substantial and quite physical
regions of the parameter space. Singular effective interac-
tions are again obtained at finite momenta in the proximity of
the CDW instability.(iv) Cooper pairing both in the- and
the d-wave channels is present already in the static limit for LN\ (r2
systems close enough to the unstable regions, both in the of'o 2

presence and in the absence of LRC forces. Minimizing the mean-field free energy with respecta
The present model provides a rather simple playground tQ 9 gy P 9

. ; ) : . allows us to obtain the self-consistency equationdgr

investigate the generic properties of electronic systems close

to charge instabilities. Indeed, while some properties like, N

e.g., the behavior of the phonon mode are strictly related to Nwoao=Ng> fEK)=9g5(1-9). (A2)

the phononic nature of the interaction here considered, the .

main results obtained here are generic of mddalhowing  This determines the phonon-induced shift of the chemical

charge instabilities. In particular we believe that the strictpotential, giving rise to a doping-dependent correction to this

relation between charge instabilities, strong scattering, anduantity. Owing to the standard expression for the compress-

Cooper pair formatiorjpoints (iii) and (iv) abovg is a ge- ibility k=dn/du=—9d5/du, theq=0 instability can be read

neric feature of strongly correlated electron systems irrespedirectly from the x vs n curves: A stationary point in

tive of the underlying physical mechanisms leading to PS o () corresponds to an infinite compressibility and a stan-

to incommensurate CDW. dard Maxwell construction inu(5) determines the region
Note added in proofin relation to our results in Sec. where the system is in a single phase.

APPENDIX: THE MAXWELL CONSTRUCTION

Hyr= kz Ekclo'cko_ (mo—Not29 ao)kE Clo'cko
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copper oxides insofar they give rise to unrealistic shapes of the
Fermi surface.
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the instability first takes place at sizable finite momeatashed
line), leading to the formation of incommensurate charge-
density wavegCDW'’s). In particular we found that the finite-
momentum instability first takes place for momenta in the
(=1,0) and (0 1) directions and momentg= 2kg connecting
regions with slightly larger density of states.

# attractive superconducting couplings are also found both in the

s-wave andd-wave channels in the region where the instability
takes place at finite momenta.
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again the smal case of Eq(29) for t'=0. In this particular
case the effect of the static vertex at low doping is much less

dramatic  since  this vertex is  proportional to
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order to apply the Maxwell construction to determine the phase-
separation region. The approach described in the text assumes
instead that the mean-field effect of phonons is included in the
bare tight-binding parameters. Despite this seeming difference,
we checked that the two approaches give the same reseks
Sec. ll)).



