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Vortex dynamics and defects in simulated flux flow
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We present the results of molecular dynamic simulations of a two-dimensional vortex array driven by a
uniform current through random pinning centers at zero temperature. We identify two types of flow of the
driven array near the depinning threshold. For weak disorder the flux array contains few dislocation and moves
via correlated displacements of patches of vortices énirgkle motion. As the disorder strength increases, we
observe a crossover to a spatially inhomogeneous regimplastic flow, with a very defective vortex array and
a channel-like structure of the flowing regions. The two regimes are characterized by qualitatively different
spatial distributions of vortex velocities. In the crinkle regime the distribution of vortex velocities near thresh-
old has a single maximum that shifts to larger velocities as the driving force is increased. In the plastic regime
the distribution of vortex velocities near threshold has a clear bimodal structure that persists upon time
averaging the individual velocities. The bimodal structure of the velocity distribution reflects the coexistence of
pinned and flowing regions and is proposed as a quantitative signature of plastic flow.
[S0163-18296)01241-9

[. INTRODUCTION with spatially inhomogeneous flohEvidence for this comes
from early simulations of two-dimensional flux lattices by
The problem of nonlinear collective transport throughJenseret al.” and by Shi and Berlinsk$.In addition, a vari-
random media has attracted much theoretical and experimepty of transport phenomena observed recently in supercon-
tal attention due to the interesting spatiotemporal phenomenductors has been attributed to the inhomogeneous plastic re-
that arise in a variety of physical systems from the competisponse of the flux array, including a nonmonotonic
tion between interactions and disorder. In particular, the dydependence of the critical current on temperature just below
namics of driven elastic media that are distorted by disorderthe flux lattice melting poinfpeak effeck, an unusual current
but cannot “break,” has been studied extensively, both theoand field dependence offlbroadband noise, and fingerprint
retically and numerically. At zero temperature these systemphenomen&®-1°0n the other hand, the experiments only
exhibit a sharp depinning transition from a pinned state beprobe flux motion indirectly through transport measure-
low a critical driving forceF. to a sliding state abovE.. ments. For this reason their interpretation is difficult and still
The transition can be described as a critical phenomenon ieontroversial. Numerical work can therefore be very valuable
terms of scaling laws and critical exponents. The elastic meto gain insight into this complex problem and to serve as a
dium model can be used to describe the dynamics of weaklguide for future theoretical work.
pinned Abrikosov flux lattice$, fronts of wetting fluids in- In this paper we report on simulations of the dynamics of
vading porous mediaand charge density wavé6DW’s) in  a two-dimensional Abrikosov flux array driven by a uniform
anisotropic conductof$ over a wide range of length scales. current through random pinning centers at zero temperature.
It is, however, expected to eventually break dogparticu- The focus of our work, which distinguishes it from previous
larly in lower dimensionality at short length scales since it numerical work on the sami&'®or closely related!’'®
yields unphysical regions of unbounded straims.addition,  systems, is on identifying various types of flow and estab-
the elastic model is inadequate for many physical systemlishing a connection between the type of flow or response
with strong disorder that exhibit a spatially inhomogeneoud“elastic” versus “plastic”) and the presence of flux lattice
plastic response without long-wavelength elastic restoringlefects and the shape of the macroscopic response as embod-
forces. These include strongly pinned flux latti€e%jnva-  ied, for instance, in th&/-I characteristics. This will be very
sion of nonwetting fluid in porous medfa\Wigner solids in  useful for the interpretation of experiments. While most of
two-dimensional electron gd2DEG), and fluid flow down a  the results presented here are somewhat qualitative, our long-
rough incline? In these systems the competition betweenterm objective is to carry out simulations for realistic param-
drive and disorder generates topological defdclisloca- eter values that will allow a detailed comparison with experi-
tions, phase sligsin the medium that can qualitatively ments. It is well known that short-wavelength defects, such
change the dynamic§-*2 Collective transport in the pres- as dislocations, play a more important role in two, rather
ence of topological defects is still poorly understood. than in three, dimensiorS.For this reason many of our re-
Magnetic flux arrays in type-Il superconductors are ansults will not apply directly to three-dimensional flux arrays.
ideal system for investigating nonlinear collective transportOn the other hand, the study of two-dimensional systems is
since by changing the applied magnetic field one can tungaluable both because of intrinsic interest and because in
the strength of the intervortex interaction and observe amany experimental situations the flux arrays can effectively
crossover from a regime of weak pinning, well described bybe modeled as two dimensional. Thermal fluctuations are
collective flux creep theories, to a regime of strong pinninggenerally important in flux flow experiments and purely dy-
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namical phenomena associated with the current-induced deated in our unit of time. The repulsive intervortex interac-
pinning of the vortices cannot be dissociated from thermaltion has finite range R, and vyields a force
induced softening of the lattice. In this paper we specifically— VV,(r)=f,e ""Re(1—r/R.)f on the ith vortex, with
consider the flux array dynamics &t=0 with the objective R,<R:. The results presented below have been obtained
of disentangling these two effects. with R,=R.. The second term on the right-hand side of Eq.
Below we present the results of simulations of a driven(2.1) is the attractive pinning force of rand®,, given by
flux array for both a low density and a very high density of = VVp(r)=—fo(1-r?/R3)?r/R,. The rangeR, of the in-
point pinning centers. In both cases we identify two types oftervortex repulsion is of the order of the superconductor pen-
response or flow of the flux array near the depinning threshetration length\, while the rangeR,, of the pinning potential
old and a crossover from one type to another as the disordé$ of the order of the superconductor coherence leggtim
strength is increased. For sufficiently weak disorder the fluthe absence of pinning the flux array forms a stable triangu-
array contains very few defects and moves via correlatedar lattice of lattice constard,,.
displacements of patches of vortices. The dynamics is similar While we have not studied in detail the dependence of our
to that observed by Hu and Westerd®in magnetic bubble results on the shape of intervortex interaction, we believe
arrays. Following these authors’ suggestion, we refer to thighat our findings, including the classification of the types of
type of response awinkle motion. For stronger disorder the flow and the characterization of the plastic flow regime in
response near threshold dastic with vortices flowing terms of a bimodal distribution of vortex velocities, apply in
around pinned regions. The flux lattice is very defective andyeneral for any short-range intervortex interaction. The be-
we observe channels of liquidlike vortex array flowing havior could, however, be different for systems with a long-
around solidlike pinned regions. The topology of the chantange interaction?®
nels is not, however, fixed in time. Channels open and close One of the difficulties in carrying out a detailed numerical
continuously as the flux array is driven over the impuritiesstudy of the dynamical response of this model system is the
and all vortices participate in the motion at one time or andarge number of parameters to be varied. In the following we
other near threshold. As the disorder is further increased theave chosen the rangg, of the pinning potential as our unit
individual channels become longer lived and for very strongof length and the maximum intervortex forég as our unit
disorder we observe a filamentary structure with a fraction opf force. In all cases considered the vortex lattice is rather
vortices that never move on the time scale of the simulationdense, witm,R?~ 8-9, wheren, = 1/a3 is the areal density
To characterize the different regimes we have studied in desf vortices, and soft, witlegg~0.271—-0.334, wheregg is the
tail the spatial distribution of vortex velocities. In the crinkle shear modulus of the clean vortex lattice, in the absence of
regime the distribution of vortex velocity near threshold disorder. The pinning centers are modeled as point pins, in
shows a single maximum corresponding roughly to the averthe sense thaa,,R,>>R,. We have considered sets of
age velocity of the array, though at any time some vorticepparameters corresponding to two rather different density of
are moving with velocity significantly greater than the aver-pins: (i) a dense array of overlapping pins, with
age value. The plastic flow regime is characterized by bimoNp/NU=133 and npR§~2.8 with n, the areal density of
dal velocity distributions near threshold, indicating that thepins; and(ii) a dilute array of nonoverlapping pins, with
velocity is spatially inhomogeneous, with both pinned andn,/N,=0.5 andnpR§~0.046. The specific parameter val-
flowing regions. We discuss the correlation between thesges used are given below. In both cases we have varied the
qualitative features of the velocity distribution and the shapestrength of the disorder by varying the maximum pinning
of the macroscopid/-I characteristic and suggest that theforcefp_

Shape of the VelOCity distribution may be used for a crude The mean motion of thg flux array is described by the

classification of the type of response. drift velocity in the directiorF of the driving force, given by
1 N
Il. MODEL vd(F):<N_i21 Vi'F>- (2.2

The specific model considered here is essentially the same
as that studied in earlier simulations by Jenseal,” by Shi ~ The angular brackets denote the average over disorder. In the
and Berlinsky? and, more recently, by Koshelev and numerical calculation we average over impurity realizations
Vinokur.!! The two-dimensional pancake vortices are mod-by performing a time average since as time evolves the flux
eled as point particles with finite-range interaction and overarray samples different impurity configurations. The mean
damped dynamics, driven through randomly placed pinningelocity is proportional to the voltage€ from flux motion,
centers by a uniform forc& proportional to the external while the driving forceF is proportional to the driving cur-
current. The equations of motion for the two-dimensionalrent |. Curves ofvy versusF correspond therefore to the
vortex positions; are given by V-1 characteristics of the material.

N Ill. ELASTIC RESPONSE

i v NP
I
e T _12# V‘VU(ri_rJ)_gl ViVp(ri=Ri) +F, Even in the absence of driving force the random pinning
(2.1)  produces both elastic and plastdislocation$ deformations
of the lattice. If topological defects are explicitly forbidden

where{R,} denote the random positions of thg pinning  in the model, the distortion induced by disorder can be de-
centers andN, is the total number of vortices. Herg, is the  scribed within elasticity theory.
friction coefficient of a single vortex, which will be incorpo-  Treating the disorder as a perturbation, it has been shown
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that for d<4 order persists only in regions of linear size
R, that are pinned collectiveR: The pinning lengttR, can F T
be estimated by an Imry-Ma argumé&by assuming that in

the presence of disorder the flux array deforms elastically to
take advantage of the pinning wells. The elastic energy cost
associated with displacing a region of linear sReby a sliding .
distanceR, is SE¢(R)~cee(R,/R)?R? in d dimensions, solid gﬁ‘;““
wherecgg is the shear modulus of the flux lattice. The cor-

responding pinning energy gain i$E,(R)~n,[(R/
R,)(@2 whereT is the variance of the disorder potential
arising from uncorrelated point pins, Wim~np(prg)2.
For dimensiond>4 the elastic energy always exceeds the :
pinning energy at large distances and the ordered state is 5 pinned
stable for small disorder. Fat<<4 disorder dominates be- :
yond the lengthiR. where the elastic strains induced by dis- . ,
order are of order 1, 06E¢(R;)~ 6E(R.). The elastic me- r r —
dium is broken up in domains of siz., given by ! z r

3 FIG. 1. A schematic “phase diagram” illustrating the various
R.— RDC66 (3.1) regimes in theft-I") plane. The lines separating the various regions
¢ ,/nur ' ' represent the estimates of threshold force discussed in the text. The
boundary between pinned and sliding solid regimes is the collective

coll 3y2 i

in d=2. Alternatively, the collective pinning length can be threshold forcet ™~ T" for Fft};%gi(cf/Gsz) and the strong pin-
defined following Larkin and OvchinnikéV as the length 9 threshold = force Fy™™-I for T>I4y. ~For

. N2 F>F2~(c66a(2,Rp)2 there is a region of plastic flow above the
scale Wherg the mean square displacengpafr)]°) - binned region, separated from the sliding solid by the force
duced by disorder is of the order of the range of the pinning- _ -
potential, i.e., <[u(Rc)]2>~R,23. The estimate described °
above neglects logarithmic corrections and assumes poitase one needs to go beyond the simple dimensional esti-
pins of rangeR,<ay. mates just described, as discussed recently by Giamarchi and

The Larkin-Ovchinnikov collective pinning theory applies e Doussaf*

providedR;>a,. In addition, if topological defects can oc-  The question of when and how, as a function of disorder
cur in the lattice, the mean distance between such defectsrength, topological defects proliferate has been addressed
must exceedR.. While our simulations have been carried recently by Gingras and HuSkfor a ferromagnetic random
out for parameter values where the above inequalities genefield XY model. Dislocations allow a region of linear size
ally do not apply, it is useful to briefly summarize some of R to better adjust to disorder, yielding a gain in pinning
the properties of driven elastic media for comparison. Theenergy. Gingras and Huse argue that a bound for the length
force needed to depin a region of linear sRe&an be found scaleRy where dislocations proliferate can be obtained by
by equating the energy gain due to the external forceequating the elastic energy cost of a dislocation,
~FR,R? to the pinning energyE,(R) of the region and is  ~c4za2InR, to this pinning energy gain. If the pinning en-

given by ergy gain is estimated again @& ,(R)~n,I'R/R,, we
obtain Ry~(aj/R3)R;. Notice, however, that since the
Jn,T' disorder-induced displacements of the lattice in the presence
F(R)~ 2R - (3.2)  of dislocations exceedR,, the pinning energy no longer
P grows linearly with displacement and this estimate is at best

a lower bound of the actual pinning energy. For this reason

In the weak pinning regime where Larkin domains of sizeg|| we can really infer from this argument is that in the con-
R. are pinned collectively by disorder, the threshold forcetext of weak collective pinnindRy>R.. The focus of our
needed to depin the medium can be estimated as the for%per is not on determining the leng®y, but rather on the
needed to depin a Larkin domainF{'=F(R;)  dynamics of the driven system and on the proliferation or
~ nvF/(CGGRﬁ). healing of dislocations as a result of the competition between

When R.~a, or \/f/Rp~066R§, the collective pinning disorder, drive, and interactions. We can estimate the force
theory breaks down and vortices are pinned individually. Inneeded to depin and heal dislocations separated by a length
this strong pinning regime the threshold force can be estikq asFq~F(Ly), whereF (L) is given in Eq.(3.2), with the
mated as F$""%=F(R~ag)~n,\I/R2. The disorder- resultFy=n,I'/(cea5R5). We remark that this dimensional
induced displacement of the lattice exceeds the range of thestimate forF, is identical to the “crystallization” force
pinning potential and the disorder can no longer be treated &s; of Koshelev and Vinokur.
a perturbation. When this displacement becomes of order We can then distinguish three regions as a function of the
a,, the Fourier components of the pinning potential with thedisorder strengtfh’, as shown in the schematic “phase” dia-
periodicity of the underlying lattice become dominant andgram of Fig. 1. These regions may or may not be separated
change qualitatively the nature of the pinnfig” In this by actual phase transitions. FBI<(CeeR3)?, Lg>Lc>ag
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and the pinning is collective. The driven medium respondsheory and then requiringg;s(r,t))=0. The lowest nonva-
elastically and the relevant threshold force for depinning isnishing correctiondvy=v4—F/7y to the mean velocity is
the force F'~T' needed to depin a Larkin domain. For given by

(066R3)2<F<(066a§Rp)2, thg pinqing .is strong since 2
L4>ag>L. and vortices are pinned individually. The thresh- Suy(F)~— _vz I'(G)G3(G- ,3)
old force is estimated as the ford&™"%~ \T' needed to 2vé70

depin a single vortex. In both these regions the foFce dk V.G
needed to depin and heal dislocations present in the lattice is J' 5 5 72’ 5,
smaller than the threshold force. WhEm (ceagR,)?, then Bz(27)" (Ceek™) "+ (yV- G)

Lg<@, and the forceF 4~ 1I" exceeds the threshold force for where G are the reciprocal lattice vectors of the triangular
depinning. In this region one may have a scenario of the typ@yy |attice and thek integral is over the first Brillouin zone
proposed by Koshelev and Vinokthwith a pinned disor-  of sjze kg, = \4an,. The disorder correlator is given by
dered solid for F<F3™", a region of plastic flow for F(G)~F%np(pr3)2 for G<1/R,, and vanishes rapidly
. . . . . p 1 1

F$""<F<F,, and finally a flowing solid with no topologi-  foy G>1/R,. It therefore cuts off the reciprocal lattice vec-
cal defects fol->Fg. _ . _ tors sum atGpa~1/R,. For the case of point pinsa

The sliding state of an elastic medium driven through as. R,), the right-hand side of Eq3.5) can be evaluated ex-
random potential can be studied analytically via a high-actly by transforming the wave vector sum to an integral. It

velocity perturbation theory. The perturbation theory was ins however, more instructive to present the result in two

text of flux lattices and further developed by Sneddon, Crossad<066kész/7 the main contribution to the integral
and Fishef” for sliding CDW's. More recently Zhu, Little- oo from the smak- region, corresponding to length
wood, and Millis discussed in detail the high-velocity pertur-¢41as much larger than the range of the pinning potential.

bation theory for sliding Wigner crystafs. _ _The upper limit of the wave vector integral can be extended
The starting point of the perturbation theory is a descrlp-t0 infinity, with the result

tion of the flux array as an overdamped elastic continuum

(3.9

driven by an external force and distorted by short-range un- n, —
correlated disorder. The equation of motion for the two- dva(F)~— 47066;0 I'(G)G"G-F sgr(G-vq)
dimensional displacement fieldr,t) is given by
I'n, 3.6
AU 1) = (Cya— Ceg) V(V- U) + CeeV 2+ Fo(r 1) + 1, F, T R 36

3.3
33 In this intermediate-velocity regime the lifetime of elastic

where y is a friction per unit area, related to the single- deformations of the sliding medium is small compared to the
vortex friction coefficient of Eq(2.1) by y=n,y;, c;; and  time to cross the range of the pinning potential, yielding
Cgg are the Compressiona| and shear elastic moduli of th@O”ectlve pinning of the lattice. For the two-dimensional

two-dimensional flux lattice, anH, is the pinning force per Case considered here in this regime one obtains a force-
unit area, independent correction to the drift velocity. Conversely, if

vd>066k§ZRp/7, the time needed to cross the range of the
F (r.t)=—po(r)VV[r+u(r,t)], 3.4 pinning potential—and therefore to see uncprrelated
p(F) Po(1) WV (0] 349 disorder—is short compared to the lifetime of elastic defor-
mations connecting neighboring vortices, and one obtains

_ <N, DOy . .
wherepy(r)==% v, 8(r —Ry) is the spatially inhomogeneous single particle response, with

density of the undistorted lattice, witR® the sites of the
triangular Abrikosov lattice. The coarse-grained quenched r 1

pinning potentiaM(r) has zero mean and short-ranged cor- dvg(F)~— W E’ 3.7
relations (V(r)V(r'))=T(r)f(r—r"), with f(r) a function ] o P o }
that drops rapidly to zero far>R, . For simplicity of nota- Notice that the coeff|C|e_nt of E/in Eq. (3.7) is indeed inde-
tion we have neglected in E¢3.4) the nonlocality of the —Pendent of vortex density.

elastic constants. This can, however, be easily incorporated
in the perturbation theory. The drift velocity is defined here
asvy4(F)=(du-F), where the brackets denote a spatial av- We have performed molecular dynamics simulations of
erage, as well as a disorder average. In the absence of dis@rrays of 300, 920, and 1200 vortices using periodic bound-
dervy4(F)=F/+vy. Treating the disorder as a perturbation rela-ary conditions. The results presented below are for two sets
tive to the external driving force, one can then evaluateof parameter values, unless otherwise specified. The data for
corrections to this uniformly sliding state. The details of thethe array with a dilute concentration of pinsl{/N,=0.5)
calculation are not given here as this follows closely theare obtained witiN, =920,N,=460, andR,=9.9. For these
perturbation theory for the Wigner crystal described recentlyparameter values the clean Abrikosov lattice has lattice con-
by Zhu et al?’ Rather than expanding about the solutionstant a,=3.54, with anfzg_o, and shear modulus
vq(F)=F/v in the absence of disorder, one actually con-cq,=0.271. As discussed earlier, all lengths are measured in
structs a self consistent perturbation theory by writingunits of R, and forces are in units df,. The data for the
u(r,t)=vqtF+9g(r,t), solving for g(r,t) in perturbation densely pinned array N,/N,=133) are obtained with

IV. NUMERICAL RESULTS
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TABLE 1. Collective pinning lengths and estimated threshold
forces for the values of the pinning force used in the simulations.

N,/N,=0.5 N,/N,=133
fo R./a, Fest fo R./ag Fet
0.2 20.0 2.X10°* 0.03 7.8 1.4104
0.5 13.3 1.%10°% 0.1 2.3 1.6¢10°3
1.0 4.0 53%10°% 0.3 0.8 1.x10°2
1.5 2.7 1.%10% 3.0 0.08 1.x10°%
2.0 2.0 2.%x10°?

N, =300, N,=40 000, andR,=20. In this caseay=7.44,
with n,R?=8.3, andcgs=0.334. Table | shows the values of
the collective pinning lengtiR. given in Eq.(3.1) and the
threshold force estimated using the dimensional analysis dis-
cussed in Sec. Il for various pinning forcés. For each set
of parameters the value of the threshold force given in the
table is the smaller of the two estimate§”' and F5"9,

The drift velocity of the vortex array is shown as a func-
tion of driving force in Figs. 2a) and 3a) for various values
of the maximum pinning forcé, . Figure 2 is for the sample
with a low concentration of pinsN,/N,=0.5), while Fig. 3
is for the densely pinned sampléN(/N,=133). Figures
2(b) and 3b) display the differential resistivitydv4/dF.
Both Figs. Za) and 3a) show a systematic evolution of the
shape of thé/-I curve with increasing disorder strength not
unlike that observed in theV-l curves of real
superconductor$.For small pinning forces the velocity is
nonlinear inF only very near threshold, where it exhibits a
very small region of negative curvature. Correspondingly,
there is no peak in the differential resistivity. At larger pin-
ning forces there is a change in the sign of the curvature of
the mean velocity that occurs at a valkg.,above thresh-
old, but well in the nonlinear region, and yields a peak in the
differential resistivity. The location of this peak moves to
larger driving forces as the pinning force increases. This de-
pendence is particularly strong in the sample with a dense
pin array. ForF>F ., the V-I characteristic is concave
down and ag- grows it approaches the asymptotic value
vq=F, corresponding to a freely sliding array. In this region
the deviations from the linear behavieg=F are fit quanti-
tatively by the single-particle perturbation theory result given
in Eg. (3.7. This can be rewritten asvy/F~1
—(F5(0))/F?, where(F;(0))=T"/Rj is the mean square to-
tal pinning force. For the specific pinning potential used in
our simulations{F5(0))=(7/30)n,R3f7. The rms velocity
fluctuations defined asme=([(1/N)Z;v;-F—v4]>)¥? are
also fit quantitatively by their single-particle value,
vrms=[(F5)/2N, ]2 in this region. We stress that for very
strong pinning the flux array can be very disordered even i
the regionF>F 4, With sometimes as much as 50% of the
vortices with a coordination number different from[6ee
Fig. 4b) below]. This is because dislocations can be frozen
in the sliding lattice in oulT=0 simulations, yielding a dis-
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FIG. 2. Drift velocity (a) and differential resistivitydv 4 /dF (b)

Urms-

NS driving force for the array with a dilute distribution of pinning
centersN,/N,=0.5. The curves obtained by ramping the force up
and down are indistinguishable. The error bars represent the value

for all values of the pinning force studied. We cannot ex-

ordered array that slides as a whole, with dislocations movelude that the threshold force may vanish in this case, but we
ing along at the same velocity as the rest of the lattice. This%ave not performed extensive runs near threshold and finite-
behavior may be a finite-size effect and is related to thesize scaling to determine the location of the threshold pre-

hysteresis in the defect configuration discussed below.

cisely. In fact, for a model with dislocations, it is not neces-

For N,/N,=0.5 the threshold force remains very small sary thatF+#0 at zero temperaturel<0). In contrast, the
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FIG. 3. Drift velocity (a) and differential resistivitdv 4/dF (b)
vs driving force for the array with a dense distribution of pinning
centersN, /N, =133. The curves obtained by ramping the force up  FIG. 4. Fraction of sixfold coordinated vortices vs driving force.

and down are indistinguishable. The error bars represent the valug) is for N,/N,=0.5 and the parameter values of Fig. 2. In this
of vms. Notice that bothwy and F have been divided by, to  case the curves obtained by ramping the force up and down are
display the data obtained for different values of the pinning force onirtually indistinguishable and no hysteresis is obsenblis for

the same graph. N, /N, =133, with the parameter values of Fig. 3 afjg=3. The
lower curves are obtained by ramping up the force from an initial
threshold force is large and clearly nonzero fordisordered configuration of the flux array. Data for bdth= 300
N,p/N,=133. While we have not determined the threshold(circles andN,= 1200 (triangleg are shown to display the finite-
value accurately, we find that the numerical estimate agreesze effect. The upper cur¥squarg is obtained by ramping down

in order of magnitude with the dimensional estimates giverthe force from an initial ordered configuration with, =300.
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in Table I. Our numericaV/-l characteristics resemble those 400 : i : :
obtained in earlier simulations of the same modet! There
is, however, an important difference between our results and

those of Koshelev and Vinoktirin that we see no hysteresis 350 1 ]

in the V-l characteristics other than that arising from finite-

size effects. For small systems, we do see hysteresis in the 300 | ' — F=0.004 ]

V-1 curves similar to that reported by Koshelev and Vinokur, i - E:g'ggg

but this hysteresis vanishes in larger systems. This hysteresis i | — F-0012

may be due to the periodic boundary conditions, which lead 2 250 | | ‘ ——-F=0015 ]

to metastable periodic attractors for the dynamics. The hys- % 1y F=0.020

teresis in small systems in our simulations is associated with [ [

such periodic attractors. g 207 I ]
We have also studied the evolution of the number of de- £ !

fects in the lattice with driving force. In most of our runs the 2 150 | ]

flux array is prepared in an initial random disordered con- e

f
figuration and the driving force is then ramped up from zero. :
We have tracked the defects in the lattice by doing Voronoi 100 ¢
constructions during the run and counting the number of vor- ]
tices that are not sixfold coordinated. The fivefold and sev- i

enfold coordinated vortices are disclinations in the two- 50 ¢ [' |
dimensional triangular flux lattice and, when paired, |

correspond to a dislocation. Figuréayshows the time av- 0 Llirt . . p s
eraged fraction of sixfold coordinated vortices as a function -0.005 0.000 0.005 0.010 0.015 0.020 0.025

of the driving force forN,/N,=0.5. In looking at these Ve

curves it should be kept in mind that the number of defects

present afF=0 depends on initial conditions and the real- FIG. 5. Evolution of histograms of instantaneous veloaity
ization of disorder. As observed earliérye find that the with applied driving force for the parameters of Fig. 2 and
flux array orders at large driving force. The value of thef,=0.2. The system exhibits crinkle flow near threshold.

driving force where the number of defects starts dropping is

of the order of the location of the peak in the differential ity distribution becomes sharper and symmetric.

resistivity. Again, we have observed no hysteresis in the The instantaneous velocity distributions are quite different
number of defects for the sample with a low concentration ofor parameter values where plastic flow is found. In this case
pins other than one arising from finite-size effects. We dothe velocity histograms display a clear bimodal structure
however, find hysteresis in the number of defects when th@ear threshold, as shown in Fig. 6, indicating the presence of
disorder is very strong, as shown in Figb} In this case two distinct “typical” velocities of the vortices. The first
when we ramp-up the force from an initial disordered vortexpeak, which is approximately centered at zero very near
configuration, defects get “frozen in” and the lattice never threshold, is determined by the “slow” vortices in the array,
orders. Starting from an ordered configuration at high fields|ocated in pinned or temporarily pinned regions. This peak
the lattice maintains its order. We have not been able tdas finite width due to the oscillations of the “slow” or
exclude that this hysteresis is also a finite-size effect. Weinned vortices about the pins due to interactions with vor-
expect that this hysteresis will disappear in the presence dfces flowing nearby. The peak at larger velocity is deter-
thermal fluctuations. The value of the driving force wheremined by the “fast” vortices that flow in channels around
the defects become frozen in apparently corresponds to tHbe pinned regions. We stress, however, that individual vor-
onset of the single particle behavior discussed below. tices are sometimes “slow,” sometimes *“fast.”

In order to correlate the macroscopic response of the vor- As a result of the temporal fluctuations in the velocity, we
tex array with the details of the microscopic vortex motion,expect a large voltage noise in this region, perhaps related to
we have performed a variety of visualizations and we havéhe experiments by Marley, Higgins, and Bhattach&ryae
studied the spatial distribution of vortex velocities. Onevarious curves correspond to different driving forces, rang-
method of displaying the data that we have found useful is tong from close to threshol@he threshold force for this case
plot histograms of the component of the vortex velocity inis estimated af~5.3X 10~ 3) to well within the linear re-
the direction of the driving forcex( component Figure 5 gime. The bimodal structure disappears at a value ofose
shows the evolution of such histograms of theomponent to the locationF ., 0f the peak of the differential resistivity
of theinstantaneousortex velocity near threshold with driv-  (hereF oo~ 0.125). Beyond this value thé-I curve rapidly
ing force for parameter values that yield crinkle flow. For all becomes linear and the velocity distribution is narrow and
driving forces, the histograms have a single maximum at &ymmetric, centered at the mean velocity. The origin of the
value of velocity close to the mean drift velocity. The loca- maximum in the differential resistivity can easily be traced
tion of the maximum moves to larger velocities as the driv-back to the shape of the velocity histograms by studying the
ing force increases. Very close to threshold, velocities ardocation of the two peaks and their relative weigtfgy. 7)
distributed asymmetrically about the mean value and the hisas functions of the driving force. Using a crude approxima-
tograms are not unlike those obtained from a phase-onl$ion, we can write the drift velocity of the vortex array as
model of CDW’s? As the driving force increases the veloc- vq=ng+nsv¢, whereng andn; are the fraction of slow
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FIG. 6. Evolution of the histograms of instantaneous velocity
vy with applied force for the parameter values of Fig. 2 and
f,=1. The system exhibits plastic flow near threshold and the his- 0.9
tograms clearly display a bimodal structure in this region.

and fast vortices, respectively, identified with the area under
the respective peaks of the velocity distribution and shown in
Fig. 7(b). Similarly, vs andv; are the corresponding veloci-
ties, identified here with the location of the two peaks and
displayed in Fig. 8). Using ns+n;=1, we obtain
(dvg/dF)~dv/dF+(dn;/dF)(vi—vs). For F<Fpeythe
slow vortices are essentially not moving,&0) while the
numbern; of fast vortices is increasing rapidly, leading to a

o o
(=] ~
T T

Weight of peak
o
[%;]

superlinearV-l. Above F ., the ratedn;/dF at which the 04 1

slow vortex fraction decreases and the slow vortex fraction

increases slows down considerably, while € vg)~F—it 03

is this slowing down of the ratdn; /dF with increasingF

that is responsible for the peak in the differential resistivity. 0.2
The bimodal structure of the velocity histograms dis-

cussed above reflects the spatial inhomogeneity of the instan- 01

taneous vortex velocity. A crucial question for the character-
ization of plastic flow is whether or not this bimodal
structure will persist when the vortex velocity is time aver-
aged over times larger than those corresponding to an aver-
age displacement of the lattice of at least a lattice constant. It
has been suggested that an important distinction betweeine

plfasrtlc a_nd elastic re(;spor;se_é:lzlindbe cl;ou_nd n thg (l:orrrellatlorl_slgl 6. The location is obtained by recording the velocities at which
of the time-averaged velocitylndeed, in a model where each peak is maximum. The weight of the first peak is the ratio of

dislocations are forbidden and the response is therefore elaﬁ’fe area under the part of the histogram up to the minimum between

tic, the time-averaged velocity will be spatially homoge- e two peaks, to the total area under the curve. The weight of the
neous and correlated over the entire system size. In contraglecond peak is 1, the weight of the first peak.

in a system exhibiting plastic flow the time-averaged local

velocity should still be spatially inhomogeneous, yielding bi-where T=1 yields the histogram of instantaneous velocity
modal structure of the corresponding histogram. We haveliscussed above. The histograms are shown in Fig. 8 for two
constructed histograms of time-averaged vortex velocitiesyalues of the driving force. The bimodal structure clearly
defined aSUi(T)zfg(dt/T)vi(t) for various values ofT, remains for the time-averaged velocities.

00 Il 1 L 1 L Il L
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
F

FIG. 7. These figures display the evolution with applied force of
location(a) and weights(b) of the peaks of the histograms of
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FIG. 8. These figures compare histograminstantaneousndtime-averagediortex velocities. The vortex velocities are averaged over
a timeT. The valueT=1 yields the instantaneous velocity histograms of Figs. 5 an@6corresponds to parameter values yielding
“crinkle” flow (same as Fig. 3 fof ,=0.03 andF =0.0054). In this case the instantaneous velocity histogram exhibits a single maximum
nearvy~0.001 and is essentially identical to the histogram obtained Witl0 andT=160. Notice that in a tim& =10 the vortices
displace on the average a distankr~0.018&,. The histogram fofT=640 is sharper, but qualitatively unchanged, indicating that the
system motion is well correlated for these parameter values. The histograms sh¢hynmdfer to parameter values yielding plastic flow
(same as Fig. 3 fof ,=3 andF=3.5). In this case the histogram of instantaneous velocifies](, solid curvg has a bimodal structure,
which persists upon time averaging£€5 or Ax~1.4a, andT=10 or Ax~2.7a,), indicating a true plastic response.

To summarize, our model of a two-dimensional flux arrayand Westervelt also argue that the response exhibits scaling
driven through quenched disorder exhibits two types of rein this regime. While we have not studied in sufficient detail
sponse. For very weak disorder strength, the flux array exthe region near threshold to observe scaling, it seems quite
hibits “crinkle” motion, with correlated patches of vortices plausible that this “crinkle” regime will exhibit generic
making small forward jumps at different times, like a table-critical behavior, analogous to that predicted and observed
cloth being pulled on a rough surface. At very small drivingfor an elastic medium, in spite of the presence of defects.
forces the lattice contains an appreciable number of fivefold he fairly large number of defects present in our system at
and sevenfold disclinations. The defects are concentrated sery small driving forces may very well be an artifact of our
and their number drops rapidly to zero with increasing driv-rather than equilibrated. It may be that if a low but finite
ing force. The distribution of vortex velocities displays atemperature is introduced in the model and the flux array is
single maximum at a value of the velocity of the order of theinitially allowed to equilibrate in the presence of the disor-
mean velocity of the arrayFig. 3). As the driving force is der, the number of defects present for the parameter values
increased and the flux array gets depinned, the maximumielding crinkle motion would be practically negligible even
shifts to a higher velocity and the distribution broadens withat the smallest driving forces.
no substantial change in shape. The histograms of time- In most of the region of parameter space studied we have
averaged velocities become sharper as the averaging tinebserved plastic flow of the flux array. This regime is char-
increases and stop changing once the averaging time exceeasterized macroscopically by a change in the sign of the
the time over which the vortex lattice advances on the avereurvature of theV-l characteristic well above threshold,
age a distance of a feR,. This type of response is similar which yields a maximum in the differential resistance
to that observed by Hu and Westervelt in magnetic bubblelvy/dF, and by a large number of defects in the region
arrays?® These authors report observing a bimodal velocitybelow the maximum. The flow is spatially inhomogeneous.
distribution, but this is because they only look at the distri-Over a short time interval one observes fluidlike flow of
bution of velocity over a very small time scale, smaller thanmoving regions around pinned regions. On the average, how-
the time required for the array as a whole to advance a disever, all vortices participate in the motion in the sliding state
tance of the order of the range of the pinning potential. Huand no regions of the array are stuck for the entire length of
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the simulation, even near threshold. The evolution of thegained by considering the Larkin-Ovchinnikov pinning
velocity distribution with driving force is shown in Fig. 4. length, given in Table | for the case where the ramyeof
There is clearly a bimodal velocity distribution in the sliding the pinning potential is small compared to b&handa,. If
state which persists until all defects have healed and/the R,>a,, the shear modulus of the flux array can be estimated
| has become linear. A single vortex is in general “slow” for ascg~f,R, /a2 and LC~RUfU\/N_U/(fp Np). The flux array
some of the _time and “fast” for'some of the time. This should therefore be pinned collectively. & a,) provided
shou_ld result in a large voltage noise, as observed by Marley,v \/N_v/(fp\/N_p)>1_ We find that these inequalities are gen-
Higgins, and Bhattacharyd . erally satisfied in the cases where we observe a crinkle re-

As the pinning force is increased, the persistence time o§ponse. Conversely, whein N, /(f,VN;)<1, even if R

. . . L . ) v p p ) v
this structure of pinned and flowing regions grows ands.a we obtainL,~a, and vortices can be pinned individu-
pinned vortices remain pinned for _Ionger and longer timesg)ly yielding plastic flow or eventually filamentary flow. A
For the situation of strongest pinning among those studiegransition between these two regimes is indeed observed as
(fp=3 for Np/N,=300), we find that some vortices are ¢ js increased for the parameter values discussed above
pinned for the entire length of the simulations, while others(here L. decreases over almost two orders of magnitudes
are.flowing qgite freely in channels surrounding the Pin”.edover the range of pinning forces studied, fram~ 20a, for
_regmns.dln this cars];e tr;]eldstr’kl\ctuhre dof 'Fhe fchanr_lel_sz is tlm$p20_2 to L~0.38, for f,=10). Using again the above
independent near threshold. As the driving force is increasedsiimate forcg, for R,>a, we find that in the collective

all vortices are eventually depinned and tfel becomes ,inning regime the threshold force needed to depin the array
linear. The array is very defective near threshold and theg given byFTN(Np/Nu)(Rp/Rv)(fg/fu)' The increase of

ve:oc?ty distribgtion is bimogal_r;mdﬂremains tc)ji_moldal the_‘\lnthe threshold force Witrﬁp observed in Fig. @) is consistent
velocities are time averaged. The flux array displays a ilag,ith this dependence.

mentary motion similar to that observed by Middleton and
Wingreen for an array of quantum ddtswhere near thresh-
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