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We investigate the density instabilities present in the infinite-U Hubbard-Holstein model both at zero and
finite momenta as well as the occurrence of Cooper instabilities with a specific emphasis on the role of
long-range Coulomb forces. In carrying out this analysis special attention is devoted to the effects of the strong
local e-e interaction on thee-ph coupling and particularly to both the static and dynamic screening processes
dressing this coupling. We also clarify under which conditions in strongly correlated electron systems a weak
additional interaction, e.g., a phonon-mediated attraction, can give rise to a charge instability. In the presence
of long-range Coulomb forces, the frustrated phase separation leads to the formation of incommensurate charge
density waves. These instabilities, in turn, lead to strong residual scattering processes between quasiparticles
and to superconductivity, thus providing an interesting clue to the interpretation of the physics of the copper
oxides.@S0163-1829~96!02137-6#

I. INTRODUCTION

Besides large critical temperatures, the superconducting
copper oxides display many anomalous normal-state
properties.1 The understanding of these properties is not only
a fascinating theoretical challenge, but would also shed light
on the pairing mechanism leading to high-temperature super-
conductivity.

The anomalous properties of the normal phase have been
interpreted along two distinct theoretical lines. The low di-
mensionality of these highly anisotropic systems and their
correlated nature have been proposed to be at the origin of a
breakdown of the Fermi liquid~FL!. In particular the concept
of a Luttinger liquid in two dimension2 was put forward as a
new paradigm for the normal state of copper oxides and it
was intensively investigated.3 However, it was recently
shown4 that the Luttinger liquid is only stable in one dimen-
sion. Above one dimension, the Fermi-liquid picture is re-
covered when the bare electron-electron (e-e) interaction is
nonsingular. This result would support the alternative apti-
tude, which has been to accept the Landau theory of normal
FL’s as a suitable starting point. The anomalous properties
would then arise as a consequence of singular scattering pro-
cesses at low energy between the quasiparticles. Along this
line magnetic scattering has been considered to be respon-
sible for both the anomalous properties of the normal phase
and for the superconducting pairing.5 It was also proposed
that excitonic scattering could give rise to the so-called mar-
ginal FL,6 and provide a pairing mechanism. Singular scat-
tering is also obtained by gauge fields,7 which arise by
implementing the resonating-valence-bond idea in thet-J
model.

The above theoretical lines have more recently been
joined by a different scenario suggesting phase separation
~PS! as a possible source of anomalous scattering and, there-
fore, of anomalous normal-state behavior.8,9 Emery and
Kivelson8 suggested that, although long-range Coulomb

~LRC! forces spoil PS as a static thermodynamic phenom-
enon, the frustrated tendency towards PS may still be impor-
tant and give rise to large-amplitude collective density fluc-
tuations. Approaching the problem within a coarse-grained
model, they suggested that these fluctuations may be respon-
sible for the anomalous behavior of the normal phase and for
the superconducting pairing. In a recent work,9 two of us
assessed the relevance of charge instabilities~PS or charge
density waves! as a mechanism for anomalous scattering, by
determining the dynamical effective scattering interactions
among Fermi-liquid quasiparticles close to a charge instabil-
ity, both in the presence and in the absence of LRC forces.
This analysis consisted in a microscopic treatment of the
Hubbard-Holstein model in the infinite-U limit, finding that,
both in the presence and in the absence of LRC forces, the
dynamic effective interaction has a singular behavior,
strongly affecting the single-particle and the transport scat-
tering time. This scenario is obviously sensible if~i! the con-
sidered microscopic model displays PS for some parameter
region and~ii ! the real copper-oxide systems actually are in
the proximity of a charge instability.10 As far as point~i! is
concerned, PS seems to be a rather generic and robust phe-
nomenon in the context of strongly interacting systems.11

Indeed, after PS was shown to be present in the phase dia-
gram of thet-J model,12–14 it was pointed out that PS com-
monly occurs in models with short-range interaction15–19,11,20

provided the strong locale-e repulsion inhibits the stabiliz-
ing role of the kinetic energy. Moreover, it was repeatedly
claimed that PS and superconductivity can be related phe-
nomena irrespective of the nature of the short-range
interaction.11

On the other hand, the frequent occurrence of PS in mod-
els of strongly interacting electrons is made intriguing by the
observation of PS in oxygen-doped superconducting copper
oxides (La2CuO41y) of the 214 class.10 Although the elec-
tronic origin of PS in these cuprates is still to be established,
the contemporary presence of a stronge-e interaction and of
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PS in a real system and the robustness of the PS concept in
theoretical models is suggestive. The reason why only
La2CuO41y seems to phase separate is that LRC forces ef-
fectively oppose the separation of charged particles. Only
when the negatively charged oxygen ions are sufficiently
mobile can the positive holes separate, being accompanied
by the oxygen countercharges which compensate for the
charge unbalance. Nevertheless, even in those systems where
LRC forces are present to prevent a thermodynamic instabil-
ity, phase separation may remain in the system in the form of
a tendency toward charge aggregation, possibly giving rise to
superconductivity8,16–19,11,20 or to anomalous normal
properties.8,9 In particular it might well happen that the long-
wavelength density fluctuations associated with PS are sup-
pressed in favor of shorter-wavelength density fluctuations,
giving rise either to dynamical slow density modes8 or to
incommensurate charge density waves~CDW’s!.21 This lat-
ter possibility was recently put forward to explain neutron-
scattering results in a La1.48Nd0.4Sr0.12CuO4 sample.

22 In this
case it was proposed that the~low-temperature tetragonal!
lattice structure and the filling~close to 111/8 holes per
CuO2 cell! were suited to pin the density fluctuations giving
rise to a static CDW phase. The formation of striped patterns
in the CuO2 planes of Bi-2212 compounds was also shown
from extended x-ray-absorption fine-structure~EXAFS!
experiments.23 Local density fluctuations could also account
for some results of neutron scattering experiments in 123
materials.24,25

Based on the observation of an antiferromagnetic phase
close to the superconducting one in the phase diagram of the
copper oxides, previous analyses put emphasis on the role of
magnetic coupling in originating the slow density
fluctuations.8 However, the generic occurrence of PS in theo-
retical models with different interactions indicates that a
definite choice of the mechanism leading to PS could be
misleading or premature in the absence of more stringent
experimental indications. Moreover, while in the models
mentioned above the additional interactions inducing PS are
of purely electronic origin, it was shown in Ref. 20 that, in
the presence of a strong local repulsion, also the lattice may
introduce an effective attraction determining PS in the Fermi
liquid. This latter result showed within an infinite-U three-
band Hubbard model that the instability occurred for reason-
able values of thee-ph coupling, indicating that PS by no
means requires unlikely parameters, unusual mechanisms, or
purely electronic interactions, but it can simply result from
the interplay between the strong local repulsion and the
~weak! additional attraction provided by the lattice. This
theoretical observation is accompanied by some experimen-
tal evidence that the lattice can play a non-negligible role in
determining the physics of the superconducting cuprates.26 In
particular a sizable coupling between some phonons and the
carriers is implied by the presence of polaronic effects27 for
the very lightly doped compounds, by the copper and oxygen
isotopic effect present in La22xSrxCuO4, by the Fano line
shapes in Raman spectra, and by the rather large frequency
shift and linewidth broadening of some phonons atTc .

In the present paper we pursue the investigation along the
route opened in Ref. 20. The occurrence of a phase-
separation instability was justifyied within a general Fermi-
liquid analysis, demonstrating that the strong interaction is

responsible for vertex corrections, which are strongly depen-
dent on thevFq/v ratio, wherevF is the Fermi velocity and
q andv are the transferred momentum and frequency, re-
spectively. These corrections generically lead to a strong
suppression of the effective coupling between quasiparticles
mediated by~a single! phonon exchange in thevFq/v@1
limit. However, such an effect is not present when
vFq/v!1, which is the relevant limit for the effective inter-
actions entering the Fermi-liquid expression for the com-
pressibility. In these effective interactions in the dynamical
limit, the e-ph coupling is therefore not effectively screened,
opening the way to a possible violation of the stability crite-
rion for the Fermi liquid in some regions of the parameter
space. In Ref. 20 a detailed analysis was then carried out
using a slave-boson approach for the infinite-U three-band
Hubbard model describing the basic structure of a CuO2

plane in copper oxides. In the presence of a coupling be-
tween the local hole density and a dispersionless optical pho-
non, it explicitly confirmed the strong dependence of the
hole-phonon coupling on the transferred momentum versus
frequency ratio and it was also found that the exchange of
phonons leads to an unstable phase with negative compress-
ibility already at rather small values of the bare hole-phonon
coupling. Close to the unstable region, Cooper instabilities
both in s- andd-wave channels were detected, supporting a
possible connection between phase separation and supercon-
ductivity in strongly correlated systems.

We now start from the infinite-U single-band Hubbard
model in the presence of an optical phonon coupled to the
local electron density.28 Due to its relative simplicity with
respect to the three-band Hubbard model,we will be able to
extend the model in a rather direct and straigthforward way
so as to include the LRC forces between the electrons. This
extension is particularly important since, as mentioned
above, LRC forces obviously affect the occurrence of PS
instabilities and could provide a clue in explaining the rela-
tive rarity of this phenomenon in the real materials. In this
way, as briefly reported in Ref. 9, we also provide a micro-
scopic derivation of an incommensurate CDW instability di-
rectly from a system of strongly correlated electrons with all
the physical implications indicated above. Therefore this
topic represents a key issue of our investigation and may
definitely be considered as the main point of our analysis.

In Sec. II we introduce the model and the formalism.
Readers who are not interested in technical details can di-
rectly move to Sec. III, where we present the results concern-
ing the physical properties of the model in the absence of
LRC forces. The effects of LRC interactions are reported in
Sec. IV, which thus represents the core of the present paper,
while in Sec. V we discuss the results and draw our conclu-
sions.

II. HUBBARD-HOLSTEIN MODEL

Our starting point Hamiltonian is the two-dimensional
Hubbard model with an additional dispersionless phonon
modeA coupled in the manner of Holstein:
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where^ i , j & and ^^ i , j && indicate nearest-neighbor~NN! and
next-nearest-neighbor sites, respectively, andnis5cis

† cis is
the local electron density. Since we are interested in the limit
of strong local repulsion, we take the limitU→`, which
gives rise to the local constraint of no double occupation,
(snis<1. To implement this constraint we use a standard
slave-boson technique29–33by performing the usual substitu-
tion cis

† →cis
† bi , cis→bi

†cis . We also use a large-N
expansion30 in order to introduce a small parameter, allowing
for a systematic perturbative expansion without any assump-
tion on the smallness of any physical quantity. Within the
large-N scheme, the spin index runs from 1 toN and the
constraint assumes the form(scis

† cis1bi
†bi5N/2. A suit-

able rescaling of the hoppingst→t/N andt8→t8/N must, in
this model, be joined by the similar rescaling of thee-ph
couplingg→g/AN in order to compensate for the presence
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where a local Lagrange multiplier fieldl i has been intro-
duced to implement the local constraint.

At the mean-field (N5`) level, the model of Eqs.~2!–
~4! is equivalent to the standard, purely electronicU5`
Hubbard model without coupling to the phonons, which has
been widely considered in the literature.32 In fact, at the
mean-field level no role is played by the phonons because
our electron-lattice coupling depends on the difference be-
tween the local and the average density and this difference
naturally vanishes in the mean-field approximation.34 The
average number of particles per cell isn5(12d)N/2 and
d50 corresponds to half-filling, when one-half electron per
cell and per spin flavor is present in the system.

The mean-field self-consistency equations are obtained by
requiring the stationarity of the mean-field free energy and
they determine the values ofb0

2[Nr0
25^bi&

2 and of
l0[ i ^l i&. Then the mean-field Hamiltonian reads

HMF5(
ks

Ekcks
† cks2~m02l0!(

ks
cks
† cks1Nl0S r 022 1

2D ,
~5!

where Ek522tr 0
2«k is the quasiparticle band with

«k[(coskx1cosky)1a@cos(kx1ky)1cos(kx2ky)# ~we define
a[t8/t). In particular it turns out that the square of the
mean-field value of the slave-boson fieldb0,
b0
25Nr0

25Nd/2, multiplicatively reduces the hopping,
t→tb0

2, thus enhancing the effective mass of the quasiparti-
cles. Moreover, at this level the single-particle self-energy
does not introduce a finite quasiparticle lifetime. Then, in
this model the single-particle Green function of the physical
fermions atN52 has a quasiparticle pole with a finite resi-
due given by the square of the mean-field value of the slave-
boson fieldb0

2. Thus for any finite dopingd the system is a
T50 Fermi liquid.

On the other hand, at half-fillingb05d50 and the system
is insulating with a vanishing value of both the quasiparticle
bandwidth~i.e., an infinite quasiparticle effective massm* )
and a vanishing residuum of the polar part in the single-
particle Green function.

As far asl0 is concerned, this quantity rigidly shifts in a
doping-dependent way the bare chemical potentialm0 and is
self-consistently determined by the equation

l0[l0
01al0

152t(
k

f ~Ek!«k

52t(
k

f ~Ek!~bk1agk!, ~6!

where f (E) is the Fermi function andbk[coskx1cosky and
gk[cos(kx1ky)1cos(kx2ky).

The presence of the coupling with the phonons introduces
new physical effects when one considers the fluctuations of
the bosonic fields. Since only a particular combination
a5(A†1A)/(2AN) of the phonon fieldsA and A† is
coupled to the fermions, it is more natural to use the field
a and to integrate out the orthogonal combination
ã5(A2A†)/(2AN). Then the quadratic action for the boson
field a reads

Hphon5N(
n,i

vn
21v0

2

v0
ai
†ai , ~7!

where we have transformed the imaginary time into Matsub-
ara frequencies. Moreover, it is convenient to work in the
radial gauge,31 the phase of the fieldbi5ANriexp(2if) is
gauged away, and only the modulus fieldr i is kept, while
l i acquires a time dependencel i→l i1]tf i . Thus one can
define a three-component fieldAm5(dr ,dl,a) where the
time- and space-dependent components are the fluctuating
part of the boson fieldsr i5r 0(11dr i), l i52 il01dl i ,
andai .
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Writing the Hamiltonian of coupled fermions and bosons
asH5HMF1Hbos1H int , whereHMF is the above mean-field
Hamiltonian, which is quadratic in the fermionic fields,
Hbos is the purely bosonic part, also including the terms with
the a, r , andl bosons appearing in the action~3! and, in
Hphon, Eq. ~7!. H int contains the fermion-boson interaction
terms. The single-bandU5` Hubbard model also contains a
four-leg vertex arising from the hopping part of the Hamil-
tonian @see the second term on the~RHS! of Eq. ~4!#. The
two fermionic legs of this vertex can be contracted~see Fig.
1! giving rise to a leading-order self-energy contribution to
the quadratic part of the bosonic Hamiltonian:

S~q!522Nr0
2t(

k
«k1qf ~Ek!

52
Nr0

2

2
@l0

0bq1al0
1gq#. ~8!

Fourier transforming to the momentum space, the bosonic
part of the action reads

Hbos5N(
qmn
Am~q!Bmn~q!An~2q!,

without explicitly indicating the frequency dependence for
the sake of simplicity and wherem,n5r ,l,a. The matrix
Bm,n can be explicitly determined from Eqs.~3!–~8! and it is
found that all elements are zero except forBr ,r5r 0

2@l0
0
„1

2(1/2)bq…1al0
1
„12(1/2)gq…#, Br ,l5Bl,r5 ir 0

2, and
Ba,a5(vn

21v0
2)/v0.

The last ingredients of our perturbation theory are the
vertices coupling the quasiparticles to the bosons,

L r~k,q!522tr 0
2~«k1q/21«k2q/2!, ~9!

Ll~k,q!5 i , ~10!

La~k,q!522g, ~11!

allowing us to write the interaction part of the Hamiltonian
in the form

H int5 (
k,q,s

ck1q/2s
† Lm~k,q!ck2q/2sAm~q!. ~12!

The quasiparticle-boson interactions give rise to self-energy
corrections to the boson propagators, which, at leading order
in 1/N, are just fermionic bubbles with insertion of
quasiparticle-boson vertices:

Pmn~q,vm!5(
k

f ~Ek1q/2!2 f ~Ek2q/2!

Ek1q/22Ek2q/22 ivm
Lm~k,q!

3Ln~k,2q!. ~13!

Once these self-energy corrections are taken into account,
the boson propagator at leading order assumes the form

Dmn~q,vm!5^Am~q,vm!An~2q,2vm!&

5N21@2B1P~q,vm!#mn
21 . ~14!

The factor of 2 multiplying the boson matrixB arises from
the fact that the bosonic fields in the presently used radial
gauge are real.

The above formal scheme allows us to calculate the
leading-order expressions of the effective scattering ampli-
tude both in the particle-hole channel,

G~k,k8;q,v!52(
mn

Lm~k8,2q!Dmn~q,v!Ln~k,q!,

~15!

and in the particle-particle channel,
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2
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3LnS 2
k1k8

2
,k2k8D . ~16!

It should be noted that the boson propagators are of order 1/
N while the occurrence of a bare fermionic bubble leads to a
spin summation and is therefore associated with a factorN.
Thus, in this 1/N approach, the quasiparticle scattering am-
plitudes are residual interactions of order 1/N.

The form of the static density-density correlation function
at the leading order is

P~q,v50!5
1

N(
ss8

^ns~q!ns8~2q!&

5P0~q,v50!1(
mn

xnm
0 ~q,v50!

3Dmn~q,v50!xnn
0 ~q,v50!, ~17!

where

P0~q,v!5
1

N(
ss8

^ns~q!ns8~2q!&0 ~18!

is the orbital bare density-density correlation function and

FIG. 1. Leading-order self-energy contribution to the boson
propagator from the four-leg vertex inH int .
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A simple inspection of the diagrammatic structure of the
scattering amplitudesG and of the response functionsP,
together with the observation that the static fermionic
bubbles are nonsingular functions ofq, allows us to conclude
that both quantities provide the same amount of information
as far as the occurrence of the instabilities is concerned. In
fact one can immediately recognize that, since a diverging
response function can only arise from a diverging boson
propagator, also the scattering amplitude mediated by the
same boson propagator would diverge at the same time. The
same holds for the static Cooper scattering amplitude in the
particle-particle channel, which, within our leading-order
1/N expansion, coincides with the particle-hole amplitude.35

III. PHYSICAL PROPERTIES OF THE HUBBARD-
HOLSTEIN MODEL

A. Static properties

The model introduced in the previous section is charac-
terized by the contemporary presence of a very strong local
interaction and a phonon-mediated attraction. The main point
to be addressed here is the subtle interplay between the at-
tractive and repulsive forces so as to clarify the origin of the
effective interactions arising between the quasiparticles giv-
ing rise to instabilities for some values of the parameters. We
will first analyze the static properties, so that we first focus
on thev50 limit of the effective interaction in the particle-
hole channel, Eq.~15!, between quasiparticles on the Fermi
surface (k5kF , k85kF8 ).

Since in general this quantity involves the calculation of
the fermionic bubbles, Eq.~13!, entering the expression of
the boson propagator, Eq.~14!, an explicit analytic evalua-
tion of this scattering amplitude at finite momentum is not
possible. The finite momentum analysis of the static scatter-
ing amplitude is then carried out numerically. However, we
find it instructive to present first the analytic results, which
can be obtained in the small transferred momentum limit
(q→0):

Gq5 lim
q→0
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G~kF ,kF8 ;q,v!
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where the static q→0 limit of the bubbles,

Pq
mn[Pmn(q→0, vm50) can easily be evaluated by notic-

ing that atT50

Pmn~q→0, vm50!5(
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]Ek
Lm~k,0!Ln~k,0!
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52(
k
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52n*Lm~kF,0!Ln~kF,0!, ~22!

wheren* is the quasiparticle density of states at the Fermi
level. In the last equality we use the property that the vertices
are constant over the Fermi surface. Once the expressions for
the bubbles are substituted in Eq.~20! one obtains the final
expression for the static scattering amplitude between the
quasiparticles:

Nn*Gq5
Nn*Gv

11Nn*Gv
5

4tn* «kF2lg

11~4tn* «kF2lg!
, ~23!

where we introduced the effective phonon-mediatede-e cou-
pling lg[2n* g2/v0. In Eq. ~23! the dynamical effective
scattering amplitude between the quasiparticles,
Gv5G(kF ,kF ; q50, v→0), is identified by

Gv5
1

N S 4t«kF2
lg

n* D . ~24!

This latter quantity represents the residual interaction be-
tween the quasiparticles on the Fermi surface when their mu-
tual screening is not taken into account. This screening effect
is instead included inGq .

36 The above expression forGv can
also be easily obtained from the direct evaluation of Eq.~20!
by noticing that in the dynamical limit the fermionic bubbles
vanish identically. Thus, usingPmn50 in Eq.~14! one again
findsNn*Gv54tn* «kF2lg .

At this point one recognizes that an instability can in prin-
ciple take place when the Landau-Pomeranchuk criterion for
the stability of a Fermi liquid,F0

s[Nn*Gv.21, is vio-
lated, leading to a negatively diverging total~static! scatter-
ing amplitudeGq :

F0
s5Nn*Gv54tn* «kF2lg<21. ~25!

As a consequence a divergent compressibility is found,

k[
]n

]m
5n* ~12n*Gq!5

Nn*

11F0
s→F

0
s→21`, ~26!

which signals the occurrence of a PS. It is worth noting that
the phonon parameters only enter the condition for PS via
the combinationlg52n* g2/v0. This implies that, for a
given electronic band structure, i.e., for a givenn* , thestatic
instability is obtained for any phonon frequency providedg
is suitably rescaled to keep thelg fixed ~of course too large
e-ph couplings put in jeopardy our weak coupling approach,
where vertex corrections beyond the Migdal theorem are not
included!.
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It is worth remarking that the quantity
«kF5(coskxF1coskyF)12a(coskxFcoskyF) is rather small at
low doping.37 We carried out a detailed investigation of
«kF as a function of the doping and of the hopping ratioa

determining the most appropriate values oft8 in order to
reproduce within our single-band model Fermi surface
shapes in reasonable agreement with those observed in some
superconducting copper oxides. According to previous
analyses,38 we found that the values oft8 giving rise to rea-
sonably shaped Fermi surfaces for 214 compounds are nega-
tive with t8.20.167t. t8.20.45t was instead adopted to
reproduce Fermi surfaces in agreement with those observed
in 123 and 2212 compounds. For these values oft8, «kF
remains rather small in the low-doping regime. Therefore,
although a minumum critical valuegc of thee-ph coupling is
needed for the phase-separation instability to occur, its value
can be small and it does not really provide a difficult condi-
tion to be satisfied in the real systems.39

The main point to be stressed here is that, despite the
infinite bare repulsion between the bare particles, a huge
screening takes place in the system, introducing attractive
forces almost exactly balancing the repulsion and giving rise
to a finite scattering amplitudeGv between the quasiparti-
cles. This residual effective interaction is repulsive in the
absence of thee-ph coupling, whereas it may turn into an
attraction whenlg is large enough. In this situation, which
arises from the strongly interacting nature of the system,
even this additional attraction can drive the system to be
unstable. This finding matches well previous results obtained
in different models and it emphasizes the general robustness
of the PS concept in the context of strongly interacting sys-
tems. Moreover, this finding supports the choice of the
Hubbard-Holstein model as a simple paradigm to describe
the physics of PS in the context of strongly interacting sys-
tems.

In principle the above analysis cannot exclude that an
instability at a finite momentum can take place before PS,

thus calling for a more general investigation. This latter has
been carried out numerically through the explicit calculation
of both the static scattering amplitude at finite transferred
momentum and the density-density response function. In Fig.
2 we report the full static scattering amplitude in the particle-
particle channel. We choose this quantity because it will also
enter the calculation of the Cooper instability reported be-
low. We performed the calculation for various different val-
ues of the doping at a value ofg larger than the minimum
value required to have a PS instability. Here and throughout
this paper we express the various quantities in physical units
translated from the 1/N formalism with N52: tphys5t/N,
tphys8 5t8/N, gphys5g/AN, andv0phys5v0.

From the reported results it is natural to conclude that the
divergent particle-particle scattering amplitude~i.e., a diver-
gent boson propagator and a consequently diverging density-
density response function! occurs at a zero momentum trans-
fer. According to Eq.~26! this divergence (Gq→2`) leads
to a diverging compressibility, signaling a PS instability.

As can be seen in theg vs d phase diagram of Fig. 3, for
the t8520.167t case~a similar diagram is obtained when
t8520.45t), we found that this behavior is rather generic at
low and intermediate doping~solid line!.40 The instability
line drawn in the phase diagram indicates where the static
density-density response of the system becomes singular. A
narrow dip in the instability solid line is due to the presence
of a van Hove singularity enhancingn* , thus favoring the
instability. However, the system becomes unstable and phase
separates before the solid line is reached, wherek→`. A
Maxwell construction~dotted line! is needed to determine
the region where PS starts. The Appendix briefly describes
the procedure to carry out the Maxwell construction.

We complete the static analysis of the model by investi-
gating the possibility of Cooper pairing. As already pointed

FIG. 2. ~a! Doping dependence of the massD @cf. Eq. ~33!
below# in the static effective scattering amplitude close to the PS
instability. The open squares in~a! indicate the values ofD at
various dopings andgphys5gcphys50.194/A2 eV, tphys50.5 eV,
t852(1/6)t, and v0 phys50.04 eV. For these parameters
dc50.195. The solid line is a linear fit.~b! Static scattering ampli-
tude for the same parameters as in~a! as a function of the trans-
ferred momentumq in the ~1,0! direction. The dopingd50.2,
0.205, 0.22, 0.25, and 0.28 increases from the lower solid line to the
upper solid line.

FIG. 3. Phase diagrame-ph couplingg vs dopingd tphys50.5
eV, t852(1/6)t, andv0 phys50.04 eV. On the solid line the com-
pressibility diverges, whereas the dotted line arises from the Max-
well construction.

TABLE I. Extendeds- andd-wave superconducting couplings
for tphys50.5 eV, t521/6t8, gphys50.192/A2 eV, and
v0phys50.04 eV at various dopings. The instability is at
dc50.193.

d 0.194 0.200 0.205 0.210 0.225
ls1

0.458 20.065
ld1

1.284 0.137 0.092 0.076 0.052
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out, in various models with stronge-e correlations supercon-
ductivity can appear in the proximity of a PS instability. This
can easily be understood by looking at the large attraction
arising in the particle-particle effective scattering amplitude
close to the instabilities~see Fig. 2!. According to this simple
observation and according to the previous experience in
other strongly interacting models, we therefore investigated
the Fermi surface average of the particle-particle scattering
amplitude defined in Eq.~16!:

l l52F E dkd~Ek2m!gl~k!2G21E E dkdk8

3@gl~k!GC~k,k8;v50!gl~k8!d~Ek2m!d~Ek82m!#,

~27!

with gs1(k)5cos(kx)1cos(ky) and gd1(k)5cos(kx)2cos(ky)

projecting the interaction onto thes-wave andd-wave chan-
nels.~Notice thatl l.0 means attraction.!

The results are tabulated at various doping concentrations
for the case with tphys50.5 eV, t521/6t8,
gphys50.192/A2 eV, andv0phys50.04 eV in Table I. With
the set of parameters of Table I the critical doping for the
occurrence of the instability isdc50.192. Whereas the cou-
plings ld are found to be generally attractive near~and in-
side! the unstable region,s-wave Cooper instabilities are
found only very close to the instability line.41

At first sight it may seem strange to investigate and to
look for superconductivity in a phase-diagram region, which
is made unaccessible by the Maxwell construction. However,
one should remember that the phase diagram of Fig. 3 may
be modified by several effects. First of all long-range Cou-
lombic forces will spoil PS. This issue is the main topic of
the present paper and will be discussed in Sec. IV. Second,
temperature effects could restore the uniformity of the sys-
tem. This issue cannot be reliably addressed within a slave-
boson formalism and is beyond the scope of our work. Most
importantly superconductivity itself can give rise to a more
stable phase competing with and stabilizing PS. In this latter
scenario a complex interplay between the PS instability and
superconductivity will likely arise: The incipient instability
originates superconductivity, which, in turn, prevents the in-
stability to occur.42 To substantiate these ideas a consistent
analysis would be required of the feedback effects, which,
however, only appear at higher order in the 1/N expansion.
Work in this direction is in progress.

B. Dynamical properties

The analysis carried out in the previous sections was
purely static. From this analysis it turned out that the subtle
balancing between repulsive forces and attractive screening
processes may have relevant physical effects. In this regard a
dynamical investigation immediately appears to be of great
interest in order to fully clarify the way the various screening
effects contribute to the physics of the system.

From the standard Fermi-liquid theory,36 one obtains the
two relations connecting the density vertexLe(q,v) and the
wave function renormalizationze in the dynamic and static
limits:

zeLe~q50,v→0!51, ~28!

zeLe~q→0,v50!5
1

11F0
s~e! , ~29!

whereF0
s(e)52n*Gv

e andGv
e are the Landau parameter and

the dynamic (q50, v→0) effectivee-e scattering ampli-
tude between the quasiparticles, respectively, when only the
e-e repulsion is taken into account. To explicitly keep
memory of this limitation we append a suffixe to Gv and to
any quantity not involving phononic processes.

In our specific model and within our leading-order 1/N
approximation one can recognize that the static and dynami-
cal e-ph verticesLq andLv are related by

Lq
e5

Lv
e

11Nn*Gv
e , ~30!

where Gv
e is the first term in the RHS of Eq.~24! and

Lv
e51. Equation~30! shows the difference between the dy-

namic and static limits, which can be substantial for large
n* . This is a generic feature of strongly correlated systems,
which one has to take into account since it can strongly af-
fect the relevance of thee-ph coupling.

The above small-q and small-v analysis can easily be
extended to finite momenta and frequencies by an explicit
numerical evaluation of the diagrams of Fig. 4. In these dia-
grams one considers the effects of thedr i and dl i boson
fluctuations, keeping track at leading order in 1/N of the
original infinite Hubbard repulsionU. More explicitly one
has to evaluate

Le2ph~k,q;vm!5La~k,q!2N (
m,n5r ,l

Lm~k,q!Dm,n~q,vm!

3Pn,a~q,vm!. ~31!

For vm50 our slave-boson result is in perfect quantitative
agreement with the static analysis carried out in Refs. 43–45
for the single-band infinite-U Hubbard model treated within
a large-N expansion by means of Hubbard projectors.

The results of a dynamical analysis of thee-ph vertex vs
transferred Matsubara frequencies are reported in Figs. 5~a!
and 5~b! for t852t/6 for a small@q5(0.2,0)# and a sizable
@q5(2.0,0)# value of the transferred momentum, respec-
tively. Similar results are obtained for thet8520.45t case.
It is worth noting in Fig. 5~a! how rapidly the effective
e-ph vertex increases as soon as the transferred frequency
becomes larger than some screening scalevscr of the order of
vF* q, with vF*}d. A much larger scale of the order of the
bare bandwidtht is involved in the slower increase of the

FIG. 4. Leading order in the 1/N diagrammatic structure of the
effective e-ph vertex dressed by electronic processes only: The
wavy line is the slave-boson propagator only involvingr and l
bosons, the solid circle is the dressede-ph vertex, the open circle is
the baree-ph vertex, and the grey circles are the quasiparticle–
slave-boson vertices.
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vertex at large momenta@Fig. 5~b!#. A detailed discussion of
the screening scales is deferred to the next section, where
this analysis will also be carried out in the presence of LRC
forces. Since dynamical effects strongly modify the behavior
of the e-ph interaction, it seems natural to extend the dy-
namical analysis to other relevant quantities of the system. In
particular we investigated the finite-frequency behavior of
the effective Cooper scattering amplitudes between the qua-
siparticles on the Fermi surfaceGC(kF ,kF8,vn). The results
are reported in Fig. 6 for the particle-particle scattering am-
plitudes as a function of the transferred Matsubara frequen-
cies both for small and large momenta. In this case the bare
e-ph coupling gphys50.194/A2 eV and the doping
d50.205 are tuned in order to place the system in the prox-
imity of a q50 instability occurring forgcphys50.194/A2
anddc50.195. For clarity we also represent in the inset the
difference between the total and the purely repulsive~i.e.,
involving the r and l bosons only! part of the scattering
amplitude. For any momentum, this attractive part of the
interaction lives on a frequency range of the order of the
phononic energy. However, as expected, the large and the
small-momentum behaviors are strikingly different. At small
momenta the attraction mediated by the phonons is stronger
because thee-ph coupling is larger~cf. Fig. 5! and, close to
the instability, it gives rise to a large attraction at low fre-
quencies. This attraction is the vestige of the huge static
attraction found close to the PS instability also in the
particle-particle channel~cf. Fig. 2!. On the other hand the
attractive contribution in the large-momentum case~dotted
curve in the inset of Fig. 6! is quite small for any frequency,
because the effective coupling between the quasiparticles
and the phonons is greatly reduced by the large-momentum
screening@cf. Fig. 5~b!#.

We finally would like to comment on the behavior of the
scattering amplitude for frequencies that are larger than both
the phononic and electronic energy scales. In this case it can
be easily checked that the fermionic polarization bubbles
vanish asvn

22 , thereby leading to a scattering amplitude
determined by the bare slave-boson propagators@the bare

phonon propagator (Ba,a)21 also vanishes for large frequen-
cies#. A simple calculation based on Eq.~16! and on Eq.~14!
with P(q,v)→0 gives the large-v saturation value of the
scattering amplitude in the Cooper channel:

GC~kF ,kF8;v→`!

5
1

N F4t«kF1
l0
0~12 1

2bq!1al0
1~12 1

2gq!

2r 0
2 G , ~32!

wherel0
0,1 are defined in Eq.~6! andbq and gq are given

after Eq. ~6!. A direct inspection of Fig. 6 shows that this
saturation value is reached more rapidly in the small momen-
tum transfer case, whereas a slower rise ofGC(v) is found in
the large momentum transfer case of Fig. 6. This result is a
natural consequence of the disappearance of the phonons
from the high-frequency processes at (vn.v0). Then only
electronic processes determine the scattering like in the
screening of thee-ph vertex described above@cf. Figs. 5~a!
and 5~b!#. Again two energy scales appear to be relevant: a
smallvscr;dq at small momenta and a largevscr;t at large
momenta. These two scales set the frequency region above
which the scattering tends to saturate.

As far as the dynamic behavior of the scattering ampli-
tude in the proximity of a PS instability, we also like, for
completeness sake, to recall that a recent work9 also showed
that, close to aq50 instability, the effective dynamical scat-
tering amplitude for real frequencies has a strongly singular
behavior. In particular the effective interaction assumes the
form

G~q,v!'Ũ2
1

Bq22 ivC/q1D
, ~33!

similar to the one obtained within the gauge-theory treatment
of the t-J model,7 with a massD}(d2dc), which vanishes
linearly when, by varying the doping, one approaches the
q50 instability line. Ũ represents the almost-momentum-
independent repulsive contribution toG mediated by ther
and l bosons. According to the spirit of the Fermi-liquid

FIG. 5. Effectivee-ph vertex as a function of the transferred
Matsubara frequency fortphys50.5 eV, t852(1/6)t, v0 phys50.04
eV, and d50.205. In ~a! the transferred momentum is small,
q5(0.2,0), and it is large,q5(2.0,0), in~b!.

FIG. 6. Effective scattering amplitude as a function of the trans-
ferred Matsubara frequency fortphys50.5 eV, t852(1/6)t,
gphys50.194/A2 eV, v0 phys50.04 eV, andd50.205. Solid line,
small transferred momentumq5(0.15,0); dashed line, large trans-
ferred momentumq5(1.75,0). In the insets the attractive parts
Gattr5G2G rep ~see text! are reported for both small~solid line! and
large momenta~dashed line!.
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theory, it may be interpreted as the residual repulsion surviv-
ing between the quasiparticles and arising from the infinite
repulsionU between the bare electrons. Equation~33! estab-
lishes a connection between the presence of aq50 charge
instability and singular scattering, which could determine the
anomalous normal-state properties of the copper oxides.

The analysis summarized in Figs. 5 and 6 is of obvious
pertinence in a complete Eliashberg treatment of the super-
conductivity problem. In particular it is evident that the huge
enhancement of the attractive part of the scattering amplitude
near the instability line can be responsible for large critical
temperatures despite the smalle-ph coupling.

The closeness to a phase-separation instability appears
therefore as a favorable condition in order to obtain high-
temperature superconductivity from a phonon-mediated at-
traction similarly to what suggested in the context of purely
electronic pairing mechanisms.17

IV. EFFECT OF LONG-RANGE INTERACTIONS

A. Formal extension

Although we expect the effect of LRC forces to be most
effective in the small transferred momentum case, where the
underlying lattice structure is less visible, we explicitly kept
into account the real symmetry of the square-lattice system.
Therefore, to derive an explicit expression for the Coulombic
potential in the spirit of the point-charge approximation we
started from the discretized form of the Laplace equation.
Moreover, since we assume that our two-dimensional model
represents planes of a truely three-dimensional lattice we
also include a third spatial dimension. For clarity in this sec-
tion we restore the explicit dependence of the lattice spacing
a, which in the previous sections was set to unity in the
square two-dimensional lattice. In the third space direction,
instead, we assume the unit cell to have a lattice spacingd
~i.e., we assume a tetragonal three-dimensional lattice!. In
this scheme, the Laplace equation reads

e i (
h5x,y

S f i2 j1h1f i2 j2h22f i2 j

a2 D ~34!

1e'S f i2 j1z1f i2 j2z22f i2 j

d2 D52ed~ i2 j !, ~35!

where i , j are lattice sites ande' and e i are the dynamic
dielectric constants perpendicularly and along the planes, re-
spectively. Fourier transforming one can easily obtain

F ẽ

~a/d!2
@cos~aqx!1cos~aqy!22#1cos~dqz!21G2e'

d2
fq

52e, ~36!

with ẽ[e i /e' , from which one gets the expression of the
LRC potential in the three-dimensional momentum space:

fq52
ed2

2e'

@A~qx ,qy!1cos~qzd!#21, ~37!

where we defined

A~qx ,qy!5
ẽ

~a/d!2
@cos~aqx!1cos~aqy!22#21 .

~38!

Since we are interested in the effects of the Coulomb poten-
tial on the square-lattice planar system, we now transform
from qz to real space for the plane atz50, obtaining

fqi
~z50!52

ed

2e'

1

AA2~qx ,qy!21
. ~39!

Notice that this is the potential between electrons in a two-
dimensional lattice embedded in a three-dimensional space
and it diverges asq21 for small transferred momenta, rather
than q22 as happens for three-dimensional electronic sys-
tems. This potential can be used in the Coulombic part of the
Hamiltonian

HC5
VC

2N(
q

1

AA2~q!21
rqr2q , ~40!

whererq[(k,sck1q,s
† ck,s and the Coulombic coupling con-

stantVC[e2d/(2e'a
2). It should be noted that, as is cus-

tomarily done, the sum does not include the zero-momentum
component, since we are supposing that the divergingq50
interaction between the electrons is canceled by the contri-
bution of a uniform positively charged ionic background.
Having in mind the superconducting copper oxides of the
214 type, whered'3a, tphys'0.5 eV, e i'30, ande''5
one sees thatVC has to range from roughly 0.5–3 eV in
order to have holes in neighboring CuO2 cells repelling each
other with a strength of 0.1–0.6 eV.

The Hamiltonian~40! can then be added to the Hamil-
tonian of the Hubbard-Holstein model~4! and the product of
four fermionic fields can be decoupled by means of a stan-
dard Hubbard-Stratonovich transformation. In this way one
introduces a new real bosonic fieldYi to be integrated over
in the functional integral. Although this spatially fluctuating
field does not have its own dynamics, it acquires a frequency
dependence via its coupling to the fermionic degrees of free-
dom. In particular, extending the bosonic space
Am(q)5(dr q ,dlq ,aq ,Yq) ~we dropped for simplicity the
Matsubara frequency dependence of the bosonic fields! one
can extend the formalism of Sec. II to include the effects of
the Coulomb potential represented by theY boson. A direct
calculation shows that the quasiparticle-boson vertex is

LY~k,q!5 i , ~41!

as expected since the Coulomb potential couples to the local
electronic density in the same way as the bosonl does. The
bare boson propagator becomes a 434 matrix with an addi-
tional nonzero element:

BY,Y5
AA2~q!21

2VC
. ~42!

We stress again that theY boson does not have any uniform
q50 component, which was discarded from the beginning in
the sum of Eq.~40! and therefore it does not affect the mean-
field results.
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B. Static properties

The introduction of a LRC potential greatly affects the
coupling between phonons and electrons particularly for
small momenta, where the Coulombic forces are most effec-
tive. In fact, since in the Hubbard-Holstein model phonons
couple to the local electron densities like the Coulombic po-
tential, thee-ph coupling is effectively screened by particle-
hole pairs created by thee-e Coulombic scattering processes
and the effectivee-ph vertex is largely suppressed in the
small-momentum limit. This effect appears in a direct calcu-
lation of the expression~31! for the effectivee-ph vertex in
the presence of LRC forces,LLR

e-ph(k,q;vm). Now
m,n5r ,l,Y in Eq. ~31!, so as to include the screening due to
the fluctuations of the ‘‘long-range’’ bosonY. In particular
Fig. 7 shows the momentum dependence of the static
(vn50) e-ph vertex. The comparison with the same quan-
tity in the absence of LRC forces shows a striking difference
in the low-momentum region, where the Coulombic screen-
ing leads to a vanishinge-ph vertex. This difference can
easily be understood by a three-step evaluation of
LLR
e-ph(k,q;vm). One can first go through the calculation of

the vertex in the absence of LRC forces@Eq. ~31!#. Then one
can introduce a density-density fermionic bubble dressed by
all electronic short-range processes,

PeSR~q,vm!5
4r 0

2P0~q,vm!

detD232~q,vm!
, ~43!

whereD232 is the 232 sector of the boson propagator only
including ther andl bosons, representing the purely elec-
tronic short-range processes. Finally one performs a resum-
mation only includingY-boson fluctuations dressed by the
PeSR density-density fermionic bubbles. The result is

LLR
e-ph~k,q;vm!5

Le-ph~k,q;vm!

11PeSR~q;vm!VC /@AA2~q!21#
.

~44!

This expression readily shows the suppression of the short-
range-only e-ph vertex appearing in the numerator

and clearly displays the vanishing of the LR vertex for
q→0, when the Coulombic potential diverges
@A2(q)21#21→uqu21.

The important physical consequence of the above sup-
pression of the effectivee-ph vertex is that in the presence of
LRC forces the long-wavelength density fluctuations are de-
coupled from the phonons and become unable to drive a
low-momentum instability. Nevertheless, the possibility of
finite-momentum instabilities still remains open and a de-
tailed reanalysis of the phase diagram in the presence of the
LRC potential is needed. This analysis can be carried out by
direct numerical evaluation of thestatic density-density re-
sponse function and of its divergences. A direct inspection to
the diagrammatic structure of leading order in the 1/N
density-density response function shows that one can include
the Coulombic effects both by extending them,n summa-
tions in Eq.~17! to include theY boson or, alternatively, by
first calculating the short-range response functionPSR by
only including ther , l, anda bosons and then to resum with
the barê YY& propagator. The result is then

PLR~q,v50!5
PSR~q,v50!

11$VC /@NAA2~q!21#%PSR~q,v50!
.

~45!

From this expression one can easily see that a positively
diverging PSR(q,v50) no longer gives a diverging LR
density-density response function. In particular, since
VC /@AA2(q)21#→` for q→0, the compressibility always
vanishes as it should in a Coulomb gas and a PS instability is
now ruled out. However, some finite-q instabilities are still
possible in the system when

PSR~q,v50!52N@AA2~q!21#/VC , ~46!

leading to a divergentPLR. This is possible, in principle,
since inside the PS region for the model without LRC forces,
PSR has a simple pole. ThereforePSR has a negative branch
from zero momentum up to sizable momenta~if the param-
eters are choosen to be inside enough into the unstable re-
gion! and the condition~46! can be satisfied. At this point,
then, an instability occurs despite the stabilizing effect of the
LRC potential and an incommensurate charge-density-wave
~CDW! phase takes place in the system.

The g vs d phase diagram for various values ofVC is
reported in Fig. 8, where the solid line represents the place at
which PLR(q5qc , v50) diverges, separating the stable
uniform region from the unstable region where an incom-
mensurate CDW is expected to form. It is important to notice
that, when the settling of a CDW phase is given by a second-
order quantum transition, no Maxwell construction is needed
to determine the stability region.

As can be seen the effect of LRC forces is stronger at low
doping. This is so because in this region the poles ofPSR

tend to occur at low momenta and are more effectively sta-
bilized by the Coulombic potential.

We found that the momentaqc at which the divergences
in PLR occur obviously depend on the pointg vs d and on
the strength of the Coulomb forceVC , but are generically
sizable, indicating that the wavelength of the expected CDW
phase is of a few unit cells.

FIG. 7. Static effectivee-ph vertex~in units ofgphys! as a func-
tion of the transferred momentum in the~1,0! direction for
tphys50.5 eV,t852(1/6)t, andv0 phys50.04 eV. The dotted line is
in the absence of LRC forces (VCphys50); the solid line is in the
presence of LRC forces withVCphys50.55 eV.
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We performed an extensive analysis of the finite-q insta-
bilities for various values of doping,t8/t, g, andVC . It turns
out that, for reasonable values of these parameters, the insta-
bilities always occur at or close to the~1,0! and ~0,1! direc-
tions. This effect is due to the momentum structure of the
short-range density-density response function, which is en-
hanced by the large density of states in the~1,0! and ~0,1!
directions.

It is interesting to notice that, close to the finite-q insta-
bility, the static effective scattering amplitude in the particle-
hole as well as in the particle-particle channel diverges at
finite momentum transfer like9

G~q,v50!5Ũ2
A

D81B8uq2qcu2
, ~47!

with D8}(d2dc) being a mass linearly vanishing by ap-
proaching dc . The evolution of G(kF ,kF8 ,v50) in ap-
proaching the unstable region by doping variations is dis-
played in Fig. 9. Figure 10 displaysG(kF ,kF8 ,v50) over a
large portion of the Brillouin zone for parameter values close

to those of a finite-q instability. It is evident that a deep
attractive interaction between the quasiparticles arises on a
broad momentum region. This fact is particularly remarkable
in relation to the occurrence of Cooper instabilities. As seen
in Sec. III A, a static Cooper instability takes place when the
Fermi-surface average of2GC(kF ,kF8 ,v50) becomes posi-
tive @cf. Eq. ~27!# and this seems likely to occur close to
finite-momentum instabilities. The resulting coupling con-
stants are reported in Table II. As expected, positive~i.e.,
attractive! coupling constants arise close to the incommensu-
rate CDW instability, once more supporting the idea that
high-temperature superconductivity could arise in the prox-
imity of a charge instability. It is also worth emphasizing
that, like in the proximity of PS, such a pairing instability
takes place as an effect of aq-independent phonon-induced
attraction, which, close to the CDW instability, becomes
highly structured in momentum space, thereby opening the
way to pairing symmetries other than the simples wave.
This fact accounts for the attractive couplings also found in
the d-wave channel. In particular it turns out that the
d-wave symmetry of the order parameter is able to take good
advantage of the strong small-q attraction and of the local
~large-q) repulsion.

In the region of small to intermediateg’s and dopings our
analysis indicates the sure existence ofd-wave pairing in
sizable regions near the instability, whereas the occurrence
of s-wave pairing takes place in a much narrower region.
However, it should be emphasized that the presence of a

FIG. 8. Phase diagrame-ph coupling g vs doping d with
tphys50.5 eV, t852(1/6)t, andv0 phys50.04 eV, and in the pres-
ence of LRC forces withVCphys50.55 eV ~lowest curve!,
VCphys51.65 eV~middle curve!, andVCphys53.3 eV~upper curve!.

FIG. 9. ~a! MassD8 of the effective static scattering amplitude
as a function ofd2dc for tphys50.5 eV, t8521/6t, VCphys50.55
eV, v0phys50.04 eV, andgphys50.240/& eV. The open squares
indicate the values ofD at various dopings and the straight line is a
linear fit. ~b! Static scattering amplitude for the same parameters as
in ~a! as a function of the transferred momentumq in the
qc'(60.28/a,60.86/a) direction. The dopingd50.195, 0.2,
0.205, and 0.22 increases from the lower solid line to the upper
dotted line.

FIG. 10. Momentum dependence of the static scattering ampli-
tude for the same parameters as in Fig. 9 atd50.195.

TABLE II. Extendeds- andd-wave superconducting couplings
for tphys50.5 eV,t521/6t8, gphys50.260/A2 eV,v0phys50.04 eV,
and VCphys50.55 eV at various dopings. The instability is at
dc50.299.

d 0.300 0.305 0.310 0.330 0.360 0.400
ls1

0.134 0.076 0.048 20.024
ld1

0.372 0.206 0.174 0.110 0.070 0.045
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s-wave static Cooper instability only in a narrow region by
no means excludes the possibility of havings-wave super-
conductivity in a much larger area of our phase diagram. An
appropriate Eliashberg dynamical analysis would be required
to draw a firm conclusion, especially in the light of the re-
sults reported in the next section showing a strong frequency
dependence of the effective interaction between the quasipar-
ticles. Of course the same applies to the attraction in the
d-wave channels, which could also be greatly favored by
dynamical effects.

C. Dynamical properties

We carried out a dynamical analysis of the effective
e-ph vertex in the presence of LRC forces. The dynamical
behavior of thee-ph vertex in the presence of LRC forces is
not very different from the behavior observed forVC50. In
both cases two different screening regimes take place for
small and large momenta. Specifically, when LRC forces are
absent, we found that at small momenta the screening energy
vscr is proportional to the doping and depends linearly on the
exchanged momentumvscr'vF* q. Instead, in the presence of
LRC forces, it is found that

vscr'AvF* q. ~48!

The linear momentum dependence in the short-range-only
case is compatible with screening processes associated with
both the particle-hole continuum and the zero sound. In the
presence of LRC forces, the square-root momentum depen-
dence is a clear indication that the plasmon collective mode46

sets the cutoff energy at which small-momentum screening
processes cease to be relevant.

On the other hand, we found that at large momenta, a
different energy scale rules the screening processes, which,
both with and without LRC forces, is of the order of the
bare-electron hoppingt, vscr'gt. This indicates that the lo-
cal ~large-q) physics is governed by incoherent bare-electron
processes with typical energies of ordert much larger than
the typical energies of ordervF* q;td ruling the coherent
quasiparticle processes.

The screening effects leading to different behaviors of the
effectivee-ph vertex at small and large momenta also affect
the dynamical scattering amplitude. This generic effect is
more evident in the proximity of an instability. Therefore, in
Fig. 11, we show the numerical evaluation of the dynamical
scattering amplitude. A large attraction at low frequency is
found for transferred momenta close toqc as a remnant of
the infinite static attraction taking place at the instability.
This attraction is, however, rapidly spoiled by increasing the
Matsubara frequency. This is so because at finiteq'qc the
dynamical screening of thee-ph vertex strongly suppresses
the phononic attractive part of the scattering amplitude.
Therefore, as soon as the frequency spoils the static attrac-
tion due to the instability, the attractive part ofGC ~dotted
line in Fig. 11! rapidly vanishes. An opposite behavior oc-
curs at small momenta, where no instability occurs and
therefore no static attraction is present. The usuale-ph at-
traction only appears at a finite frequency around
v0.vscr'qd, where thee-ph vertex is not severely sup-
pressed.

We conclude this subsection by recalling the result of Ref.
9 where a real-frequency analysis was carried out finding
strong singular scattering between the quasiparticles of the
form

G~q,v!'Ũ2
A

vq2 iv
, ~49!

wherevq5D81B8uq2qcu2 with D8}(d2dc). This scatter-
ing is of the form proposed in Ref. 5 to explain the anoma-
lous normal-state properties of the superconducting copper
oxides. Some substantial differences are, however, worth be-
ing emphasized. First of all the origin of the singular behav-
ior is not necessarily related to a magnetic scattering mecha-
nism, in so far it arises from the closeness to a charge
instability. The mechanism driving the instability can be of
various nature, magnetic, excitonic, or, as in the present
model, phononic. Second, as can be seen in Fig. 10, a much
more isotropic region of large scattering arises in the present
context, thereby bypassing the objection raised in Ref. 47
that only a few ‘‘hot’’ points on the Fermi surface undergo
such strong scattering processes.

FIG. 11. Effective scattering amplitude as a function of the
transferred Matsubara frequency fortphys50.5 eV, t852(1/6)t,
gphys50.240/A2 eV, v0phys50.04 eV, andVCphys50.55 eV. The
doping d50.2 is close to the critical valuedc50.195. Solid line,
total effective scattering amplitudeG; dashed line, repulsive~slave
and Coulomb force bosons only! effective scattering amplitude
G rep; dotted lines, attractive part of the scattering amplitude
Gattr5G2G rep. The transferred momenta are in the instability di-
rection ~0.28,0.86!. ~a! Sizable transferred momentum
uqu5uqcu50.9; ~b! small transferred momentumuqu50.15 The in-
sets are enlargements of the attractive parts of the effective scatter-
ing amplitudes.
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D. Collective modes

The analysis of the dynamical behavior of the model can
be completed by investigating the collective modes present
in the system. This study is particularly relevant for a deep
understanding of the dynamical mechanisms ruling the insta-
bility formation. To emphasize similarities and differences
we consider both the cases with and without the LRC poten-
tial.

It was repeatedly pointed out, in the context of models
with short-range interactions only, that PS occurs without a
softening of a massive collective mode. This was first estab-
lished for the charge-transfer mode in a three-band Hubbard
model with NN Coulombic repulsion between copper and
oxygen holes18 and it was also confirmed in the case of a
three-band Hubbard-Holstein model with holes coupled to an
optical phonon.20 A real-frequency analysis of both the
imaginary part of the dynamical density-density correlation
function, Im̂ nn&(q,v), and of the poles of the phonon
propagator,Da,a(q,v), shows that also in the single-band
infinite-U Hubbard-Holstein model, PS occurs due to the
phonon-mediated attraction between quasiparticles, which
pulls the zero-sound mode into the particle-hole continuum.
When the attraction is large enough, the velocity of this
strongly damped mode vanishes, eventually driving the sys-
tem unstable at zero momentum. On the contrary, the phonon
frequency, although sizably renormalized by thee-ph inter-
action, stays finite over the entire Brillouin zone.

The scenario is strongly modified in the presence of LRC
forces, when the instability takes place at finite momenta.
For such finite momenta, in the absence ofe-ph interactions
the phonon is the mode at lower energy. With the introduc-
tion of a finitee-ph coupling, it turns out that the phonon is
somewhat softened. In particular the softening is complete,
i.e., the phonon energy vanishes, when the CDW instability
takes place. Again a comparative real-frequency analysis of
Im^nn&(q,v) and of ImDa,a(q,v) allows us to identify the
nature of the mode entering the continuum and producing the
large enhancement of the absorption at low-frequency. Fig-
ure 12~a! reports the behavior of the phonon frequency@ex-
tracted from ImD44(q,v)# as a function of momenta in the
specific direction at which the CDW instability takes place
@(60.2,60.8) and (60.8,60.2) for the parameters related

to 214 systems# at and above the critical doping value. In
Fig. 12~b! the phonon dispersions are reported for the
(61,61) direction for the same values of doping. Far from
the critical momentum the phonon frequency is sizably re-
duced with respect to its bare value. However, only a minor
doping dependence of this substantial reduction is visible in
generic positions in the Brillouin zone, making the observa-
tion of the softening effect rather difficult. On the other hand,
a strong doping dependence of the phonon dispersion is ap-
parent in the proximity of the critical momentum. In this
momentum region the phonon completely softens at
d5dc50.195. By increasing the doping, i.e., by moving
away from the instability, the softening becomes incomplete
and progressively less important although it seems to stay
substantial up tod50.3.

Some considerations are in order on the above analysis of
the collective modes in the proximity of charge instabilitites.
First of all a clear distinction can be made between the be-
havior of the phonon mode in the absence and in the pres-
ence of LRC forces. At a PS instability, the phonon always
stays massive and only mixes strongly with a low-energy
zero-sound mode at finite but very small momenta
(q<v0 /vF* ). On the contrary the phonon becomes com-
pletely soft at the CDW instability. Therefore it would be
natural to indicate neutron-scattering experiments in copper
oxides as crucial tests in order to determine how close these
material are to aphonon-mediatedCDW instability: If a sub-
stantial softening of some phonon mode is found at some
momenta, this would be a clear indication of a frustrated PS
almost leading to CDW. Unfortunately, our schematic
single-band Hubbard-Holstein model is not detailed enough
to provide indications of the modes which could undergo a
visible softening in real materials. Moreover, the strong re-
duction of the phonon frequency is substantial on a sizable
momentum range, but is only found for doping close to the
critical dc , and this fact could render the search for such an
effect quite a difficult task. An additional difficulty is that,
due to the strong mixing of electronic and phononic degrees
of freedom, the softened phonon modes would be greatly
broadened and they could well be seen only as an increase of
spectral weight at low frequencies, quite differently from the
theoretical 1/N picture reported in Fig. 12.

V. DISCUSSION AND CONCLUSIONS

In this paper we analyzed the screening processes and the
occurrence of instabilities in the Hubbard-Holstein model in
the framework of Fermi-liquid theory. In particular we inves-
tigated the role of LRC forces in stabilizing PS and produc-
ing incommensurate CDW instabilities.

However, some limitations should be kept clear for a cor-
rect understanding of the scenario here presented. We carried
out a leading order analysis in 1/N, which definitely neglects
some effects which are relevant in a complete quantitative
understanding of the real materials. First of all our approach
is designed to deal with charge degrees of freedom, but lacks
a correct treatment of the spin degrees of freedom, which
turn out to be crucial in the low-doping phase of the copper
oxides. Therefore antiferromagnetic correlations and the in-
terplay between spin and phonon degrees of freedom are
absent in our large-N, slave-boson model. These effects only

FIG. 12. Phonon dispersion curves~a! in the instability
~0.28,0.86! direction and~b! in the~1,1! direction, fortphys50.5 eV,
t852(1/6)t, gphys50.240/A2 eV, v0 phys50.04 eV, and
VCphys50.55 eV. The solid curves correspond to the critical doping
dc50.195; the dot-dashed and dotted curves correspond to
d50.21 andd50.3, respectively.
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appear at higher order in 1/N. Second, our leading-order ex-
pansion does not allow for phonon vertex corrections beyond
the Migdal theorem, although in the low-doping region the
quasiparticle bands become very narrow, thus leading to a
violation of the conditionEF@v0. The absence of these ver-
tex corrections obviously rules out the possibility of a correct
observation of multiphonon polaronic effects.

In the absence of LRC forces, the scenario found here is
consistent with previous results obtained in the three-band
Hubbard-Holstein model, where PS was also found. The
main features observed here are~i! a generic suppression of
thee-ph vertex due to electronic screening also resulting in a
strong dependence on thevFq/v ratio, ~ii ! the persistent pos-
sibility of PS arising from the phonon-mediated attraction,
and ~iii ! a singular behavior of the effective interaction be-
tween quasiparticles at low momenta close to the PS region.

The main achievement of the present work is, however,
the analysis of the model in the presence of LRC forces. In
particular it is remarkable that, when LRC forces are in-
cluded in the model, PS is spoiled, but finite-momentum in-
stabilities still take place on substantial and quite physical
regions of the parameter space. Singular effective interac-
tions are again obtained at finite momenta in the proximity of
the CDW instability.~iv! Cooper pairing both in thes- and
thed-wave channels is present already in the static limit for
systems close enough to the unstable regions, both in the
presence and in the absence of LRC forces.

The present model provides a rather simple playground to
investigate the generic properties of electronic systems close
to charge instabilities. Indeed, while some properties like,
e.g., the behavior of the phonon mode are strictly related to
the phononic nature of the interaction here considered, the
main results obtained here are generic of models17 showing
charge instabilities. In particular we believe that the strict
relation between charge instabilities, strong scattering, and
Cooper pair formation@points ~iii ! and ~iv! above# is a ge-
neric feature of strongly correlated electron systems irrespec-
tive of the underlying physical mechanisms leading to PS or
to incommensurate CDW.

Note added in proof:In relation to our results in Sec.

IV D, we mention that indications of anomalous lattice be-
havior are indeed reported by Koharaet al. @Phys. Rev. Lett.
70, 3447~1993!#, ~we thank Professor V. J. Emery for indi-
cating this reference to us! and L. Pintschoviuset al.
@Physica C185–189, 156 ~1991!#.
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APPENDIX: THE MAXWELL CONSTRUCTION

In order to perform the Maxwell construction, we modify
the model in Eq.~1!, coupling the phonons to the full elec-
tron density rather than to the density fluctuations. In this
way ane-ph coupling is effective already at the mean-field
level, where a nonzero mean-field value of the phonon field,
a05^a&5^a†&, arises. The mean-field Hamiltonian acquires
the form

HMF8 5(
ks

Ekcks
† cks2~m02l012ga0!(

ks
cks
† cks

1Nl0S r 022 1

2D1Nv0a0
2 . ~A1!

Minimizing the mean-field free energy with respect toa0
allows us to obtain the self-consistency equation fora0:

Nv0a05Ng(
k

f „E~k!…5g
N

2
~12d!. ~A2!

This determines the phonon-induced shift of the chemical
potential, giving rise to a doping-dependent correction to this
quantity. Owing to the standard expression for the compress-
ibility k[]n/]m52]d/]m, theq50 instability can be read
directly from the m vs n curves: A stationary point in
m(d) corresponds to an infinite compressibility and a stan-
dard Maxwell construction inm(d) determines the region
where the system is in a single phase.

1For a review on experiments in high-temperature superconductors
see, e.g., Proceedings of the International Conference on Mate-
rials and Mechanisms of Superconductivity High Temperature
Superconductors, Grenoble, France, 1994@Physica C235-240
~1994!#.

2P. W. Anderson, Science235, 1196~1987!; Phys. Rev. Lett.64,
1839 ~1990!; 65, 2306~1990!.

3For a review seeThe Physics and the Mathematical Physics of the
Hubbard Model, edited by D. Campbell~Plenum Press, New
York, 1995!.

4C. Castellani, C. Di Castro, and W. Metzner, Phys. Rev. Lett.72,
316 ~1994!.

5P. Montoux and D. Pines, Phys. Rev. B50, 16 015~1994!.
6C. M. Varma, Int. J. Mod. Phys. B3, 2083~1989!.
7N. Nagaosa and P. A. Lee, Phys. Rev. Lett.64, 2450~1990!; P.
A. Lee and N. Nagaosa, Phys. Rev. B46, 5621~1992!.

8V. J. Emery and S. A. Kivelson, inPhase Separation in Cuprate

Superconductors~Ref. 10!; V. J. Emery and S. A. Kivelson,
Physica C209, 597 ~1993!; U. Löw, V. J. Emery, K. Fabricius,
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