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Nonlocal conductivity in the vortex-liquid regime of a two-dimensional superconductor
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We have simulated the time-dependent Ginzburg-Landau equation with thermal fluctuations, to study the
nonlocal dc conductivity of a superconducting film. Having examined points in the phase diagram at a wide
range of temperatures and fields below the mean field upper critical field, we find a portion of the vortex-liquid
regime in which the nonlocal Ohmic conductivity in real space is negative over a distance several times the
spacing between vortices. The effect is suppressed when driven beyond linear response. Earlier work had
predicted the existence of such a regime, due to the high viscosity of a strongly correlated vortex liquid. This
behavior is clearly distinguishable from the monotonic spatial falloff of the conductivity in the higher-
temperature or field regimes approaching the normal state. The possibilities for experimental study of the
nonlocal transport properties are discus$&®163-182606)05338-4

. INTRODUCTION forces on a vortex segment @tand causes it to move, this
vortex motion can in turn cause vortex segments ab
In this paper we present the results of a computer simumove, through vortex interactions, connections, or entangle-
lation designed to study the nonlocal dc conductivity of ament. The motion of the vortices aproduces phase slip and
two-dimensional (thin-film) type-Il superconductor. The electric fields atr, as described by the Josephson relation,
meaning of nonlocal in this context can be seen in the stancompleting a nonlocal relation between current and electric
dard expression connecting the local current density in a médield. In the vortex-liquid regime, this tendency of a moving

terial, J, to the local electric fieldE, in the linear(Ohmig ~ Vortex to drag along nearby vortices can be understood in
regime: terms of a vortex-liquid viscosity, as discussed by Marchetti

and Nelsorf. Using nonuniform applied currents, Safar

et al> have observed nonlocal resistivity over length scales
JM(r):JUw(r,r’)EV(r')dr'_ (1.1 of tens of micrometer in bulk crystals of the high-

temperature superconductor YBaLO; (YBCO). These re-

. . : I i h logicall H
When the conductivityr(r,r’) is nonzero for #r’, then it i/luaﬁimvégrrg discussed phenomenologically by Huse and

is nonlocal. Ina translationally invariqnt system, the nonlo- | 5 recent paper with Mou and Dorskye examined the
cal conductivity can only be a function of the difference onigcal dc transport properties throughout the phase dia-
(r—r’). The Fourier transform of the conductivity equation gram of a type-Il superconductor, using analytic calculations
is thenJ (k) =0 ,,(K)E,(k). The nonlocal conductivity we \here possible and proposing phenomenological arguments
are discussing here is a different phenomenon from Pipelsewhere. In particular, we predicted that the wave-vector-
pard’s nonlocal relation between the supercurrent and thgependent dc electrical conductivity(k), of a type-ll su-
vector potential belowT, in a type-l superconductdrin  perconductor would have a nonmonotonic dependence on
particular, we are interested in the nonlocal conductivity inin a certain region of the phase diagram: For those values of
the resistive vortex-liquid regime of a type-Il superconductormagnetic field and temperature at which there exists a well-
in a magnetic field. correlated liquid of field induced vortices, the dc conductiv-
All materials exhibit nonlocal transport properties onity as a function of increasing wave vectowas argued to
some length scale. Normal metals behave nonlocally oincrease for small values d and then decrease at large
length scales less than or of the order of the inelastic meawalues ofk. The increase in the conductivity at smialarises
free path. In superconductors, however, the scale of the norirom viscous drag between vortiéewhich impedes their
locality can be much larger. Israelaft al2 have measured relative motion and therefore decreases their contribution to
effects arising from the nonlocal resistivity due to supercon+esistance in a nonuniform current. However, when the
ducting fluctuations just abovE. in one-dimensional rings length scale of the nonuniformity in the current is smaller
of type-l material. The observed behavior, predicted bythan the intervortex spacinthigh k), the conductivity is
Glazmaret al.2 arises from the correlations of the supercon-more determined by the short-distance correlations of the
ducting order parameter. superconducting order parameter, rather than the vortex in-
In the mixed state of a type-1l superconductor, the presteractions. In this short-distance regime the behavior is as in
ence of vortices provides another mechanism for nonlocatero magnetic field: The conductivity decreases with increas-
resistivity. When a curreni(r’) exerts Lorentz and Magnus ing k.
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Because this effect is only expected to appear in a regimand §-function correlated, with the coefficient given by the
with strong correlations and fluctuations, analytical calculafluctuation-dissipation theorem,
tions do not appear feasible. In the present paper we report
on computer simulations of the time-dependent Ginzburg{¢* (r,1){(r',t")y=2T "*kgT&'V(r—r")s(t—t'). (2.2
Landau(TDGL) equation in two dimensions which allow us
to study the nonlocal dc conductivity both in real space an e consider the strongly type-{large «) limit, where the

in wave vector space as a function of magnetic fidland order-parameter fluctuations are much stronger than the mag-
temperaturel. We have indeed observed the nonmonotonic P 9 9

k dependence in the vortex-liquid regime, as expetted. 22::2 I:gllg fluctuations. Thus we use & uniform, static mag-

Qne way to probe the nonlocal transport properties ex- To simplify this equation we rescale: Energy is measured
perimentally is to apply currents that are nonuniform on the

. ; . in units of|al. We work only below the mean fiel@l;, and
appropriate length scafeThis has been done in two types of ~ ; :
! 5 . so we seta=—1. The order parameter magnitude is mea-
experiments, so far. Israelo#t al“ have made 3:m-size

. : : sured in units ofy|a|/b, its equilibrium value at zero noise
I I h Il - T .
wire loops, applied the current asymmetrically, and mea d zero magnetic field; therefore= + 1. Length is mea-

sured resistances as a function of a magnetic flux assing' . _

through the loop. Safaet al® have applied gcontacts to r:)oth red in units ofé=7i/2m*|al, the order-parameter corre-

sides of 10—-5Qzm-thick YBCO samples, measuring effects Ia2t|on *Iength at zero noise and zero magnetic field, so

due to the nonuniformity of the current across the sampleﬁ fam* =1. Magnetic ﬂU)_( IS ineasured_ In units such that_ the

This latter experiment detected the nonlocal resistivity alongd!UX quantum is 2r; that is,e*/#=1. Time is measured in
units of 1M'|al, soI'=1. We also tak&kg=1. The param-

the direction parallel to the vortex lines, due to the lines 1 X .
having integrity(not breaking across the sample in a portion eters remaining are the temperature, now measured in units

of the vortex-liquid regime. The present work indicates that©f |a2|, and the magnetic field in units of flux quanta per area
the phenomenon is quite general, and could be studied iR7¢" OF: e(aﬂléwalently, in units of the mean-field upper criti-
superconductors of any dimensionality. What is required i€@l field, Hcy (T). The theory also needs an ultraviolet cut-
to be able to apply nonuniform currents and measure voltoff, which we realize in the simulations by discretizing
ages on length scales of order the appropriate correlatiopPace. Note that when our rescaled temperature is large
length of the superconductor. With modern microfabrication(T>1), this meansgT>—a>0, which is the regime of
techniques(and/or possibly using scanning-tip probekis  strong thermal fluctuationbelow the mean field transition
should be feasible for a broader range of materials and géemperatureTy'" .
ometries than those used in the two experiments discussed The rescaled equation is
above. What would be best would be an experiment that ) s )
simultaneously and quantitatively probes a range of length (HIP)YW=(V=iA)* W+ W — W[+ (2.3
scales, so that the dependence of the transport properties 98 solve this equation, we discretize space and time. The
length E')scale(and other parametgrsan be systematically i s approximated by a square lattice with spacing one in
studied: We hope the results reported below help motivatéye rescaled units. Time is divided into a series of time steps.
such studies. , _ _ . The length of these time steps must be decreased at higher-
An outline of this paper is as follows. Section Il describesiemperatures in order to obtain accurate steady-state results
the simulation. Section IIl outlines the phase diagram of &yn4' avoid numerical instabilities. We used time steps in the
two-dimensional superconductor, providing a context for OUange of 0.2 to 0.02 rescaled time units for temperatures
results. Section IV describes the conductivity we observe ir}anging from 0 to 1, respectively.
both real an(_j wave veptor space in the different regimes_of Taking advantage of the gauge invariance of the equation,
the phase diagram. Finally, in Sec. V, the results are disye work in terms of only gauge-invariant quantities, namely,
cussed, both in the context of earlier work and in terms ofhe order-parameter magnitudes at each site of the lattice,
possible experiments. #(r), and the gauge-invariant phase differences along each
nearest-neighbor linkd, defined by

(ﬁ/ and A are the scalar and vector potentials, respectively.

II. SIMULATION

We wish to study the nonlocal conductivity of a two- 0(r,r’)=¢(r’)—¢(r)—fr A-dl, (2.9
dimensional(thin-film) sample of a strongly type-Il super- r
conductor. We begin with the time-dependent Ginzburg

. ) ‘wherer andr’ are adjacent lattice points and the integral is
Landau(TDGL) equation(SI units: ) P 9

along the straight line between them. Derivatives are ap-
o 52 e* |2 proximated using differences, and only differences up to one
r—l( Oy +i _q))\[r:_*(v_i —A) W —aW¥ —b|¥|?¥ time step and two lattice spacings are kept; this is the mini-
h 2m h mum needed to approximate the derivatives appearing in the
(). 2.1) TDGL equation.
We use periodic boundary conditions in both thend
W (r,t)=y(r,t)e'*") is the superconducting order param-y directions, giving effectively a toroidal surface. We begin
eter.I" is the kinetic coefficient for the relaxation of the order with random initial conditions, setting the gauge-invariant
parameter towards equilibrium; it is assumed to be realphase difference to a random number betweenand on
m* is the effective mass of a Cooper pair agit=2e is the three of the four links surrounding each plaquette; the phase
charge of a Cooper pair. The noises Gaussian distributed difference on the last link is then determined uniquely
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FIG. 1. Sketch of the phase diagram of the model thin-film superconductor we have simulated. Note the logarithmic scale on the
temperature axis. The solid curve is a rough estimate of the melting boundary based on our estiipatérzrked with a diamondand
Ref. 12. The points we have studied are marked with crosses, and representativeAp&@ntnd C are marked with squares. Negative
nonlocal conductivity was observed for the points below the dashed line. The near intersection of the dashed linésald) thelting
curve may not be significant, because both have large uncertainties in their precise loczttexk

(modulo 27) by the magnetic flux passing through the ll. PHASE DIAGRAM
plaquette. The order parameter magnitude begins at the
small, spatially uniform value of 0.01. Our simulation is designed to represent a superconducting

Our goal is to study the conductivity. To do this we apply film with thickness less than the bulk order-parameter corre-
an electric field and measure the electrical current. Theation length. When there is no applied magnetic field, such a
TDGL equation in this type-II limit only involves the super- system is expected to undergo a Kosterlitz-Thouless transi-
current due to the paired electrons that produces enhance@n at a temperaturg. . *° Below this temperature there are
conductivity over that of the normal state. The supercurrenty o nq pairs of vortices, but no free vortices and therefore no
in our rescaled units, is Ohmic resistance to a uniform dc current. AbdNg: , there

Jo=2Im {W* (V—iA)W}. 2.5 :\r/iet;ree vortices, whose mobility results in a nonzero resis-
This we also discretize as described above, so the supercur- When a magnetic field is applied perpendicular to the
rent is defined on each nearest-neighbor link of the lattice aplane of such a film, the flux is not expelled. At low-
temperatures, a triangular vortex lattice forms. Above the
Js(r,r")=24(r)p(r")sin( O(r,r")]. (2.6)  melting temperaturd@,,(H), this lattice becomes unstable to

In addition to this supercurrent, there is also a normal curren‘f“smca’[Ions and melts. At |nterr2ed|ate magnetic fields, i.e.,
which we will assume is simply local and Ohmic: much less than the mean fieitfs (T) but greater than one

J,(r)=o,E(r), whereo, is the normal-state conductivity. 1UX quantum per magnetic penetration length squarggis
We generally apply an electric field that is uniform in the €xpected to be only weakly field dependehin the limit of
y direction, parallel tox and given by as function along & normal-state sheet resistance much larger than the quantum
X of resistance,%/(e*)?, T,=(0.026+0.008)Tr in this
intermediate-field regim&. When the temperature is res-
E=Eyd(X)X. (2.7  caled as we have done, this relation betwd@gnand Tyt

on the lattice thiss function i lized b Wing th holds for films with a smaller sheet resistance as well. At
n the Jatlice thiso tunclion IS reaiized by applying e pigher magnetic fields, near the mean fiek (T),

electric field only between two adjacent columns of IattlceTMoc[ch(o)_H]z for Ginzburg-Landau theory with ther-

sites. In this geometry the resulting current is also parallel to St . -
% and, in the linear response regime, is given by mal fluctuations! The locations of the phase transitions are

roughly sketched in Fig. 1.
To estimate the zero-field transition temperature, we used
J(x)=EoJ dyo(X,Y)=Eoou(X,k,=0). (2.8  a finite-size scaling analysis of the order-parameter phase
correlations, obtaining Txr=0.8+0.1, which implies
Thus we measure the dependence of the nonlocal conductiify,=0.02+=0.01 in the intermediate-field regime. We did not
ity on the spacing for conditions that are uniform along  attempt to directly estimat&,, by looking for the melting
(ky=0). By Fourier transforming orx we also obtain transition in our simulations. We also raised the applied field
(K Ky =0). until the zero-temperature equilibrium order-parameter mag-
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nitude dropped to zero to find thek,,(T=0)=1.18+0.02.

In the continuumH.,(T=0)=1 in our rescaled units; the 04 ' "5 — : ‘
increase to roughly 1.2 is due to our approximating the con- % 45
tinuum by a lattice with spacing and approximating the 0.35 |} ' .
spatial derivative with the lowest-order difference. We ex- i 4
pect other quantities are also quantitatively shifted small 1
amounts by these approximations. In particular, the precise 03 F | >3'5 y
values we obtain for the conductivity are likely to be af- '»' ‘l‘ T 3
fected. However, as we are focusing on trends related to the b &
variation ofx, k, H, andT rather than on precise numerical 02511 By 225 R
values, these shifts are not expected to affect our conclu- A
sions. - ! |
S 02p v 15 1
° ! \
IV. RESULTS B ',' /f' “‘ 1
We studied points in the phase diagram in the field range g 01 I L1 05
0=<H=1.2 and the temperature rangeT=<1 as shown in C *—\ 0
Fig. 1. At most points we studied, all the vortices present o1k V1 a8
were field induced. Thermally induced vortex-antivortex i\ -05 e
pairs were observed only faF=0.1. However, the number [ y o 1801055 g 5 1015
of field-induced vortices was much greater than that of ther- 0.05 ;\k ! .
mally induced vortices for temperatures up to 0.5 at the non- NN
zero field values studied. ‘i;\ ]
We saw three characteristic behaviors for the nonlocal 0 ""““‘Si‘@“‘%"&'_‘i‘}g”:”d
conductivity. The pointA, B, and C shown in Fig. 1 are “Eeop-
chosen as clear examples of these behaviors. Puirdt . , , \ .
T=0.001 andH =2x/25, is representative of what is seen in -0.05

the ordered phases at very low temperatures and fields, in-
cluding T=0 andH =0. PointB, at T=0.04 andH = =/5, is
represe:\ntat.ive of the well-correlated \_/ortex-.liquid regime, in- g 2. Conductivityor,,(x,k,=0) as a function of positior at
termediate in both temperature and field. Finally, p@niat  the pointsB andC indicated in the phase diagraiig. 1). Note the
T=0.1 andH=6m/25, is representative of high-temperature negative nonlocal conductivity faB. Inset also includes point A;
and high-field behavior. the vertical zero is shifted for the data from pafkbnly (see text

In a linear response, the nonlocal conductivity in realThe local normal-state contribution to the conductivitkatO has
space,oy(x,k,=0), for the characteristic points is as fol- not been included here.
lows (Fig. 2): At point C, we see a conductivity which is
sharply peaked around= 0, falling off exponentially to zero the very largek=0 part of the conductivity and the data for
with a length scale of order the correlation length. This be{oint A in the inset to Fig. 2 consequently has an arbitrary
havior is in qualitative agreement with the high-temperaturex-independent vertical shift. The conductivity ¥xsshows a
behavior obtained analytically from lowest-order fluctuationsbroad peak at the origin, with a width and magnitude propor-
about the mean-field normal stdtét point B the conduc- tional to the linear sample size and a shape well fit by a
tivity still has a sharp peak at=0 of similar width to that at parabola centered on the column opposite to wheresthe
point C, but it then dropselowzero over a distance of few function component of the electric field is applied.
intervortex spacings before returning to zero. This is the Still in linear response, but now ki space(see Fig. 3, at
negative nonlocal conductivity expected in this well- point C, the conductivityo,,(k,,k,=0) falls monotonically
correlated vortex-liquid regimeAt both pointsB andC the  from its value atk,=0. At point B the conductivity rises
conductivities and correlation lengths are all finite, so thefrom its value atk=0 to a maximum at a wave vector
numerical results for a finite sample that is large compared tooughly corresponding to the inverse of the vortex spacing
all correlation lengths do not show finite-size effects and thusind then declines. At pois (inse) the conductivity falls off
are a faithful representation of a much larger sample. monotonically like 1k?, as expected.

In the ordered phases the uniform conductivity is infinite. At point B, when the system is driven beyond linear re-
In the Meissner phaseéH(=0) this is true for the continuum sponse, the effect is to reduce the magnitude both of the peak
system as well, while for the vortex-lattice phase the infinitein o(x) and of the negative regions. knspace, the effect is
uniform (k=0) conductivity is due to weak pinning of the to suppress the nonmonotonicity. Figure 4 shawk) for a
vortices to our numerically imposed lattice that impedes theseries of applied electric fields of increasing magnitude. Here
“flux flow” that would occur for the continuum system. To in the nonlinear regime we apply tl&function electric field
avoid this divergence, instead of applying only the(2.7), measurel(x), define the nonlocal and nonlinear con-
S-function electric field(2.7) as was done at poin8 and  ductivity aso(x) =J¢(X)/Eg, and show its Fourier transform
C, at pointA we also apply a compensating spatially uniformin Fig. 4. The higher electric fields produce a strong shear
electric field that cancels the uniforrk€0) component flow in the vortex liquid, which apparently reduces the effec-
coming from thes function. This means we do not measure tive viscosity of the vortex liquid.
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FIG. 3. Conductivity as a function of wave vector at the points  FIG. 4. Nonlinear conductivitysee the text for a precise defi-
B andC. Inset includes poinf. These data are simply the Fourier nition) as a function of wave vector in the vortex liquid at the point
transforms of those in Fig. 2, so tHeindependent normal-state B for five values of electric field: 0.0125, 0.025, 0.05, 0.1, and 0.2.
contribution is not included.

V. DISCUSSION

For points in the vortex liquid below the dashed line in  To discuss the phenomena we have observed, and in par-
Fig. 1, the nonlocal conductivity itk space showed non- ticular to connect with experimental possibilities, it is useful
monotonicity significantly outside the statistical errors.to speak in terms of resistivitya(k) is simply o(k) "%, and
Above this line nonmonotonic behavior is still observed atp(r) is its Fourier transform:
many points; however, it is not possible to distinguish be-
tween true nonmonotonicity and statistical noise at these _ o Ny
points, given the level of accuracy of the present data. Thus E“(r)_j Pur(r =), (rdr”. 6.3

the dashed line is actually a lower bound on the true bound; _ _ _ 2
ary between monotonic and nonmonotonigk). This d\;\:]réen UV':;;]S’ ’;(k;;ll[aﬁ((l:;(wk)] _’:Ts‘((kk)) Z(Tn[ps\(/\ll(rzir’e
boundary is only a crossover, not a phase transition; it is D =1/0(k “d S—'ll P Pn= O\ Pn
roughly where the correlation length of the conductivitye ps(K)=1/05(k) andpy=1/cy.

9 yf th local duct ? . | spade The resistivity in real space,,(x,k,=0), for the case of
range of the noniocal conduclivity in real sp comes very low normal-state conductivity is sketched in Fig. 5 us-

comparable to the intervortex spacing. An interesting quesg, ,“yhe nonmonotoniarg(k) at pointB from Fig. 3. This
tion is whether this boundary, like the melting line, intersects,

X : - shows the response of a film in thg plane in a magnetic
the zero-field axis at a temperature beldwr. Following  fig|q parallel toz to a current applied between two closely

this line to lower fields in our simulations is difficult. It goes gnaced line contacts parallel to each other and to/theis,

to higher temperatures where smaller time steps are requirgd the geometry shown in Fig. 6. If the current contacts are
for numerical stability. Also, to study lower fields, larger gyficiently closely spaced to approximate welbdunction
samples are required in order to include a sufficient numbeiiy current, the resulting electric field pattern is proportional
of field induced vortices and to probe distances well beyondg pxx(X.k,=0). The effect is as follows: When a current is
the intervortex spacing. Following the line to lower tempera-applied in thex direction between the two line contacts, the
tures is also difficult. As it approaches the melting line, non-vortices which are positioned between the contacts feel a
linear response sets in at progressively lower applied electriforce in the—y direction. When they move in response to
fields, and longer runs are required in order to obtain goodhis force, the vortices near to but outside the region in which
signal-to-noise ratios in the linear response regime. current is flowing are dragged along. An electric field will be
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FIG. 6. An idealized proposed experimental geometry. Shown is
a superconducting film with parallel line contacts spaced by a dis-
tance less than or of order either the intervortex spacing or the
correlation length of the superconducting order parameter. The ap-
plied current is run fromd1 to J2, and voltage differences between
the V contacts are measured.

8 10 12 14
X tive, corresponding to a conductivity that increases with in-
creasing wave vectdt at small values ok.

FIG. 5. Nonlocal resistivityp,(x,k,=0) as a function of posi- Furthermore, we showed previously that, when a hydro-

tion x at the pointB in the limit of low normal-state conductivity. dynamic treatment is appropriate, the elements of3ften-
sor can be written as linear combinations of the elements of

seen between the two current contacts due to the phase slige vortex-liquid viscosity tensor defined in the theory of
caused by the moving vortices as well as simply the flow ofyjarchetti and Nelsoft Specifically, the elemer8,, is pro-
normal current. In addition, an electric field of the same SigMortional to the viscosity due to the variation in thelirec-
will be presenbutsidethe region in which current is flowing, tion of vortex motion in they direction. A POSItiveS,
due to phase slip generated by the vortices being dragged R¥responds to a positive vortex-liquid viscosity in a well-
their neighbors. The negative regions in the nonlocal resisgqrelated liquid of field induced vortices.
tivity at short distance are due to the supercurrent being However, the negative, ., values obtained in the high-
nearly uniform on length scales shorter than the ordert ang/or highH regime should not be thought of as negative
parameter correlation length. Thu's to get zero net current jusfortex-liquid viscositied? S does not represent a vortex-
outside of the current contacts in Fi§ a counterflowing |iquid viscosity when the system cannot be described hydro-
normal current must be present to cancel the supercurrepnamically. At high temperatures and/or fields, the correla-
there. This results in a.neganve nonlogal reS|st|V|ty.for .d'S'tion length of the conductivity is shorter than the spacing
tancex shorter than the intervortex spacing, as seen in Fig. Syetween vortices, and the value®tomes from interactions

Returning to the conductivity measured in our simulation, ot on the scale of vortices but on the shorter scale of the
the negative regions observed in Fig. 2 for pdintepresent  orqer-parameter correlation length. The conductivity de-
places where the current must flow in the opposite directioRreases with increasing wave vector as in zero magnetic
to that of the applied electric f_leld in order to keep stationaryield. One view of this regime is that the vortex-liquid vis-
vortices which would otherwise be dragged along by theircssity hecomes so small that the other, shorter-length-scale

moving neighbors. These negative regionssifx), atx of  contributions to the nonlocal conductivity dominate, even at
order the intervortex spacing or more, correspond to thgmalik.

positive regions irp(x) for the samex range, and both rep- At intermediate fields and/or temperatures when a hydro-
resent the effect of viscous drag between vortices in the “qdynamic picture is applicable, there are actually two regimes:
uid state. . . _ . Here we have presented data at intermediate temperatures
To connect to the work in our earlier papen which  and nonzero field where there is a well-correlated liquid of
o(k) was expanded as field-induced vortices. In this case the positive vortex-liquid

_ viscosity causes moving vortices to drag along other parallel
TunlK)= 70O+ SuapiKaks, (5.2 vortices, thereby producing a positive nonlocal resistivity for

our results indicate the, . is not always negative. At in- x of order the intervortex spacing or larger, as in Fig. 5. At

termediate values of the temperature and figlg,, is posi-  temperatures just above the Kosterlitz-Thouless transition in
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zero field, on the other hand, there is a neutral liquid ofby the current. This is also assuming the current contacts are
thermally induced vortices arahtivortices In this regime, a centered on the sample so the net torque on the vortex lattice
moving vortex is more likely to drag a nearlantivortex  vanishes. B) In the well-correlated vortex-liquid regime, the
which is attracted to it, than it is to drag one parallel to itselfelectric field a vortex spacing or more from the current flow
so the usual positive vortex-liquid viscosity instead producesvill be positive, as the vortices in this region are dragged by
a negative nonlocal resistivity. We have not used our simutheir neighbors. This electric field will decrease with a
lation to study this latter regime. vortex-liquid correlation length as one moves away from
It appears that experimental observation of these nonlocathere the current is flowing.
transport properties of type-Il superconducting films is fea- To estimate the magnitude of the voltages expected, we
sible. What is needed? A high normal-state sheet resistanceeed a value for the factog*/#I'|a| by which we have
R,, would maximize the extent of the fluctuation regime rescaled the electric potential. An estimateIgf| can be
above the melting line, and it would also minimize the con-obtained by comparing the theoretical expression for the
tribution of normal currents to measured quantities. Vortexfluctuation conductivity calculated using the time-dependent
pinning should be weak enough so that the vortex-liquid re-Ginzburg-Landau equation,
gime of interest is not strongly pinned. Many different
sample geometries could satisfy the basic requirement that e 1
the applied current vary on a length scale of order the corre- o= kBTgZ m 5.3
lation length of the conductivity. Point contacts in the middle
or at the edge of the film would produce two-dimensional(in two dimensiong with experimentally obtained values, as
current patterns. Line contacts allow one-dimensional patshown in the review by Skocpol and TinkhdfiThe result is
terns, including approximations to step-function ora voltage scale of order 10 V for materials with bulk tran-
S-function configurations. The latter is closest to what wesition temperatures of order 1 K. This value is the same as
have studied in our simulation. Figure 6 shows an arrangethat obtained by dividing the characteristic enekgf . by
ment of a series of line contacts parallel to one another withhe electron charge. To obtain linear response at fine
spacings of order of the intervortex spaciiog, forH=0, of  had to decrease the voltage one to two orders of magnitude
order the order-parameter correlation lengturrent would  below this scale, thus to the order of microvolts.
be run between nearest-neighbor contddtandJ2, and the As for the current, the factor by which it has been rescaled
voltage differences would be measured between the remaiiis (Ja|*%/b)e*/\/2m*. A rough estimate of its scale can be
ing contacts where there is no net current flowing. Alterna-obtained by dividing the voltage scale by the quantum of
tively, a step function applied current pattern could be madeesistance and by the order-parameter correlation length. The
by passing current between two more widely separated lingesult is in the range (IG—1) A/cm. Thus the relevant cur-
contacts in Fig. 6. rent and voltage scales appear to be well within the reach of
The three regimes would appear as follow€) (In the  present experimental technigu@lthough combining this
high-temperature or high-field regime, including the normalwith the small length scales required may be quite a chal-
state, the voltage difference between \élcontacts not be- lenge.
tween the current contacts will be zero, because the resistiv- To conclude, our simulation has displayed negative non-
ity is local on the length scales studied and no current flowsocal conductivity in a vortex-liquid regime, which is distinct
there. However, if the contact spacing is less than or of ordefrom the behavior of the vortex lattice and the higher tem-
the order-parameter correlation length, and well below theperature region. We believe that this signature of the well-
intervortex spacing, then the negative nonlocal resistivitycorrelated vortex liquid is experimentally observable and
should be seen as a negative electric field that falls off as oneould provide useful information on vortex dynamics and
moves away from the current contacts. This latter regiménteractions in type-1l superconductors.
should be what is seen on approachifgfrom above for
zero magnetic field. &) In the low-temperature, low-field
regime, below the melting line, assuming the pinning is neg-
ligible, the linear-response electric field measured between R.W. gratefully acknowledges support from AT&T as
each pair of neighboriny contacts will be equal and non- well as helpful discussions with A.J. Leggett and S. Sondhi.
zero due to the uniform motion of the vortex lattice inducedD.H. thanks L.I. Glazman and M.A. Moore for discussions.
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