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We present the results of molecular dynamic simulations of a two-dimensional vortex array driven by a
uniform current through random pinning centers at zero temperature. We identify two types of flow of the
driven array near the depinning threshold. For weak disorder the flux array contains few dislocation and moves
via correlated displacements of patches of vortices in acrinklemotion. As the disorder strength increases, we
observe a crossover to a spatially inhomogeneous regime ofplasticflow, with a very defective vortex array and
a channel-like structure of the flowing regions. The two regimes are characterized by qualitatively different
spatial distributions of vortex velocities. In the crinkle regime the distribution of vortex velocities near thresh-
old has a single maximum that shifts to larger velocities as the driving force is increased. In the plastic regime
the distribution of vortex velocities near threshold has a clear bimodal structure that persists upon time
averaging the individual velocities. The bimodal structure of the velocity distribution reflects the coexistence of
pinned and flowing regions and is proposed as a quantitative signature of plastic flow.
@S0163-1829~96!01241-6#

I. INTRODUCTION

The problem of nonlinear collective transport through
random media has attracted much theoretical and experimen-
tal attention due to the interesting spatiotemporal phenomena
that arise in a variety of physical systems from the competi-
tion between interactions and disorder. In particular, the dy-
namics of driven elastic media that are distorted by disorder,
but cannot ‘‘break,’’ has been studied extensively, both theo-
retically and numerically. At zero temperature these systems
exhibit a sharp depinning transition from a pinned state be-
low a critical driving forceFc to a sliding state aboveFc .
The transition can be described as a critical phenomenon in
terms of scaling laws and critical exponents. The elastic me-
dium model can be used to describe the dynamics of weakly
pinned Abrikosov flux lattices,1 fronts of wetting fluids in-
vading porous media,2 and charge density waves~CDW’s! in
anisotropic conductors3,4 over a wide range of length scales.
It is, however, expected to eventually break down~particu-
larly in lower dimensionality! at short length scales since it
yields unphysical regions of unbounded strains.5 In addition,
the elastic model is inadequate for many physical systems
with strong disorder that exhibit a spatially inhomogeneous
plastic response without long-wavelength elastic restoring
forces. These include strongly pinned flux lattices,6–8 inva-
sion of nonwetting fluid in porous media,2 Wigner solids in
two-dimensional electron gas~2DEG!, and fluid flow down a
rough incline.9 In these systems the competition between
drive and disorder generates topological defects~disloca-
tions, phase slips! in the medium that can qualitatively
change the dynamics.10–12 Collective transport in the pres-
ence of topological defects is still poorly understood.

Magnetic flux arrays in type-II superconductors are an
ideal system for investigating nonlinear collective transport
since by changing the applied magnetic field one can tune
the strength of the intervortex interaction and observe a
crossover from a regime of weak pinning, well described by
collective flux creep theories, to a regime of strong pinning

with spatially inhomogeneous flow.1 Evidence for this comes
from early simulations of two-dimensional flux lattices by
Jensenet al.7 and by Shi and Berlinsky.8 In addition, a vari-
ety of transport phenomena observed recently in supercon-
ductors has been attributed to the inhomogeneous plastic re-
sponse of the flux array, including a nonmonotonic
dependence of the critical current on temperature just below
the flux lattice melting point~peak effect!, an unusual current
and field dependence of 1/f broadband noise, and fingerprint
phenomena.6,13–15On the other hand, the experiments only
probe flux motion indirectly through transport measure-
ments. For this reason their interpretation is difficult and still
controversial. Numerical work can therefore be very valuable
to gain insight into this complex problem and to serve as a
guide for future theoretical work.

In this paper we report on simulations of the dynamics of
a two-dimensional Abrikosov flux array driven by a uniform
current through random pinning centers at zero temperature.
The focus of our work, which distinguishes it from previous
numerical work on the same7,8,11,16 or closely related9,17,18

systems, is on identifying various types of flow and estab-
lishing a connection between the type of flow or response
~‘‘elastic’’ versus ‘‘plastic’’! and the presence of flux lattice
defects and the shape of the macroscopic response as embod-
ied, for instance, in theV-I characteristics. This will be very
useful for the interpretation of experiments. While most of
the results presented here are somewhat qualitative, our long-
term objective is to carry out simulations for realistic param-
eter values that will allow a detailed comparison with experi-
ments. It is well known that short-wavelength defects, such
as dislocations, play a more important role in two, rather
than in three, dimensions.19 For this reason many of our re-
sults will not apply directly to three-dimensional flux arrays.
On the other hand, the study of two-dimensional systems is
valuable both because of intrinsic interest and because in
many experimental situations the flux arrays can effectively
be modeled as two dimensional. Thermal fluctuations are
generally important in flux flow experiments and purely dy-
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namical phenomena associated with the current-induced de-
pinning of the vortices cannot be dissociated from thermal-
induced softening of the lattice. In this paper we specifically
consider the flux array dynamics atT50 with the objective
of disentangling these two effects.

Below we present the results of simulations of a driven
flux array for both a low density and a very high density of
point pinning centers. In both cases we identify two types of
response or flow of the flux array near the depinning thresh-
old and a crossover from one type to another as the disorder
strength is increased. For sufficiently weak disorder the flux
array contains very few defects and moves via correlated
displacements of patches of vortices. The dynamics is similar
to that observed by Hu and Westervelt20 in magnetic bubble
arrays. Following these authors’ suggestion, we refer to this
type of response ascrinklemotion. For stronger disorder the
response near threshold isplastic, with vortices flowing
around pinned regions. The flux lattice is very defective and
we observe channels of liquidlike vortex array flowing
around solidlike pinned regions. The topology of the chan-
nels is not, however, fixed in time. Channels open and close
continuously as the flux array is driven over the impurities
and all vortices participate in the motion at one time or an-
other near threshold. As the disorder is further increased the
individual channels become longer lived and for very strong
disorder we observe a filamentary structure with a fraction of
vortices that never move on the time scale of the simulation.
To characterize the different regimes we have studied in de-
tail the spatial distribution of vortex velocities. In the crinkle
regime the distribution of vortex velocity near threshold
shows a single maximum corresponding roughly to the aver-
age velocity of the array, though at any time some vortices
are moving with velocity significantly greater than the aver-
age value. The plastic flow regime is characterized by bimo-
dal velocity distributions near threshold, indicating that the
velocity is spatially inhomogeneous, with both pinned and
flowing regions. We discuss the correlation between these
qualitative features of the velocity distribution and the shape
of the macroscopicV-I characteristic and suggest that the
shape of the velocity distribution may be used for a crude
classification of the type of response.

II. MODEL

The specific model considered here is essentially the same
as that studied in earlier simulations by Jensenet al.,7 by Shi
and Berlinsky,8 and, more recently, by Koshelev and
Vinokur.11 The two-dimensional pancake vortices are mod-
eled as point particles with finite-range interaction and over-
damped dynamics, driven through randomly placed pinning
centers by a uniform forceF proportional to the external
current. The equations of motion for the two-dimensional
vortex positionsr i are given by

g1

dr i
dt

52(
j5” i

Nv

¹iVv~r i2r j !2 (
k51

Np

¹iVp~r i2Rk!1F,

~2.1!

where$Rk% denote the random positions of theNp pinning
centers andNv is the total number of vortices. Here,g1 is the
friction coefficient of a single vortex, which will be incorpo-

rated in our unit of time. The repulsive intervortex interac-
tion has finite range Rc and yields a force
2¹Vv(r )5 f ve

2r /Rv(12r /Rc) r̂ on the i th vortex, with
Rv<Rc . The results presented below have been obtained
with Rv5Rc . The second term on the right-hand side of Eq.
~2.1! is the attractive pinning force of rangeRp , given by
2¹Vp(r )52 f p(12r 2/Rp

2)2r /Rp . The rangeRv of the in-
tervortex repulsion is of the order of the superconductor pen-
etration lengthl, while the rangeRp of the pinning potential
is of the order of the superconductor coherence lengthj. In
the absence of pinning the flux array forms a stable triangu-
lar lattice of lattice constanta0.

While we have not studied in detail the dependence of our
results on the shape of intervortex interaction, we believe
that our findings, including the classification of the types of
flow and the characterization of the plastic flow regime in
terms of a bimodal distribution of vortex velocities, apply in
general for any short-range intervortex interaction. The be-
havior could, however, be different for systems with a long-
range interaction.16

One of the difficulties in carrying out a detailed numerical
study of the dynamical response of this model system is the
large number of parameters to be varied. In the following we
have chosen the rangeRp of the pinning potential as our unit
of length and the maximum intervortex forcef v as our unit
of force. In all cases considered the vortex lattice is rather
dense, withnvRv

2; 8–9, wherenv51/a0
2 is the areal density

of vortices, and soft, withc66;0.271–0.334, wherec66 is the
shear modulus of the clean vortex lattice, in the absence of
disorder. The pinning centers are modeled as point pins, in
the sense thata0 ,Rv..Rp . We have considered sets of
parameters corresponding to two rather different density of
pins: ~i! a dense array of overlapping pins, with
Np /Nv5133 andnpRp

2'2.8 with np the areal density of
pins; and~ii ! a dilute array of nonoverlapping pins, with
Np /Nv50.5 andnpRp

2'0.046. The specific parameter val-
ues used are given below. In both cases we have varied the
strength of the disorder by varying the maximum pinning
force f p .

The mean motion of the flux array is described by the
drift velocity in the directionF̂ of the driving force, given by

vd~F !5K 1

Nv
(
i51

Nv

vi•F̂L . ~2.2!

The angular brackets denote the average over disorder. In the
numerical calculation we average over impurity realizations
by performing a time average since as time evolves the flux
array samples different impurity configurations. The mean
velocity is proportional to the voltageV from flux motion,
while the driving forceF is proportional to the driving cur-
rent I . Curves ofvd versusF correspond therefore to the
V-I characteristics of the material.

III. ELASTIC RESPONSE

Even in the absence of driving force the random pinning
produces both elastic and plastic~dislocations! deformations
of the lattice. If topological defects are explicitly forbidden
in the model, the distortion induced by disorder can be de-
scribed within elasticity theory.

Treating the disorder as a perturbation, it has been shown
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that for d,4 order persists only in regions of linear size
Rc that are pinned collectively.21 The pinning lengthRc can
be estimated by an Imry-Ma argument22 by assuming that in
the presence of disorder the flux array deforms elastically to
take advantage of the pinning wells. The elastic energy cost
associated with displacing a region of linear sizeR by a
distanceRp is dEel(R);c66(Rp /R)

2Rd in d dimensions,
wherec66 is the shear modulus of the flux lattice. The cor-
responding pinning energy gain isdEp(R);AnvG(R/
Rp)

(d/2) where G is the variance of the disorder potential
arising from uncorrelated point pins, withG'np( f pRp

3)2.
For dimensiond.4 the elastic energy always exceeds the
pinning energy at large distances and the ordered state is
stable for small disorder. Ford,4 disorder dominates be-
yond the lengthRc where the elastic strains induced by dis-
order are of order 1, ordEel(Rc);dEp(Rc). The elastic me-
dium is broken up in domains of sizeRc , given by

Rc5
Rp
3c66

AnvG
, ~3.1!

in d52. Alternatively, the collective pinning length can be
defined following Larkin and Ovchinnikov21 as the length
scale where the mean square displacement^@u(r )#2&1/2 in-
duced by disorder is of the order of the range of the pinning
potential, i.e., ^@u(Rc)#

2&;Rp
2 . The estimate described

above neglects logarithmic corrections and assumes point
pins of rangeRp!a0.

The Larkin-Ovchinnikov collective pinning theory applies
providedRc@a0. In addition, if topological defects can oc-
cur in the lattice, the mean distance between such defects
must exceedRc . While our simulations have been carried
out for parameter values where the above inequalities gener-
ally do not apply, it is useful to briefly summarize some of
the properties of driven elastic media for comparison. The
force needed to depin a region of linear sizeR can be found
by equating the energy gain due to the external force
;FRpR

2 to the pinning energydEp(R) of the region and is
given by

F~R!;
AnvG
Rp
2R

. ~3.2!

In the weak pinning regime where Larkin domains of size
Rc are pinned collectively by disorder, the threshold force
needed to depin the medium can be estimated as the force
needed to depin a Larkin domain,FT

coll5F(Rc)
;nvG/(c66Rp

5).
WhenRc;a0 or AG/Rp;c66Rp

2 , the collective pinning
theory breaks down and vortices are pinned individually. In
this strong pinning regime the threshold force can be esti-
mated as FT

strong5F(R;a0);nvAG/Rp
2 . The disorder-

induced displacement of the lattice exceeds the range of the
pinning potential and the disorder can no longer be treated as
a perturbation. When this displacement becomes of order
a0, the Fourier components of the pinning potential with the
periodicity of the underlying lattice become dominant and
change qualitatively the nature of the pinning.23,24 In this

case one needs to go beyond the simple dimensional esti-
mates just described, as discussed recently by Giamarchi and
Le Doussal.24

The question of when and how, as a function of disorder
strength, topological defects proliferate has been addressed
recently by Gingras and Huse19 for a ferromagnetic random
field XY model. Dislocations allow a region of linear size
R to better adjust to disorder, yielding a gain in pinning
energy. Gingras and Huse argue that a bound for the length
scaleRd where dislocations proliferate can be obtained by
equating the elastic energy cost of a dislocation,
;c66a0

2lnR, to this pinning energy gain. If the pinning en-
ergy gain is estimated again asdEp(R);AnvGR/Rp , we
obtain Rd;(a0

2/Rp
2)Rc . Notice, however, that since the

disorder-induced displacements of the lattice in the presence
of dislocations exceedRp , the pinning energy no longer
grows linearly with displacement and this estimate is at best
a lower bound of the actual pinning energy. For this reason
all we can really infer from this argument is that in the con-
text of weak collective pinningRd.Rc . The focus of our
paper is not on determining the lengthRd , but rather on the
dynamics of the driven system and on the proliferation or
healing of dislocations as a result of the competition between
disorder, drive, and interactions. We can estimate the force
needed to depin and heal dislocations separated by a length
Ld asFd;F(Ld), whereF(L) is given in Eq.~3.2!, with the
resultFd5nvG/(c66a0

2Rp
3). We remark that this dimensional

estimate forFd is identical to the ‘‘crystallization’’ force
Ft of Koshelev and Vinokur.

We can then distinguish three regions as a function of the
disorder strengthG, as shown in the schematic ‘‘phase’’ dia-
gram of Fig. 1. These regions may or may not be separated
by actual phase transitions. ForG,(c66Rp

3)2, Ld.Lc.a0

FIG. 1. A schematic ‘‘phase diagram’’ illustrating the various
regimes in the (F-G) plane. The lines separating the various regions
represent the estimates of threshold force discussed in the text. The
boundary between pinned and sliding solid regimes is the collective
threshold forceFT

coll;G for G,G1;(c66Rp
3)2 and the strong pin-

ning threshold force FT
strong;G1/2 for G.G1. For

G.G2;(c66a0
2Rp)

2 there is a region of plastic flow above the
pinned region, separated from the sliding solid by the force
Fd;G.
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and the pinning is collective. The driven medium responds
elastically and the relevant threshold force for depinning is
the forceFT

coll;G needed to depin a Larkin domain. For
(c66Rp

3)2,G,(c66a0
2Rp)

2, the pinning is strong since
Ld.a0.Lc and vortices are pinned individually. The thresh-
old force is estimated as the forceFT

strong;AG needed to
depin a single vortex. In both these regions the forceFd
needed to depin and heal dislocations present in the lattice is
smaller than the threshold force. WhenG.(c66a0

2Rp)
2, then

Ld,a0 and the forceFd;G exceeds the threshold force for
depinning. In this region one may have a scenario of the type
proposed by Koshelev and Vinokur,11 with a pinned disor-
dered solid forF,FT

strong, a region of plastic flow for
FT
strong,F,Fd , and finally a flowing solid with no topologi-

cal defects forF.Fd .
The sliding state of an elastic medium driven through a

random potential can be studied analytically via a high-
velocity perturbation theory. The perturbation theory was in-
troduced by Schmid and Hauger25 and by Larkin in the con-
text of flux lattices and further developed by Sneddon, Cross,
and Fisher26 for sliding CDW’s. More recently Zhu, Little-
wood, and Millis discussed in detail the high-velocity pertur-
bation theory for sliding Wigner crystals.27

The starting point of the perturbation theory is a descrip-
tion of the flux array as an overdamped elastic continuum
driven by an external force and distorted by short-range un-
correlated disorder. The equation of motion for the two-
dimensional displacement fieldu(r ,t) is given by

g] tu~r ,t !5~c112c66!¹~¹•u!1c66¹
2u1Fp~r ,t !1nvF,

~3.3!

where g is a friction per unit area, related to the single-
vortex friction coefficient of Eq.~2.1! by g5nvg1, c11 and
c66 are the compressional and shear elastic moduli of the
two-dimensional flux lattice, andFp is the pinning force per
unit area,

Fp~r ,t !52r0~r !¹V@r1u~r ,t !#, ~3.4!

wherer0(r )5(n51
Nv d(r2Rn

0) is the spatially inhomogeneous
density of the undistorted lattice, withRn

0 the sites of the
triangular Abrikosov lattice. The coarse-grained quenched
pinning potentialV(r ) has zero mean and short-ranged cor-
relations,^V(r )V(r 8)&5G(r ) f (r2r 8), with f (r ) a function
that drops rapidly to zero forr@Rp . For simplicity of nota-
tion we have neglected in Eq.~3.4! the nonlocality of the
elastic constants. This can, however, be easily incorporated
in the perturbation theory. The drift velocity is defined here
asvd(F)5^] tu•F̂&, where the brackets denote a spatial av-
erage, as well as a disorder average. In the absence of disor-
dervd(F)5F/g. Treating the disorder as a perturbation rela-
tive to the external driving force, one can then evaluate
corrections to this uniformly sliding state. The details of the
calculation are not given here as this follows closely the
perturbation theory for the Wigner crystal described recently
by Zhu et al.27 Rather than expanding about the solution
vd(F)5F/g in the absence of disorder, one actually con-
structs a self consistent perturbation theory by writing
u(r ,t)5vdtF̂1s(r ,t), solving for s(r ,t) in perturbation

theory and then requirinĝ] ts(r ,t)&50. The lowest nonva-
nishing correctiondvd5vd2F/g to the mean velocity is
given by

dvd~F !'2
nv
2

2g (
GÞ” 0

G~G!G2~G•F̂!

3E
BZ

dk

~2p!2
gv•G

~c66k
2!21~gv•G!2

, ~3.5!

whereG are the reciprocal lattice vectors of the triangular
flux lattice and thek integral is over the first Brillouin zone
of size kBZ5A4pnv. The disorder correlator is given by
G(G)'G'np( f pRp

3)2, for G,1/Rp , and vanishes rapidly
for G@1/Rp . It therefore cuts off the reciprocal lattice vec-
tors sum atGmax;1/Rp . For the case of point pins (a0
@Rp), the right-hand side of Eq.~3.5! can be evaluated ex-
actly by transforming the wave vector sum to an integral. It
is, however, more instructive to present the result in two
limiting cases. If the velocity is not too large,
vd!c66kBZ

2 Rp /g, the main contribution to thek integral
comes from the small-k region, corresponding to length
scales much larger than the range of the pinning potential.
The upper limit of the wave vector integral can be extended
to infinity, with the result

dvd~F !'2
nv

4gc66
(
G5” 0

G~G!G2G•F̂ sgn~G•vd!

'2
Gnv

4gc66Rp
5 . ~3.6!

In this intermediate-velocity regime the lifetime of elastic
deformations of the sliding medium is small compared to the
time to cross the range of the pinning potential, yielding
collective pinning of the lattice. For the two-dimensional
case considered here in this regime one obtains a force-
independent correction to the drift velocity. Conversely, if
vd@c66kBZ

2 Rp /g, the time needed to cross the range of the
pinning potential—and therefore to see uncorrelated
disorder—is short compared to the lifetime of elastic defor-
mations connecting neighboring vortices, and one obtains
single particle response, with

dvd~F !'2
G

16pg1Rp
4

1

F
. ~3.7!

Notice that the coefficient of 1/F in Eq. ~3.7! is indeed inde-
pendent of vortex density.

IV. NUMERICAL RESULTS

We have performed molecular dynamics simulations of
arrays of 300, 920, and 1200 vortices using periodic bound-
ary conditions. The results presented below are for two sets
of parameter values, unless otherwise specified. The data for
the array with a dilute concentration of pins (Np /Nv50.5)
are obtained withNv5920,Np5460, andRv59.9. For these
parameter values the clean Abrikosov lattice has lattice con-
stant a053.54, with nvRv

259.0, and shear modulus
c6650.271. As discussed earlier, all lengths are measured in
units of Rp and forces are in units off v . The data for the
densely pinned array (Np /Nv5133) are obtained with
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Nv5300, Np540 000, andRv520. In this casea057.44,
with nvRv

258.3, andc6650.334. Table I shows the values of
the collective pinning lengthRc given in Eq.~3.1! and the
threshold force estimated using the dimensional analysis dis-
cussed in Sec. III for various pinning forcesf p . For each set
of parameters the value of the threshold force given in the
table is the smaller of the two estimatesFT

coll andFT
strong.

The drift velocity of the vortex array is shown as a func-
tion of driving force in Figs. 2~a! and 3~a! for various values
of the maximum pinning forcef p . Figure 2 is for the sample
with a low concentration of pins (Np /Nv50.5), while Fig. 3
is for the densely pinned sample (Np /Nv5133). Figures
2~b! and 3~b! display the differential resistivitydvd /dF.
Both Figs. 2~a! and 3~a! show a systematic evolution of the
shape of theV-I curve with increasing disorder strength not
unlike that observed in theV-I curves of real
superconductors.6 For small pinning forces the velocity is
nonlinear inF only very near threshold, where it exhibits a
very small region of negative curvature. Correspondingly,
there is no peak in the differential resistivity. At larger pin-
ning forces there is a change in the sign of the curvature of
the mean velocity that occurs at a valueFpeak above thresh-
old, but well in the nonlinear region, and yields a peak in the
differential resistivity. The location of this peak moves to
larger driving forces as the pinning force increases. This de-
pendence is particularly strong in the sample with a dense
pin array. ForF.Fpeak the V-I characteristic is concave
down and asF grows it approaches the asymptotic value
vd5F, corresponding to a freely sliding array. In this region
the deviations from the linear behaviorvd5F are fitquanti-
tativelyby the single-particle perturbation theory result given
in Eq. ~3.7!. This can be rewritten asvd /F'1
2^Fp

2(0)&/F2, where^Fp
2(0)&5G/Rp

2 is the mean square to-
tal pinning force. For the specific pinning potential used in
our simulations,̂ Fp

2(0)&5(p/30)npRp
2 f p

2 . The rms velocity
fluctuations defined asv rms5^@(1/N)( ivi•F̂2vd#

2&1/2 are
also fit quantitatively by their single-particle value,
v rms5@^Fp

2&/2Nv#
1/2 in this region. We stress that for very

strong pinning the flux array can be very disordered even in
the regionF.Fpeak, with sometimes as much as 50% of the
vortices with a coordination number different from 6@see
Fig. 4~b! below#. This is because dislocations can be frozen
in the sliding lattice in ourT50 simulations, yielding a dis-
ordered array that slides as a whole, with dislocations mov-
ing along at the same velocity as the rest of the lattice. This
behavior may be a finite-size effect and is related to the
hysteresis in the defect configuration discussed below.

For Np /Nv50.5 the threshold force remains very small

for all values of the pinning force studied. We cannot ex-
clude that the threshold force may vanish in this case, but we
have not performed extensive runs near threshold and finite-
size scaling to determine the location of the threshold pre-
cisely. In fact, for a model with dislocations, it is not neces-
sary thatFTÞ0 at zero temperature (T50). In contrast, the

TABLE I. Collective pinning lengths and estimated threshold
forces for the values of the pinning force used in the simulations.

Np /Nv50.5 Np /Nv5133
f p Rc /a0 FT

est f p Rc /a0 FT
est

0.2 20.0 2.131024 0.03 7.8 1.431024

0.5 13.3 1.331023 0.1 2.3 1.631023

1.0 4.0 5.331023 0.3 0.8 1.031022

1.5 2.7 1.231022 3.0 0.08 1.031021

2.0 2.0 2.131022

FIG. 2. Drift velocity ~a! and differential resistivitydvd /dF ~b!
vs driving force for the array with a dilute distribution of pinning
centers,Np /Nv50.5. The curves obtained by ramping the force up
and down are indistinguishable. The error bars represent the value
of v rms.
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threshold force is large and clearly nonzero for
Np /Nv5133. While we have not determined the threshold
value accurately, we find that the numerical estimate agrees
in order of magnitude with the dimensional estimates given

FIG. 3. Drift velocity ~a! and differential resistivitydvd /dF ~b!
vs driving force for the array with a dense distribution of pinning
centers,Np /Nv5133. The curves obtained by ramping the force up
and down are indistinguishable. The error bars represent the value
of v rms. Notice that bothvd and F have been divided byf p to
display the data obtained for different values of the pinning force on
the same graph.

FIG. 4. Fraction of sixfold coordinated vortices vs driving force.
~a! is for Np /Nv50.5 and the parameter values of Fig. 2. In this
case the curves obtained by ramping the force up and down are
virtually indistinguishable and no hysteresis is observed.~b! is for
Np /Nv5133, with the parameter values of Fig. 3 andf p53. The
lower curves are obtained by ramping up the force from an initial
disordered configuration of the flux array. Data for bothNv5300
~circles! andNv51200 ~triangles! are shown to display the finite-
size effect. The upper curve~square! is obtained by ramping down
the force from an initial ordered configuration withNv5300.
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in Table I. Our numericalV-I characteristics resemble those
obtained in earlier simulations of the same model.7,8,11There
is, however, an important difference between our results and
those of Koshelev and Vinokur11 in that we see no hysteresis
in theV-I characteristics other than that arising from finite-
size effects. For small systems, we do see hysteresis in the
V-I curves similar to that reported by Koshelev and Vinokur,
but this hysteresis vanishes in larger systems. This hysteresis
may be due to the periodic boundary conditions, which lead
to metastable periodic attractors for the dynamics. The hys-
teresis in small systems in our simulations is associated with
such periodic attractors.

We have also studied the evolution of the number of de-
fects in the lattice with driving force. In most of our runs the
flux array is prepared in an initial random disordered con-
figuration and the driving force is then ramped up from zero.
We have tracked the defects in the lattice by doing Voronoi
constructions during the run and counting the number of vor-
tices that are not sixfold coordinated. The fivefold and sev-
enfold coordinated vortices are disclinations in the two-
dimensional triangular flux lattice and, when paired,
correspond to a dislocation. Figure 4~a! shows the time av-
eraged fraction of sixfold coordinated vortices as a function
of the driving force forNp /Nv50.5. In looking at these
curves it should be kept in mind that the number of defects
present atF50 depends on initial conditions and the real-
ization of disorder. As observed earlier,11 we find that the
flux array orders at large driving force. The value of the
driving force where the number of defects starts dropping is
of the order of the location of the peak in the differential
resistivity. Again, we have observed no hysteresis in the
number of defects for the sample with a low concentration of
pins other than one arising from finite-size effects. We do,
however, find hysteresis in the number of defects when the
disorder is very strong, as shown in Fig. 4~b!. In this case
when we ramp-up the force from an initial disordered vortex
configuration, defects get ‘‘frozen in’’ and the lattice never
orders. Starting from an ordered configuration at high fields,
the lattice maintains its order. We have not been able to
exclude that this hysteresis is also a finite-size effect. We
expect that this hysteresis will disappear in the presence of
thermal fluctuations. The value of the driving force where
the defects become frozen in apparently corresponds to the
onset of the single particle behavior discussed below.

In order to correlate the macroscopic response of the vor-
tex array with the details of the microscopic vortex motion,
we have performed a variety of visualizations and we have
studied the spatial distribution of vortex velocities. One
method of displaying the data that we have found useful is to
plot histograms of the component of the vortex velocity in
the direction of the driving force (x component!. Figure 5
shows the evolution of such histograms of thex component
of the instantaneousvortex velocity near threshold with driv-
ing force for parameter values that yield crinkle flow. For all
driving forces, the histograms have a single maximum at a
value of velocity close to the mean drift velocity. The loca-
tion of the maximum moves to larger velocities as the driv-
ing force increases. Very close to threshold, velocities are
distributed asymmetrically about the mean value and the his-
tograms are not unlike those obtained from a phase-only
model of CDW’s.28 As the driving force increases the veloc-

ity distribution becomes sharper and symmetric.
The instantaneous velocity distributions are quite different

for parameter values where plastic flow is found. In this case
the velocity histograms display a clear bimodal structure
near threshold, as shown in Fig. 6, indicating the presence of
two distinct ‘‘typical’’ velocities of the vortices. The first
peak, which is approximately centered at zero very near
threshold, is determined by the ‘‘slow’’ vortices in the array,
located in pinned or temporarily pinned regions. This peak
has finite width due to the oscillations of the ‘‘slow’’ or
pinned vortices about the pins due to interactions with vor-
tices flowing nearby. The peak at larger velocity is deter-
mined by the ‘‘fast’’ vortices that flow in channels around
the pinned regions. We stress, however, that individual vor-
tices are sometimes ‘‘slow,’’ sometimes ‘‘fast.’’

As a result of the temporal fluctuations in the velocity, we
expect a large voltage noise in this region, perhaps related to
the experiments by Marley, Higgins, and Bhattacharya.6 The
various curves correspond to different driving forces, rang-
ing from close to threshold~the threshold force for this case
is estimated asFT;5.331023) to well within the linear re-
gime. The bimodal structure disappears at a value ofF close
to the locationFpeakof the peak of the differential resistivity
~hereFpeak;0.125). Beyond this value theV-I curve rapidly
becomes linear and the velocity distribution is narrow and
symmetric, centered at the mean velocity. The origin of the
maximum in the differential resistivity can easily be traced
back to the shape of the velocity histograms by studying the
location of the two peaks and their relative weights~Fig. 7!
as functions of the driving force. Using a crude approxima-
tion, we can write the drift velocity of the vortex array as
vd5nsvs1nfv f , wherens and nf are the fraction of slow

FIG. 5. Evolution of histograms of instantaneous velocityvx
with applied driving force for the parameters of Fig. 2 and
f p50.2. The system exhibits crinkle flow near threshold.
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and fast vortices, respectively, identified with the area under
the respective peaks of the velocity distribution and shown in
Fig. 7~b!. Similarly, vs andv f are the corresponding veloci-
ties, identified here with the location of the two peaks and
displayed in Fig. 8~a!. Using ns1nf51, we obtain
(dvd /dF)'dv f /dF1(dnf /dF)(v f2vs). For F,Fpeak the
slow vortices are essentially not moving (vs'0) while the
numbernf of fast vortices is increasing rapidly, leading to a
superlinearV-I . AboveFpeak the ratednf /dF at which the
slow vortex fraction decreases and the slow vortex fraction
increases slows down considerably, while (v f2vs);F—it
is this slowing down of the ratednf /dF with increasingF
that is responsible for the peak in the differential resistivity.

The bimodal structure of the velocity histograms dis-
cussed above reflects the spatial inhomogeneity of the instan-
taneous vortex velocity. A crucial question for the character-
ization of plastic flow is whether or not this bimodal
structure will persist when the vortex velocity is time aver-
aged over times larger than those corresponding to an aver-
age displacement of the lattice of at least a lattice constant. It
has been suggested that an important distinction between
plastic and elastic response can be found in the correlations
of the time-averaged velocity.6 Indeed, in a model where
dislocations are forbidden and the response is therefore elas-
tic, the time-averaged velocity will be spatially homoge-
neous and correlated over the entire system size. In contrast,
in a system exhibiting plastic flow the time-averaged local
velocity should still be spatially inhomogeneous, yielding bi-
modal structure of the corresponding histogram. We have
constructed histograms of time-averaged vortex velocities,
defined asv i(T)5*0

T(dt/T)v i(t) for various values ofT,

whereT51 yields the histogram of instantaneous velocity
discussed above. The histograms are shown in Fig. 8 for two
values of the driving force. The bimodal structure clearly
remains for the time-averaged velocities.

FIG. 6. Evolution of the histograms of instantaneous velocity
vx with applied force for the parameter values of Fig. 2 and
f p51. The system exhibits plastic flow near threshold and the his-
tograms clearly display a bimodal structure in this region.

FIG. 7. These figures display the evolution with applied force of
the location~a! and weights~b! of the peaks of the histograms of
Fig. 6. The location is obtained by recording the velocities at which
each peak is maximum. The weight of the first peak is the ratio of
the area under the part of the histogram up to the minimum between
the two peaks, to the total area under the curve. The weight of the
second peak is 1, the weight of the first peak.
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To summarize, our model of a two-dimensional flux array
driven through quenched disorder exhibits two types of re-
sponse. For very weak disorder strength, the flux array ex-
hibits ‘‘crinkle’’ motion, with correlated patches of vortices
making small forward jumps at different times, like a table-
cloth being pulled on a rough surface. At very small driving
forces the lattice contains an appreciable number of fivefold
and sevenfold disclinations. The defects are concentrated at
the boundaries between the patches with correlated velocities
and their number drops rapidly to zero with increasing driv-
ing force. The distribution of vortex velocities displays a
single maximum at a value of the velocity of the order of the
mean velocity of the array~Fig. 3!. As the driving force is
increased and the flux array gets depinned, the maximum
shifts to a higher velocity and the distribution broadens with
no substantial change in shape. The histograms of time-
averaged velocities become sharper as the averaging time
increases and stop changing once the averaging time exceeds
the time over which the vortex lattice advances on the aver-
age a distance of a fewRp . This type of response is similar
to that observed by Hu and Westervelt in magnetic bubble
arrays.20 These authors report observing a bimodal velocity
distribution, but this is because they only look at the distri-
bution of velocity over a very small time scale, smaller than
the time required for the array as a whole to advance a dis-
tance of the order of the range of the pinning potential. Hu

and Westervelt also argue that the response exhibits scaling
in this regime. While we have not studied in sufficient detail
the region near threshold to observe scaling, it seems quite
plausible that this ‘‘crinkle’’ regime will exhibit generic
critical behavior, analogous to that predicted and observed
for an elastic medium, in spite of the presence of defects.
The fairly large number of defects present in our system at
very small driving forces may very well be an artifact of our
initial conditions, with vortex positions chosen at random,
rather than equilibrated. It may be that if a low but finite
temperature is introduced in the model and the flux array is
initially allowed to equilibrate in the presence of the disor-
der, the number of defects present for the parameter values
yielding crinkle motion would be practically negligible even
at the smallest driving forces.

In most of the region of parameter space studied we have
observed plastic flow of the flux array. This regime is char-
acterized macroscopically by a change in the sign of the
curvature of theV-I characteristic well above threshold,
which yields a maximum in the differential resistance
dvd /dF, and by a large number of defects in the region
below the maximum. The flow is spatially inhomogeneous.
Over a short time interval one observes fluidlike flow of
moving regions around pinned regions. On the average, how-
ever, all vortices participate in the motion in the sliding state
and no regions of the array are stuck for the entire length of

FIG. 8. These figures compare histograms ofinstantaneousandtime-averagedvortex velocities. The vortex velocities are averaged over
a time T. The valueT51 yields the instantaneous velocity histograms of Figs. 5 and 6.~a! corresponds to parameter values yielding
‘‘crinkle’’ flow ~same as Fig. 3 forf p50.03 andF50.0054). In this case the instantaneous velocity histogram exhibits a single maximum
nearvd;0.001 and is essentially identical to the histogram obtained withT510 andT5160. Notice that in a timeT510 the vortices
displace on the average a distanceDx;0.018a0. The histogram forT5640 is sharper, but qualitatively unchanged, indicating that the
system motion is well correlated for these parameter values. The histograms shown in~b! refer to parameter values yielding plastic flow
~same as Fig. 3 forf p53 andF53.5). In this case the histogram of instantaneous velocities (T51, solid curve! has a bimodal structure,
which persists upon time averaging (T55 or Dx;1.4a0 andT510 orDx;2.7a0), indicating a true plastic response.
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the simulation, even near threshold. The evolution of the
velocity distribution with driving force is shown in Fig. 4.
There is clearly a bimodal velocity distribution in the sliding
state which persists until all defects have healed and theV-
I has become linear. A single vortex is in general ‘‘slow’’ for
some of the time and ‘‘fast’’ for some of the time. This
should result in a large voltage noise, as observed by Marley,
Higgins, and Bhattacharya .6

As the pinning force is increased, the persistence time of
this structure of pinned and flowing regions grows and
pinned vortices remain pinned for longer and longer times.
For the situation of strongest pinning among those studied
( f p53 for Np /Nv5300), we find that some vortices are
pinned for the entire length of the simulations, while others
are flowing quite freely in channels surrounding the pinned
regions. In this case the structure of the channels is time
independent near threshold. As the driving force is increased
all vortices are eventually depinned and theV-I becomes
linear. The array is very defective near threshold and the
velocity distribution is bimodal and remains bimodal when
velocities are time averaged. The flux array displays a fila-
mentary motion similar to that observed by Middleton and
Wingreen for an array of quantum dots,29 where near thresh-
old the current flows in a single narrow channel and exhibits
critical scaling. Critical scaling was also predicted in a model
of fluid flow down a rough incline by Narayan and Fisher.9

In this case again the flow pattern consists of directed chan-
nels that run across the system. It may be that in this very
strong pinning regime the driven flux array also exhibits ge-
neric critical behavior, not unlike that of the fluid model of
Ref. 9.

Some insight into the parameter regions where the two
regimes described above may be expected to occur can be

gained by considering the Larkin-Ovchinnikov pinning
length, given in Table I for the case where the rangeRp of
the pinning potential is small compared to bothRv anda0. If
Rv@a0, the shear modulus of the flux array can be estimated
asc66; f vRv /a0

2 andLc;Rv f vANv/( f pANp). The flux array
should therefore be pinned collectively (Lc@a0) provided
f vANv/( f pANp).1. We find that these inequalities are gen-
erally satisfied in the cases where we observe a crinkle re-
sponse. Conversely, whenf vANv/( f pANp)!1, even ifRv
@a0, we obtainLc;a0 and vortices can be pinned individu-
ally, yielding plastic flow or eventually filamentary flow. A
transition between these two regimes is indeed observed as
f p is increased for the parameter values discussed above
~here Lc decreases over almost two orders of magnitudes
over the range of pinning forces studied, fromLc;20a0 for
f p50.2 to Lc;0.3a0 for f p510). Using again the above
estimate forc66 for Rv@a0 we find that in the collective
pinning regime the threshold force needed to depin the array
is given byFT;(Np /Nv)(Rp /Rv)( f p

2/ f v). The increase of
the threshold force withf p observed in Fig. 2~a! is consistent
with this dependence.
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