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Thermally activated flux motion in a one-dimensional Josephson-junction array
with self-inductances
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We study relaxation of magnetic flux in a one-dimensional network of resistively shunted Josephson junc-
tions. Magnetic fields due to the currents induced in the system are taken into account via self-inductance
coefficients. A master equation is derived that describes the stochastic motion of flux quanta among the
different plaquettes of the network. Space- and time-dependent flux profiles are calculated within mean-field
theory and also by a continuous-time Monte Carlo algorithm. The relevance of our results for the description
of flux creep experiments in strongly inhomogeneous superconductors is pointed out.
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. INTRODUCTION ing accessible to experimetft.
Magnetic relaxation in higf-, materials is known to be

High-temperature superconductors are known to be chatarge and often departs from the logarithmic decay law,
acterized by short coherence lengths, with the important eM(t)~Int implied by the conventional flux-creep
fect that structural inhomogeneities in the material generallynodel>*’~2*In order to account for these observations, sev-
lead to an inhomogeneous superconducting state. In receatal new concepts have been proposed, such as flux motion
years, several authors have advanced the idea that stronginder the influence of a distribution of activation barrérs,
inhomogeneous superconductors may be regarded as nebllective flux creeg>2?*or the dynamics of flux near a tran-
works of Josephson weak links connecting islands of matesition from a vortex liquid to a vortex glags.The model
rial with ideal intrinsic properties-3 Under this point of presented below is clearly simplified as it ignores any effect
view a considerable amount of work has been devoted to thef disorder. Instead, it focuses on thermally activated flux
study of Josephson networkst*with the conclusion that at motion in the presence of magnetic interactions in a regular
least some of the important macroscopic properties oflosephson network. For the present purpose, we confine our-
high-T, materials, including magnetic properties and currentselves to the case of strong pinning, where the full stochastic
voltage characteristics, can qualitatively be understood odynamics of the network can be approximated by a master
this basis. In particular, a fairly realistic description of mag-equation that describes a discrete “hopping” process of flux
netic hysteresis effects, ac susceptibilities, and flux patternguanta among the different plaquettes. For simplicity, we
in bulk sample¥**and thin film$2 has been achieved, using consider a one-dimensional finite chain of superconducting
network models where inductance effects adapted to thkops in a perpendicular magnetic field, which in an aver-
sample geometry were taken into account. Similar modelsged way may represent the behaviour of a sample of slab
have also been used to analyze the form of a single, extendegometry. We find that only under certain restricted condi-
Josephson vorté% as well as giant Shapiro steps in large, tions the conventional logarithmic decay law for the total
artificial arrays of junctions? magnetization applies, and that a nonlogarithmic behaviour

In a Josephson network pinning forces naturally arisebecomes especially pronounced in cases where the maximum
from the discreteness of the system. For large pinning a critisuperconducting curremg in a junction depends on the local
cal state can be defined, whose coarse-grained properties aragnetic field. In many respects our results are similar to the
similar to conventional critical state models. For a system irexperimental findings by Svedlindét al,*®%® who investi-
a critical state the question arises how the magnetization regated magnetic relaxation processes in “extreme” type-ll
laxes when thermal fluctuations are taken into account, angduperconductors.
how this relaxation compares with flux creep experiments on This paper is organized as follows. In Sec. Il we give a
high-T, samples. Thermal fluctuations and magnetic relaxshort account of our model and explain the character of the
ation in a superconducting loop containing a single Josephadopted approximations. Numerical results obtained within
son weak link were discussed recently by Niewenhuizen andhean-field theory are discussed in Sec. lll, and are compared
Pankertt® Here we extend both the idea of these authors anevith experimental data. Section IV contains examples of so-
our previous work’! by studying a Josephson array includ- lutions to our master equation reached within a continuous-
ing thermal noise. This allows us to relate the overall relaxtime Monte Carlo algorithm. These examples corroborate the
ation to the temporal evolution of the underlying flux pat- assumptions made in Sec. Il and in addition indicate that
terns. Such an investigation should be useful in view of thanagnetic relaxation at low temperatures proceeds through a
fact that spatially resolved flux creep phenomena are beconseries of “avalanches.”
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screening currents perpendicular to the field are important,
and that the current distribution in planes parallel to the slab
Iz Ing C

is uniform. An averaged description of such a system then
leads to the one-dimensional system of E§%-(6), wherei

is the coordinate perpendicular to the slab; cf. also Ref. 11.
Elimination ofI; and ¢, leads to a system of Langevin equa-

o ] ) tions for the phases;, which can be written in the form
FIG. 1. Schematic view of a one-dimensional network of Jo-

sephson junctions with indicated elementary current lolgpsnd
gauge-invariant phase differenc@sacross elements which consist
of an ideal Josephson junction in parallel with a normal resistBnce
(RSJ model A self-inductancd. is associated with each plaquette.
The external field is perpendicular to the network.

G UG

o 2 J3 Ui Oy e

godd oV f
ﬁw——a—ﬁiﬂL%'i(t), (7)

where the potential is given by

Il. STOCHASTIC JOSEPHSON NETWORK ben 2
AND MEAN-FIELD APPROXIMATION V=lodo| 55 Z:l b Vit Viea) - Z« cosd; |-
We start our analysis with the formulation of the Lange- ®)

vin dynamics for a one-dimensional Josephson array d
picted in Fig. 1. The array consists Nfidentical elementary
loops subject to a perpendicular external field. Each junctio
is characterized by its maximal superconducting curtgnt
its normal resistancR, and the gauge-invariant phase differ-
enced,

®ere we have introduced the dimensionless parameter
=LIy/ ¢y which measures the pinning strength of a single
laguette. In factB determines the maximum flux gradient
that can be maintained in a stationary state in the absence of
noise,

1 |¢i_d’i—1|max::8¢0- 9
ﬁqua——onu (1)

0 which is obvious from Eqs6) and (2).

whereAg is the difference of phases of the order parameters ON€ nyFd'wl plrodblem ISI to S#J?%/ magnetic (;e'ax"?‘“.o.” Ifrom
in superconductors forming the linld is the vector poten- a zero-field-cooled sample which corresponds to initial con-

tial, and the integral is taken across the junction, whileditions #;(t=0)=0. In the case of strong pinnings>1),
do=h/(4me). Additionally, each junction is resistively which is most relevant to strongly inhomogeneous supercon-

shunted by normal currents and the total current through thguctors relaxation will occur via two distinctly different pro-
junctioni (i=1,...N+1) is then given by cesses with different time-scales. Initially, there will be fast

relaxation on a time scalg,,o~L/R due to the action of the
¢ d systematic forces-dV/d9; in Eq.(7) until a state is reached
R dt +| i(t). (2 which would be stationary at=0, i.e., in the absence of
noise. As shown previousi§this state forg>1 is similar to
In writing Eq. (2) we took into account Josephson’s equa-the Bean critical state with linear flux profiles determined by
tions, the parametrization of currents as shown in Fig. 1 anthe condition(9). The subsequent decay of such profiles due
a Nyquist noise ternh {(t) associated with the normal resis- to the presence of noise will be the main objective of our
tanceR. The ensemble average of the noise current and itgwvestigation here. In principle one could employ Langevin-

li—1,_1=lg sin 0+ —=

correlation function satisfy the standard relatihs: dynamics simulations. However, it turns out in our present
; problem that this technique is only of limited practical use.
(Ii(H)=0 (3)  Focusing on low temperatures, we are faced with exceed-

ingly long relaxation times, to be derived from an elementary
time for escape over pinning barriers of strengthd?, see
f f 2 Eq (8) tescape eXp(zO()1)0/kB-I-)tm|cro>tm|cro ERou%h es_ti-
()= R KgT o o(t—t"). (4) mates show that for sintered sampteg.,,~10 12 s!! This
value has to be compared withl(* s as a typical time scale
Equation(1) implies thatd; , the total magnetic flux through for flux creep measurement#ipart from the early stages of

and

the plaquetté (i=1,...N), is given by the relaxation it is then clearly appropriate to adopt a coarse-
grained description in terms of a master equation, which de-
bi scribes the time evolution of discrete configurations defined
%:ﬁi_ﬁiﬂ' ) through the metastable minima of the potent®l. An ap-
proach of this type was proposed before by Niewenhuizen
Finally we assumé-? and Panket? for the case of a single superconducting loop,
and will be generalized here to our problem of a one-
b= bex— LI, ©) dimensional array. Whep>1, the system is found most of

with ¢, denoting the external flux aridthe self-inductance the time in states with all phases close to integer multiples of
coefficient of a plaguette. The neglect of more general inducl™

tance coefficients may be justified for samples of slab geom-

etry in a parallel magnetic field, if we assume that only 9y=2ml; (10
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as a consequence of the last term in 8). This implies, of W=(n;,ni_)=v exp —2/T*)exd F a(n,—n;_1)],
course, that the system has already relaxed for a sufficiently

long time, that the actual currents through all the junctions be

substantially smaller thaty. By Eq. (5), the flux ¢ then  Wherev=pgR/2z7L and a=27%/BT* with

becomes quantized;; = (27 ¢o)n; , where the numbem; of

flux quanta through théth plaquette is given by . kgT (14)
I091)0 .
n=li—liy. (1) In writing Eq. (13) we assumed\E*>kgT and used the
standard escape rates in the overdamf@choluchowsKi
The increasdor decreaseof 9; by 27 corresponds to the limit. %
motion of one flux quantum from plaqueite 1 toi (or vice Furthermore let us remark that the dependence of the en-
versa. The barriers to be overcome in these processes amrgy barrier on occupation numbers as given by B@)
calculated as corresponds to the leading contribution in an expansion in

powers of8~ L. Higher order terms in Eq12) due to correc-
. tions O(B8~?) in Eq. (10) would involve the flux in next-
AE=V(...,0ixm,..)=V(..,¥,..) nearest-neighbor or higher-neighbor plaquettes.
N 2 At this stage we can formulate a master equation that
=2lodol 17N =ni_1)/B] (12 describes jumps of individual flux quanta between neighbor-
and the corresponding transition rates are given by ing plaquetteg®

d N
gt P(nq,...,ny ;t)zz {PC..n_1+1n—1,..0W (nj—1n,_;+1)+P(....nj—1n; 1+ 1,.. )W (nj;1+1n—1)
i=1

Pl W (N 1,0 W (00 ) T (19

where the external flux enters via the definitionsour one-dimensional modé¢kee the above discussion after
No=Nn4+1=Nexi= Pexd2mdy.  More  phenomenological Eg. (6)]. Nevertheless it appears interesting also to perform
schemes for thermally activated forward and backward hoprumerical simulations and to compare them with the mean-
ping of flux quanta during flux penetration into the samplefield results, which will be done in Sec. IV. From the master
were described before by several autifr$Equation(15),  equation(15) together with Eq(13) the time derivative of
however, represents a coherent stochastic description for tH@;) is readily calculated in terms of averages of the type
temporaland spatial relaxation of flux including magnetic (sinha(n;,;—n;)). Mean-field theory now corresponds to
interactions in the system. The discrete hopping processdbe factorization

which we have assumed appear physically meaningful as

long asAE[">kgT, or <H ni>=H (n), (19
92 ) i i
2- 5 Ini—ni_q[>T*. (16)  with the result
Our primary aim is now to calculate from E¢L5) the dini) =Ji—Ji_q, (20)
time-dependent average occupation humbers dr

where the current of magnetic flux is given by
n;)= niP(nq,...,Nny;t 1
) {2} Pt & Ji=2exg—2M)sinha((ni.1)—(n)) (2D
from which we obtain the average total number of fluxand r=w»t is a dimensionless time. Any linear flux profile
guanta obviously is stationary under these mean-field equations. The
time evolution of a profile that, for example, corresponds to
N a Bean critical state in a zero-field-cooled sample therefore
ntot(t):;1 (ny), (18 must start out in a region located near the penetration depth.
In comparing this type of theory to experiments, it seems
which is related to the total magnetization by important to consider a phenomenological extension of the
M (t) =27 dg(Nioi(t) — NNgyy- model defined by Eq97) and(8) by taking into account a
In a first step we shall use mean-field theory, where itdependence of the maximum Josephson current on the local
should be noted that mean-field ideas have already been imagnetic field. In our model, the local fieB| acting on the
voked before in mapping an acutal experimental situation taéth junction may be written in terms of an average over the
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ZFC RM where we again expressed the local flux in terms of the oc-
) a O B cupation numbers;, and A=0 is a parametefcf. Ref. 11
: ' for a discussion of the applicability of EqR2) as an effec-
\/’_ tive maximum Josephson current in the description of
high-T, ceramics and for references to the relevant experi-
mental worK. To obtain equations of motion in this case, we
merely have to replacg in the expression for the systematic
\ / , force in Eq.(7) by Bi=LIy/ ¢, and to use again Ed5).
Note, however, that a potenti&\(...,9;,...) does not exist
o N2 __. N o N2 N inthe caseA+#0. Finally, our mean-field equations take the
form of Eq. (20), where the flux current is now given by

FIG. 2. Schematic representation of initial flux distributior}&
determined by Eq(24). The penetration depth is denotedily (a)
Zero-field-cooled(ZFC) sample for external fieldSg,> Ny , Neyx J(A)=2 sinha((niﬂ)—(ni))ex;{
=ng , andng<ng (from above and(b) remanent flux of a field-
cooled sampléRM). In this case all profiles fon,=ny coincide
(upper curvg, whereas fong,<ng a plateau of constant flux ap-
pears(lower curve. with J;(0)=1J;.

In the next section we discuss numerical results obtained

magnetic flux in the two adjacent plaquettes. Following thefrom these equationgAs far as the temperature dependence
standard Kim model, the maximum Josephson currengf our results is concerned, we ignore the temperature depen-

—2/T*
L+ A 1) +(ni)l72)°
(23

through theith junction is assumed to be of the fotm dence ofl 5, which in a more realistic model should follow
the Ambegaokar-Baratoff formufd:>) Some analytical con-
lo 22) siderations based on the continuum form of EBQ) are

loi= 1+ Alni+n;_4|/2 presented in the Appendix.

500 T T

a)

400

300 1

{(n;?

200

100

FIG. 3. Results from mean-field approxima-
tion for the “Bean model”’(A=0). (a) Time evo-
lution of a ZFC flux profile andb) the corre-
sponding slopes, which are proportional to the
20 T T T T y T y y T local currents. The other parameters grel100,

b} T*=0.1, andng,=400~nj/2. Time stepsy are
taken as Inr = (40/9)k; k=0,...,9.

(ni )—(ni_1)

-20 2 N L s N L . . s
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4000
3000
£
s FIG. 4. ZFC creep rates within mean-field ap-
2 2000 proximation for different temperatures, where
o A=0 (“Bean model”), 8=100, andng=400
~ng/2. The arrows indicate the time* (see
1000 text).
0
IIl. NUMERICAL SOLUTIONS scribed above are depicted schematically in Fig. 2. As usual,
OF MEAN-FIELD EQUATIONS we introduce the external flugx* where flux starts to pen-

The system of Eq€20) is solved numerically foN=100  ©trate the entire sample. In the “Bean model,” we hae
and8=100, assuming different temperatuf@sand external = (B/2m)N/2, whereas in the “Kim model'ng <ng .
fields ng,. (This value forg is of the order of magnitude The distributions i(o) are in turn used as initial conditions
estimated for ceramic superconductbisTwo standard situ-  in our mean-field equations for some finite temperaiufe,
ations are considered:(a) relaxation of magnetic flux enter- from which we obtain the time-dependent profiles) and
ing a zero-field-cooledZFC) sample andb) relaxation of the total penetrated flux given by E€L8). Let us start our
remanent fluXRM) trapped in a field-cooled system after the discussion with the casa=0. In Fig. 3a) we plotted the
external field has been switched off. First we generate thevolution of magnetic flux forT*=0.1 and ng=400
corresponding critical state distributions which build under=n*/2. Time stepsr, are chosen equidistant on a logarith-
the intrinsic dynamics, in the absence of noise. The appromjc scale. Clearly, as seen from Eg0), the evolution starts
pfrlate stationary §o|ut|ons of our original equatlc(r?B; with near the pointi=i,, where the initial profilen(® departs
| i(t)=Q are obtained py requiring that flux gradients arefom linearity. In a range of timesr<7* a region
determined by the max_|mal Josephson currégtssee Eq io(7)<i<N—ig(7) remains free of flux, then shrinks, and
(22). I_nterrfs ?J)our variablegn;) this leads to t_hfq(go_”d'“o” finally vanishes at a characteristic time*, where
<ni(7._0)>_ni » where in the penetrated region™ is de- io(7)=N/2. Nearly linear profiles and slope discontinuities
termined by : . )
persist up to large times close to saturation. A plot of slopes
(0 _ n(0)]_ (0) (0)] 797 —1 n;_,—n;) which are proportional to the current through the
=2l = (B2m I+ Al F 2] (24 i<th junctign, is presented in Fig(i9. Note that flux profiles
From that we obtain the familiar Bean or Kim profiles in depicted in Fig. &) have a slight positive curvature, which,
casesA=0 or A#0, respectively. The two situations de- however, remains small at any time.

1500 v v T

nm=800

1000 '
£
2 100 ), FIG. 5. ZFC creep rates within mean-field ap-
%2 proximation for different external fields, where

A=0, B=100, andT*=0.1. The arrows indicate
500 the time 7 (see text
0 .
35 40

InT
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. A . ) / . . FIG. 6. Same as Fig. 3 but foA=0.002
0 0 20 30 4O 50 60 70 8 90 100 (“Kim model” ) andn,,=200. (a) Time evolu-
i tion of a ZFC flux profile andb) the correspond-
ing slopes. Time steps are taken for
20 ; ; ' ; ' ; ' ' ' In 7= (35/9)k; k=0,...,9.
b)

/] ] 117
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In the Appendix we present a simple calculation showingfigure indicate the time*. On the other hand, data obtained
that under the assumption of linear profilg®., neglect of for our lowest temperatures indicate the appearance of yet
that curvaturg in the penetrated regions, the conventionalanother plateau in the range<7*. This second plateau be-
logarithmic time dependence of the magnetization is obcomes more pronounced in cases of smaller fields, see Fig. 5,
tained when two different regimes of the external parameterghen the creep rate is small and proportionalntg,, in
are considered. First, at sufficiently low temperatué’ss1,  agreement with Eq(25). For the lowest curve in Fig.(8)
and sufficiently small external fieldsie<ng, there is @  one can show that,,(7) varies only by a few percent in that
range of times r<7*, where the creep rate range of times. Generally, however, 6t =0.1 andr<7*
S(7)=dng(7/d In T becomes constant and is given by e observe a nonlogarithmic relaxation. Saturation is

a2 ko - reached after a time independentngf;. Similar calculations
S=2Neal™/B: T<T. (25 were performed for the decay of remanent flux, with the
Secondly, for strong fields of the orde§ or times7>7*,  general resultsSyy(7)=—Szrc(7) apart from very short
again a constant creep rate can be defined after flux has pefmes.

etrated the entire sample. In that case Next we allow for a field dependence of the maximal
Josephson current, in analogy to the Kim model, £9).
N2 Flux profiles and slopes in the cade=0.002 for3=100 and
S=g2 BT > (26) =200 are displayed in Fig. 6 f f 1
S oxt played in Fig. 6 for a sequence of timges

Contrary to Fig. 3, the profiles are concave for arbitrary
Numerical calculations shown in Figs. 4 and 5 essentiallftimes (apart from a small region around the symmetry point
confirm these findings. For temperatures not too large a pla=N/2). An experimental observation of profiles with nega-
teau in Fig. 4 emerges for>7", whose height agrees with tive curvature and their time evolution has recently been re-
Eq. (26) and whose width expands with decreasing temperaported by Koblischkaet all® Creep ratesS(r) as a function
ture. Calculations shown in this figure were performed for aof 7 for the Kim model are plotted in Fig.(&) for different
fixed external field withn,,;=400~n*/2. The arrows in the external fields. Beyond the tim&, creep rates are no longer
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T a)
2000 r
1500 r 1
o
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©
500
0 S N FIG. 7. Creep rates within mean-field ap-
0 5 10 15 20 25 30 35 40 proximation for different external fields, where
Int A=0.002(“Kim model” ), =100, andT*=0.1
for (a) flux entering a zero-field-cooled sample
and(b) decay of the remanent magnetization. The
arrows indicate the time* (see text
-500 | 100 X
300 200
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= Next =500
g -1000 |
&
h=l
1500 |
-2000 b) 1
0 5 10 15 20 25 30 35 40
InT
constant but decrease slightly with increasing-or r<7*, V. MONTE CARLO SIMULATIONS

on the other hand, the curves are very similar to Fig. 5. In
contrast to Fig. 5, however, saturation is now reached fast : : ) .
for higher fields in the ZFC case, whereas the final decay S}Farlo(MC) simulations of the master equati¢tb) in order

. i o test the quality of results which were based on the mean-
the remanent flux remains unaffected by the field Streng.th'field approximation(19). From Eq.(13) it follows that the

Bominant transition rates near a critical state, and near equi-

conform with recent experiments on high-materials, al- .. ; s
though we have to keep in mind that the present model co librium differ by a factor of the order exp/T*)>1. Hence

tains no spatial disorder effects. First, under ZFC conditionshe .StOChaSt'C. process defined by the master equélion
. . . implies very different time scales, and the standard Metropo-
[Fig. 7@], a maximum creep rate is observed

. 26 i . lis algorithm will not be suitable in this case. Instead we
experimentally®?®and normally attributed to the time of full . : g
. . - - shall employ a continuous-time MC proceddfé® whose
penetrations*, in accord to our findings. Secondly, at high

! ) . . main steps are as follows:(i) calculate all N+ 2 transition
fields ng,>n* and for a fixed observation time>7* the b ®

. X . . robabilitiesWw™ (n; ,n;_,) in the actual configuratiofn;} at
creep rate drops by increasing the field in the ZFC cas%?meT - (ii) putr=IEi[IV\}+(ni+1,ni)+W‘(ni ,ni_l)];{gé}iect

whereas it stays constant in the RM cgb@. 7(b)]. Sucha A, according to the probability distributionP(A 7)
behavior has recently been reported for Bi samfﬂes. =r exp(—rA7) and increase time bp7; r—7+A7; (i)

The dependence of the ZFC creep rate on the extern@gect a transition according to probabilit& (n; ,n; _ )/
field ne, (at a fixed observation times depicted in Fig. 8  and (iv) after performing this transition, return to).
together with experimental measuremetit&or low fields Below we analyze some characteristic examples of the
the creep rate is nearly proportional ng,, passes a maxi- resulting magnetic relaxation in the ZFC case. In Fig. 9 the
mum at intermediate fields, and decreases slowly at highabtal magnetic flux in the sample, which was obtained from
fields. Very similar experimental results were also reportedhat algorithm, is plotted on a logarithmic time scdfall
by other authorg®3536 curves and compared with the corresponding results of the

Our aim in this section is to perform dynamic Monte
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FIG. 8. ZFC creep rates as functions rof,
for different values ofA observed at In=15,
where =100, T*=0.1. Inset shows data for a
single crystal of BjSr,CaCyO, at T=6 K (Ref.
35).
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Next

mean-field(MF) approximation(dashed curvgs using dif- in the nonpenetrated region. At low temperatures, the domi-
ferent temperatures. Other parameters were chosen as in Fitant rate ist ~1=We**". Hence, after a time of the order

4. Note that both the MC and the MF method are based oa “downhill” transition will occur for some plaquette,
exactly the same transition rates, given by Bp), and this  which increases the local slopg —n;_,| and hence triggers
comparison therefore does not involve any adjustable paransubsequent faster transitions. This process shows up in Fig. 9
eter. In general, the simulation data when plotted against In in plateaus of a length of about and a subsequent steep
show slightly faster relaxation than that predicted by the MFncrease of the total flux, until a new linear flux profile is
approximation, but evidently there is good overall agree-built, with An decreased by unity. Since the slope in the
ment. By lowering the temperature, however, the simulatednitial critical state corresponds tdn=pg/2m, we expect
magnetic flux develops a wavy pattern which can be characabout g/27 “avalanches” until saturation is reached. From
terized as a sequence of “avalanches,” followed by plateaushe same kind of reasoning we expect in the fully penetrated
of nearly constant flux. This behavior, which becomescase(7>7*) a difference in height of subsequent plateaus
clearly visible forT*=<0.025 and which is absent in the MF given by An,,,=N?%4. This is in fact confirmed by our MC
results, is interpreted as follows. Inspection of the spatiatalculations for the lower temperatures; also the length of
dependence of the simulated flux right at the onset of a plaplateaus agree with the above estimate#oClearly, such
teau shows that in general the flux density decreases linearhggular events would disappear, if structural disorder effects
towards the interior of the system, e.g., icGei;=<N/2 we in our network were taken into account.

haven;=n;_,—An, with some integeAn>0. In these typi- So far our description of magnetic relaxation was based
cal configurations only three different values of transitionon the mapping of our original equations of motion onto a
rates occur in the systetdy™(n; ,n,+ An)=We"“*" forar- master equation and therefore relied on conditid®).
bitrary “downhill” or “uphill” transitions, respectively, and Clearly, this condition does not hold during an initial tran-
W=W=*(0,0)=vexp(—2/T*) for spontaneous fluctuations sient relaxation of the critical state, typically in a time do-

45 x10° T T T T

35 x 103

FIG. 9. Results of continuous-time Monte
Carlo simulation(full lines) compared with the
mean-field approximation resuliglashed lines
for different temperaturesA=0, B=100, Ngy,
=400~n}/2. Statistical errors in the MC data are
smaller than the line thickness.

25 x 103

Ntot

15 x10% |

5 x 103 ! " 2 2 f " 2 L
20 40 60 80 100 120 140 160 180
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main = <5. Hence both our MC and MF data have no physi- om J
cal significance in that range. In order to justify our —=2—

~[dm
. ) ar cas|®™ s
procedure for larger times, we have independently performed

some LangeVin dynamiCS simulations of the set of Stochastiqfemperature and the external flux enter ml) On|y via
differential equations(7), starting out from a ZFC state, the initial and boundary conditions. Phenomenological dif-
9;(t=0)=0, and using\ =0. As these simulations are rather fysjon equations of a similar type have been discussed
time consuming, we only considered small systéMs-10)  earlier to describe flux creep phenomena in hard
and a limited set of external parameters. Nevertheless, somg perconductor?3-3**|ntegration of Eq.(A1) from s=0
interesting features emerged from these preliminary studiego N under the assumption of initial conditions symmetric
On short time scales, given by (see Sec. )| we observe  wjith respect tos=N/2 yields

a fast and temperature-independent relaxation and the forma-

. (A1)

tion of a rather well-defined critical state with an almost d om L
linear flux profile, | %— &_ 1|~ de/po—Bi in agreement d—?mtot=—4 sinr{g(s=0,r) , (A2)

with Eqg. (9). As time proceeds, the relaxation becomes ther-
mally activated. Calculated flux profiles nearly preserve thei
linearity, and hence justify our choice of initial conditions in
the MC and MF calculations. Moreover, some Langevin-
dynamics simulations on time scales upt#910't ¢, Show

Where my(7)=f Ym(s,7)ds is proportional to the total
tot 0 prop

number of flux quanta in the system. The numerical results

presented in Sec. Il show that the curvature of the flux pro-

ffici | ith Cd it th files (in the caseA=0) remain negligible during the whole
sufficient overlap with our MC data to verify the creep ratesyg|,yation process, so the assumption of nearly linear profiles

during the early stages of the corresponding MC runs and thg), arbitrary times will be a good approximation to our prob-

onset of “avalanche” effects. A more detailed discussion of| Assumingim/as=A,(7) to be spatially constant in the

Langevin-dynamics simulations will be presented elseWherepenetrated region, we easily obtain a relation betw&gn)

and the total flux in the network In the following we re-

strict ourselves to a ZFC system and distinguish between a

fully and a partially penetrated system. For a fully penetrated
In cases of strong pinningg>1, we derived a master System, 6<Aq(7)<2m,/N, the total flux depends linearly

equation describing thermally activated motions of magneti®n Ao(7),

flux quanta in a one-dimensional Josephson network. Mag-

netic fields due to the currents induced in the system were _ _

taken into account by self-inductance coefficients. The Mo 7) = NMey— = Ao(7), (A3)

mean-field approximation to solutions of the master equation

allowed us to follow magnetic relaxation phenomena up towhere mg,=ang,. Eliminating Ay(7)=dm/ds(s=0,7)

very long observation times for different temperatures androm Eqgs.(A2) and(A3), we arrive at an ordinary differen-

external field values. Assuming the widely used Kim-modeltial equation for the total flux which holds in the range

description for the relation between the local values of magNm,,=m,,=Nm,,/2:

netic field and critical current, our calculations reproduce

several flux-creep phenomena similar to those recently ob- dm, (4

served in samples of type-Il superconductors with very short dr =4 smk{m (NMgyi— Mygy)

coherence lengths. In particular, we obtained logarithmic or

nonlogarithmic flux-creep phenomena depending on teMryis equation has the same structure as the equation dis-

perature and the applied field, in good qualitative agreement ,scaq by Nieuwenhuizen and Pankefor a single super-

with experimental findings. Numerical simulations confirm ¢4y cting loop, but takes into account system size effects
the applicability of the mean-field approximation to the Case?hrough a dependence ®h Equation(A4) is fulfilled by
considered in this paper.

V. SUMMARY AND CONCLUSIONS

2

. (A4)

_ N?
Mig( 7) = NMey— vy In

1+ e otanH (8/N?) 7]
tanH (8/N?)r]+e %0 |’
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Now we want to consider a partially penetrated ZFC sys-

APPENDIX: CONTINUUM LIMIT tem Ay(7)>2m,,/N. In this case the relation between the
Let us assume here thét,) as determined by Eq20) total flux and the linear slope of the profile is given (@f.
) . ef. 31
varies on a length scale much larger than the lattice constarlﬁ

a. Then we can perform a continuum limit-s=x/a,
mi(7)—m(s,7), f;—f;_1—af/ds, where we have defined
m;=a(n;) and7=a7exp(—2/T*). Using Eq.(20) we obtain = mei (AB)
a nonlinear diffusion equation fan(s, 7) '
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Together with Eq(A2) we can again eliminatd(7), and in
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Under the assumption that changes in the magnetization are

analogy to the fully penetrated case we get an ordinary difsmall—that meansA m=m,;;—m,,(0)<1—we can expand

ferential equation which holds in the range®,,<Nm,,/2:

d 2
m[—m =4 sinh—=

d T mtot ’

(A7)

1/my(7) about 1y, (0) in Am. In this way we get a differ-
ential equation foAm of the same structure as E¢\4). For
intermediate times we again arrive at a nearly constant creep
rate, which is given now by Ed25).
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