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We study relaxation of magnetic flux in a one-dimensional network of resistively shunted Josephson junc-
tions. Magnetic fields due to the currents induced in the system are taken into account via self-inductance
coefficients. A master equation is derived that describes the stochastic motion of flux quanta among the
different plaquettes of the network. Space- and time-dependent flux profiles are calculated within mean-field
theory and also by a continuous-time Monte Carlo algorithm. The relevance of our results for the description
of flux creep experiments in strongly inhomogeneous superconductors is pointed out.
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I. INTRODUCTION

High-temperature superconductors are known to be char-
acterized by short coherence lengths, with the important ef-
fect that structural inhomogeneities in the material generally
lead to an inhomogeneous superconducting state. In recent
years, several authors have advanced the idea that strongly
inhomogeneous superconductors may be regarded as net-
works of Josephson weak links connecting islands of mate-
rial with ideal intrinsic properties.1–3 Under this point of
view a considerable amount of work has been devoted to the
study of Josephson networks,3–14with the conclusion that at
least some of the important macroscopic properties of
high-Tc materials, including magnetic properties and current-
voltage characteristics, can qualitatively be understood on
this basis. In particular, a fairly realistic description of mag-
netic hysteresis effects, ac susceptibilities, and flux patterns
in bulk samples10,11and thin films12 has been achieved, using
network models where inductance effects adapted to the
sample geometry were taken into account. Similar models
have also been used to analyze the form of a single, extended
Josephson vortex13 as well as giant Shapiro steps in large,
artificial arrays of junctions.14

In a Josephson network pinning forces naturally arise
from the discreteness of the system. For large pinning a criti-
cal state can be defined, whose coarse-grained properties are
similar to conventional critical state models. For a system in
a critical state the question arises how the magnetization re-
laxes when thermal fluctuations are taken into account, and
how this relaxation compares with flux creep experiments on
high-Tc samples. Thermal fluctuations and magnetic relax-
ation in a superconducting loop containing a single Joseph-
son weak link were discussed recently by Niewenhuizen and
Pankert.15 Here we extend both the idea of these authors and
our previous work10,11by studying a Josephson array includ-
ing thermal noise. This allows us to relate the overall relax-
ation to the temporal evolution of the underlying flux pat-
terns. Such an investigation should be useful in view of the
fact that spatially resolved flux creep phenomena are becom-

ing accessible to experiment.16

Magnetic relaxation in high-Tc materials is known to be
large and often departs from the logarithmic decay law,
M (t);ln t implied by the conventional flux-creep
model.1,17–21In order to account for these observations, sev-
eral new concepts have been proposed, such as flux motion
under the influence of a distribution of activation barriers,22

collective flux creep,23,24or the dynamics of flux near a tran-
sition from a vortex liquid to a vortex glass.25 The model
presented below is clearly simplified as it ignores any effect
of disorder. Instead, it focuses on thermally activated flux
motion in the presence of magnetic interactions in a regular
Josephson network. For the present purpose, we confine our-
selves to the case of strong pinning, where the full stochastic
dynamics of the network can be approximated by a master
equation that describes a discrete ‘‘hopping’’ process of flux
quanta among the different plaquettes. For simplicity, we
consider a one-dimensional finite chain of superconducting
loops in a perpendicular magnetic field, which in an aver-
aged way may represent the behaviour of a sample of slab
geometry. We find that only under certain restricted condi-
tions the conventional logarithmic decay law for the total
magnetization applies, and that a nonlogarithmic behaviour
becomes especially pronounced in cases where the maximum
superconducting currentI 0 in a junction depends on the local
magnetic field. In many respects our results are similar to the
experimental findings by Svedlindhet al.,19,26 who investi-
gated magnetic relaxation processes in ‘‘extreme’’ type-II
superconductors.

This paper is organized as follows. In Sec. II we give a
short account of our model and explain the character of the
adopted approximations. Numerical results obtained within
mean-field theory are discussed in Sec. III, and are compared
with experimental data. Section IV contains examples of so-
lutions to our master equation reached within a continuous-
time Monte Carlo algorithm. These examples corroborate the
assumptions made in Sec. II and in addition indicate that
magnetic relaxation at low temperatures proceeds through a
series of ‘‘avalanches.’’
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II. STOCHASTIC JOSEPHSON NETWORK
AND MEAN-FIELD APPROXIMATION

We start our analysis with the formulation of the Lange-
vin dynamics for a one-dimensional Josephson array de-
picted in Fig. 1. The array consists ofN identical elementary
loops subject to a perpendicular external field. Each junction
is characterized by its maximal superconducting currentI 0,
its normal resistanceR, and the gauge-invariant phase differ-
enceq,

q5Dw2
1

f0
E A dl, ~1!

whereDw is the difference of phases of the order parameters
in superconductors forming the link,A is the vector poten-
tial, and the integral is taken across the junction, while
f05h/(4pe). Additionally, each junction is resistively
shunted by normal currents and the total current through the
junction i ( i51,...,N11) is then given by

I i2I i215I 0 sin q i1
f0

R

dq i

dt
1I i

f~ t !. ~2!

In writing Eq. ~2! we took into account Josephson’s equa-
tions, the parametrization of currents as shown in Fig. 1 and
a Nyquist noise termI i

f(t) associated with the normal resis-
tanceR. The ensemble average of the noise current and its
correlation function satisfy the standard relations:27

^I i
f~ t !&50 ~3!

and

^I i
f~ t !I j

f~ t8!&5
2

R
kBTd i jd~ t2t8!. ~4!

Equation~1! implies thatfi , the total magnetic flux through
the plaquettei ( i51,...,N), is given by

f i

f0
5q i2q i11 . ~5!

Finally we assume10,12

f i5fext2LI i , ~6!

with fext denoting the external flux andL the self-inductance
coefficient of a plaquette. The neglect of more general induc-
tance coefficients may be justified for samples of slab geom-
etry in a parallel magnetic field, if we assume that only

screening currents perpendicular to the field are important,
and that the current distribution in planes parallel to the slab
is uniform. An averaged description of such a system then
leads to the one-dimensional system of Eqs.~2!–~6!, wherei
is the coordinate perpendicular to the slab; cf. also Ref. 11.
Elimination of I i andfi leads to a system of Langevin equa-
tions for the phasesqi , which can be written in the form

f0
2

R

dq i

dt
52

]V

]q i
1f0I i

f~ t !, ~7!

where the potential is given by

V5I 0f0F 1

2b (
i51

N S fext

f0
2q i1q i11D 22 (

i51

N11

cosq i G .
~8!

Here we have introduced the dimensionless parameter
b5LI 0/f0 which measures the pinning strength of a single
plaquette. In fact,b determines the maximum flux gradient
that can be maintained in a stationary state in the absence of
noise,

uf i2f i21umax5bf0 , ~9!

which is obvious from Eqs.~6! and ~2!.
One typical problem is to study magnetic relaxation from

a zero-field-cooled sample which corresponds to initial con-
ditions q i(t50)50. In the case of strong pinning~b@1!,
which is most relevant to strongly inhomogeneous supercon-
ductors, relaxation will occur via two distinctly different pro-
cesses with different time-scales. Initially, there will be fast
relaxation on a time scaletmicro'L/R due to the action of the
systematic forces2]V/]q i in Eq. ~7! until a state is reached
which would be stationary atT50, i.e., in the absence of
noise. As shown previously10 this state forb@1 is similar to
the Bean critical state with linear flux profiles determined by
the condition~9!. The subsequent decay of such profiles due
to the presence of noise will be the main objective of our
investigation here. In principle one could employ Langevin-
dynamics simulations. However, it turns out in our present
problem that this technique is only of limited practical use.
Focusing on low temperatures, we are faced with exceed-
ingly long relaxation times, to be derived from an elementary
time for escape over pinning barriers of strength 2I 0f0, see
Eq. ~8!, tescape'exp(2I 0f0/kBT)tmicro@tmicro. ~Rough esti-
mates show that for sintered samplestmicro;10212 s.11 This
value has to be compared with;104 s as a typical time scale
for flux creep measurements.! Apart from the early stages of
the relaxation it is then clearly appropriate to adopt a coarse-
grained description in terms of a master equation, which de-
scribes the time evolution of discrete configurations defined
through the metastable minima of the potential~8!. An ap-
proach of this type was proposed before by Niewenhuizen
and Pankert15 for the case of a single superconducting loop,
and will be generalized here to our problem of a one-
dimensional array. Whenb@1, the system is found most of
the time in states with all phases close to integer multiples of
2p,

q i.2p l i ~10!

FIG. 1. Schematic view of a one-dimensional network of Jo-
sephson junctions with indicated elementary current loopsI i and
gauge-invariant phase differencesqi across elements which consist
of an ideal Josephson junction in parallel with a normal resistanceR
~RSJ model!. A self-inductanceL is associated with each plaquette.
The external field is perpendicular to the network.
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as a consequence of the last term in Eq.~8!. This implies, of
course, that the system has already relaxed for a sufficiently
long time, that the actual currents through all the junctions be
substantially smaller thanI 0. By Eq. ~5!, the flux fi then
becomes quantized,f i.(2pf0)ni , where the numberni of
flux quanta through thei th plaquette is given by

ni5 l i2 l i11 . ~11!

The increase~or decrease! of qi by 2p corresponds to the
motion of one flux quantum from plaquettei21 to i ~or vice
versa!. The barriers to be overcome in these processes are
calculated as

DEi
6.V~ ...,q i6p,...!2V~ ...,q i ,...!

.2I 0f0@16p2~ni2ni21!/b# ~12!

and the corresponding transition rates are given by

W6~ni ,ni21!5n exp~22/T* !exp@7a~ni2ni21!#,
~13!

wheren5bR/2pL anda52p2/bT* with

T*5
kBT

I 0f0
. ~14!

In writing Eq. ~13! we assumedDE i
6@kBT and used the

standard escape rates in the overdamped~Smoluchowski!
limit.28

Furthermore let us remark that the dependence of the en-
ergy barrier on occupation numbers as given by Eq.~12!
corresponds to the leading contribution in an expansion in
powers ofb21. Higher order terms in Eq.~12! due to correc-
tions O~b22! in Eq. ~10! would involve the flux in next-
nearest-neighbor or higher-neighbor plaquettes.

At this stage we can formulate a master equation that
describes jumps of individual flux quanta between neighbor-
ing plaquettes:28

d

dt
P~n1 ,...,nN ;t !5(

i51

N

$P~ ...,ni2111,ni21,...!W1~ni21,ni2111!1P~ ...,ni21,ni1111,...!W2~ni1111,ni21!

2P~ ...,ni ,...!@W
1~ni11 ,ni !1W2~ni ,ni21!#%, ~15!

where the external flux enters via the definitions
n05nN115next5fext/2pf0. More phenomenological
schemes for thermally activated forward and backward hop-
ping of flux quanta during flux penetration into the sample
were described before by several authors.29–31Equation~15!,
however, represents a coherent stochastic description for the
temporaland spatial relaxation of flux including magnetic
interactions in the system. The discrete hopping processes
which we have assumed appear physically meaningful as
long asDE i

6@kBT, or

22
2p2

b
uni2ni21u@T* . ~16!

Our primary aim is now to calculate from Eq.~15! the
time-dependent average occupation numbers

^ni&5(
$ni %

niP~n1 ,...,nN ;t ! ~17!

from which we obtain the average total number of flux
quanta

ntot~ t !5(
i51

N

^ni&, ~18!

which is related to the total magnetization by
M (t)52pf0„ntot(t)2Nnext….

In a first step we shall use mean-field theory, where it
should be noted that mean-field ideas have already been in-
voked before in mapping an acutal experimental situation to

our one-dimensional model@see the above discussion after
Eq. ~6!#. Nevertheless it appears interesting also to perform
numerical simulations and to compare them with the mean-
field results, which will be done in Sec. IV. From the master
equation~15! together with Eq.~13! the time derivative of
^ni& is readily calculated in terms of averages of the type
^sinha(ni112ni)&. Mean-field theory now corresponds to
the factorization

K)
i
ni L .)

i
^ni&, ~19!

with the result

d^ni&
dt

5Ji2Ji21 , ~20!

where the current of magnetic flux is given by

Ji52 exp~22/T* !sinha~^ni11&2^ni&! ~21!

and t5nt is a dimensionless time. Any linear flux profile
obviously is stationary under these mean-field equations. The
time evolution of a profile that, for example, corresponds to
a Bean critical state in a zero-field-cooled sample therefore
must start out in a region located near the penetration depth.

In comparing this type of theory to experiments, it seems
important to consider a phenomenological extension of the
model defined by Eqs.~7! and ~8! by taking into account a
dependence of the maximum Josephson current on the local
magnetic field. In our model, the local fieldBi acting on the
i th junction may be written in terms of an average over the
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magnetic flux in the two adjacent plaquettes. Following the
standard Kim model, the maximum Josephson current
through thei th junction is assumed to be of the form32

I 0i5
I 0

11Luni1ni21u/2
, ~22!

where we again expressed the local flux in terms of the oc-
cupation numbersni , andL>0 is a parameter@cf. Ref. 11
for a discussion of the applicability of Eq.~22! as an effec-
tive maximum Josephson current in the description of
high-Tc ceramics and for references to the relevant experi-
mental work#. To obtain equations of motion in this case, we
merely have to replaceb in the expression for the systematic
force in Eq. ~7! by b i5LI 0i /f0 and to use again Eq.~5!.
Note, however, that a potentialV(...,q i ,...) does not exist
in the caseLÞ0. Finally, our mean-field equations take the
form of Eq. ~20!, where the flux current is now given by

Ji~L!52 sinha~^ni11&2^ni&!expF 22/T*

11Lu^ni11&1^ni&u/2
G ,

~23!

with Ji(0)5Ji .
In the next section we discuss numerical results obtained

from these equations.~As far as the temperature dependence
of our results is concerned, we ignore the temperature depen-
dence ofI 0, which in a more realistic model should follow
the Ambegaokar-Baratoff formula.33,34! Some analytical con-
siderations based on the continuum form of Eq.~20! are
presented in the Appendix.

FIG. 2. Schematic representation of initial flux distributionsn i
(0)

determined by Eq.~24!. The penetration depth is denoted byi 0. ~a!
Zero-field-cooled~ZFC! sample for external fieldsnext.nK* , next
5nK* , andnext,nK* ~from above! and~b! remanent flux of a field-
cooled sample~RM!. In this case all profiles fornext>nK* coincide
~upper curve!, whereas fornext,nK* a plateau of constant flux ap-
pears~lower curve!.

FIG. 3. Results from mean-field approxima-
tion for the ‘‘Bean model’’~L50!. ~a! Time evo-
lution of a ZFC flux profile and~b! the corre-
sponding slopes, which are proportional to the
local currents. The other parameters areb5100,
T*50.1, andnext5400'nB* /2. Time stepstk are
taken as lntk5(40/9)k; k50,...,9.
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III. NUMERICAL SOLUTIONS
OF MEAN-FIELD EQUATIONS

The system of Eqs.~20! is solved numerically forN5100
andb5100, assuming different temperaturesT* and external
fields next. ~This value forb is of the order of magnitude
estimated for ceramic superconductors.11! Two standard situ-
ations are considered:~a! relaxation of magnetic flux enter-
ing a zero-field-cooled~ZFC! sample and~b! relaxation of
remanent flux~RM! trapped in a field-cooled system after the
external field has been switched off. First we generate the
corresponding critical state distributions which build under
the intrinsic dynamics, in the absence of noise. The appro-
priate stationary solutions of our original equations~7! with
I i
f(t)50 are obtained by requiring that flux gradients are

determined by the maximal Josephson currentsI 0i ; see Eq.
~22!. In terms of our variableŝni& this leads to the condition
^ni(t50)&5n i

(0), where in the penetrated regionn i
(0) is de-

termined by

uni21
~0! 2ni

~0!u5~b/2p!@11Luni21
~0! 1ni

~0!u/2#21. ~24!

From that we obtain the familiar Bean or Kim profiles in
casesL50 or LÞ0, respectively. The two situations de-

scribed above are depicted schematically in Fig. 2. As usual,
we introduce the external fluxn* where flux starts to pen-
etrate the entire sample. In the ‘‘Bean model,’’ we havenB*
5(b/2p)N/2, whereas in the ‘‘Kim model’’nK*,nB* .

The distributionsn i
(0) are in turn used as initial conditions

in our mean-field equations for some finite temperatureTÞ0,
from which we obtain the time-dependent profiles^ni& and
the total penetrated flux given by Eq.~18!. Let us start our
discussion with the caseL50. In Fig. 3~a! we plotted the
evolution of magnetic flux forT*50.1 and next5400
.nB* /2. Time stepstk are chosen equidistant on a logarith-
mic scale. Clearly, as seen from Eq.~20!, the evolution starts
near the pointi5 i 0 , where the initial profilen i

(0) departs
from linearity. In a range of timest,t* a region
i 0(t), i,N2 i 0(t) remains free of flux, then shrinks, and
finally vanishes at a characteristic timet* , where
i 0(t* )5N/2. Nearly linear profiles and slope discontinuities
persist up to large times close to saturation. A plot of slopes
^ni212ni& which are proportional to the current through the
i th junction, is presented in Fig. 3~b!. Note that flux profiles
depicted in Fig. 3~a! have a slight positive curvature, which,
however, remains small at any time.

FIG. 4. ZFC creep rates within mean-field ap-
proximation for different temperatures, where
L50 ~‘‘Bean model’’!, b5100, andnext5400
'nB* /2. The arrows indicate the timet* ~see
text!.

FIG. 5. ZFC creep rates within mean-field ap-
proximation for different external fields, where
L50, b5100, andT*50.1. The arrows indicate
the timet* ~see text!.
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In the Appendix we present a simple calculation showing
that under the assumption of linear profiles~i.e., neglect of
that curvature! in the penetrated regions, the conventional
logarithmic time dependence of the magnetization is ob-
tained when two different regimes of the external parameters
are considered. First, at sufficiently low temperatures,T*!1,
and sufficiently small external fields,next!nB* , there is a
range of times t!t* , where the creep rate
S(t)5dntot~t!/d ln t becomes constant and is given by

S52next
2 T* /b; t!t* . ~25!

Secondly, for strong fields of the ordernB* or timest.t* ,
again a constant creep rate can be defined after flux has pen-
etrated the entire sample. In that case

S5
N2

8p2 bT* ; t.t* . ~26!

Numerical calculations shown in Figs. 4 and 5 essentially
confirm these findings. For temperatures not too large a pla-
teau in Fig. 4 emerges fort.t* , whose height agrees with
Eq. ~26! and whose width expands with decreasing tempera-
ture. Calculations shown in this figure were performed for a
fixed external field withnext5400'n* /2. The arrows in the

figure indicate the timet* . On the other hand, data obtained
for our lowest temperatures indicate the appearance of yet
another plateau in the ranget!t* . This second plateau be-
comes more pronounced in cases of smaller fields, see Fig. 5,
when the creep rate is small and proportional tonext

2 , in
agreement with Eq.~25!. For the lowest curve in Fig. 5~a!
one can show thatntot~t! varies only by a few percent in that
range of times. Generally, however, forT**0.1 andt,t*
we observe a nonlogarithmic relaxation. Saturation is
reached after a time independent ofnext. Similar calculations
were performed for the decay of remanent flux, with the
general resultsSRM~t!.2SZFC~t! apart from very short
times.

Next we allow for a field dependence of the maximal
Josephson current, in analogy to the Kim model, Eq.~22!.
Flux profiles and slopes in the caseL50.002 forb5100 and
next5200 are displayed in Fig. 6 for a sequence of timestk .
Contrary to Fig. 3, the profiles are concave for arbitrary
times ~apart from a small region around the symmetry point
i5N/2!. An experimental observation of profiles with nega-
tive curvature and their time evolution has recently been re-
ported by Koblischkaet al.16 Creep ratesS~t! as a function
of t for the Kim model are plotted in Fig. 7~a! for different
external fields. Beyond the timet* , creep rates are no longer

FIG. 6. Same as Fig. 3 but forL50.002
~‘‘Kim model’’ ! andnext5200. ~a! Time evolu-
tion of a ZFC flux profile and~b! the correspond-
ing slopes. Time steps are taken for
ln tk5(35/9)k; k50,...,9.
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constant but decrease slightly with increasingt. For t,t* ,
on the other hand, the curves are very similar to Fig. 5. In
contrast to Fig. 5, however, saturation is now reached faster
for higher fields in the ZFC case, whereas the final decay of
the remanent flux remains unaffected by the field strength.

Some of the features displayed in Fig. 7 appear again to
conform with recent experiments on high-Tc materials, al-
though we have to keep in mind that the present model con-
tains no spatial disorder effects. First, under ZFC conditions
@Fig. 7~a!#, a maximum creep rate is observed
experimentally19,26and normally attributed to the time of full
penetrationt* , in accord to our findings. Secondly, at high
fields next.n* and for a fixed observation timet.t* the
creep rate drops by increasing the field in the ZFC case,
whereas it stays constant in the RM case@Fig. 7~b!#. Such a
behavior has recently been reported for Bi samples.26

The dependence of the ZFC creep rate on the external
field next ~at a fixed observation time! is depicted in Fig. 8
together with experimental measurements.35 For low fields
the creep rate is nearly proportional tonext

2 , passes a maxi-
mum at intermediate fields, and decreases slowly at higher
fields. Very similar experimental results were also reported
by other authors.18,35,36

IV. MONTE CARLO SIMULATIONS

Our aim in this section is to perform dynamic Monte
Carlo ~MC! simulations of the master equation~15! in order
to test the quality of results which were based on the mean-
field approximation~19!. From Eq.~13! it follows that the
dominant transition rates near a critical state, and near equi-
librium differ by a factor of the order exp~2/T* !@1. Hence
the stochastic process defined by the master equation~15!
implies very different time scales, and the standard Metropo-
lis algorithm will not be suitable in this case. Instead we
shall employ a continuous-time MC procedure,37,38 whose
main steps are as follows:~i! calculate all 2N12 transition
probabilitiesW6(ni ,ni21) in the actual configuration$ni% at
time t ; ~ii ! put r5( i [W

1(ni11,ni)1W2(ni ,ni21)]; select
Dt according to the probability distributionP(Dt)
5r exp~2rDt! and increase time byDt ; t→t1Dt ; ~iii !
select a transition according to probabilitiesW6(ni ,ni21)/r ;
and ~iv! after performing this transition, return to~i!.

Below we analyze some characteristic examples of the
resulting magnetic relaxation in the ZFC case. In Fig. 9 the
total magnetic flux in the sample, which was obtained from
that algorithm, is plotted on a logarithmic time scale~full
curves! and compared with the corresponding results of the

FIG. 7. Creep rates within mean-field ap-
proximation for different external fields, where
L50.002 ~‘‘Kim model’’ !, b5100, andT*50.1
for ~a! flux entering a zero-field-cooled sample
and~b! decay of the remanent magnetization. The
arrows indicate the timet* ~see text!.
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mean-field~MF! approximation~dashed curves!, using dif-
ferent temperatures. Other parameters were chosen as in Fig.
4. Note that both the MC and the MF method are based on
exactly the same transition rates, given by Eq.~13!, and this
comparison therefore does not involve any adjustable param-
eter. In general, the simulation data when plotted against lnt
show slightly faster relaxation than that predicted by the MF
approximation, but evidently there is good overall agree-
ment. By lowering the temperature, however, the simulated
magnetic flux develops a wavy pattern which can be charac-
terized as a sequence of ‘‘avalanches,’’ followed by plateaus
of nearly constant flux. This behavior, which becomes
clearly visible forT*&0.025 and which is absent in the MF
results, is interpreted as follows. Inspection of the spatial
dependence of the simulated flux right at the onset of a pla-
teau shows that in general the flux density decreases linearly
towards the interior of the system, e.g., fori< i 0<N/2 we
haveni5ni212Dn, with some integerDn.0. In these typi-
cal configurations only three different values of transition
rates occur in the system,W6(ni ,ni1Dn)5We6aDn for ar-
bitrary ‘‘downhill’’ or ‘‘uphill’’ transitions, respectively, and
W5W6(0,0)5n exp~22/T* ! for spontaneous fluctuations

in the nonpenetrated region. At low temperatures, the domi-
nant rate ist̃ 215WeaDn. Hence, after a time of the ordert̃
a ‘‘downhill’’ transition will occur for some plaquettei ,
which increases the local slopeuni2ni21u and hence triggers
subsequent faster transitions. This process shows up in Fig. 9
in plateaus of a length of aboutt̃ and a subsequent steep
increase of the total flux, until a new linear flux profile is
built, with Dn decreased by unity. Since the slope in the
initial critical state corresponds toDn.b/2p, we expect
aboutb/2p ‘‘avalanches’’ until saturation is reached. From
the same kind of reasoning we expect in the fully penetrated
case~t.t* ! a difference in height of subsequent plateaus
given byDntot5N2/4. This is in fact confirmed by our MC
calculations for the lower temperatures; also the length of
plateaus agree with the above estimate fort̃. Clearly, such
regular events would disappear, if structural disorder effects
in our network were taken into account.

So far our description of magnetic relaxation was based
on the mapping of our original equations of motion onto a
master equation and therefore relied on condition~16!.
Clearly, this condition does not hold during an initial tran-
sient relaxation of the critical state, typically in a time do-

FIG. 8. ZFC creep rates as functions ofnext
for different values ofL observed at lnt515,
whereb5100, T*50.1. Inset shows data for a
single crystal of Bi2Sr2CaCu2Ox at T56 K ~Ref.
35!.

FIG. 9. Results of continuous-time Monte
Carlo simulation~full lines! compared with the
mean-field approximation results~dashed lines!
for different temperatures;L50, b5100, next
5400'nB* /2. Statistical errors in the MC data are
smaller than the line thickness.
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maint &5. Hence both our MC and MF data have no physi-
cal significance in that range. In order to justify our
procedure for larger times, we have independently performed
some Langevin dynamics simulations of the set of stochastic
differential equations~7!, starting out from a ZFC state,
q i(t50)50, and usingL50. As these simulations are rather
time consuming, we only considered small systems~N510!
and a limited set of external parameters. Nevertheless, some
interesting features emerged from these preliminary studies.
On short time scales, given bytmicro ~see Sec. II!, we observe
a fast and temperature-independent relaxation and the forma-
tion of a rather well-defined critical state with an almost
linear flux profile, uq i2q i21u'fext/f02b i in agreement
with Eq. ~9!. As time proceeds, the relaxation becomes ther-
mally activated. Calculated flux profiles nearly preserve their
linearity, and hence justify our choice of initial conditions in
the MC and MF calculations. Moreover, some Langevin-
dynamics simulations on time scales up tot'107tmicro show
sufficient overlap with our MC data to verify the creep rates
during the early stages of the corresponding MC runs and the
onset of ‘‘avalanche’’ effects. A more detailed discussion of
Langevin-dynamics simulations will be presented elsewhere.

V. SUMMARY AND CONCLUSIONS

In cases of strong pinningb@1, we derived a master
equation describing thermally activated motions of magnetic
flux quanta in a one-dimensional Josephson network. Mag-
netic fields due to the currents induced in the system were
taken into account by self-inductance coefficients. The
mean-field approximation to solutions of the master equation
allowed us to follow magnetic relaxation phenomena up to
very long observation times for different temperatures and
external field values. Assuming the widely used Kim-model
description for the relation between the local values of mag-
netic field and critical current, our calculations reproduce
several flux-creep phenomena similar to those recently ob-
served in samples of type-II superconductors with very short
coherence lengths. In particular, we obtained logarithmic or
nonlogarithmic flux-creep phenomena depending on tem-
perature and the applied field, in good qualitative agreement
with experimental findings. Numerical simulations confirm
the applicability of the mean-field approximation to the cases
considered in this paper.
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APPENDIX: CONTINUUM LIMIT

Let us assume here that^ni& as determined by Eq.~20!
varies on a length scale much larger than the lattice constant
a. Then we can perform a continuum limiti→s5x/a,
mi( t̄)→m(s,t̄), f i2 f i21→] f /]s, where we have defined
mi5a^ni& andt̄5at exp~22/T* !. Using Eq.~20! we obtain
a nonlinear diffusion equation form(s,t̄)

]m

]t̄
52

]

]s FsinhS ]m

]s D G . ~A1!

Temperature and the external flux enter Eq.~A1! only via
the initial and boundary conditions. Phenomenological dif-
fusion equations of a similar type have been discussed
earlier to describe flux creep phenomena in hard
superconductors.29,31,39,40Integration of Eq.~A1! from s50
to N under the assumption of initial conditions symmetric
with respect tos5N/2 yields

d

dt̄
mtot524 sinhF]m]s ~s50,t̄ !G , ~A2!

where mtot( t̄)5* 0
Nm(s,t̄)ds is proportional to the total

number of flux quanta in the system. The numerical results
presented in Sec. III show that the curvature of the flux pro-
files ~in the caseL50! remain negligible during the whole
relaxation process, so the assumption of nearly linear profiles
for arbitrary times will be a good approximation to our prob-
lem. Assuming]m/]s5D0( t̄) to be spatially constant in the
penetrated region, we easily obtain a relation betweenD0( t̄)
and the total flux in the network.31 In the following we re-
strict ourselves to a ZFC system and distinguish between a
fully and a partially penetrated system. For a fully penetrated
system, 0<D0( t̄)<2mext/N, the total flux depends linearly
on D0( t̄),

mtot~ t̄ !5Nmext2
N2

4
D0~ t̄ !, ~A3!

where mext5anext. Eliminating D0( t̄)5]m/]s(s50,t̄)
from Eqs.~A2! and ~A3!, we arrive at an ordinary differen-
tial equation for the total flux which holds in the range
Nmext>mtot>Nmext/2:

dmtot

dt̄
54 sinhF 4N2 ~Nmext2mtot!G . ~A4!

This equation has the same structure as the equation dis-
cussed by Nieuwenhuizen and Pankert15 for a single super-
conducting loop, but takes into account system size effects
through a dependence onN. Equation~A4! is fulfilled by

mtot~ t̄ !5Nmext2
N2

4
lnH 11e2x0tanh@~8/N2!t̄ #

tanh@~8/N2!t̄ #1e2x0 J ,
~A5!

with x05(4/N2)@Nmext2mtot~t̄50!#. For a range of times
exp(2x0)!(8/N2) t̄!1 the total flux shows a logarithmic
dependence on time. The corresponding constant creep rate
is dmtot/d ln t5N2/4 and is equivalent to Eq.~26!.

Now we want to consider a partially penetrated ZFC sys-
tem D0( t̄).2mext/N. In this case the relation between the
total flux and the linear slope of the profile is given by~cf.
Ref. 31!

mtot~ t̄ !5
mext
2

D0~ t̄ !
. ~A6!
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Together with Eq.~A2! we can again eliminateD0~t!, and in
analogy to the fully penetrated case we get an ordinary dif-
ferential equation which holds in the range 0<mtot<Nmext/2:

dmtot

dt̄
54 sinh

mext
2

mtot
. ~A7!

Under the assumption that changes in the magnetization are
small—that meansDm5mtot2mtot~0!!1—we can expand
1/mtot( t̄) about 1/mtot~0! in Dm. In this way we get a differ-
ential equation forDm of the same structure as Eq.~A4!. For
intermediate times we again arrive at a nearly constant creep
rate, which is given now by Eq.~25!.
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