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We show that magnetic properties of clean superconductors with a large Ginzburg-Landau parameterk at
low temperatures are affected by the nonlocality of the microscopic current-field relation and can be described
by modified London equations. We argue that for clean materials at low temperatures, the standard London
formula for the reversible magnetization in intermediate fields,M; ln(Hc2 /B), should contain the field
H0;f0 /r

2 instead ofHc2;f0 /j
2(T), with r being the nonlocality range on the order ofj0, the zero-T

coherence length. Sincer depends weakly onT, the magnetization should exhibit an approximate scaling
M (T,B)5X(T)Y(B) as observed in Bi- and Tl-based compounds in a broad temperature domain well below
Tc . Our expression for the magnetization reduces to the standard London result nearTc and at any temperature
for the dirty case. Implications of our results for interpretation of neutron scattering data and for procedures of
extracting the penetration depth are discussed.@S0163-1829~96!06941-X#

I. INTRODUCTION

Magnetic properties of type-II superconductors near the
critical temperatureTc are described by the Ginzburg-
Landau ~GL! theory. Outside the GL domain, no simple
macroscopic description is available, and the full micro-
scopic formalism should be employed to properly describe
the cores of vortices; in fact, this can be done only numeri-
cally; see, e.g., Ref. 1. Fortunately, in materials with a large
GL parameterk5l/j ~the ratio of the penetration depth to
the coherence length!, the core contribution to the total en-
ergy is small, and a very simple London approach suffices
for many applications.2–4Within this approach, the magnetic
field of a single vortex is given~in Fourier space! by
h(k)5f0 /(11l2k2), and the free energy density of a flux-
line lattice is

F5B2(
G

h~G!/8pf0 . ~1!

Here, the sum runs over the reciprocal latticeG, f0 is the
flux quantum, andB is the ~average over many vortices!
magnetic induction; for the anisotropic case,h should be

replaced with the field component along the common direc-
tion of vortices.

For a dense vortex lattice in intermediate fields
Hc1!B!Hc2 ~a domain which exists only in materials with
k@1), one can replace the sum~1! over nonzeroG’s with an
integral:2

F̃5F2
B2

8p
5

B2

8pE 2pGdG

4p2B/f0

1

11l2G2 . ~2!

The integral is extended fromGmin52p/a with the intervor-
tex spacinga5(2f0 /A3B)1/2 for a triangular lattice. With
the upper limit of integration at̀ , the intergal is logarithmi-
cally divergent, and one has to introduce a cutoff atGmax on
the order of 2p/j8 wherej8 is an effectivecore size. The
divergence and the cutoff are inherent shortcomings of the
London approach which breaks down at distancesr;j. The
cutoff cannot be ‘‘improved’’ within the London theory; for
this one should turn to a theory which is able to handle the
core structure properly, e.g., to GL theory nearTc . This has
been done by Hao and Clem5 ~who developed a variational
procedure to avoid nonlinearities of the GL equations! and
by Koshelev6 ~who utilized the circular cell approximation!.
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To keep the model simple, we add to the London energy
an estimate for the core contribution,

Hc
2

8p
pj2h1

B

f0
5M0Bh1 , ~3!

where

M05
f0

32p2l2 , ~4!

Hc is the thermodynamic critical field, and the constant
h1;1 is introduced to account for the uncertainty in defin-
ing the core size. Incorporating Eqs.~3! and ~4! in Eq. ~2!
one obtains

F̃5M0BS ln a2j82
1h1D5M0BS lnh2Hc2

B
1h1D , ~5!

where the constanth2 accommodates the uncertainty in the
cutoff j8. This yields the familiar London magnetization
M5B/4p2]F/]B52]F̃/]B:

M52M0ln~hHc2 /B!, ~6!

whereh absorbs all uncertainties mentioned. Experimental
data show that close toTc , h'1.221.5;7 the value 1.4 is
obtained with the Hao-Clem method.8

It is worth stressing that the London modelper seis only
responsible for the prelogarithmic factor in Eq.~6! and for
the linear dependence ofM on lnB. The termhHc2 under the
logarithm is, in fact, imposed by the cutoff (Hc2) and by the
necessity to match the data (h). The appearance ofHc2 in
Eq. ~6! is hardly accidental, sincej is the only relevant
length in the problem other thanl. Again, nearTc , this
eclectic approach can be improved by employing the GL
theory~the Hao-Clem procedure is an example!. However, it
is not obviousa priori that the same scheme will work at low
temperatures. Still, there is a widespread opinion that the
London equations along with their consequences and, in par-
ticular, Eq.~5! for the energy and Eq.~6! for the magnetiza-
tion hold and are accurate at lowT’s as well. In the past, it
was hard to verify whether or not this is true since the pin-
ning is usually too strong at lowT’s, preventing reliable data
on thereversible M(T,B). With the arrival of low-pinning,
high-k, and high-Tc materials such as Bi- or Tl-based com-
pounds, such data became available. By and large, they con-
firm the nearly linear dependenceM (lnB). However, close
examination shows that application of Eq.~6! to the low-
temperature data is problematic~as discussed below!.

The question of the validity of Eq.~6! at low T’s became
relevant in particular since it offers a simple method to ex-
tract the upper critical field from the magnetization data at
temperatures down to reduced temperaturest5T/Tc'0.4
~30–40 K, for Bi- and Tl-based compounds! whereHc2 is
too large for a direct measurement. While at high tempera-
tures, Eq.~6! ~corrected for vortex fluctuations! produced
well-behavedHc2(T) linear in (Tc2T) for Tl-2223 and
Hg-1201,9 the method failed when applied to lowT’s. Ex-
tensive magnetization data on Bi-2212 by Choet al.10 ana-
lyzed with the help of either Eq.~6! or the Hao-Clem proce-
dure have generated a puzzling result:Hc2 so obtained was
nearly T independent between 35 and 70 K, whereas the

standard Helfand-Werthamer~HW! estimate predicts a
change by a factor of 3.11 Similar observations were reported
by Trisconeet al.12 and Waldmannet al.13 This contradic-
tion motivated us to reconsider in detail the London ap-
proach at low temperatures.

In the following, we rederive the London equations from
the microscopic theory, explicitly incorporating the basic
nonlocality of the current-field relation in superconductors.
We show that instead ofHc2(T);f0 /j

2, the nonlocality
sets a different scaling fieldH0;f0 /r

2; herer is the non-
locality length that slowly decreases with temperature unlike
j(T). Having in mind high-Tc superconductors, we focus on
layered strongly anisotropic materials which can be modeled
with a cylindrical Fermi surface. We construct an expression
for the magnetization and compare it with available data to
show that our approach is in good agreement with the data
for clean extremely anisotropic layered materials and is free
of the contradiction described above.

The nonlocality of the Bardeen-Cooper-Schrieffer~BCS!
electrodynamics has been studied extensively. Even before
BCS, the nonlocal relation between the current densityj and
the vector potentialA was suggested by Pippard14,3 to ex-
plain data on the penetration depth; for the recent applica-
tions of Pippard’s electrodynamics to the vortex structure see
Ref. 15. The physics of nonlocality originates in a finite size,
j0 at T50, of Cooper pairs:j at a given point is determined
by the vector potentialA within a domain;j0 around this
point. Instead of local relations betweenj andA of the GL or
London theories, BCS provide an integral equation with a
kernel Q̂ extending to distances;j0. In Fourier space this
relation is of the formj (k)}Q̂(k)A(k) with the Fourier
transform ofQ̂ explicitly depending onk. In the GL domain
where j(T)@j0, or far from the vortex cores in materials
with the penetration depthl@j, the nonlocal corrections
vanish.

Early theoretical studies of nonlocal effects focused
mainly on the vortex core region in materials withk;1. The
treatment is difficult due to the spatial dependence of the
order parameteruDu; see, e.g., Refs. 1, 16, and 17. In this
paper we argue that forhigh-k materials at lowT’s, there
exists a region around the vortex core in which the BCS
nonlocalitycan be described by relatively simple corrections
to London equations, while the spatial dependence ofuDu
due to supercurrents can be disregarded. We derive expres-
sions for the free energy and indicate measurable quantities
which can be affected by nonlocality: the field dependence of
magnetizationM , neutron scattering form factors, and the
field variance in the mixed state@measured in muon spin
resonance (mSR! and NMR experiments#, to name a few.
We show that nonlocality may well be responsible for a puz-
zling scalingM (T,B)'X(T)Y(B) seen in Bi- and Tl-based
high-Tc compounds10,12,13 in broad temperature domains
away ofTc .

The paper is organized as follows: In the next section we
outline how the London equations are obtained from the mi-
croscopic theory. This approach has an added advantage of
allowing us to obtain corrections to the London theory due to
the nonlocality. We calculate the macroscopic free energy
and discuss consequences of the correction terms. We then
turn to the case of strongly anisotropic layered materials

54 12 387NONLOCAL ELECTRODYNAMICS AND LOW- . . .



modeled with a cylindrical Fermi surface. In Sec. III we
discuss magnetization data on a few layered high-Tc super-
conductors for which the reversible data are available well
belowTc . A short discussion follows.

II. MICROSCOPIC THEORY AND LONDON APPROACH

The main assumption in the derivation of London equa-
tions from the microscopic theory is that small currents do
not suppressuDu. Only the phaseu changes in space, a fea-
ture that preserves the flux quantization in the London ap-
proach. We begin with the quasiclassical Eilenberger version
of the BCS theory:18

v•Pf52Dg/\22v f1~g^ f &2 f ^g&!/t, ~7!

g2512 f f1, ~8!

D

2pT
ln
Tc
T

5 (
v.0

S D

\v
2^ f & D , ~9!

j524pueuN~0!T Im(
v.0

^vg&. ~10!

Herev is the Fermi velocity,P5¹12p iA/f0, D(r ) is the
gap function ~the order parameter!, f (r ,v,v), f1

5 f * (r ,2v,v), and g are Eilenberger Green’s functions,
N(0) is the total density of states at the Fermi level per one
spin, \v5pT(2n11) with an integern, ^ . . . & stands for
the average over the Fermi surface, andt is the scattering
time due to nonmagnetic impurities. The equation forf1 is
obtained from Eq.~7! by taking complex conjugate and re-
placingv→2v. In the absence of currents, we have

f 05D0 /b0 , g05\v/b0 , b0
25D0

21\2v2, ~11!

and Eq.~9! gives the uniform BCS gapD0(T).
Let now a weak supercurrent flow in the system. We look

for solutions of Eqs.~7!–~9! in the form:19

D5D0e
iu, f5~ f 01 f 1!e

iu,

f15~ f 01 f 1
1!e2 iu, g5g01g1 , ~12!

whereu depends only onr , and f 1 , f 1
1 ,g1 are small correc-

tions. Substituting Eqs.~12! into Eq. ~7! we obtain

v•~¹ f 11 iPf 1!52D8g1 /\22v8 f 12 i f 0v•P. ~13!

HereD85D0(11\/2tb0) andv85v0(11\/2tb0); in the
first approximation^ f 1&5^g1&50, an assumption justified
by the result. The ‘‘supermomentum’’P5¹u12pA/f0 is
assumed to be small,P!j21, so thatPf 1 can be neglected
relative to¹ f 1. This implies that the current density is well
under the depairing limitj d'cf0/16p

2jl2.
Equation~13! with those for f 1

1 and g1 ~which are not
written down here! suffices to determine all corrections in
Fourier space:

g1~k!5
i\D82

2b8

v•P~k!

b821\2~v•k!2/4
, ~14!

whereb85b01\/2t. Substitutingg1 in Eq. ~10!, we obtain
the BCS current-field relation

j i~k!52@4pe2N~0!TD0
2/c#al~k!

3 (
v.0

b8

b0
2 K v iv l

b821\2~v•k!2/4 L , ~15!

wherea5f0P/2p5A1f0¹u/2p and the summation is im-
plied over repeated subscripts. Note that Eq.~15! is explicitly
gauge invariant and holds for any anisotropic Fermi surface.
Finally, we substitute the solutions in Eq.~9! to obtain
^ f 1(r ,v)&50, which is verified easily in Fourier space mak-
ing use ofki j i(k)50.

Since in the above derivationuDu is not altered by cur-
rents, Eq.~15! is a good starting point for observing how the
London equations emerge from the microscopic theory.
Clearly, for k50, Eq. ~15! yields j}a in both Fourier and
real spaces; i.e., we have alocal London relation between the
current and the vector potential. Keeping the first correction
in smallk’s we obtain expanding the denominator in powers
of (v•k)2:

4p

c
j i52

1

l2 ~mi j
212l2ni j lmklkm!aj . ~16!

Here

1

l2 5
16p2e2N~0!TD0

2^v2&
3c2 (

v.0

1

b0
2b8

, mi j
215

3^v iv j&
^v2&

,

ni j lm5
4p2e2\2N~0!TD0

2

c2
^v iv jv lvm& (

v.0

1

b0
2b8 3 .

~17!

We definedl so as to have the correct isotropic limit and
mi j to have a convenient property detmi j51. The tensorn̂,
symmetric with respect to all indices, can also be written as

l2ni j lm5
3\2^v iv jv lvm&

4^v2&

(b0
22~b8!23

(b0
22~b8!21 . ~18!

This quantity is of the order\2v2/D2(0);j0
2 in the clean

case and of the orderv2t2 for dirty materials. The first term
on the right-hand side of Eq.~16! corresponds to the standard
anisotropic London equation,20 whereas the last term is due
to nonlocality. We will discuss the general anisotropic case
elsewhere; here we just note that being dependent on the
shape of the Fermi surface, the fourth-rank tensorn̂ couples
supercurrents with the crystal lattice even in cubic materials
which, within the local London theory, should behave isotro-
pically.

Let us turn now to the case of a cylindrical Fermi surface,
the situation reminiscent of the high-Tc superconductors.
The Fermi velocityvz along the cylinder axisĉ is zero, and
for a circular cylinder̂ •••&5(2p)21*0

2pdw•••, wherew is
the angle betweenv andk. All indices in Eq.~16! now take
only x,y values which we denote with Greek letters.

For a system isotropic in the layer planes,
nabmn5n0(dabdmn1damdbn1dandbm). To keep the prop-
erty detmab51 we should replace the factor of 3 in defini-
tions ~17! of l andm̂ by 2. Then we obtain
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n0l
25

\2v2

16D0
2~0!

g~T![r2~T!, ~19!

where the distancer, on the order of the zero-T coherence
length, will be called hereafter the nonlocality radius. The
quantitiesl, j, andr, appearing here and in the following
analysis of the data for layered compounds, are commonly
written with subscriptsab, which we omit hereafter for brev-
ity. The temperature dependence ofr is given by

g~T!5D0
2~0!( b0

22~b8!23Y ( b0
22~b8!21, ~20!

which can be evaluated numerically. Figure 1 showsg vs
t5T/Tc for several values of the impurity parameter
\/2tD0(0)5j2 /l where j25\v/2D0(0) is the two-
dimensional zero-T coherence length, andl is the mean free
path. We see that the nonlocality radius is reduced by tem-
perature and by impurities. In the clean limit (j2 /l !1) we
haveg(0)52/3 andg(Tc)'0.30; see Appendix A. The non-
locality radius, being close to a constant belowt'0.2,
reaches atTc about 0.7 of its value atT50. The scattering
suppressesr at all T’s; also, the relative change ofr with
T is reduced. In the dirty limitb8→\/2t, and g→l 2/j2

2;
i.e., g becomes T independent; the nonlocality range
r→l /2, which means that practically all nonlocal effects
vanish.

We now apply the equations obtained to a vortex along
the z axis. Equation ~16! gives 4p j a /c
52(12r2k2)aa /l

2. We isolatea and use the flux quanti-
zation condition curla5h2f0ẑd(r ) where h is the local
magnetic field. Neglecting the terms;r4k4, we arrive at

h~k!5
f0

11l2k21r2l2k4
. ~21!

The implications of inverting this truncated Fourier trans-
form into real space are discussed in Appendix B.

Let us turn now to vortex lattices in which the field is
periodic: h(r )5(B/f0)(h(G)exp(iG•r ) where the sum
runs over the reciprocal lattice vectorsG. The energy density
is given in Eq.~1! in which h(G) of Eq. ~21! should be

substituted. As above, in fieldsHc1!B!Hc2, we replace the
sum over nonzero G’s with an integral from
Gmin5(2p2A3B/f0)

1/2 ~for a hexagonal lattice!. Unlike the
situation in the standard London model, the integral is con-
vergent. However, to ensure that theG values corresponding
to the vortex core are excluded, we set the upper limit of
integration atGmax52p/j8. We then obtain neglecting terms
;O(k22):

F̃5M0BS ln H0 /B11

H0 /h2Hc211
1h1D , ~22!

H05f0/2p2A3r2, ~23!

andM0 is given in Eq.~4!. Here again, the constantsh1 and
h2 accommodate uncertainties in the core energy and in the
cutoff; in other words, this result has the same shortcomings
as the standard London equation~5!.

Still, there are important differences between Eqs.~5! and
~22!. In addition toHc2, a characteristic fieldH0 related to
the nonlocality range enters the free energy. Equation~22!
contains three characteristic lengths:l(T), j(T), and the
nonlocality ranger(T) ~the Cooper pair size!. This reflects
the situation in the microscopic description where all three
distances are implicitly present. UnlikeHc2, the field H0
does not go to zero asT→Tc ; in fact, it increases, withT
being inversely proportional tog(T); see Fig. 1. Therefore,
nearTc , whereB!Hc2!H0, Eq. ~22! reduces to the stan-
dard London energy~5!. In the dirty limit for which
H0;f0 /l

2@f0 /j0l ;Hc2(0), we again obtain the stan-
dard London result but now at all temperatures. Thus, the
nonlocal corrections are noticeable at lowT’s for clean ma-
terials.

The magnetizationM52]F̃/]B now reads

2
M

M0
5 lnSH0

B
11D2

H0

H01B
1z~T!,

z5h12 lnS H0

h2Hc2
11D . ~24!

The quantityz slowly decreases with temperature due to the
second term. Note that the leading term inM (B) of Eq. ~24!
is ln(H0 /B), corrected with terms on the orderB/H0, which
are usually small.

For clean systems away fromTc the right-hand side
~r.h.s.! of Eq. ~24! is only weakly T dependent; in other
words, we have an approximate property M (T,B)
'X(T)Y(B) whereX5M 0 and the functionY, the rhs of
Eq. ~24!, is nearlyT independent. Experimental evidence for
such a scaling behavior is given below.

We observe that the fieldB entersM in the combination
B/H0 instead of the standard London or GL ratioB/Hc2
~unless the material is dirty orT is close toTc). This makes
the procedure of extractingHc2 from the magnetization data
at low T’s more involved and difficult.

In deriving Eqs.~24! which should hold at allT’s, we
have ignored thermal fluctuations of vortices~phase fluctua-

FIG. 1. Parameterg vs reduced temperature which determines
the temperature dependence of the nonlocality radiusr according to
Eqs.~19! and~20! for the scattering parameterj2 /l 50 ~the upper
curve!, 0.2, 0.5, 1, 2, and 10~the bottom curve!.

54 12 389NONLOCAL ELECTRODYNAMICS AND LOW- . . .



tions!. It is well established, however, that the latter signifi-
cantly changeM at high temperatures. Hence, we should add
to M the fluctuation term

dM5
kBT

f0s
ln
Ck2kBT

f0sB
, ~25!

where s is the interlayer spacing and the constant
C'10.2.21,22 The ratio kBT/f0sM0 which determines the
relative weight of the fluctuation term inM is about 0.5t at
low T’s. In other words, the fluctuation contribution cannot
be neglected even at the lowest temperatures~30–40 K!
available for measurement of reversible magnetization.22

Note that, in principle, the term~25! violates the scaling
M (T,B)'X(T)Y(B). However, the comparison with data
~the next section! shows that this violation is quantitatively
significant only nearTc .

In the local London theory,M (B) is linear in lnB, a fea-
ture often used to extractl(T) from the magnetization data
with the help of Eq.~6!. The nonlocality modifies this to

S5
dM

dlnB
5

M0

~11B/H0!
2 2

kBT

f0s
. ~26!

This result does not depend on the uncertainh ’s. NearTc
and for dirty materialsB!Hc2!H0, and we have the stan-
dard London result. Again, the deviations fromS5M0 are
expected at lowT’s for clean materials.

We now consider polycrystals of strongly anisotropic ma-
terials, for which the component ofM along the layers can
be disregarded. Clearly, for a grain with theĉ axis at an
angleu with the applied fieldB5Bẑ, Mz5M (Bcosu)cosu.
We then have for a sample of randomly oriented grains
Mz5*0

p/2M (Bcosu)cosusinudu.23 With the help of Eqs.~24!
and ~25! we obtain

M52
M0

2 S lnH01B

B
1
H0
2

B2 ln
H01B

H0
2
H0

B
1z D

1
kBT

2f0s
ln
C8k2kBT

f0sB
, ~27!

whereC85CAe'16.8. In the dirty case or nearTc for any
l , this yields

M52
M0

2
ln

hAeHc2

B
1

kBT

2f0s
ln
C8k2kBT

f0sB
. ~28!

III. COMPARISON WITH DATA

In comparing the data onM (B) at a givenT with our
results, Eq.~24! and Eq.~25! for crystals or Eq.~27! for
random powders, we have to considerM0 ,H0, andz as fit-
ting parameters. If a data set is sufficiently precise and ex-
tensive@say,M (B) is known for a fewT’s#, one can try to fit
the above formulas to the data and see whether or not the
temperature behaviors of so obtainedM0(T), H0(T), and
z(T) correspond to those theoretically expected. The require-
ments for the data quality are quite rigid because the numeri-
cal routines for ‘‘best fits’’ should deal with very shallow
minima (H0 entersM under the logarithm sign!.

We start with the magnetization data for a single crystal

of Bi-2212 in fields parallel to theĉ axis (Tc'85 K! for
which the standard analysis with the help of either Eq.~6! or
the Hao-Clem procedure leads to a conclusion thatHc2 is
T independent between 35 and 70 K.10 Figure 2 shows a
typical example in which we fit the data forM (B) at
T552 K to Eq.~24!, with the contribution of fluctuations Eq.
~25!, included. In the latter we setk5100 and
s5c/2515.3 Å ~the output fitting parameters are not sensi-
tive to a precise value ofk since only lnk entersdM ; they
are sensitive tos). We treatM0 ,H0, andz as fitting param-
eters ~these are denoted in the fitting function seen in the
inset of Fig. 2 asm1,m2, andm3, respectively!. The quality
of the fit and the accuracies with which the fitting parameters
are extracted are also shown: In this case they are about 1%,
5%, and 8% forM0, H0, andz, respectively. For all data sets
available, the accuracy deteriorates at the low-temperature
edge of theT domains studied~presumably due to pinning!
as well as at the high-T side (M becomes too small and
noisy!.

The whole data set for Bi-2212 and the theoretical curves
@the solid lines obtained with the best-fit parameters
M0(T),H0(T), andz(T)# are plotted in Fig. 3~a!. Figure 3~b!
shows that indeed the data can beapproximatelyscaled on
one curve, the feature that is related to the weak temperature
dependence ofH0 as discussed above. We note that at first
sight the fluctuation term~25! should have destroyed the
model ability to describe this scaling;quantitatively, how-
ever, this does not happen since the data are well represented
by our formulas which include the term~25!.

Likewise, we have analyzed the data for a polycrystalline
sample of Tl-2212 (Tc'103 K; for the sample description
see. Ref. 24! We consider the sample as being randomly
oriented withk5100 ands514.7 Å and use Eq.~27! for the
fit. The results are shown in Figs. 4~a! and 4~b!.

The temperature dependences ofH0 for the two materials
are shown in Fig. 5~a!. Recall that the nonlocality radius
decreases withT and thereforeH0 should increase withT.
Taking the clean limitg(T) given in Fig. 1, we can check
whether or not the relationH0(T)}1/g(T) holds as ex-
pected. Moreover, we can useH0(T) and the known clean

FIG. 2. A typical example of the magnetization data~for a Bi-
2212 crystal in fields alongĉ at 52 K!. The solid line is calculated
using Eqs.~24! and ~25! with the best-fit parametersM0[m1 ~G!,
H0[m2 ~T!, and z[m3. In the fitting function, y[M and
m0[B.
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limit g(T) in order to evaluate the two-dimensional~2D!
zero-temperature coherence lengthj2:

j2
25

2f0

p2A3H0~T!g~T!
; ~29!

Eqs.~19! and~23! were used. This quantity should come out
the same for all temperatures. This, in fact, is the case: Fig-
ure 6 shows the productH0(T)g(T) which can be consid-
ered asT independent over broad temperature domains for
both materials given about 10% accuracy with whichH0 is
extracted from fitting the data. We consider this constancy of
j2 as a major consistency test of our model.

Averaging the productgH0, we obtainj2'41 Å for Bi-
2212 and 44 Å for Tl-2212. Note thatj(0), which deter-
mines the upper critical fieldHc2(0)5f0/2pj2(0), differs
from j2[\v/2D0(0). One canshow that within a 2D ver-
sion of the HW theory developed by Bulaevskii,25

j(0)5\v/2.67D0(0), so that j(0)'0.75j2. This yields
j(0)'31 Å for Bi-2212 and 33 Å for Tl-2212. Perhaps, the
best way to look at our numbers is to evaluate first the zero-
T upper critical field for these two materials@Hc2(0)
'35 T and 30 T, respectively#; then, again with the help of
2D theory, calculateHc28 [udHc2 /dTu t515Hc2(0)/0.59Tc
~the factor 0.59 comes in 2D instead of 0.69, the 3D result of
HW! and compare the results with the literature slopes. We
obtain 0.7 T/K for Bi-2212 and 0.5 T/K for Tl-2212 to com-

pare, e.g., with 0.9 and 1.0 T/K for these materials reported
in Ref. 12. One should mention that literature values for
Hc28 obtained with different techniques may be as high as 2.7
T/K for Bi-2212; see Ref. 12 and references therein.

Figure 5~b! shows the best-fit parameterM05f0/
32p2l2(T), which behaves qualitatively as expected. We
will not analyze theT dependence ofl; it would take us too
far from the main subject of this paper. We just mention that
the magnitude ofl extracted fromM0 is quite reasonable:
E.g., for t'0.5 we obtainlab'2600 Å for Bi-2212 and
'2000 Å for Tl-2212. Trisconeet al. estimate the zero-T
penetration depth for these two materials as 2770 Å and
1970 Å , respectively.12

The third fitting parameterz(t) is shown in Fig. 5~c!; it
decreases withT as Eq.~24! prescribes. We do not attempt to
extractHc2(T) from the so-obtainedz(T) since this would
have required guesses forh1,2.

Summarizing this part of the data analysis we can say that
the nonlocal version of the London theory represents the data
for the Bi-2212 and Tl-2212 compounds reasonably well,
although the values ofj(0) extracted are larger than cited in
the literature. Whereas the accuracy with whichM0 ,H0, and
z can be extracted from the magnetization data is not high, it
is worth noting that our approach allows one to estimate the
zero-T coherence length using the field dependence of mag-
netization at anyT within a broad domain underTc .

Our attempt to analyze in a similar manner the magneti-
zation data for an aligned powder sample of Hg-1223 and for
randomly oriented samples of Bi-2223~with 25% of Bi re-

FIG. 3. ~a! Magnetization data for a Bi-2212 crystal in fields
along theĉ axis at the temperatures indicated. Solid lines are cal-
culated using Eqs.~24! and ~25! with fitting parametersM0, H0,
andz shown in Fig. 5.~b! Approximate scaling of the data shown in
~a!.

FIG. 4. ~a! Magnetization data for the random polycrystal of
Tl-2212 at temperatures indicated. Solid lines are calculated using
Eq. ~27! with fitting parametersM0, H0, andz shown in Fig. 5.~b!
Approximate scaling of the data shown in~a!.
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placed by Pb! and Hg-1201 did not produce ‘‘well-behaved’’
H0(T). The failure may have been caused by variety of fac-
tors: misalignment, residual pinning, a hard to control proce-
dure of subtracting the contribution of the normal phase from
the measuredM ; for whatever reason noisy data sometimes
take the numerical routine far from ‘‘reasonable’’ values of
fitting parameters. However, the most likely reason for the
failure of Eqs. ~24! or ~27! which incorporate nonlocality
might simply be that the nonlocality is irrelevant in these
samples. Although Eqs.~24! and~27! apply formally for any
mean free pathl , for short l (H0@Hc2), H0 practically
drops off all expressions forM . In this situation, the standard
London equation complemented with the fluctuation term
~25! should provide a proper description of the data.

Figures 7~a! and 7~b! show the results of fitting magneti-
zation data for an aligned sample of Hg-1223 (Tc'133 K;
for sample characteristics see Ref. 26! to Eqs.~6! and ~25!
and for powder samples of Bi-2223 and Hg-1201~the

samples are described in Refs. 23 and 27! to Eq. ~28!. The
two quantitiesM0 andh8Hc2 (h85h for the aligned sample
andh85Aeh for powders! were used as fitting parameters.
Figure 7~a! givesh8Hc2(t) for these three materials. While
plotting h8Hc2 andM0 against the temperature we have ob-
served that extrapolations of these quantities to zero in all
cases yieldTc’s a few K in excess of reported critical tem-
peratures. We associate this with the effect described by the
theory of vortex fluctuations: the ‘‘mean-field’’Tc0 exceeds
the temperature where the resistivity drops. Also, we ob-
served that for all materials, the parameterh8Hc2 shows a
better pronounced linear behavior at high temperatures than
M0; we therefore definedTc’s by extrapolatingh8Hc2 to
zero and obtained 140, 112, and 100 K for Hg-1223, Bi-
2223, and Hg-1201, respectively. TheT-dependentl22, ob-
tained as the second parameter from the same fits, is shown
in Fig. 7~b!. We will not make quantitative conclusions from
these; we note, however, qualitatively correct temperature
behavior of the two parameters for all three materials. Fi-
nally, we note that an attempt to scale the data, in the manner
shown in Figs. 3~b! and 4~b! for Bi- and Tl-2212, for the
three latter materials fails since theT dependence ofHc2 is
much stronger than that ofH0.

IV. DISCUSSION

The method we suggest for analyzing the data on revers-
ible magnetization in clean systems is, in fact, quite simple;
it is based on explicit analytic expressions~24!, ~25!, for
crystals or~27! for random polycrystals. The three fitting
parameters we have used reflect actual physical complexity:
Magnetization does depend on the penetration depthl(T)
~via M0), zero-T coherence lengthj(0) ~or j2 in 2D, via
H0), and on uncertain constants of the order unityh1,2 @via
z(T)# inescapable within any version of a London approach
which avoids complexity of the core structure. Having all
weaknesses of a London technique, the method is perhaps
the only one practically available for temperatures out of the
narrow GL domain. As we have pointed out, the variational
procedure of Hao and Clem, being free of London shortcom-
ings nearTc , fails when applied to clean systems at low

FIG. 5. ParametersH0, M0, andz used to fit the dataM (B,T)
for Bi-2212 and for Tl-2212@the data are shown in Figs. 3~a! and
4~a!, respectively#, vs reduced temperaturet.

FIG. 6. The product ofH0(T) andg(T) vs reduced temperature
t5T/Tc for Bi-2212 and Tl-2212. For our model to be consistent,
this product should beT independent.
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temperatures. Also, our method preserves the approximately
linear in lnB dependence ofM of the standard London ap-
proach; corrections to the logarithmic term are small. The
major difference for clean systems at lowT’s is in the value
and physical meaning of the scaling fieldH0 which takes the
role ofHc2 in the standard approach: The magnetization de-
pends onB/H0 instead of the standardB/Hc2.

Simple examination of expressions~24! and ~27! for M
shows that the upper critical field cannot be extracted from
the data onM (B) with the help of our method~unlessT is
close toTc or the sample is dirty for whichhHc2 can be
extracted!. The method, however, allows one to extract
j(0) andHc2(0); this, in turn, givesHc2(T) with the help of
the theoretically knownT dependence ofHc2.

25

Among the magnetization data sets examined, we see a
profound difference in the behavior of Bi- and Tl-2212, on
the one hand, and of Bi-2223, Hg-1223, and Hg-1201, on the
other: The former show clearly the nonlocal effects while the
latter do not. We tentatively ascribe the difference to a
shorter mean free path in the samples of the second group, a
speculation still to be verified.

The magnetization is not the only quantity which may be
affected at low temperatures by the nonlocality of the
current-field relation. We now discuss briefly other examples

starting with the Fourier transform of the vortex field, which
is measured as a form factorF(k)5h(k)/f0 in neutron scat-
tering. To our knowledge, no data onF(k) are published for
high-k materials to compare with Eq.~21!. The data for
polycrystalline NbTa withk'4 taken in relatively low
fields28 lie considerably lower than London’sF(k)
5(11l2k2)21. This reduction can be well described by Eq.
~21! within values of relevant parameters provided in Ref.
28. However, given the low value ofk and the fact that the
material was dirty rather than clean, the agreement between
the data and our model might be fortuitous. Nonetheless, we
note that the nonlocal terms inF(k) clearly correct the Lon-
don theory in the right direction.

Another quantity affected by nonlocality is the field vari-
ances25@h(r )2B#25B2(GÞ0@h(G)/f0#

2 within the flux
lattice ~the overbar stands for the average over the vortex
lattice cell!. In intermediate fields, the convergent sum can
be calculated directly.29 We approximate it by an integral
and obtain fork@1 making use of Eq.~21!

s25s0
2H012B

H01B
, ~30!

wheres0
25f0

2/8p3A3l4 corresponds to the nonlocal effects
neglected @the direct summation yieldss050.061f0 /l

2

~Ref. 29!#. Again, nearTc , B!Hc2!H0, and the nonlocal
correction can be disregarded; the same happens in the dirty
case at allT’s. Hence, in clean systems at lowT’s, the vari-
ance is enhanced by nonlocality. The penetration depth
l(T) extracted from the measured variance is, therefore, un-
derestimated if nonlocality is disregarded. If, for instance,
the mSR experiment is done with Bi-2212 in the field
B55 T (H0'30 T!, disregarding nonlocality may cause an
error ins2 aboutB/H0'15%.

Another deviation from the local London theory is the
decrease of the slopeS(B)5dM/dlnB with B seen in high-
Tc materials ~see, e.g., Refs. 30 and 31! and ascribed to
quantum fluctuations of vortices.32 Our data on Bi- and Tl-
2212 are reasonably well described by Eq.~26!. We must
note, however, that nonlocality does not predict a plateau in
S(B) observed forB.7 T,31 an effect explained by quantum
fluctuations. This implies that the nonlocality is not the only
cause of the observed suppression ofS(B).

A question arises whether or not it would be worthwhile
to continue the expansion of the kernelQ in Eq. ~15!,
4p j i(k)/c52Qil (k)al(k), in powers ofr2k2 in order to
obtain a better representation of the vortex field, or to work,
if possible, with the exactQ(k) @see Appendix C where
Q(k) is given for the clean limit atT50#. The problem,
however, is that even the exactQ describes the current under
the assumptionuDu5const, which implies that the core re-
gion is inaccessible. best - Nevertheless, already the first
nonlocal corrections toQ reveal that at lowT’s of clean
materials, the scaling field in the expression for the free en-
ergy and the magnetization should beH0}f0 /r

2, and not
the upper critical fieldHc2}f0 /j

2; this is in fact our main
result. Adding more terms toQ will not change this result,
making, however, the model forbiddingly cumbersome. An
exactQ(k) is only available for the clean limit atT50; on
the other hand, using the truncatedQ, we are able to evaluate
the nonlocal corrections toM at any temperature and for

FIG. 7. ~a! Parameterh8Hc2(t) (h85h for aligned sample of
Hg-1223 and h85Aeh for randomly oriented polycrystalline
samples of Bi-2223 and Hg-1201! vs reduced temperature obtained
by fitting the magnetization data to Eqs.~6! and ~25! for Hg-1223
and to Eq.~28! for Bi-2223 and Hg-1201. The fits are not sensitive
to the value of k; we use k5100 in the fluctuation term
for all materials. As explained in the text,Tc’s are chosen by ex-
trapolating h8Hc2(T) to zero. ~b! Parameter l22(t)
532p2M0 /f0 obtained in the same fitting procedure.
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arbitrary impurity concentration. One can say that the
scheme we propose is not a microscopic theory, but a refine-
ment of the London approach which has been proved to be
the only tool practically available for interpreting data on the
low-temperature magnetic behavior of high-k superconduct-
ors. Still, our model, the usefulness of which has been dem-
onstrated here on two high-Tc compounds, is subject to fur-
ther experimental tests.

Finally we comment on the possible effect of the noncon-
ventional symmetry of the order parameter on our results, a
question which calls for a separate and careful study. We do
not expect these effects to be strong because all quantities we
discuss here are obtained by averaging over the Fermi sur-
face. Still, it remains to be seen whether or not the nonlocal
corrections to the London equations may contain interesting
information regarding the possibled-wave symmetry.

In conclusion, we have used a gauge-invariant BCS
current-field relation valid for any Fermi surface to derive
the anisotropic London equations describing nonlocal effects
for clean high-k materials at lowT’s. The equations well
represent the magnetization data for Bi- and Tl-2212 down to
the reduced temperaturet'0.4 where the data are still re-
versible. We show that one can extract the zero-T coherence
length from these data taken at anyT in a broad domain
away fromTc . We explain whyM (T,B) can be approxi-
mated by a product ofM0(T) and of a function ofB/H0 with
the scaling fieldH0 being related to the nonlocality radius
which is only weaklyT dependent. The nonlocal terms are
shown to be responsible for significant deviations of the neu-
tron scattering form factors from standard London predic-
tions. Nonlocal effects should be taken into account in ex-
tracting the penetration depth from themSR and NMR data.
Our model reduces to the standard London approach near
Tc and for the dirty case at all temperatures.
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APPENDIX A

The quantityg(T,a), with a5j2 /l being the impurity
parameter, can be evaluated analytically atT50 and
T5Tc . In the first case, the sums in Eq.~20! are replaced
with integrals according to 2pT(v→*0

`\dv. Then,
g(0,a)5I 3 /I 1 where

I 1~a!5E
0

` dx

~11x2!~A11x21a!

and I 35I 19(a)/2. The integral depends on sgn(a21). Since
a50 in the clean limit, we are interested mostly ina,1, for
which

I 15
p

2a
2

2

aA12a2
tan21A12a

11a
. ~A1!

One can expand this in powers ofa and obtain

g~0,a!5 2
3 ~121.865a13.471a22••• !. ~A2!

At T5Tc , one hasg(Tc ,a)50.315S3 /S1 where the
BCS ratio D(0)/Tc51.764 has been used. The sum
S35((2n11)22(2n111a1)

235S19(a1)/2 wherea15a/
0.567 and

S1~a1!5 (
n50

`
1

~2n11!2~2n111a1!

5
p2

8a1
1

1

2a1
2 FcS 12D2cS 11a1

2 D G ; ~A3!

c is the digamma function. Expanding this in powers of
a1/2 we obtain

S15 (
m50

`
~2m1321!z~m13!

2m13 ~2a1!
m, ~A4!

wherez is the Riemann zeta function. This yields

g~Tc ,a!50.301~122.026a112.135a1
22••• !. ~A5!

Note, however, a slow convergence of both series~A2! and
~A5! which are given here just to show thatg(a) is regular
at a50.

APPENDIX B

It is of interest to examine the field structure of a vortex in
real space in this approximation. Note that for this one has to
formally extend the Fourier transform~21! to arbitraryk’s.
Then, inversion of Eq.~21! for l@r yields

h~r !5
f0

2pl2 FK0S rl D2K0S rr D G , ~B1!

an expression similar to that obtained by Kramer33 and
Brandt34 in the GL domain; it is done here for anyT.
Clearly, forr@r, the second term is negligible, and Eq.~B1!
coincides with the standard London field. However, at
shorter distances, the field~B1! is ‘‘well behaved,’’ unlike
the divergent London solution. Asr→0, h goes to a finite
limit h(0)5(f0/2pl2)ln(l/r). For comparison, recall Abri-
kosov’s resulth(0)'2Hc15(f0lnk)/2pl2 near Tc .

4 We
note also that the nonlocal electrodynamics at Josephson
contacts results in a finiteh(0) for the vortex situated at the
junction.35

In real space Eq.~21! takes the form
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h2l2¹2h1r2l2¹4h5f0d~r !. ~B2!

This equation ~without the explicitly specifiedT- and
l -dependent coefficients and without the source term on the
right! was proposed by Koppe prior to BCS theory.36 It can
be obtained by minimizing a functional

8pF5E dV@h21l2~curlh!21r2l2~¹2h!2#. ~B3!

APPENDIX C

In the discussion of nonlocal effects we assumed that out
of the vortex coreD5 const and that the quadratic expansion
of Q(k) in the small parameterkj suffices for our purpose.
In the immediate vicinity of the core, these assumptions are
bound to be violated. Physically, this happens due to two
major reasons:~a! The gap is suppressed by high currents
and~b! the influence of the fullk dependence ofQ becomes
important.

The GL theory provides the following formula for the
suppression of the order parameter by current:
D25D0

2@12( j /2j d)
2#, where D0 is the gap atj50 and

j d5cf0/16p
2l2j is on the order of the depairing current

density.4 Using the London expressionj (r )5cf0/8p2l2r
for j (r ) near the vortex core, we obtainD2(r )
5D0

2(12j2/r 2). At T'Tc andr;j, this results in the long-
range power-law corrections to the London theory which
mask the short-range nonlocal effects@see Eq.~B1!#.

In clean superconductors the situation changes qualita-
tively atT!Tc : It has been shown by Maki

37 that within the
BCS theory, a uniform current atT50 does not suppress
uDu as long asj, j d ; at j5 j d , uDu drops discontinuously to
zero. This argument can be extended to currents varying
slowly over distances;j by expandingD2 in series of scalar
combinations of the vectorj and its spatial derivatives. The
first current corrections toD0 can only be proportional to
j 2, jcurlj , and ucurlj u2, since divj50. At T50 the term j 2

does not contribute toD ~the Maki effect!. The termjcurlj is
a pseudoscalar which vanishes in crystals invariant under
inversion. Hence,D25D0

2(12Cl2ucurlj u2/ j d
2), with C;1.

However, in high-k materials the second term in the square
brackets is of orderk22ln2k!1 and thus can be neglected.
This follows from the London equation curlj52ch/4pl2 in
which h;f0lnk/2pl2 is the field on the vortex axis. There-
fore, in clean superconductors at lowT’s, the effect of cur-
rent onuDu outside the core is suppressed.

The influence of higher-order terms ink can be demon-
strated for an exactly solvable case of the cylindrical Fermi
surface in the clean limit atT50, for which the BCSQ(k)
can be calculated analytically. To this end, it is convenient to

take local j along thex axis, thenki ŷ ~due to the current
continuity k• j50). Then 4p j x /c52Qax and Eq. ~15!
yields

Q5
8pe2N~0!TD0

2v2

c2 (
v.0

1

b0
E
0

2p cos2wdw

b0
21~\vksinw!2/4

.

~C1!

At T50, we replace 2pT(v with *0
`\dv to obtain

Q~k!5@2qtan21q2 ln~11q2!#/q2l2, ~C2!

whereq5kj2, andl25c2/4pe2N(0)v2. HenceQ51/l2 for
q!1 andQ5p/ql2 if q@1.

For a vortex we have curla5h2f0ẑd(r ) and
ik3h(k)52Q(k)a(k), which gives

h~k!5
f0Q~k!

k21Q~k!
. ~C3!

Substituting this in Eq.~2!, we obtain the free energy by
replacing the sum over the reciprocal lattice with an integral
from Gmin52p/a to Gmax52p/j8 k dependence~the con-
vergence of the integral notwithstanding, we have to cut the
integration domain atGmax to avoid the core!. For H@Hc1
theQ term in the denominator of Eq.~C3! can be neglected,
and we obtain

F̃5M0BS ln11b

b
2
ln~11b!

b
1
4tan21Ab

Ab
1z D ,

~C4!

where b56B/H0. It is worth noting that the cutoff at
2p/j8 results in renormalization of the core correctionh1,
which is uncertain within our scheme anyway. We have now
the magnetizationM andS5dM/dlnB in the form

2
M

M0
5 lnS 11

1

bD1
2tan21Ab

Ab
1z, ~C5!

S5M0

tan21Ab
Ab

'M0S 12
b

3
1
b2

5
2••• D . ~C6!

These formulas describeM (B) behaving qualitatively simi-
lar to the given in Eqs.~24! and~26! based on the quadratic
expansion ofQ(k). One can check that for the usual situa-
tion of B/H0!1, the fullQ(k) results in the same field de-
pendences ofM as that of Eq.~24! if the terms;B2/H0

2 are
neglected. On the other hand, the approach of the main text
based on the truncatedQ has the advantage of incorporating
both finite temperatures and the impurity scattering.
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