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Signatures of plastic flow of the flux-line lattice~FLL! were observed in a narrow region of the (H,T) phase
diagram for 2H-NbSe2 superconductors. In this field regime, the system is neither a rigid lattice nor a melted
fluid. A model is presented to explain this nonequilibrium plastic flow based on the static interaction energy
between a moving dislocation field and a pinning center. The model accounts for the observed experimental
measurements and reproduces most of its features. An explicit expression is derived for the length scale
RL5d [1/(d2g)]j, wherej is the superconducting coherence length,d5U/kT the ratio of the pinning energy to
the thermal energy andg5V0DB/kT. V0 is the increase in the lattice volume due to the presence of single
point defect andDB is the difference between the drag coefficient of the dislocation at the normal state and the
superconducting state. This length characterizes the interaction domain where forces on the FLL’s are uniform
and consequently, their velocities within that domain are correlated.@S0163-1829~96!01341-0#

INTRODUCTION

Plastic deformation of type-II superconductors results in
magnetic hysteresis and enhanced critical currents. These ef-
fects are due to the interaction between dislocations intro-
duced by deformations and the flux lines which restrict its
motion in the lattice. The motion of dislocations is influ-
enced by their interaction with defect centers and, for dislo-
cation velocities much smaller than the velocity of sound, by
a viscous drag caused by phonons and conduction electrons.
At low temperatures, electronic drag will dominate. How-
ever, at high temperatures the interaction of dislocations with
the flux-line lattice~FLL! plays a critical role. In the pres-
ence of strong disorder, this behavior indicates that the dy-
namics of flux-line lattice~FLL! in superconductors can be
treated as nonlinear transport in random media. This ap-
proach may yield insight into the competition between ran-
domness of the lattice and interactions of flux lines. Dynami-
cally created disorder through the interaction between the
lattice and the quenched pinning centers has been recently
experimentally realized.1 The nonlinear current-voltage char-
acteristics of the superconductors imply that the impurity
pinning strength may be smaller than the flux-line rigidity.
The transition between pinned and moving flux lines in the
presence of driving forces and thermal fluctuations may be
considered as dynamical critical phenomena. When impuri-
ties, and consequently the randomness, are strong the elastic
medium collapses and the motion is highly inhomogeneous.
Finite and randomly distributed pinning strengths lead to the
existence of a spatially nonuniform time-averaged flux-line
velocities indicating that the depinning transition is always
discontinuous. In recent experimental measurements on the
2H-NbSe2 compound in the crossover region between weak
and strong disorder, it was observed that depinning of the
FLL proceeds via a series of specific and exactly reproduc-
ible jumps in theI -V curves.2 It was suggested that this type
of behavior is due to breaking up the FLL and the onset of an
inhomogenous plastic flow at the crossover between elastic
and fluid flow. In order to explain the experimental results,
the authors proposed the existence of regions in the elastic

medium where the flux lines break forming ‘‘chunks’’ char-
acterized by a length scaleLn over which the time averaged
velocity is correlated. The onset of plastic flow is determined
by the finite value ofLn at the onset of the motion which
measures the size of the chunks. As the magnetic field in-
creases,Ln decreases until it is equal to the lattice spacinga0
beyond which the chunk is not a meaningful concept and a
fluid flow is the appropriate description. The plastic flow will
be characterized by a metastable moving state due to the
slow dynamics between the flux lines and lattice defects.
Therefore, depinning occurs in a sequence which violates the
elastic media approach to the dynamics and a plastic flow is
essential. The jaggedness of the measuredRd was simply
related to the fact that the entire FLL does not depin simul-
taneously at a given critical current but in a sequence. Thus
the change in the velocity of moving vortices (dui) is no
longer spatially uniform at small voltages. As the current (I )
increases, successive depinning occurs for the different
chunks, in this case the measured voltage signal is given by
V5( i51ni^dui&, where i refers to the individual chunks.
These features occur at small velocities of the FLL and dis-
appear at larger velocities where the lattice becomes more
correlated andLn is large. A unique feature of the plastic
flow is that the moving state is not uniform, unlike for an
elastic medium. Due to the metastability of the moving state
and anomalously slow dynamics of the FLL defects, the sys-
tem becomes noisy and history dependent. The data support
the idea that a transition among various ‘‘metastable’’ mov-
ing states exists, allowing the coexistence of domains with
different average velocities, as is implied by the plastic flow
of the FLL.

In this paper, we provide a rigorous explanation for FLL
behavior and the characteristic lengthLn considered as the
range of the static interaction region between a moving dis-
location field and a pinning center in a plastic lattice.

MODEL DESCRIPTION

When the driving force on a flux linef L. f p the pinning
force due to a pinning center, a steady vortex motion with

PHYSICAL REVIEW B 1 NOVEMBER 1996-IVOLUME 54, NUMBER 17

540163-1829/96/54~17!/12437~6!/$10.00 12 437 © 1996 The American Physical Society



speeduL given byuL5(f0/ch)(J2Jc), wheref0 is the flux
quantum andh is the viscous drag coefficient will occur. In
a soft flux lattice, the experimental data suggests the exist-
ence of slow dynamics associated with plastic flow of dislo-
cations or defects. We consider the motion of a dislocation
associated with plastic deformations of the lattice and its
interaction with a defect center. This interaction will change
the vortex velocityuL and an additional component to the
flux flow voltage will appear. The interaction energyEi be-
tween the stress field of the defect center and the field of a
moving dislocation will perturb the pinning energy of a flux
line within a spatial domainR determined by the stress field.
Consequently, the velocity of the flux lines moving in this
domain will be perturbed and changed by an amountdu due
to this static interaction. In the absence of this interaction,
the force equation on the flux line is given by3

f p5 f L2huL . ~1!

The static interaction energy will change the pinning energy
and consequently the pinning force by an amountd f p which
from Eq. ~1! is given by

f p1d f p5 f L2h~uL1duL!. ~2!

In this equation the driving forcef L does not change due to
this interaction since it is in general current dependent. From
Eqs.~1! and ~2!, the change in the pinning force is equal to
d f p52hduL . This pinning force must be equivalent to the
force of interaction between the stress field of a pinning cen-
ter and the field of a moving dislocation. Therefore, the
change in the velocity of a flux line due to this static inter-
action can then be obtained from the following relation:

2hduL52V0¹t00. ~3!

V0 is equal to the increase in the lattice volume due to the
presence of a single point defect in the crystal, it is of the
order of the point defect volume andt00 is the stress tensor at
the defect location in the lattice. Equation~3! determines the
magnitude of the change in the velocity of the flux line:

duL5~V0 /h!¹t00. ~4!

This component of the flux-line velocity will generate a volt-
age signal which can be measured in a flux-flow experiment
particularly at small frequencies. When the sample has re-
gions of strong pins, they may be overcome by the interac-
tion among flux lines when the lattice is sufficiently rigid. As
the rigidity disappears due to the meltin transition, the strong
pins create a puddle of immobile vortices around which flux
flow continues. This puddle would require a much larger
force in order to be free and to participate in the flow. In this
type of partial flow with steady-state velocity gradients that
one may invoke the notion of flux line viscosity, in addition
to the coefficient of frictionh, in order to account for the
extra damping and the reduced flow of the vortices. This is a
clear example of the absence of coherent motion even at very
large forces of what presumably is a flux-line liquid.

VOLTAGE DUE TO DISLOCATION GROUP DYNAMICS

A group of (n) identical dislocations in the slip plane
z50 will have simultaneous free expansion where the veloc-

ity of each dislocation is proportional to the total stress field
s ~see Fig. 1!. These dislocations are characterized by the set
of differential equations4

dri /dt5M $s~r i !%, i51,...,n. ~5!

In this equation it is assumed a linear stress-velocity relation-
ship n5Ms for an individual dislocation whereM is the
mobility constant. The total stress fields is the sum of any
applied stress fieldS(r ) and the inverse first power stress
field of all other dislocations

s~r i !5S~r i !1A (
j51,iÞ j

n

1/~r i2r j !, i51,...,n. ~6!

A is a constant equal tomb/2p for screw dislocations and
mb/2p(12g) for edge dislocations, whereb is the magni-
tude of Burger’s vector of the dislocations,m the elastic
shear modulus andg Poisson’s ratio. For mixed dislocations
the value ofA will be intermediate between values for screw
and edge.

The change in the flux-line velocity due to the dynamic
interaction of the dislocation field with a pinning center can
be calculated from the knowledge of¹t00 which is equiva-
lent to¹S in the above equations:

¹t005¹S51/M @d/dt~¹r j !#2A(
iÞ j

¹~1/~r j2r i !,

j51,...,n. ~7!

The solution of the differential equations~7! will determine
uniquely the changes in the velocity of the flux line due to
the dislocation dynamics. The voltage component measured
in the experiment due to this static interaction and the inho-
mogeneous flux flow is given by

V'(
i
ni^dui&5~V0 /h!(

i
ni^¹S~r i !&. ~8!

ni is the total number of moving vortices in the interaction
domain and the gradient is calculated at the position of the
defect center. The experimental measurements indicate a
slow dynamics where the velocity of dislocations are much
smaller than the speed of sound. In this case the first term on

FIG. 1. Two-dimensional array of edge dislocations, showing
the direction of climb of each dislocation under the stresses indi-
cated by the arrows.

12 438 54ALI E. KHALIL



the RHS of Eq.~7! can be neglected and the voltage is de-
termined from the knowledge of the dislocation group dy-
namics given by Eq.~8!:

V>~V0A/h!S (
k
nkK (

iÞ j
1/~r i2r j !

2L D , j51,...,n.

~9!

The first summation is taken over flux lines while the second
is taken over dislocation points. For large number of dislo-
cations it is sufficient to consider a dislocation density func-
tion c(r ,t) which is a measure of the number of dislocations
per unit distance along the slip plane at positionr and time
t.5 This choice is more appropriate rather than the position of
each individual dislocation which will be smeared out into a
continuum distribution. In this case, the average in the above
equation can be replaced by integrals over dislocation den-
sity and defect density distributions. The experimental data
can finally be identified from the following equation:

V>~V0A/h!E
0

j

D~r !drS E
0

RL
@c~R,t !/~r2R!2#dRD .

~10!

c(r ,t) is the dislocation density function given byc(r ,t)
5(1/pg)(r /g1a/2)[(ag2r )/r ] 1/2, a5$8(n11)/3%1/2, and
n is the number of dislocations in the group andg(t)
5(2t)1/2. In the continuum approximation,c(r ,t) will have
the form of ad function att50.

The only unknown quantity in the integrand of the above
equation isD(r ), the defect distribution function that de-
scribes the vortex motion between pinning centers. An ex-
plicit functional form of this quantity was derived earlier to
reproduce the low-frequency noise in micropatterned
YBaCuO thin films.6 Although the derivation of this quantity
was carried out for the YBaCuO compound, we argue that
for anisotropic superconductors, it has a generally valid fea-
ture. In order to provide a physical explanation to the origin
of this quantity, let us consider the noise spectral power aris-
ing from random processes due to the flux motion and the
sample inhomogeneity in superconducting thin films. The
spectral power was calculated from the integralS( f )
'*H( f ,U)D(U)dU, whereH( f ,U) is a Lorentzian spec-
trum andD(U) is a distribution~convolution! function for
the activation energies. Since the flux motion is an activated
process associated with a pinning center, the probability of a
flux-line jump assumes a simple Boltzman factor
P(U)'e2U/kT, whereU is the activation energy. Conse-
quently, the probability of a flux line landing at a distancer
from a defect center is proportional to the product of two
probabilities in the formP(U,r )'e2(U/kT)(r /j). In the two-
dimensional planes of a superconducting strip, the defect
density distributionD(r ) of random pinning sites is propor-
tional toD(r )5[1/P(U,r )]. A simple physical picture arises
if we consider the distribution functionD(r ) of a sample
consisting of a large number of pinning regions as a measure
of how pinning sites are arranged within a circle of radiusr
in the two-dimensional planes. It is logical to assume that the
product rD (r ) is proportional to the number of defects
within that area. Since, for the flux motion between pinning
sites the activation energies have the spatial dependence7

U5U0@ ln~r /j!11#, r.j. ~11!

By substituting Eq.~11! in the expression ofD(r ) and de-
manding that the distribution be normalized such that
* 0

jD(r )dr51, the resulting function was used to calculate
the low-frequency noise spectral power. It was found that a
superconducting sample consisting of a large number of pin-
ning regions with the distribution functionD(r )
5(d/j)(r /j)d21, d5U/kT reproduced adequately the ob-
served spectral power~see detailed calculations in Ref. 6!.

All the quantities needed to calculate Eq.~10! are in hand
except the upper limit of the second integralRI which de-
fines the range of the static interaction between dislocation
flow and pinning centers. In order to calculate the differential
resistanceRd(5dV/dI) and examine its jagged structure and
the signatures of inhomogeneous flow, Eq.~10! is written as

V~ I ,H !>~V0A/h!~d/j!E
0

j

~r /j!d21dr

3S E
0

RL
@c~R,t !/~r2R!2#dRD . ~12!

The current and magnetic field dependence of the voltage in
the above equation appeared in the activation energyU and
its relationship to the current and magnetic field. The depen-
dence of the activation energyU on the current was deduced
from experimental measurements to have the linear
relationship8

U5U0@12I /I c~T!#. ~13!

The prefactorU0 is related to the temperature and mag-
netic field by9 U0(T,H)5U1[11(T/Tc)

2] $[12(T/Tc)
2]

2[H/Hc2(0)]%. This relationship was utilized to calculate
the differential resistance using the experimental parameters
reported in Refs. 1 and 2. In order to compare the predictions
of Eq. ~11! to the experimental data, the static interaction
rangeRI must be determined. This interaction range defines
the nature of the dynamics and plays a critical role in deter-
mining the size and topology of the ‘‘chunks’’ in the FLL.

INTERACTION RANGE

If the dislocation has a length large compared to the mean
distance between point defects. The equilibrium distribution
of centers of dilation in the dislocation stress field is given
by10

C5C0exp~Eint /kT!. ~14!

C0 is the equilibrium concentration far from the dislocation
andEint is the interaction energy between an elastic center of
dilatation and an external elastic field given by
Eint52V0tkk . The distribution in Eq.~14! can be written as

C5C0exp$2V0t i i /kT%. ~15!

V0 is the increase in the lattice volume due to the presence of
a single defect.t i i is the stress tensor at the position of the
defect. The motion of dislocation will change the stress field
t i i creating a flow stress changeDt i i . The change in the
stress fieldDt i i due to the motion of dislocations was calcu-
lated for low-temperature superconductors where changes in
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the electronic drag were incorporated.11 The key idea in
these investigations was based on the vibrating string model
which was used to calculateDt i i for lead:

12

tSN'DB ln~L0 /L !. ~16!

The distanceL0 is the size of the pinning region which in our
case will be taken equal to the superconducting coherence
length j while the lengthL defines the effective distance
between defect centers.

A superconductor in the mixed state with small disloca-
tion damping will result in an oscillatory motion of the dis-
locations between defects. In this case, the distanceL is pri-
marily controlled by the short-range interactions and density
of forest dislocations. However, in anisotropic superconduct-
ors, it is likely that the dislocation damping is large enough
to allow overdamped dynamics to exist. This overdamped
dislocation motion is characterized by a finite domain of the
order of the static interaction range between dislocation and

pinning center. Therefore, the interaction of dislocations with
point defects at low temperature can be considered primarily
due to size effects. This conclusion is consistent with the
stress behavior found for low-temperature materials.13 Ac-
cordingly, the distribution of the disorder~point defects! in
the material will change to reflect the nature of that interac-
tion. The size of the pinning centers will be of the same order
as the dilatation centers due to damping and the effective
barrier of a defect center and its range will change in such a
way to impede the dislocation motion. This picture indicates
that near the dislocation there are always regions of height-
ened concentration of defects of one type or another. Thus
the elastic interaction of point defects with the dislocation
results in the existence of clouds of point defects extending
to a distanceL5RL . In the overdamped dynamics where
plasticity is enhanced, the interactions of these clouds with
the flux lines will lead to the formation of ‘‘chunks’’ of FLL
extending over to a distanceRL . Within that distance the
forces are uniform and the velocities of the FLL in the chunk
are correlated. This distance is identified withLn the velocity
correlation length defined in Ref. 2. The quantityDB is the
difference between the drag coefficient of the dislocation at
the normal state and the superconducting state.

The cloud of point defects extending on scales equal to
RL has a concentration of defects given by the equilibrium
distribution of Eq.~14!. However, as was mentioned earlier,
since the distribution function for the activation energy of
random moving vorticesD(r i)5(d/j)(r i /j)

d21 can be con-
sidered as a measure of how pinning sites are located within
a circle of radiusr in the two-dimensional planes. Therefore,
the ratio of the concentration of defects (C/C0) can be con-
sidered as the ratio of the distribution function within dis-
tances of the order of the interaction range and the supercon-
ducting coherence length,

~C/C0!5E
0

RL
D~r !drY E

0

j

D~r !dr

5exp2@~V0DB/kT!ln~j/RL!#. ~17!

FIG. 2. The flux-flow resistanceRf (dV/dI) as a function of
current at applied field valueH55.7 T and no time dependence
~dc!. The upper curve represents the experimental measurements
taken from Ref. 2, Fig. 2~b!, while the lower curve represents the
theoretical predictions.

FIG. 3. The flux-flow resistanceRf (dV/dI) as a function of
current at applied field valueH55.7 T andt50.5 s ~2 Hz!. The
upper curve represents the experimental measurements taken from
Ref. 2, Fig. 2~b!, while the lower curve represents the theoretical
predictions.

FIG. 4. The flux-flow resistanceRf (dV/dI) as a function of
current at applied field valueH55.7 T andt50.01 s~100 Hz!. The
upper curve represents the experimental measurements taken from
Ref. 2, Fig. 2~b!, while the lower curve represents the theoretical
predictions.
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The above equation provides an estimate of the interaction
length

RL5d@1/~d2g!#j, ~18!

whereg5V0DB/kT. This simple relationship supports the
observations made on the FLL behavior measured in Ref. 2.
In order to understand the occurrence of the fingerprints of
the plastic flow in a narrow field regime we investigate the
variations ofd with current, field, and temperature given by

d5~U1 /kT!@12I /I c~T!#@11~T/Tc!
2#$@12~T/Tc!

2#

2@H/Hc2~0!#% ~19!

for very large currentsI@I c , and for applied field valuesH
slightly higher thanHc2 as in the situation for the reported
measurements@see Fig. 4~b!, Ref. 2#, the values ofd are
positive and.1. In addition, near the transition temperature
the change in the stress field is almost independent ofDB
and the factorg for low temperature materials~lead! is close
to unity,13,14 in this case the effective pinning rangeRL.j.

This extended domain for the interaction region explains the
existence of flux bundles with correlated velocities since in
these domains the forces are spatially uniform. On the other
hand, for field values less thanHc2, the parameterd is nega-
tive and is of the order of unity, the distribution of activation
energies of random moving vortices in this case, corresponds
to an elastic medium for which the time-averaged velocity is
uniformly correlated and consequently the disappearance of
plastic flow signatures. This behavior can clearly be seen
from the appearance of kinks in the flux-flow resistance mea-
surements at different driving currents for field values higher
than the upper critical fieldsHc2 and its disappearance at
lower field values@see Fig. 4~b!, Ref. 2#.

The predictions of Eq.~12! were compared to the mea-
surements reported in Figs. 2~b! and 4~b! of Ref. 2 for the
three cases corresponding to no time dependence (dc),
t50.5 s which corresponds to 2 Hz andt50.01 s that cor-
responds to 100 Hz. All the experimental parameters were
taken from Refs. 1 and 2. The viscous drag coefficient was
calculated h5F0Hc2(0)/c

2rn using the Bardeen-Stefan
theory,15 wherern is the normal-state resistivity. The critical
temperature used in the calculationsTc was set equal to 7.2
K, while the critical current densityI c was equal to 12 mA.
The upper critical fieldHc253.3 T and the applied field
value was chosen to be 5.7 T. The Burger’s vectorb was set
equal to unity and the value of the unperturbed activation
barrierU1540 meV. The comparison between the experi-
mental data and theoretical predictions are shown in Figs.
2–7. In Fig. 5 it is evident that the voltage signals are insen-
sitive to the number of dislocations (n) in the group. This is
in fact consistent with the assumption of continuum approxi-
mation for the dislocation dynamics. The lower values of the
flux-flow resistance calculated from our model are due to the
fact that the distribution of activation energies used in the
calculations correspond to YBaCuO compounds which have
the same behavior as 2H-NbSe2.

16 Nonetheless, this analysis
reproduces the general features of a plastic flow which is
supported by the reported measurements.

CONCLUSIONS

Plastic deformations of type-II superconductors were ex-
amined by taking into account the interaction between the

FIG. 5. The flux-flow resistanceRf (dV/dI) as a function of the
magnetic fieldH at a temperatureT51.7 K and currentI5100 mA.
The upper curve represents the experimental data taken from Ref. 2,
Fig. 4~b!. The middle curve is the theoretical calculations for
n510 000 dislocations, while the lower curve is the theoretical cal-
culations forn51000 dislocations.

FIG. 6. The flux-flow resistanceRf (dV/dI) as a function of the
magnetic fieldH at a temperatureT51.7 K and currentI580 mA.
The upper curve represents the experimental data taken from Ref. 2,
Fig. 4~b!. The lower curve is the theoretical calculations.

FIG. 7. The flux-flow resistanceRf (dV/dI) as a function of the
magnetic fieldH at a temperatureT51.7 K and currentI560 mA.
The upper curve represents the experimental data taken from Ref. 2,
Fig. 4~b!. The lower curve is the theoretical calculations.
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stress field of a pinning center and a dislocation strain field.
The interaction energy of the stress field is characterized by
the increase in the lattice volume due to the presence of a
single point defect in the crystal. In this model, the effects of
this static interaction on the FLL dynamics and the flux-flow
resistance in anisotropic superconductors were explored. The
analysis shows that the interaction of point defects with the
dislocation field results in the existence of clouds of defects
extending to a distanceRL of the order of the interaction
range. The effects of these clouds on the flux-line dynamics
will lead to the formation of ‘‘chunks’’ of FLL extending
over to the same domain. Within that domain the forces act-
ing on FLL are uniform and consequently, the velocities of
the FLL in the chunk are correlated. The model accounts for
the recent observations which mark the existence of domains
with different average velocities. These domains are attrib-
uted to the formation of flux ‘‘chunks’’ as a result of the
plastic flow of dislocation fields. This behavior indicates the
presence of ordered and disordered phases associated with
the first order depinning transition for a defective FLL.
Moreover, the model indicates that the motion of disloca-
tions and its interaction with point defects accounts, at least

qualitatively, for the enhanced plasticity of the superconduct-
ing state as observed in the experimental measurements re-
ported in Ref. 2.

These results are consistent with recent theoretical inves-
tigations on the effects of random forces due to pinning po-
tentials on the FLL which show that the vortex lattice will be
distorted on length scales larger than the pinning length
Lp .

17 In such models, the effects of elastic strain were only
included; however, it was recognized that on length scales
larger thanLp , dislocations will also appear and become
energetically favorable.18 Our simulation provides a detailed
analysis for these effects which are supported by the reported
experimental measurements.
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