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We have simulated the time-dependent Ginzburg-Landau equation with thermal fluctuations, to study the
nonlocal dc conductivity of a superconducting film. Having examined points in the phase diagram at a wide
range of temperatures and fields below the mean field upper critical field, we find a portion of the vortex-liquid
regime in which the nonlocal Ohmic conductivity in real space is negative over a distance several times the
spacing between vortices. The effect is suppressed when driven beyond linear response. Earlier work had
predicted the existence of such a regime, due to the high viscosity of a strongly correlated vortex liquid. This
behavior is clearly distinguishable from the monotonic spatial falloff of the conductivity in the higher-
temperature or field regimes approaching the normal state. The possibilities for experimental study of the
nonlocal transport properties are discussed.@S0163-1829~96!05338-6#

I. INTRODUCTION

In this paper we present the results of a computer simu-
lation designed to study the nonlocal dc conductivity of a
two-dimensional ~thin-film! type-II superconductor. The
meaning of nonlocal in this context can be seen in the stan-
dard expression connecting the local current density in a ma-
terial, J, to the local electric field,E, in the linear~Ohmic!
regime:

Jm~r !5E smn~r ,r 8!En~r 8!dr 8. ~1.1!

When the conductivitys(r ,r 8) is nonzero forrÞr 8, then it
is nonlocal. In a translationally invariant system, the nonlo-
cal conductivity can only be a function of the difference
(r2r 8). The Fourier transform of the conductivity equation
is thenJm(k)5smn(k)En(k). The nonlocal conductivity we
are discussing here is a different phenomenon from Pip-
pard’s nonlocal relation between the supercurrent and the
vector potential belowTc in a type-I superconductor.1 In
particular, we are interested in the nonlocal conductivity in
the resistive vortex-liquid regime of a type-II superconductor
in a magnetic field.

All materials exhibit nonlocal transport properties on
some length scale. Normal metals behave nonlocally on
length scales less than or of the order of the inelastic mean
free path. In superconductors, however, the scale of the non-
locality can be much larger. Israeloffet al.2 have measured
effects arising from the nonlocal resistivity due to supercon-
ducting fluctuations just aboveTc in one-dimensional rings
of type-I material. The observed behavior, predicted by
Glazmanet al.,3 arises from the correlations of the supercon-
ducting order parameter.

In the mixed state of a type-II superconductor, the pres-
ence of vortices provides another mechanism for nonlocal
resistivity. When a currentJ(r 8) exerts Lorentz and Magnus

forces on a vortex segment atr 8 and causes it to move, this
vortex motion can in turn cause vortex segments atr to
move, through vortex interactions, connections, or entangle-
ment. The motion of the vortices atr produces phase slip and
electric fields atr , as described by the Josephson relation,
completing a nonlocal relation between current and electric
field. In the vortex-liquid regime, this tendency of a moving
vortex to drag along nearby vortices can be understood in
terms of a vortex-liquid viscosity, as discussed by Marchetti
and Nelson.4 Using nonuniform applied currents, Safar
et al.5 have observed nonlocal resistivity over length scales
of tens of micrometer in bulk crystals of the high-
temperature superconductor YBa2Cu3O7 ~YBCO!. These re-
sults were discussed phenomenologically by Huse and
Majumdar.6

In a recent paper with Mou and Dorsey,7 we examined the
nonlocal dc transport properties throughout the phase dia-
gram of a type-II superconductor, using analytic calculations
where possible and proposing phenomenological arguments
elsewhere. In particular, we predicted that the wave-vector-
dependent dc electrical conductivity,s(k), of a type-II su-
perconductor would have a nonmonotonic dependence onk
in a certain region of the phase diagram: For those values of
magnetic field and temperature at which there exists a well-
correlated liquid of field induced vortices, the dc conductiv-
ity as a function of increasing wave vectork was argued to
increase for small values ofk and then decrease at large
values ofk. The increase in the conductivity at smallk arises
from viscous drag between vortices4 which impedes their
relative motion and therefore decreases their contribution to
resistance in a nonuniform current. However, when the
length scale of the nonuniformity in the current is smaller
than the intervortex spacing~high k), the conductivity is
more determined by the short-distance correlations of the
superconducting order parameter, rather than the vortex in-
teractions. In this short-distance regime the behavior is as in
zero magnetic field: The conductivity decreases with increas-
ing k.
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Because this effect is only expected to appear in a regime
with strong correlations and fluctuations, analytical calcula-
tions do not appear feasible. In the present paper we report
on computer simulations of the time-dependent Ginzburg-
Landau~TDGL! equation in two dimensions which allow us
to study the nonlocal dc conductivity both in real space and
in wave vector space as a function of magnetic fieldH and
temperatureT. We have indeed observed the nonmonotonic
k dependence in the vortex-liquid regime, as expected.7

One way to probe the nonlocal transport properties ex-
perimentally is to apply currents that are nonuniform on the
appropriate length scale.8 This has been done in two types of
experiments, so far. Israeloffet al.2 have made 3-mm-size
wire loops, applied the current asymmetrically, and mea-
sured resistances as a function of a magnetic flux passing
through the loop. Safaret al.5 have applied contacts to both
sides of 10–50-mm-thick YBCO samples, measuring effects
due to the nonuniformity of the current across the sample.
This latter experiment detected the nonlocal resistivity along
the direction parallel to the vortex lines, due to the lines
having integrity~not breaking! across the sample in a portion
of the vortex-liquid regime. The present work indicates that
the phenomenon is quite general, and could be studied in
superconductors of any dimensionality. What is required is
to be able to apply nonuniform currents and measure volt-
ages on length scales of order the appropriate correlation
length of the superconductor. With modern microfabrication
techniques~and/or possibly using scanning-tip probes! this
should be feasible for a broader range of materials and ge-
ometries than those used in the two experiments discussed
above. What would be best would be an experiment that
simultaneously and quantitatively probes a range of length
scales, so that the dependence of the transport properties on
length scale~and other parameters! can be systematically
studied.9 We hope the results reported below help motivate
such studies.

An outline of this paper is as follows. Section II describes
the simulation. Section III outlines the phase diagram of a
two-dimensional superconductor, providing a context for our
results. Section IV describes the conductivity we observe in
both real and wave vector space in the different regimes of
the phase diagram. Finally, in Sec. V, the results are dis-
cussed, both in the context of earlier work and in terms of
possible experiments.

II. SIMULATION

We wish to study the nonlocal conductivity of a two-
dimensional~thin-film! sample of a strongly type-II super-
conductor. We begin with the time-dependent Ginzburg-
Landau~TDGL! equation~SI units!:

G21S ] t1 i
e*

\
F DC5

\2

2m* S ¹2 i
e*

\
AD 2C2aC2buCu2C

1z~r ,t !. ~2.1!

C(r ,t)5c(r ,t)eif(r ,t) is the superconducting order param-
eter.G is the kinetic coefficient for the relaxation of the order
parameter towards equilibrium; it is assumed to be real.
m* is the effective mass of a Cooper pair ande*52e is the
charge of a Cooper pair. The noisez is Gaussian distributed

and d-function correlated, with the coefficient given by the
fluctuation-dissipation theorem,

^z* ~r ,t !z~r 8,t8!&52G21kBTd~d!~r2r 8!d~ t2t8!. ~2.2!

F andA are the scalar and vector potentials, respectively.
We consider the strongly type-II~largek) limit, where the
order-parameter fluctuations are much stronger than the mag-
netic field fluctuations. Thus we use a uniform, static mag-
netic field.

To simplify this equation we rescale: Energy is measured
in units of uau. We work only below the mean fieldTc , and
so we seta521. The order parameter magnitude is mea-
sured in units ofAuau/b, its equilibrium value at zero noise
and zero magnetic field; therefore,b511. Length is mea-
sured in units ofj5\/A2m* uau, the order-parameter corre-
lation length at zero noise and zero magnetic field, so
\2/2m*51. Magnetic flux is measured in units such that the
flux quantum is 2p; that is,e* /\51. Time is measured in
units of 1/Guau, soG51. We also takekB51. The param-
eters remaining are the temperature, now measured in units
of uau, and the magnetic field in units of flux quanta per area
2pj2 or, equivalently, in units of the mean-field upper criti-
cal field,Hc2

MF(T). The theory also needs an ultraviolet cut-
off, which we realize in the simulations by discretizing
space. Note that when our rescaled temperature is large
(T@1), this meanskBT@2a.0, which is the regime of
strong thermal fluctuationsbelow the mean field transition
temperature,Tc

MF .
The rescaled equation is

~] t1 iF!C5~¹2 iA!2C1C2uCu2C1z. ~2.3!

To solve this equation, we discretize space and time. The
film is approximated by a square lattice with spacing one in
the rescaled units. Time is divided into a series of time steps.
The length of these time steps must be decreased at higher-
temperatures in order to obtain accurate steady-state results
and avoid numerical instabilities. We used time steps in the
range of 0.2 to 0.02 rescaled time units for temperatures
ranging from 0 to 1, respectively.

Taking advantage of the gauge invariance of the equation,
we work in terms of only gauge-invariant quantities, namely,
the order-parameter magnitudes at each site of the lattice,
c(r ), and the gauge-invariant phase differences along each
nearest-neighbor link,u, defined by

u~r,r 8!5f~r 8!2f~r !2E
r

r8
A•dl, ~2.4!

wherer and r 8 are adjacent lattice points and the integral is
along the straight line between them. Derivatives are ap-
proximated using differences, and only differences up to one
time step and two lattice spacings are kept; this is the mini-
mum needed to approximate the derivatives appearing in the
TDGL equation.

We use periodic boundary conditions in both thex and
y directions, giving effectively a toroidal surface. We begin
with random initial conditions, setting the gauge-invariant
phase difference to a random number between2p andp on
three of the four links surrounding each plaquette; the phase
difference on the last link is then determined uniquely
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~modulo 2p) by the magnetic flux passing through the
plaquette. The order parameter magnitude begins at the
small, spatially uniform value of 0.01.

Our goal is to study the conductivity. To do this we apply
an electric field and measure the electrical current. The
TDGL equation in this type-II limit only involves the super-
current due to the paired electrons that produces enhanced
conductivity over that of the normal state. The supercurrent,
in our rescaled units, is

Js52Im $C* ~¹2 iA!C%. ~2.5!

This we also discretize as described above, so the supercur-
rent is defined on each nearest-neighbor link of the lattice as

Js~r ,r 8!52c~r !c~r 8!sin@u~r ,r 8!#. ~2.6!

In addition to this supercurrent, there is also a normal current
which we will assume is simply local and Ohmic:
Jn(r )5snE(r ), wheresn is the normal-state conductivity.

We generally apply an electric field that is uniform in the
y direction, parallel tox̂ and given by ad function along
x:

E5E0d~x!x̂. ~2.7!

On the lattice thisd function is realized by applying the
electric field only between two adjacent columns of lattice
sites. In this geometry the resulting current is also parallel to
x̂ and, in the linear response regime, is given by

J~x!5E0E dysxx~x,y!5E0sxx~x,ky50!. ~2.8!

Thus we measure the dependence of the nonlocal conductiv-
ity on the spacingx for conditions that are uniform alongy
(ky50). By Fourier transforming onx we also obtain
sxx(kx ,ky50).

III. PHASE DIAGRAM

Our simulation is designed to represent a superconducting
film with thickness less than the bulk order-parameter corre-
lation length. When there is no applied magnetic field, such a
system is expected to undergo a Kosterlitz-Thouless transi-
tion at a temperatureTKT .

10 Below this temperature there are
bound pairs of vortices, but no free vortices and therefore no
Ohmic resistance to a uniform dc current. AboveTKT , there
are free vortices, whose mobility results in a nonzero resis-
tivity.

When a magnetic field is applied perpendicular to the
plane of such a film, the flux is not expelled. At low-
temperatures, a triangular vortex lattice forms. Above the
melting temperatureTM(H), this lattice becomes unstable to
dislocations and melts. At intermediate magnetic fields, i.e.,
much less than the mean fieldHc2

MF(T) but greater than one
flux quantum per magnetic penetration length squared,TM is
expected to be only weakly field dependent.11 In the limit of
a normal-state sheet resistance much larger than the quantum
of resistance,\/(e* )2, TM5(0.02660.008)TKT in this
intermediate-field regime.11 When the temperature is res-
caled as we have done, this relation betweenTM and TKT
holds for films with a smaller sheet resistance as well. At
higher magnetic fields, near the mean fieldHc2

MF(T),
TM}@Hc2(0)2H#2 for Ginzburg-Landau theory with ther-
mal fluctuations.11 The locations of the phase transitions are
roughly sketched in Fig. 1.

To estimate the zero-field transition temperature, we used
a finite-size scaling analysis of the order-parameter phase
correlations, obtaining TKT50.860.1, which implies
TM50.0260.01 in the intermediate-field regime. We did not
attempt to directly estimateTM by looking for the melting
transition in our simulations. We also raised the applied field
until the zero-temperature equilibrium order-parameter mag-

FIG. 1. Sketch of the phase diagram of the model thin-film superconductor we have simulated. Note the logarithmic scale on the
temperature axis. The solid curve is a rough estimate of the melting boundary based on our estimate ofTKT ~marked with a diamond! and
Ref. 12. The points we have studied are marked with crosses, and representative pointsA, B, andC are marked with squares. Negative
nonlocal conductivity was observed for the points below the dashed line. The near intersection of the dashed line and the~solid! melting
curve may not be significant, because both have large uncertainties in their precise locations~see text!.
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nitude dropped to zero to find thatHc2(T50)51.1860.02.
In the continuum,Hc2(T50)51 in our rescaled units; the
increase to roughly 1.2 is due to our approximating the con-
tinuum by a lattice with spacingj and approximating the
spatial derivative with the lowest-order difference. We ex-
pect other quantities are also quantitatively shifted small
amounts by these approximations. In particular, the precise
values we obtain for the conductivity are likely to be af-
fected. However, as we are focusing on trends related to the
variation ofx, k, H, andT rather than on precise numerical
values, these shifts are not expected to affect our conclu-
sions.

IV. RESULTS

We studied points in the phase diagram in the field range
0<H<1.2 and the temperature range 0<T<1 as shown in
Fig. 1. At most points we studied, all the vortices present
were field induced. Thermally induced vortex-antivortex
pairs were observed only forT>0.1. However, the number
of field-induced vortices was much greater than that of ther-
mally induced vortices for temperatures up to 0.5 at the non-
zero field values studied.

We saw three characteristic behaviors for the nonlocal
conductivity. The pointsA, B, andC shown in Fig. 1 are
chosen as clear examples of these behaviors. PointA, at
T50.001 andH52p/25, is representative of what is seen in
the ordered phases at very low temperatures and fields, in-
cludingT50 andH50. PointB, atT50.04 andH5p/5, is
representative of the well-correlated vortex-liquid regime, in-
termediate in both temperature and field. Finally, pointC, at
T50.1 andH56p/25, is representative of high-temperature
and high-field behavior.

In a linear response, the nonlocal conductivity in real
space,sxx(x,ky50), for the characteristic points is as fol-
lows ~Fig. 2!: At point C, we see a conductivity which is
sharply peaked aroundx50, falling off exponentially to zero
with a length scale of order the correlation length. This be-
havior is in qualitative agreement with the high-temperature
behavior obtained analytically from lowest-order fluctuations
about the mean-field normal state.7 At point B the conduc-
tivity still has a sharp peak atx50 of similar width to that at
pointC, but it then dropsbelowzero over a distance of few
intervortex spacings before returning to zero. This is the
negative nonlocal conductivity expected in this well-
correlated vortex-liquid regime.7 At both pointsB andC the
conductivities and correlation lengths are all finite, so the
numerical results for a finite sample that is large compared to
all correlation lengths do not show finite-size effects and thus
are a faithful representation of a much larger sample.

In the ordered phases the uniform conductivity is infinite.
In the Meissner phase (H50) this is true for the continuum
system as well, while for the vortex-lattice phase the infinite
uniform (k50) conductivity is due to weak pinning of the
vortices to our numerically imposed lattice that impedes the
‘‘flux flow’’ that would occur for the continuum system. To
avoid this divergence, instead of applying only the
d-function electric field~2.7! as was done at pointsB and
C, at pointA we also apply a compensating spatially uniform
electric field that cancels the uniform (k50) component
coming from thed function. This means we do not measure

the very largek50 part of the conductivity and the data for
point A in the inset to Fig. 2 consequently has an arbitrary
x-independent vertical shift. The conductivity vsx shows a
broad peak at the origin, with a width and magnitude propor-
tional to the linear sample size and a shape well fit by a
parabola centered on the column opposite to where thed-
function component of the electric field is applied.

Still in linear response, but now ink space~see Fig. 3!, at
pointC, the conductivitysxx(kx ,ky50) falls monotonically
from its value atkx50. At point B the conductivity rises
from its value atk50 to a maximum at a wave vector
roughly corresponding to the inverse of the vortex spacing
and then declines. At pointA ~inset! the conductivity falls off
monotonically like 1/k2, as expected.7

At point B, when the system is driven beyond linear re-
sponse, the effect is to reduce the magnitude both of the peak
in s(x) and of the negative regions. Ink space, the effect is
to suppress the nonmonotonicity. Figure 4 showss(k) for a
series of applied electric fields of increasing magnitude. Here
in the nonlinear regime we apply thed-function electric field
~2.7!, measureJs(x), define the nonlocal and nonlinear con-
ductivity ass(x)5Js(x)/E0, and show its Fourier transform
in Fig. 4. The higher electric fields produce a strong shear
flow in the vortex liquid, which apparently reduces the effec-
tive viscosity of the vortex liquid.

FIG. 2. Conductivitysxx(x,ky50) as a function of positionx at
the pointsB andC indicated in the phase diagram~Fig. 1!. Note the
negative nonlocal conductivity forB. Inset also includes point A;
the vertical zero is shifted for the data from pointA only ~see text!.
The local normal-state contribution to the conductivity atx50 has
not been included here.
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For points in the vortex liquid below the dashed line in
Fig. 1, the nonlocal conductivity ink space showed non-
monotonicity significantly outside the statistical errors.
Above this line nonmonotonic behavior is still observed at
many points; however, it is not possible to distinguish be-
tween true nonmonotonicity and statistical noise at these
points, given the level of accuracy of the present data. Thus
the dashed line is actually a lower bound on the true bound-
ary between monotonic and nonmonotonics(k). This
boundary is only a crossover, not a phase transition; it is
roughly where the correlation length of the conductivity~the
range of the nonlocal conductivity in real space! becomes
comparable to the intervortex spacing. An interesting ques-
tion is whether this boundary, like the melting line, intersects
the zero-field axis at a temperature belowTKT . Following
this line to lower fields in our simulations is difficult. It goes
to higher temperatures where smaller time steps are required
for numerical stability. Also, to study lower fields, larger
samples are required in order to include a sufficient number
of field induced vortices and to probe distances well beyond
the intervortex spacing. Following the line to lower tempera-
tures is also difficult. As it approaches the melting line, non-
linear response sets in at progressively lower applied electric
fields, and longer runs are required in order to obtain good
signal-to-noise ratios in the linear response regime.

V. DISCUSSION

To discuss the phenomena we have observed, and in par-
ticular to connect with experimental possibilities, it is useful
to speak in terms of resistivity.r(k) is simplys(k)21, and
r(r ) is its Fourier transform:

Em~r !5E rmn~r2r 8!Jn~r 8!dr 8. ~5.1!

Whensn!ss , r(k)51/@sn1ss(k)];rs(k)2sn@rs(k)#
2,

and when sn@ss , r(k);rn2ss(k)rn
2 , where

rs(k)51/ss(k) andrn51/sn .
The resistivity in real space,rxx(x,ky50), for the case of

very low normal-state conductivity is sketched in Fig. 5 us-
ing the nonmonotonicss(k) at point B from Fig. 3. This
shows the response of a film in thexy plane in a magnetic
field parallel toz to a current applied between two closely
spaced line contacts parallel to each other and to they axis,
in the geometry shown in Fig. 6. If the current contacts are
sufficiently closely spaced to approximate well ad function
in current, the resulting electric field pattern is proportional
to rxx(x,ky50). The effect is as follows: When a current is
applied in thex direction between the two line contacts, the
vortices which are positioned between the contacts feel a
force in the2y direction. When they move in response to
this force, the vortices near to but outside the region in which
current is flowing are dragged along. An electric field will be

FIG. 3. Conductivity as a function of wave vector at the points
B andC. Inset includes pointA. These data are simply the Fourier
transforms of those in Fig. 2, so thek-independent normal-state
contribution is not included.

FIG. 4. Nonlinear conductivity~see the text for a precise defi-
nition! as a function of wave vector in the vortex liquid at the point
B for five values of electric field: 0.0125, 0.025, 0.05, 0.1, and 0.2.
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seen between the two current contacts due to the phase slip
caused by the moving vortices as well as simply the flow of
normal current. In addition, an electric field of the same sign
will be presentoutsidethe region in which current is flowing,
due to phase slip generated by the vortices being dragged by
their neighbors. The negative regions in the nonlocal resis-
tivity at short distance are due to the supercurrent being
nearly uniform on length scales shorter than the order-
parameter correlation length. Thus to get zero net current just
outside of the current contacts in Fig. 6 a counterflowing
normal current must be present to cancel the supercurrent
there. This results in a negative nonlocal resistivity for dis-
tancex shorter than the intervortex spacing, as seen in Fig. 5.

Returning to the conductivity measured in our simulation,
the negative regions observed in Fig. 2 for pointB represent
places where the current must flow in the opposite direction
to that of the applied electric field in order to keep stationary
vortices which would otherwise be dragged along by their
moving neighbors. These negative regions ins(x), at x of
order the intervortex spacing or more, correspond to the
positive regions inr(x) for the samex range, and both rep-
resent the effect of viscous drag between vortices in the liq-
uid state.

To connect to the work in our earlier paper,7 in which
s(k) was expanded as

smn~k!5smn~0!1Smabnkakb , ~5.2!

our results indicate thatSxxxx is not always negative. At in-
termediate values of the temperature and field,Sxxxx is posi-

tive, corresponding to a conductivity that increases with in-
creasing wave vectork at small values ofk.

Furthermore, we showed previously that, when a hydro-
dynamic treatment is appropriate, the elements of theS ten-
sor can be written as linear combinations of the elements of
the vortex-liquid viscosity tensor defined in the theory of
Marchetti and Nelson.4 Specifically, the elementSxxxx is pro-
portional to the viscosity due to the variation in thex direc-
tion of vortex motion in they direction. A positiveSxxxx
corresponds to a positive vortex-liquid viscosity in a well-
correlated liquid of field induced vortices.

However, the negativeSxxxx values obtained in the high-
T and/or high-H regime should not be thought of as negative
vortex-liquid viscosities.12 S does not represent a vortex-
liquid viscosity when the system cannot be described hydro-
dynamically. At high temperatures and/or fields, the correla-
tion length of the conductivity is shorter than the spacing
between vortices, and the value ofS comes from interactions
not on the scale of vortices but on the shorter scale of the
order-parameter correlation length. The conductivity de-
creases with increasing wave vector as in zero magnetic
field. One view of this regime is that the vortex-liquid vis-
cosity becomes so small that the other, shorter-length-scale
contributions to the nonlocal conductivity dominate, even at
small k.

At intermediate fields and/or temperatures when a hydro-
dynamic picture is applicable, there are actually two regimes:
Here we have presented data at intermediate temperatures
and nonzero field where there is a well-correlated liquid of
field-induced vortices. In this case the positive vortex-liquid
viscosity causes moving vortices to drag along other parallel
vortices, thereby producing a positive nonlocal resistivity for
x of order the intervortex spacing or larger, as in Fig. 5. At
temperatures just above the Kosterlitz-Thouless transition in

FIG. 5. Nonlocal resistivityrxx(x,ky50) as a function of posi-
tion x at the pointB in the limit of low normal-state conductivity.

FIG. 6. An idealized proposed experimental geometry. Shown is
a superconducting film with parallel line contacts spaced by a dis-
tance less than or of order either the intervortex spacing or the
correlation length of the superconducting order parameter. The ap-
plied current is run fromJ1 to J2, and voltage differences between
theV contacts are measured.
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zero field, on the other hand, there is a neutral liquid of
thermally induced vortices andantivortices. In this regime, a
moving vortex is more likely to drag a nearbyantivortex,
which is attracted to it, than it is to drag one parallel to itself
so the usual positive vortex-liquid viscosity instead produces
a negative nonlocal resistivity. We have not used our simu-
lation to study this latter regime.

It appears that experimental observation of these nonlocal
transport properties of type-II superconducting films is fea-
sible. What is needed? A high normal-state sheet resistance,
Rn, would maximize the extent of the fluctuation regime
above the melting line, and it would also minimize the con-
tribution of normal currents to measured quantities. Vortex
pinning should be weak enough so that the vortex-liquid re-
gime of interest is not strongly pinned. Many different
sample geometries could satisfy the basic requirement that
the applied current vary on a length scale of order the corre-
lation length of the conductivity. Point contacts in the middle
or at the edge of the film would produce two-dimensional
current patterns. Line contacts allow one-dimensional pat-
terns, including approximations to step-function or
d-function configurations. The latter is closest to what we
have studied in our simulation. Figure 6 shows an arrange-
ment of a series of line contacts parallel to one another with
spacings of order of the intervortex spacing~or, forH50, of
order the order-parameter correlation length!. Current would
be run between nearest-neighbor contactsJ1 andJ2, and the
voltage differences would be measured between the remain-
ing contacts where there is no net current flowing. Alterna-
tively, a step function applied current pattern could be made
by passing current between two more widely separated line
contacts in Fig. 6.

The three regimes would appear as follows: (C) In the
high-temperature or high-field regime, including the normal
state, the voltage difference between allV contacts not be-
tween the current contacts will be zero, because the resistiv-
ity is local on the length scales studied and no current flows
there. However, if the contact spacing is less than or of order
the order-parameter correlation length, and well below the
intervortex spacing, then the negative nonlocal resistivity
should be seen as a negative electric field that falls off as one
moves away from the current contacts. This latter regime
should be what is seen on approachingTc from above for
zero magnetic field. (A) In the low-temperature, low-field
regime, below the melting line, assuming the pinning is neg-
ligible, the linear-response electric field measured between
each pair of neighboringV contacts will be equal and non-
zero due to the uniform motion of the vortex lattice induced

by the current. This is also assuming the current contacts are
centered on the sample so the net torque on the vortex lattice
vanishes. (B) In the well-correlated vortex-liquid regime, the
electric field a vortex spacing or more from the current flow
will be positive, as the vortices in this region are dragged by
their neighbors. This electric field will decrease with a
vortex-liquid correlation length as one moves away from
where the current is flowing.

To estimate the magnitude of the voltages expected, we
need a value for the factore* /\Guau by which we have
rescaled the electric potential. An estimate ofGuau can be
obtained by comparing the theoretical expression for the
fluctuation conductivity calculated using the time-dependent
Ginzburg-Landau equation,

s5kBT
e2

\2

1

2pGuau
~5.3!

~in two dimensions!, with experimentally obtained values, as
shown in the review by Skocpol and Tinkham.13 The result is
a voltage scale of order 1024 V for materials with bulk tran-
sition temperatures of order 1 K. This value is the same as
that obtained by dividing the characteristic energykBTc by
the electron charge. To obtain linear response at pointB we
had to decrease the voltage one to two orders of magnitude
below this scale, thus to the order of microvolts.

As for the current, the factor by which it has been rescaled
is (uau3/2/b)e* /A2m*. A rough estimate of its scale can be
obtained by dividing the voltage scale by the quantum of
resistance and by the order-parameter correlation length. The
result is in the range (1022–1! A/cm. Thus the relevant cur-
rent and voltage scales appear to be well within the reach of
present experimental technique~although combining this
with the small length scales required may be quite a chal-
lenge!.

To conclude, our simulation has displayed negative non-
local conductivity in a vortex-liquid regime, which is distinct
from the behavior of the vortex lattice and the higher tem-
perature region. We believe that this signature of the well-
correlated vortex liquid is experimentally observable and
could provide useful information on vortex dynamics and
interactions in type-II superconductors.
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