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We show that magnetic properties of clean superconductors with a large Ginzburg-Landau pakaateter
low temperatures are affected by the nonlocality of the microscopic current-field relation and can be described
by modified London equations. We argue that for clean materials at low temperatures, the standard London
formula for the reversible magnetization in intermediate fields;-In(H.,/B), should contain the field
Ho~ ¢o/p? instead ofH ,~ ¢o/£%(T), with p being the nonlocality range on the order &, the zeroT
coherence length. Singe depends weakly off, the magnetization should exhibit an approximate scaling
M(T,B)=X(T)Y(B) as observed in Bi- and Tl-based compounds in a broad temperature domain well below
T.. Our expression for the magnetization reduces to the standard London resUlt iaeak at any temperature
for the dirty case. Implications of our results for interpretation of neutron scattering data and for procedures of
extracting the penetration depth are discus§80163-18206)06941-X

I. INTRODUCTION replaced with the field component along the common direc-
tion of vortices.

Magnetic properties of type-Il superconductors near the For a dense vortex lattice in intermediate fields
critical temperatureT, are described by the Ginzburg- H,;<B<H, (a domain which exists only in materials with
Landau (GL) theory. Outside the GL domain, no simple «>1), one can replace the suit) over nonzerds’s with an
macroscopic description is available, and the full micro-integral?
scopic formalism should be employed to properly describe
the cores of vortices; in fact, this can be done only numeri-
cally; see, e.g., Ref. 1. Fortunately, in materials with a large E=F

B2 B2 [ 27GdG 1
f (2

GL parameterx=\/¢ (the ratio of the penetration depth to 87 8w 47°Bldy 1+\°G*
the coherence lengththe core contribution to the total en-
ergy is small, and a very simple London approach sufficeshe integral is extended fro@ = 27r/a with the intervor-
for many applicationd-* Within this approach, the magnetic tex spacinga=(2¢,/+3B)? for a triangular lattice. With
field of a single vortex is given(in Fourier spack by  the upper limit of integration at, the intergal is logarithmi-
h(k) = ¢o/(1+1?k?), and the free energy density of a flux- cally divergent, and one has to introduce a cutofGak,y on
line lattice is the order of 2r/¢’ where ¢’ is an effectivecore size. The
divergence and the cutoff are inherent shortcomings of the
London approach which breaks down at distanceg. The
F=B2Y>, h(G)/8md,. (1)  cutoff cannot be “improved” within the London theory; for
¢ this one should turn to a theory which is able to handle the
core structure properly, e.g., to GL theory n@ar This has
Here, the sum runs over the reciprocal latt®g ¢, is the  been done by Hao and Clérwho developed a variational
flux quantum, andB is the (average over many vortices procedure to avoid nonlinearities of the GL equatjoasd
magnetic induction; for the anisotropic cade,should be by Koshele$ (who utilized the circular cell approximatign
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To keep the model simple, we add to the London energytandard Helfand-WerthametHW) estimate predicts a
an estimate for the core contribution, change by a factor of % Similar observations were reported
5 by Trisconeet al? and Waldmanret al*® This contradic-
Ewgz — —M.B &) tion motivated us to reconsider in detail the London ap-
g e Mgy~ oS T proach at low temperatures.
In the following, we rederive the London equations from
the microscopic theory, explicitly incorporating the basic
oo nonlocality of the current-field relation in superconductors.
Mozm’ (4 We show that instead Ol ,(T) ~ ¢/ €2, the nonlocality
) ) - ] sets a different scaling fielH o~ ¢o/p?; herep is the non-
Hc is the thermodynamic critical field, and the constantiycajity length that slowly decreases with temperature unlike
.771~1 is mtroduced to account for the uncertainty in defln—g(-l-). Having in mind highT, superconductors, we focus on
ing the core size. Incorporating Eq$) and (4) in Eq. (2) layered strongly anisotropic materials which can be modeled
one obtains with a cylindrical Fermi surface. We construct an expression
for the magnetization and compare it with available data to
, (5 show that our approach is in good agreement with the data
for clean extremely anisotropic layered materials and is free
where the constany, accommodates the uncertainty in the of the contradiction described above.
cutoff ¢’. This yields the familiar London magnetization ~ The nonlocality of the Bardeen-Cooper-SchriefBCS)

where

a2

- H
F:MOB(In?Jrnl 127 c2

InB

:MoB

+ 7

M =B/47— JF/9B=—9F/JB: electrodynamics has been studied extensively. Even before
BCS, the nonlocal relation between the current derjsityd
M= —MyqIn(7H./B), (6)  the vector potentiaA was suggested by Pippafd to ex-

where 7 absorbs all uncertainties mentioned. ExperimentaP!ain data on the penetration depth; for the recent applica-
data show that close t0,, 7~1.2—1.57 the value 1.4 is tions of Pippard’s electrodynamics to the vortex structure see

obtained with the Hao-Clem methéd. Ref. 15. The physics of npnlocality_ origingte; ina finitg size,
It is worth stressing that the London moghr seis only ~ $o & T=0, of Cooper pairsj at a given point is determined
responsible for the prelogarithmic factor in E@) and for Y the vector potentiak within a domain~ &, around this
the linear dependence bf on InB. The termzH., under the point. Instead.of local relat|ons betw_epandA of the.GL or
logarithm is, in fact, imposed by the cutoffi(,) and by the London the0r|e§, BCS prowde an integral .equat|on W|.th a
necessity to match the data). The appearance ¢, in kernel Q extending to distances &,. In Fourier space this
Eq. (6) is hardly accidental, sincé is the only relevant relation is of the formj(k)x=Q(k)A(k) with the Fourier
length in the problem other than. Again, nearT., this transform ofQ explicitly depending ork. In the GL domain
eclectic approach can be improved by employing the Glwhere &(T)> &, or far from the vortex cores in materials
theory(the Hao-Clem procedure is an exampldowever, it~ with the penetration deptih> ¢, the nonlocal corrections
is not obviousa priori that the same scheme will work at low vanish.
temperatures. Still, there is a widespread opinion that the Early theoretical studies of nonlocal effects focused
London equations along with their consequences and, in pamainly on the vortex core region in materials with- 1. The
ticular, Eq.(5) for the energy and Ed6) for the magnetiza- treatment is difficult due to the spatial dependence of the
tion hold and are accurate at IoWs as well. In the past, it order parametefA|; see, e.g., Refs. 1, 16, and 17. In this
was hard to verify whether or not this is true since the pin-paper we argue that fdrigh-« materials at lowT’s, there
ning is usually too strong at loWw's, preventing reliable data exists a region around the vortex core in which the BCS
on thereversible MT,B). With the arrival of low-pinning, nonlocalitycan be described by relatively simple corrections
high-«, and highT. materials such as Bi- or Tl-based com- to London equations, while the spatial dependenceAdf
pounds, such data became available. By and large, they codue to supercurrents can be disregarded. We derive expres-
firm the nearly linear dependend¢(InB). However, close sions for the free energy and indicate measurable quantities
examination shows that application of E@) to the low-  which can be affected by nonlocality: the field dependence of
temperature data is problematis discussed belgw magnetizationM, neutron scattering form factors, and the
The question of the validity of Ed6) at low T's became field variance in the mixed stafgneasured in muon spin
relevant in particular since it offers a simple method to ex-resonance £SR) and NMR experimenis to name a few.
tract the upper critical field from the magnetization data atWe show that nonlocality may well be responsible for a puz-
temperatures down to reduced temperatureS/T.~0.4  zling scalingM(T,B)~X(T)Y(B) seen in Bi- and Tl-based
(30-40 K, for Bi- and Tl-based compoundshereH, is  high-T. compound¥?!® in broad temperature domains
too large for a direct measurement. While at high temperaaway of T..
tures, Eq.(6) (corrected for vortex fluctuatiopgproduced The paper is organized as follows: In the next section we
well-behavedH,(T) linear in (T.—T) for TI-2223 and outline how the London equations are obtained from the mi-
Hg-1201? the method failed when applied to loWs. Ex-  croscopic theory. This approach has an added advantage of
tensive magnetization data on Bi-2212 by G#aall® ana-  allowing us to obtain corrections to the London theory due to
lyzed with the help of either Ed6) or the Hao-Clem proce- the nonlocality. We calculate the macroscopic free energy
dure have generated a puzzling restlt; so obtained was and discuss consequences of the correction terms. We then
nearly T independent between 35 and 70 K, whereas théurn to the case of strongly anisotropic layered materials
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modeled with a cylindrical Fermi surface. In Sec. Il we ji(k)z—[4we2N(O)TA§/c]a,(k)

discuss magnetization data on a few layered Higlsuper-

conductors for which the reversible data are available well > ﬁ_’ Vi 15
below T . A short discussion follows. o B5\ B A+ (v-K)% 4] (19
Il. MICROSCOPIC THEORY AND LONDON APPROACH wherea= ¢oP/27m=A+ ¢,V 6/27 and the summation is im-

. L I plied over repeated subscripts. Note that @) is explicitly
. The main assumption in the der.'Va“O” of London equa'gauge invariant and holds for any anisotropic Fermi surface.
tions from the microscopic theory is that small currents d

onlv the ph h > ¢ OFinaIIy, we substitute the solutions in EQQ) to obtain

not suppres$A|. Only the phasey changes in space, a tea- (f4(r,v))=0, which is verified easily in Fourier space mak-
ture that preserves the flux quantization in the London aPing use ofk,j(k)=0
proach. We begin with the quasiclassical Eilenberger version “g; - - inltllﬂe ab0\./e derivatiofa| is not altered by cur-

8
of the BCS theory! rents, Eq(15) is a good starting point for observing how the

v-IIf = 2A0/% — 20t + (g(f)— f(g))/ 7 ) London equations emerge from the microscopic theory.
' Clearly, fork=0, Eq.(15) yields jeca in both Fourier and
g?=1—ff*, (8)  real spaces; i.e., we havéazal London relation between the
current and the vector potential. Keeping the first correction
AT, A in smallk’s we obtain expanding the denominator in powers
— |n— = _ 2.
57T = 2 | 7e () ©  of (v-k)2
4 1 1o
j=—47|e|N(O)T Im>, (vg). (10) < Jim 7z (M = M Nijimkikm); - (16)
0>0

Herev is the Fermi velocityII=V +2mi Al ¢g, A(r) isthe  Here
gap function (the order parametgr f(r,v,w),f"

=f*(r,—v,w), and g are Eilenberger Green’s functions, 1 16w2e2N(O)TAS<v2> 1 3(vivj)
N(O) is the total density of states at the Fermi level per one N2 302 2 vt mi]1=<—2>—,
spin, Aw=wT(2n+1) with an integem, ( ...) stands for =0 BoB v

the average over the Fermi surface, ant the scattering 47262 2N(0) TA2 1

time due to nonmagnetic impurities. The equation fforis Nijim = 5 (vivjvvm) 2 — .
obtained from Eq(7) by taking complex conjugate and re- ¢ =0 Bof
placingv— —v. In the absence of currents, we have (17

fo=A0/Bo, Go=tiwlBy, BE=A5+#h%»? (11  we defined\ so as to have the correct isotropic limit and
and Eq.(9) gives the uniform BCS gapo(T). m;; to have a convenient property dgf=1. The tenson,

Let now a weak supercurrent flow in the system. We lookSYmmetric with respect to all indices, can also be written as
for solutions of Eqs(7)—(9) in the form?® o
3ﬁ2<vivjv|vm>2ﬂo (B

A=Age?, f=(fot+fy)e”, Mijim=—71,%) sg kgt 19

+_ a—i —
fr=(fot e g=gotar, 12 This quantity is of the ordefi?v?/A%(0)~£2 in the clean
where ¢ depends only om, andf,,f; ,g; are small correc- case and of the order7? for dirty materials. The first term
tions. Substituting Eqg12) into Eq. (7) we obtain on the right-hand side of EL6) corresponds to the standard
anisotropic London equatiofi,whereas the last term is due
v-(Vf +iPf))=2A'g;/h—2w'f1—ifov-P.  (13)  to nonlocality. We will discuss the general anisotropic case
Here A’ =A(1+%/278,) and w’ = wo(1+4/278B,); in the elsewhere; here we just note that being dependent on the
first approximation({f,)=(g,)=0, an assumption justified shape of the Fermi surface, the fqurth-rank tenscr_muples_
by the result. The “supermomentumP="V g+ 2mA/ b, is supercurrents with the crystal lattice even in cubic m{;\terlals
assumed to be smal<¢~1, so thatPf, can be neglected which, within the local London theory, should behave isotro-

relative toVf,. This implies that the current density is well pically. s .
under the depaifing limify~c do/1672EN2. Let us turn now to the case of a cylindrical Fermi surface,

Equation(13) with those forf; andg, (which are not the situation reminiscent of the highs: superconductors.

, , : . . The Fermi velocityv, along the cylinder axis is zero, and
written down herg suffices to determine all corrections in for a circular c Iinyéljezr(n-)g:(z )lezﬂ-d . whereo is
Fourier space: y Tr o NP ¢

the angle betweem andk. All indices in Eq.(16) now take
A2 v-P(k) only x,y values which we denote with Greek letters.
g1(k)= T AT 2o W2 (14 For a system isotropic in the layer planes,
28" BTV K)TA Nopur=N0(60p0,t 80udp,+ 8010p,). TO keep the prop-
where B’ = By+#/27. Substitutingg, in Eq. (10), we obtain  erty detn,z=1 we should replace the factor of 3 in defini-
the BCS current-field relation tions (17) of A andm by 2. Then we obtain
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07 — — _ _ substituted. As above, in field$;.;<B<H_,, we replace the
P ] sum over nonzero G's with an integral from
0.6 | T ] (5,2 12 negral
: \ ] Gmin=(272\/3B/ ¢o)*? (for a hexagonal lattide Unlike the
0.5 | ] situation in the standard London model, the integral is con-
o I ] vergent. However, to ensure that tGevalues corresponding
. : ~—— | to the vortex core are excluded, we set the upper limit of
0.3 e ] integration aiG,,,,= 27/ &' . We then obtain neglecting terms
F ] max .
0.2 | — ] ~0(k™?):
: - T
0.1 [
o ] F=MoB|In 0BrL 22
| | I e S A
0 0.2 0.4t T 0.6 0.8 1
S Ho= ¢o/2m7\3p%, (23

FIG. 1. Parametet vs reduced temperature which determines andM, is given in Eq.(4). Here again, the constants and
the temperature dependence of the nonlocality radiascording to 7, accommodate uncertainties in the core energy and in the
Egs.(19) and(20) for the scattering parametés// =0 (the upper ¢4t in other words, this result has the same shortcomings
curve, 0.2, 0.5, 1, 2, and 1(the bottom curve as thé standard London equatits).
Still, there are important differences between E&sand
— — y(T)=p¥(T) (19) (22). In addition toH,, a characteristic fieldH, related to
16A5(0) ' the nonlocality range enters the free energy. Equatiti
contains three characteristic lengths(T), &(T), and the
nonlocality rangep(T) (the Cooper pair size This reflects
the situation in the microscopic description where all three
distances are implicitly present. Unlikd.,, the field Hg
oes not go to zero ab—T; in fact, it increases, witil
being inversely proportional tg(T); see Fig. 1. Therefore,
nearT., whereB<H. ,<H,, Eq. (22 reduces to the stan-
dard London energy(5). In the dirty limit for which
YT)=A30)2 ,362(3')_3/ > BoAB) L (200 Ho~ ol %> dolée/ ~He(0), we again obtain the stan-
dard London result but now at all temperatures. Thus, the
which can be evaluated numerically. Figure 1 showss  nonlocal corrections are noticeable at IGvs for clean ma-
t=T/T. for several values of the impurity parameter terials.
h12TAo(0)=§2/7 where §;=%v/2Ao(0) is the two- The magnetizatiot = — 9F/JB now reads
dimensional zerdr coherence length, and is the mean free
path. We see that the nonlocality radius is reduced by tem-

2.2
NoA2

where the distancg, on the order of the zer®-coherence
length, will be called hereafter the nonlocality radius. The
guantities\, &, andp, appearing here and in the following
analysis of the data for layered compounds, are commonl
written with subscriptab, which we omit hereafter for brev-
ity. The temperature dependencegpofs given by

perature and by impurities. In the clean limit,(/<1) we _ ﬂ:m O41- Ho +(T)

havey(0)=2/3 andy(T.)~0.30; see Appendix A. The non- Mo B Ho+B ’

locality radius, being close to a constant beldw 0.2,

reaches af; about 0.7 of its value af=0. The scattering Ho

suppressep at all T's; also, the relative change @f with {=n1—In 7 2+1 . (29
C

T is reduced. In the dirty limit3’' —#/27, and y— /2% &5;
i.e., v becomesT independent; the nonlocality range
p— /12, which means that practically all nonlocal effects
vanish.

We now apply the equations obtained to a vortex alon
the z axis. Equation (16) gives 4rj,l/C
=—(1-p%k?a,/N\2. We isolatea and use the flux quanti-
zation condition cud=h— ¢4z5(r) where h is the local
magnetic field. Neglecting the termsp?k?, we arrive at

The quantityl slowly decreases with temperature due to the
second term. Note that the leading termMi{B) of Eq. (24)
is In(Hy/B), corrected with terms on the ordBf/H,, which

re usually small.

For clean systems away from, the right-hand side
(r.h.s) of Eq. (24) is only weakly T dependent; in other
words, we have anapproximate property M(T,B)
~X(T)Y(B) whereX=M, and the functionY, the rhs of

bo Eq. (24), is nearlyT independent. Experimental evidence for
T2 A+ A (21 such a scaling behavior is given belovy. o
We observe that the fielB entersM in the combination
The implications of inverting this truncated Fourier trans-B/H, instead of the standard London or GL raiH,,
form into real space are discussed in Appendix B. (unless the material is dirty dF is close toT). This makes

Let us turn now to vortex lattices in which the field is the procedure of extracting., from the magnetization data
periodic: h(r)=(B/¢g)=h(G)exp(G-r) where the sum at low T's more involved and difficult.
runs over the reciprocal lattice vectdss The energy density In deriving Egs.(24) which should hold at alll’s, we
is given in Eqg.(1) in which h(G) of Eq. (21) should be have ignored thermal fluctuations of vortiogghase fluctua-

h(k)=
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tions). It is well established, however, that the latter signifi- 1.5 —— 1z
cantly changeM at high temperatures. Hence, we should add : |:|_9_52K Mr?ew ]
to M the fluctuation term i I: ]
: //" Bi-2212, H Il ¢
M kBTI Ck?kgT - s 2 o :
= — n—’
$oS  ¢PoSB @9 E / ]
(&)
where s is the interlayer spacing and the constant ;’ [ f’ y = '"‘"('n(1+m2/m°)-m2/(m0+c:::ma»ozzeeﬂmz,a1/;(:1 :
C~10.221%2 The ratio kgT/$posMy which determines the "2.5 . m 8.47708x107 5.05402x107
relative weight of the fluctuation term iM is about 0.5 at r f e 3432‘:;?9‘1';1 L
low T’s. In other words, the fluctuation contribution cannot A O 3.0351 10107 ‘ NA
be neglected even at the lowest temperatui@$—40 K P R 9.99944107 NA
available for measurement of reversible magnetizaifon. 0 1 2 3 4 5 6
Note that, in principle, the terni25) violates the scaling ~ B (Tesla)

M(T,B)=X(T)Y(B). However, the comparison with data

(the next sectionshows that this violation is quantitatively FIG. 2. A typical example of the magnetization déter a Bi-

significant only neaff . 2212 crystal in fields along at 52 K). The solid line is calculated
In the local London theoryM (B) is linear in IrB, a fea-  using Eqgs.(24) and(25) with the best-fit parameteid ;=m1 (G),

ture often used to extraadt(T) from the magnetization data Hy=m2(T), and {=m3. In the fitting function,y=M and

with the help of Eq(6). The nonlocality modifies this to my=B.

dM M kgT . S A~
S= = o 8 (26)  of Bi-2212 in fields parallel to th& axis (T.~85 K) for
dinB  (1+B/Ho)®  ¢os which the standard analysis with the help of either @&j.or

This result does not depend on the uncertals. NearT,  the Hao-Clem procedure leads to a conclusion gt is
and for dirty material8<H,<H,, and we have the stan- T independent between 35 and 70'KFigure 2 shows a
dard London result. Again, the deviations frdd+M, are  fypical example in which we fit the data favI(B) at
expected at lowl’s for clean materials. T=52 K to Eq.(24), with the contribution of fluctuations Eq.
We now consider polycrystals of strongly anisotropic ma-(25), included. In the latter we setx=100 and
terials, for which the component & along the layers can S=¢/2=15.3 A (the output fitting parameters are not sensi-
be disregarded. Clearly, for a grain with tieaxis at an tive to a precise value ot since only Inc enterséM; they
angle ¢ with the applied fieldB=BZ% M,=M(Bcosf)coss. ~ are sensitive t®). We treatMq,Ho, and{ as fitting param-
We then have for a sample of randomly oriented grain§ters(the§e are denoted in the fitting function seen in the
Mzzfg/ZM(Bcosg)Cosgsingda_B With the help of Eqs(24) inset of Fig. 2 asn1l,m2, andm3, respectively. The quality

and(25) we obtain of the fit and the accuracies with which the fitting parameters
are extracted are also shown: In this case they are about 1%,
Mgo[ Hot+B Hé Ho+B Hy 5%, and 8% foM 4, Hy, and{, respectively. For all data sets
M=— > lnT + gz'nH— B +Z available, the accuracy deteriorates at the low-temperature
0 edge of theT domains studiedpresumably due to pinning
keT C'k%kgT as well as at the highi- side (M becomes too small and
t o pos posB (27 noisy).

The whole data set for Bi-2212 and the theoretical curves
whereC’ =C/e~16.8. In the dirty case or nedr, for any [the solid lines obtained with the best-fit parameters

/, this yields Mo(T),Ho(T), and{(T)] are plotted in Fig. ). Figure 3b)
) shows that indeed the data can dygproximatelyscaled on
M= %Irﬁ\/éch N ksT IrC’ kkgT (0g ~ Onecurve, the feature that is related to the weak temperature

2 B 2¢oS  ¢oSB dependence ofl, as discussed above. We note that at first

sight the fluctuation term(25) should have destroyed the

model ability to describe this scalinguantitatively how-

ever, this does not happen since the data are well represented
In comparing the data oM (B) at a givenT with our by our formulas which include the ter(25).

results, Eq.(24) and Eq.(25) for crystals or Eq.(27) for Likewise, we have analyzed the data for a polycrystalline

random powders, we have to considép,H,, and/ as fit- sample of TI-2212 T.~103 K; for the sample description

ting parameters. If a data set is sufficiently precise and exsee. Ref. 24 We consider the sample as being randomly

tensive[say,M (B) is known for a fewT’s], one can try to fit  oriented withx =100 ands=14.7 A and use E¢27) for the

the above formulas to the data and see whether or not tHé. The results are shown in Figs(a} and 4b).

temperature behaviors of so obtainkth(T), Hq(T), and The temperature dependencedgffor the two materials

£(T) correspond to those theoretically expected. The requireare shown in Fig. &). Recall that the nonlocality radius

ments for the data quality are quite rigid because the numeridecreases witlT and thereforeH, should increase witff.

cal routines for “best fits” should deal with very shallow Taking the clean limity(T) given in Fig. 1, we can check

minima (H, entersM under the logarithm sign whether or not the relatiomy(T)«<1/y(T) holds as ex-
We start with the magnetization data for a single crystalpected. Moreover, we can ust(T) and the known clean

[ll. COMPARISON WITH DATA



54 NONLOCAL ELECTRODYNAMICS AND LOW-. .. 12 391

0.50 — X -0.80 T T T T
1.0 [ _ _1_0590‘K/Q/M—&_0_H _
] 85 K ]
1.5 : ash ]
— ] . [ ]
9 2.0 3 2 ‘ ]
3 p = 3
@ ] 3 ]
S 25 . = ]
= . ] = ]
3.0 [ 4 ]
-3.5 3 .
_4‘0:.. .|....|.‘..|....|A.A.l.‘:
20,70 e e T F T
E (b) 8 ] oo b @ v " ]
i LLLLESE v
-0.90 [ pet 3 0.9 | 3
= E gt - ]
= C al - [ ] _
o~ - L] - o8 r J
= : :" ] = 1 " o 55K ]
£ | ol 4 = v 60 K ]
1.1 ] 1 - [} ]
= £ v 1 & M F + 65K 3
) F gg o 35 K[ ; F . s _7,:§ ]
= E § o 45 K| ] 1.2 F T-2212 x 3
. E Bi-2212 v 52KJ3 L o 80 K ]
1.3 d
£ ¥ Hllc s 58 K[ J b powder o 85 K 1
o x 64 K[ 3 -1.3 o 90 K 3
Eoog o 70 K|3 . 3
-15:..,.[....|....|....|.,..|..: Y. B SIS RIS B R N BN B
o ; 2 2 4 s 0 1 2 3 4 5 6 7
B (Tesla) B (Tesla)

FIG. 3. (3) Magnetization data for a Bi-2212 crystal in fields ~ FIG. 4. (3) Magnetization data for the random polycrystal of
along the& axis at the temperatures indicated. Sohd |ines are Cal_Tl-2212 at temperatures indicated. SO|Id "nes are CaICUIated Using
culated using Egs(24) and (25) with fitting parametersM, Ho,  Ed.(27) with fitting parameter$/, Ho, and{ shown in Fig. 5(b)
and¢ shown in Fig. 5(b) Approximate scaling of the data shown in Approximate scaling of the data shown (@.

@ pare, e.g., with 0.9 and 1.0 T/K for these materials reported

in Ref. 12. One should mention that literature values for
H(, obtained with different techniques may be as high as 2.7
T/K for Bi-2212; see Ref. 12 and references therein.
Figure 8b) shows the best-fit parameteM = ¢/
2_ 260 . 32m°\?(T), which behaves qualitatively as expected. We
§&=— ; (29) , v
T \/§HO(T) ¥(T) will not analyze thelT dependence af; it would take us too
far from the main subject of this paper. We just mention that
Egs.(19) and(23) were used. This quantity should come outthe magnitude of\ extracted fromM, is quite reasonable:
the same for all temperatures. This, in fact, is the case: Fige.g., for t~0.5 we obtain\,,~2600 A for Bi-2212 and
ure 6 shows the produdi(T)y(T) which can be consid- ~2000 A for TI-2212. Trisconeet al. estimate the zerd-
ered asT independent over broad temperature domains fopenetration depth for these two materials as 2770 A and
both materials given about 10% accuracy with whithis 1970 A | respectively?
extracted from fitting the data. We consider this constancy of The third fitting parametef(t) is shown in Fig. &); it
&> as a major consistency test of our model. decreases witll as Eq.(24) prescribes. We do not attempt to
Averaging the productH,, we obtaing,~41 A for Bi-  extractH,(T) from the so-obtained(T) since this would
2212 and 44 A for TI-2212. Note that(0), which deter- have required guesses fay ».
mines the upper critical fieltH ,(0)= ¢o/27£%(0), differs Summarizing this part of the data analysis we can say that
from &,=hv/2A,(0). One canshow that within a 2D ver- the nonlocal version of the London theory represents the data
sion of the HW theory developed by BulaevsKi, for the Bi-2212 and TI-2212 compounds reasonably well,
£(0)=%v/2.67A0(0), so that £(0)~0.75,. This yields although the values af(0) extracted are larger than cited in
£(0)~31 A for Bi-2212 and 33 A for TI-2212. Perhaps, the the literature. Whereas the accuracy with whidl,H,, and
best way to look at our numbers is to evaluate first the zerog can be extracted from the magnetization data is not high, it
T upper critical field for these two materialsH:,(0) is worth noting that our approach allows one to estimate the
~35T and 30 T, respectivelythen, again with the help of zeroT coherence length using the field dependence of mag-
2D theory, calculateH,=|dH.,/dT|=;=H(0)/0.59T.  netization at anyl within a broad domain undé¥, .
(the factor 0.59 comes in 2D instead of 0.69, the 3D result of Our attempt to analyze in a similar manner the magneti-
HW) and compare the results with the literature slopes. Weation data for an aligned powder sample of Hg-1223 and for
obtain 0.7 T/K for Bi-2212 and 0.5 T/K for TI-2212 to com- randomly oriented samples of Bi-22Z®&ith 25% of Bi re-

limit y(T) in order to evaluate the two-dimension@D)
zero-temperature coherence length
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- I ° o 1 FIG. 6. The product oHy(T) and y(T) vs reduced temperature
4 r e} ] t=T/T, for Bi-2212 and TI-2212. For our model to be consistent,
& 18 ] Q o this product should b& independent.
o
o o
= o5 | ° o 1 samples are described in Refs. 23 andgl ®7Eq. (28). The
St : two quantitiesMy and ' H¢, (7' = 7 for the aligned sample
and 7' = \Jex for powders were used as fitting parameters.
o L i ] Figure Ta) gives n'H,(t) for these three materials. While
1 g ———— plotting ' H., and M against the temperature we have ob-
(o ° (¢ | served that extrapolations of these quantities to zero in all
I o o ] cases yieldl.'s a few K in excess of reported critical tem-
0.5 1 & 0 ] peratures. We associate this with the effect described by the
i a o ] theory of vortex fluctuations: the “mean-fieldT ., exceeds
o o ] the temperature where the resistivity drops. Also, we ob-
o 1 served that for all materials, the parameigH., shows a
| ] better pronounced linear behavior at high temperatures than
0.5 | O Bi-2212 ] Mo; we therefore defined.'s by extrapolatingn'H, to
i = ] zero and obtained 140, 112, and 100 K for Hg-1223, Bi-
2223, and Hg-1201, respectively. Thedependenk 2, ob-

-10.4' T s oe o7 os e tained as the second parameter from the same fits, is shown
t=T/T in Fig. 7(b). We will not make quantitative conclusions from
¢ these; we note, however, qualitatively correct temperature
behavior of the two parameters for all three materials. Fi-
nally, we note that an attempt to scale the data, in the manner
shown in Figs. &) and 4b) for Bi- and TI-2212, for the
three latter materials fails since tiedependence dfi, is
much stronger than that &f,.
placed by Ppand Hg-1201 did not produce “well-behaved”
Ho(T). The failure may have been caused by variety of fac- IV. DISCUSSION
tors: misalignment, residual pinning, a hard to control proce-
dure of subtracting the contribution of the normal phase from The method we suggest for analyzing the data on revers-
the measured/; for whatever reason noisy data sometimesible magnetization in clean systems is, in fact, quite simple;
take the numerical routine far from “reasonable” values ofit is based on explicit analytic expressiot®4), (25), for
fitting parameters. However, the most likely reason for thecrystals or(27) for random polycrystals. The three fitting
failure of Egs.(24) or (27) which incorporate nonlocality parameters we have used reflect actual physical complexity:
might simply be that the nonlocality is irrelevant in these Magnetization does depend on the penetration dagi)
samples. Although Eq$24) and(27) apply formally for any  (via Mg), zeroT coherence lengtl§(0) (or &, in 2D, via
mean free pathy’, for short/ (Hy>H.,), Hy practically  H;), and on uncertain constants of the order unjty, [via
drops off all expressions favl. In this situation, the standard ¢(T)] inescapable within any version of a London approach
London equation complemented with the fluctuation termwhich avoids complexity of the core structure. Having all
(25) should provide a proper description of the data. weaknesses of a London technique, the method is perhaps
Figures Ta) and 1b) show the results of fitting magneti- the only one practically available for temperatures out of the
zation data for an aligned sample of Hg-12ZR.£4133 K; = narrow GL domain. As we have pointed out, the variational
for sample characteristics see Ref) 26 Egs.(6) and (25) procedure of Hao and Clem, being free of London shortcom-
and for powder samples of Bi-2223 and Hg-12Qthe ings nearT., fails when applied to clean systems at low

FIG. 5. Parameterkly, My, and{ used to fit the datd (B, T)
for Bi-2212 and for TI-2213the data are shown in Figs(e3 and
4(a), respectively, vs reduced temperatute
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starting with the Fourier transform of the vortex field, which
[ ] is measured as a form factBfk) =h(k)/ ¢, in neutron scat-
120 [ g ] tering. To our knowledge, no data &i{k) are published for
. Xx (a) ] high-« materials to compare with Eq21). The data for
. x ] polycrystalline NbTa withk~4 taken in relatively low
g0 I Xx ] fields® lie considerably lower than London’sF(k)
s X ] =(1+\%k?) L. This reduction can be well described by Eq.
. X ] (21) within values of relevant parameters provided in Ref.
a0 L o % i 28. However, given the low value af and the fact that the
. Xy ] material was dirty rather than clean, the agreement between
r B & S the data and our model might be fortuitous. Nonetheless, we
PN SR P IS ST P ST note that the nonlocal terms (k) clearly correct the Lon-
don theory in the right direction.
Fo ] Another quantity affected by nonlocality is the field vari-
30 | 5 ancea?=[h(r)—B]?=B23 ;. o[h(G)/ ¢]? within the flux

s x"ﬁtx% () 3 lattice (the overbar stands for the average over the vortex
: o i K%)@ ] lattice cel). In intermediate fields, the convergent sum can
20 f £ 3 5, be calculated directl§® We approximate it by an integral
B X ] and obtain fork>1 making use of Eq(21)

ax

n H,, (Tesla)

A2 [(pm)

O Hg-1223 X% 3
S s 5 o?= g2 028
— 3 O Hy+B '’

(30

AP D IV DU S DU S whereo3= ¢3/8m3\/3\* corresponds to the nonlocal effects
03 04 05 06 07 08 09 1 neglected[the direct summation yieldsro=0.061py/\?
t=TT, (Ref. 29]. Again, nearT,, B<H,<H,, and the nonlocal
correction can be disregarded; the same happens in the dirty
case at alll’'s. Hence, in clean systems at IoWis, the vari-
ance is enhanced by nonlocality. The penetration depth
samples of Bi-2223 and Hg-12P%s reduced temperature obtained S(T) (;J_xtre;ctéaqffromlthe Ir_?ee_lsu(;_ed varlzn((;e II? ;[her_efotre, un-
by fitting the magnetization data to Eq$) and (25) for Hg-1223 erestimated 11 honlocallty 1S disregarded. 1, Tor Instance,
and to Eq.(28) for Bi-2223 and Hg-1201. The fits are not sensitive the uSR eXper'men? 1S dor!e with B"2_212 in the field
to the value of x: we use k=100 in the fluctuation term B=95T (Ho~30T), disregarding nonlocality may cause an

for all materials. As explained in the texfy’s are chosen by ex- €ITor in o? aboutB/Ho~15%. .
trapolating #'H,(T) to zero. (b) Parameter N~ 2(t) Another deviation from the local London theory is the

=3272M,/ ¢, obtained in the same fitting procedure. decrease of the slogg(B)=dM/dInB with B seen in high-

T. materials(see, e.g., Refs. 30 and )3and ascribed to
temperatures. Also, our method preserves the approximatejuantum fluctuations of vorticé$.Our data on Bi- and TI-
linear in IB dependence of of the standard London ap- 2212 are reasonably well described by E26). We must
proach; corrections to the logarithmic term are small. Thenote, however, that nonlocality does not predict a plateau in
major difference for clean systems at Idus is in the value ~ S(B) observed foB>7 T3 an effect explained by quantum
and physical meaning of the scaling fi¢tig which takes the fluctuations. This implies that the nonlocality is not the only
role of H., in the standard approach: The magnetization decause of the observed suppressiorS(B).
pends orB/H, instead of the standam/H.,. A question arises whether or not it would be worthwhile

Simple examination of expressioi24) and (27) for M to continue the expansion of the kern@ in Eg. (15),
shows that the upper critical field cannot be extracted fromfimji(k)/c=—Q;(k)a(k), in powers ofp?k? in order to
the data orM (B) with the help of our methodunlessT is obtain a better representation of the vortex field, or to work,
close toT. or the sample is dirty for whichyH,, can be if possible, with the exacQ(k) [see Appendix C where
extracted. The method, however, allows one to extractQ(K) is given for the clean limit af=0]. The problem,
£(0) andH .,(0); this, in turn, givesH .,(T) with the help of however, is that even the exa@tdescribes the current under
the theoretically knowT dependence ofi.,.?® the assumptiofA|=const, which implies that the core re-

Among the magnetization data sets examined, we see @oOn is inaccessible. best - Nevertheless, already the first
profound difference in the behavior of Bi- and TI-2212, on nonlocal corrections t® reveal that at lowT’s of clean
the one hand, and of Bi-2223, Hg-1223, and Hg-1201, on th&haterials, the scaling field in the expression for the free en-
other: The former show clearly the nonlocal effects while theergy and the magnetization should bge ¢,/p?, and not
latter do not. We tentatively ascribe the difference to athe upper critical fieldH ., ¢y /&% this is in fact our main
shorter mean free path in the samples of the second group,rasult. Adding more terms tQ will not change this result,
speculation still to be verified. making, however, the model forbiddingly cumbersome. An

The magnetization is not the only quantity which may beexactQ(k) is only available for the clean limit &k=0; on
affected at low temperatures by the nonlocality of thethe other hand, using the truncat@dwe are able to evaluate
current-field relation. We now discuss briefly other exampleghe nonlocal corrections tM at any temperature and for

FIG. 7. (a) Parameterp'H,(t) (7' = » for aligned sample of
Hg-1223 and 5’ =\en for randomly oriented polycrystalline
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arbitrary impurity concentration. One can say that the w0 dx
scheme we propose is not a microscopic theory, but a refine- (@)= f 5 >
ment of the London approach which has been proved to be 0 (1+x9)(V1+Xx"+a)

the only tool practically available for interpreting data on theandl3=l’1’(a)/2. The integral depends on sgn¢ 1). Since

low-temperature magnetic behavior of highsuperconduct: a=0 in the clean limit, we are interested mostlydr<1, for
ors. Still, our model, the usefulness of which has been dem- ’ Y ’

onstrated here on two high: compounds, is subject to fur- which
ther experimental tests. o > 1—a
Finally we comment on the possible effect of the noncon- l[i;=— — ——tan 1\/—— Al
: 1 Stan . (A1)
ventional symmetry of the order parameter on our results, a 2a g\l-a 1+ a

guestion which calls for a separate and careful study. We d
not expect these effects to be strong because all quantities
discuss here are obtained by averaging over the Fermi sur-
face. Still, it remains to be seen whether or not the nonlocal
corrections to the London equations may contain interesting
information regarding the possibtewave symmetry. At T=T, one hasy(T.,a)=0.3155/S, where the

In conclusion, we have used a gauge-invariant BCECS ratio A(_OZ)/TCZ 1.764 _r;as /been used. The sum
current-field relation valid for any Fermi surface to derive S3=2(2n+1)"“(2n+1+ay) °=S|(a;)/2 wherea;=al
the anisotropic London equations describing nonlocal effect8-567 and
for clean highx materials at lowT’s. The equations well

ne can expand this in powers efand obtain

¥(0,0)= 3(1—1.8650+3.471%—--+). (A2)

[}

represent the magnetization data for Bi- and TI-2212 down to S _ E 1

the reduced temperatute=0.4 where the data are still re- (@) = (2n+1)%(2n+ 1+ ay)

versible. We show that one can extract the ZEroeherence 5

length from these data taken at affiyin a broad domain _7T_+i (1 B (1+ al) . (A3)
away fromT,. We explain whyM(T,B) can be approxi- - 8a; 2d? Na) =2 )]

mated by a product d¥1,(T) and of a function 0B/H with ) ) ) ) o
the scaling fieldH, being related to the nonlocality radius # iS the digamma function. Expanding this in powers of
which is only weaklyT dependent. The nonlocal terms are @1/2 we obtain

shown to be responsible for significant deviations of the neu- " s

tron scattering form factors from standard London predic- 5= (2" -1){(m+3) ym
tions. Nonlocal effects should be taken into account in ex- 1T & 2m+3 (—a)™,
tracting the penetration depth from tSR and NMR data.

Our model reduces to the standard London approach ned¢here{ is the Riemann zeta function. This yields
T, and for the dirty case at all temperatures.

(A4)

Y(Te,a)=0.3041—2.0260; +2.135%—---). (A5)

Note, however, a slow convergence of both se(#&2) and
(A5) which are given here just to show thgaf«) is regular
The authors are obliged to E. H. Brandt, L. N. Bulaevskii,at a=0.
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h—X2V2h+ p2\2V3h= ¢ 5(r). (B2) take localj along thex axis, thenk||y (due to the current
continuity k-j=0). Then 4rj,/c=—Qa, and Eq. (15

This equation (without the explicitly specifiedT- and giel ds

/-dependent coefficients and without the source term on th
right) was proposed by Koppe prior to BCS thedfyit can

2
be obtained by minimizing a functional 0= 8me’N(0)TAgv? i 2m coSede
c? a0 Bolo B3+ (hvksing)?/4’
87r7=f dV[h?+\2(curlh)?+ p2\2(V?h)?]. (B3) (v
' At T=0, we replace Z2TX, with [gAdw to obtain
APPENDIX C Q(k)=[2qgtan *q—In(1+9g?)1/g3\?, (C2)

In the discussion of nonlocal effects we assumed that ouivhereq=ké&,, and\?=c?/47e®N(0)v?. HenceQ=1/\? for
of the vortex corel = const and that the quadratic expansionq<1 andQ= w/gq\? if gq>1.
of Q(k) in the small parametedté suffices for our purpose. For a vortex we have cuakEh—¢yzd(r) and
In the immediate vicinity of the core, these assumptions arék X h(k) = —Q(k)a(k), which gives
bound to be violated. Physically, this happens due to two

major reasons(a) The gap is suppressed by high currents doQ(K)
and(b) the influence of the fulk dependence o becomes h(k)= ok (€3
important.

The GL theory provides the following formula for the Substituting this in Eq(2), we obtain the free energy by
suppression of the order parameter by currentreplacing the sum over the reciprocal lattice with an integral
A%=AJ[1—(j/2j4)%], where A, is the gap atj=0 and from Gyn=27/a t0 Ga,=27/¢" k dependencéthe con-
ja=Cao/16m°\2¢ is on the order of the depairing current vergence of the integral notwithstanding, we have to cut the
density* Using the London expressioj(r)=cd¢y/8m2\?r  integration domain a6, to avoid the corg For H>H,;
for j(r) near the vortex core, we obtaimA?(r) the Q term in the denominator of EGC3) can be neglected,
=A3(1—£%r?). At T=T, andr ~ £, this results in the long- and we obtain
range power-law corrections to the London theory which
mask the short-range nonlocal effefsgee Eq.(B1)]. -

In clean superconductors the situation changes qualita- F=MoB
tively at T<T,: It has been shown by MakKithat within the (Ca)
BCS theory, a uniform current ai=0 does not suppress
|A| as long ag<jq; atj=jq4, |A| drops discontinuously to Where b=6B/H,. It is worth noting that the cutoff at
zero. This argument can be extended to currents varying@/&’ results in renormalization of the core correctig,
slowly over distances- ¢ by expanding\? in series of scalar Which is uncertain within our scheme anyway. We have now
combinations of the vectgrand its spatial derivatives. The the magnetizatioM and S=dM/dInB in the form
first current corrections téd, can only be proportional to

1+b In(1+b) 4tan b
- + +

b b \/B é‘ il

In

j2, jeurlj, and|curlj|?, since diy=0. At T=0 the termj? M nlis }) +2tan_1\/6+§ c5)
does not contribute td (the Maki effec}. The termjcurl is Mo b Jb '

a pseudoscalar which vanishes in crystals invariant under

inversion. HenceA?=A3(1—C\?|curlj|?/j3), with C~1. tan *\b b b2

However, in highk materials the second term in the square S=Mg /b ~ o( - §+ 5 (C6)

brackets is of ordek ?Ink<1 and thus can be neglected.
This follows from the London equation cjs —ch/4wA?in  These formulas descridd (B) behaving qualitatively simi-
which h~ ¢oInk/27A? is the field on the vortex axis. There- lar to the given in Eqs(24) and(26) based on the quadratic
fore, in clean superconductors at IoMs, the effect of cur- expansion ofQ(k). One can check that for the usual situa-
rent on|A| outside the core is suppressed. tion of B/Hy<1, the full Q(k) results in the same field de-

The influence of higher-order terms kncan be demon- pendences o/ as that of Eq(24) if the terms~B?/H3 are
strated for an exactly solvable case of the cylindrical Fermneglected. On the other hand, the approach of the main text
surface in the clean limit af=0, for which the BCSQ(k) based on the truncat€g has the advantage of incorporating
can be calculated analytically. To this end, it is convenient tdboth finite temperatures and the impurity scattering.
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