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We study a 1D array of Josephson coupled superconducting grains with kinetic inductance which dominates
over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in
terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological
excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon
model. We find that their classical relativistic motion leads to saturation branches liltolaracteristic of
a ring-shaped array. We then discuss the semiclassical quantization of the charge soliton, and show that it is
consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton
in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum
charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and
coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of
100 um, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the
guantum behavior of the charge solit¢60163-18206)06325-4

I. INTRODUCTION of our knowledge, this kind of array has not been constructed
yet. The large kinetic inductance means that in this case the
Arrays of Josephson junctions in Bne dimensio) 2D,  charge redistribution time in the grains is longer than the
or 3D have been studied extensively in recent years, bottunneling time, thus the dynamic variables should be defined
theoretically and experimentalfyWhen the capacitance of on the junctions of the array and not on the grains. This array
the junctions is small, the arrays are usually characterized byan be represented by the electric circuit shown in Fig. 1.
the Josephson energy, E;[1—cosi—¢i.1)], and by the  C, denotes the self-capacitance of the superconducting
charging energy, (1/2);;Q;C;;'Q; . Here; andQ; denote  grains, while the combined effect of the Josephson and
the phase and the charge on ftile grain of the array, re- charging energies of the junctions results in a nonlinear ca-
spectively,Cj; !is the inverse capacitance matrix, afglis  pacitanceC, as we explain in the next section. We show that
the Josephson coupling energy. This description in terms dh this kind of array the concept of “charge solitof®
variables defined on the grains and not on the junctions iarises, i.e., an excess Cooper pair in the array gives rise to a
consistent with the fact that the kinetic and the geometriccompact topological solitonic excitation. This appears to be
inductances of the grains are typically smaller than the Join contrast to the usual model which does not incorporate the
sephson inductance. As a result, the charge redistributiomductive effects. That model suggests that an excess Cooper
time in the grains is shorter than the tunneling time. In thispair delocalizes as a consequence of the Josephson tunneling.
paper we study the opposite limit, namely a 1D array wheraVe show, however, that a sufficiently large kinetic induc-

the kinetic inductance of the grains, tance decouples the individual junctions quantum mechani-
cally. We study the dynamics of the charge soliton both clas-
mi 1y, sically and quantum mechanically.
Lk"‘:e*z—nss’ D The paper is organized as follows: In Sec. Il we develop a
continuum approximation of a serially coupled array of Jo-
dominates over the Josephson inductance sephson junctions with a dominant kinetic inductance. In
Sec. Il we show that this array has compact solitonic exci-
1 (IJS tations(“charge solitons’), and discuss some of their clas-
LJ:W E_J 2 sical properties and dynamics. In this section we discuss the

small amplitude oscillations of the arrgyplasmons”) as
Here m; ande* are the Cooper pair mass and charge, rewell. In Sec. IV we study the classical dynamics of the
spectively,ng the Cooper pairs density, the length of a charge soliton further, using collective coordinates. The
grain, andS the cross section of a grain. As we show belowquantization of the charge soliton is done in Sec. V. We
this limit is experimentally accessible. However, to the besdiscuss the meaning of the semiclassical quantization of the
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grains (the unit cel) is denoted bya (a=l,+d~=l,).

*;M—@m l H SO l ~—  L=Nais the total length of the chain. We assume that the

c Liin c Liin chain is very long N>1).
e Using the values given above, we find that the impedance
— S T G T Cy of the array, considered as a transmission line,
- Z c=VLkin/Co, (7)
FIG. 1. An equivalent electric circuit of a 1D array of serially 1S Of the Ord_er of 100 K, i-e-,2 it is much larger than the
coupled Josephson junctions. quantum resistanc&®q=h/(2e)*:
soliton, and study its quantum dynamics in a ring-shaped Z c>Rq. ®

array. We demonstrate that quantum charge solitons can, Kote that this impedance inequality can be expressed alter-
pr|nC|pIe3 exhlblt_quantum _phe_nomena without classical anapatively as an inequality of the coupling energy and the in-
logues, like persistent motion in response to an external fluxy, ,ctive energy scales

and coherent current oscillations. We then discuss possible

dephasing mechanisms of charge solitons, and address the E~>E, . 9
: c,” EL
effects caused by the discreteness of the array. We summa-
rize our results in Sec. VI. A similar condition to(8) has been studied before in the
context of single electron tunneling in a normal junctfon,
Il. KINETIC INDUCTANCE DOMINATED 1D ARRAY and it has been shown that it leads to a quantum mechanical
OF SERIALLY COUPLED JOSEPHSON JUNCTIONS decoupling of the junction from its environment. Using the
) same reasoning here, we are led to the conclusion that con-
A. The Lagrangian dition (8) means that each junction is quantum mechanically

We consider a chain oN identical superconducting decoupled from its environment, i.e., from the other junc-
grains (thus formingN—1 Josephson junctionsThe junc-  tions of the array. We can thus solve the Sdiimger equa-
tions are characterized by the Josephson coupling energy ati@n for each junction separately, and obtain a local potential

by the charging energy scale: energy of the array. This situation has been named the “local
rule” in the context of single electron tunnelif.
_(2e)? The eigenstates of the junctiomlepend org; , the dimen-
S Tol 3 sionless chargén units of 2e) induced on this junction. As

s ) a function of g;, the energy levels are made of a set of
We assume tha&@~10"**F, and thak, is of the same order  .harging energy parabolas, with gaps at the intersection re-
asEc. The_grams are .capamtlvely cc_JupIed to a conductmggiOns due to the Josephson enélg} (see Fig. 2 The
SUbStraf%W'th a capacitan@®<C, which we assume to be energy levels are, thus, periodic functiongjpfvith a period
Co~10""'F. The energy scale of this coupling energy, 1. Under appropriate condition®ot too small gaps, adia-
batic changesZener transitions between the levels can be

2
Ec _ 29 , (4) avoided:>'® We also ignore, for the time being, quasi-
o 2C, particle tunneling, which is a dissipative process. We discuss
is thus much larger than the junction charging energy this issue in Sec. V. We thus may consider only the first
level, which we denote bEﬁi- This level represents coher-
Ec,>Ec. (5  ent superposition of charge states in the bulk superconduct-

i , ) ) ors, which differ by one Cooper paikg. is formally given
The grains are characterized by the inductive energy scalélaS an eigenvalue of Mathieu's eauation. As it does not have
associated with igenvalu ieu’s equation. As i v

a simple analytical form wheki: is of the same order of

P2 E;, and our results do not depend qualitatively on the exact
E.= T (6)  form of Eg, we adopt the following form:

in
where ®y=h/2e. As we have said in the Introduction, we ~
assume that the kinetic inductance of the grain dominates Eq,= WEC[l_COS{Zqu)]' (10
over the Josephson inductance. In fact, due to the numerical )
coefficient (27)2/2 difference in the relation&2) and (6), This form preserves the corre_ct parabolic dependence for
Lyin should be larger than#2L ; for the inductive effects to  Smallg; , and reduces the amplitude of the energy level from
be important. For a typicaE; of the order of 10QueV it  its maximal height(in the limiting case wher&;=0) by a
means that ,, dominates if it is of the order of T0H or factor of w2/4. We emphasize that the important feature of
larger. This situation can be achieved, for instance, wheffg, is its periodicity, which allows us to represent the Jo-
l,~10 um and S~10°nm?. Nevertheless we assume that sephson junction as a nonlinear capacisae Fig. 1 In the
the width of the grains is of the order of the London penetranext section we show that the periodicity gives rise to the
tion depth to avoid tunneling of flux quanta through thesoliton description.
grains. The width of the junctionsl, is much smaller than Due to the tunneling of Cooper pairs the variabjeis
I, (typically d~2 nm), and the distance between adjacentcompact, i.e..gi+1=0;. It is convenient to introduce an
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Exin= (2€)%Lyin07 . (15

N=-1

N=0 N=1
In the parameters range we consider, the kinetic energy scale
is smaller than the potential energy one:

Ec>E,. (16)

The three inequalities5), (9), and (16), can be combined
into a single condition for the energy scales of the system:

Ec,>Ec>E.. (17)

The relation between the dynamic varialde and the
voltage V; between theath grain and the substrate can be
found by consecutive applications of Gauss’ law:

1 |

0=t~ 55C0 2 Vi, (18)

-2 -1 1 2 q; =1
whereq; is the charge that was brought to the first junction

FIG. 2. Energy levels of a Josephson junction as a functiorof the array. From now on we assume that the continuum

of §; for the caseE;~E. limit can be taken(We will show the necessary condition for
this soon) Discreteness effects are discussed in Sec. V. In

extended variableg;, which is the dimensionless char¢a the continuum limit Eqs(11) and (18) have the form:

units of 2e) brought to theith junction.q; is related tog;

L
through q(x)=7q(x)+ JX Q(&)déla, (19

N

QiEaif,E_ Qirs (11) 1 .

o A(x)=0(0)~ 5 Co f V(¢)dgla. (20
where Q; is the net charge on thth grain. Q; has, of 0
course, only discrete values, whilg andq; are continuous.
This change of variables corresponds to changing from
“reduced zone” scheme to an “extended zone” scheme i
the junction’s energy bandsee Fig. 2 This variable was
used in the study of 1D arrays of serially coupled normal 2e
junction as welP* In the next section we show the impor- V(X)=—a—=—0y(X). (22)
tance ofq; for the solitonic description. The form of the Co
energy of the junctiorfthe potential energydoes not change e see that they,(x) is the dimensionless charge between
when expressed as a functiongf. the grains and the substrate. The charging energy which

couples the unit cells of the array can be expressed, there-

Ec[1-cog2mq;)]. (12)  fore, as

The array is thus described by the charge figxl). Relation
n?ZO) betweenq(x) and V(x) can be expressed in a local
form:

SR 2ay?

2
The voltage across the junctiov,, is given by the deriva- E coupling= a2 (222)0 2. (22)

tive of the energy levels with respect to the charge

As we have mentioned above, its energy scaIEég (4).

JE
Vq_:i_ q‘_ (13) Since Cy<C we haveEC0>EC. In this case even small
' 2e Jq amounts of charge induce high voltages on the capacitors
Using (12) we express the voltage as between the grains and the substrate, and these voltages
strongly couple the Josephson junctions. In the opposite
1 ) case, wherC, is large, there is almost no voltage on the
Vg, = 5 - Vesin2mqi) , (14 capacitors and the junctions are practically decoupled. A
small C, is thus needed for the picture of serially coupled
whereV-=2e/C. Josephson junctions.

Sinceq; is defined on the junction it is already contains an  From the above discussion we conclude that the array we
averaging over the fast tunneling process. A time dependemipnsider is characterized by the three energies: the potential
g; is therefore related to the slow process of charge redistrienergy(12), the kinetic(or inductive energy(15), and the
bution in the grains by means of a supercurrent. This givesoupling (or charging energy(22). When these three ener-
rise to an inductive energy in the grains, which serves as thgies are combined, we get the following sine-Gordon La-
kinetic energy of the array: grangian:
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1 . (2e)? v [ 1
L=-—(2€)Lng°—a—=02 =S\
28.( ) klnq ZCO qX wc AC Lkinc ’ (29)
1 2 (20)? which is of the order of 18 sec 1. The third parameter in
ST [1—cog27q)]. the Lagrangian(24),
(23) 27TﬁUOC0
. L o BP=—m— (30)
This is a description of a 1D Josephson junctions array, (2e)ca ’

which is valid when conditio{17) holds. The three effects
of the large kinetic inductance are reflected in the Lagrangiag€ts the energy scale of the system. It does not affect the
(23): (1) an additional inductive energy, which is an inertial classical equation of motion, but its value is important in
term; (2) a representation of each junction by a periodicdetermlnmg yvhether the system bghavgs c_IassmaIIy or quan-
charging energy, as a result of the quantum mechanical déum mechanically. We return to this point in Sec. V, where
coupling of the junctions(3) a description of the array by We discuss the quantum dynamics of the system.

degrees of freedom which are defined on the junctions and The equation of motion derived from the Lagrangiar)

not on the grains. This Lagrangian is electromagneticallyS
dual to the Lagrangian representing a long Josephson junc-

i i 1. 1
tion. The latter system can be understood as the continuum 50— O+ ~—5Sing=0. (31)
version of an array of parallely coupled Josephson junctions. ve AG

Interchanging parallel coupling with series coupling and in- . . . .
ductors with capacitors one gets the Lagrangian of the serf-t Is a voltage equapoq for the JUQCt'on' as can .be shown
ally coupled Josephson junctions. Note, especially that th8°re clearly by multiplying it by 2v¢lin/27 and using Eg.
periodic inductive energy in the long Josephson junctiort21) to obtain

(i.e., the Josephson enejgg replaced here by the periodic

. 1 1 2e 1
charging energy. T eluf— — a2 —~ \sing=
27TZeLkmq ora COqxx+ 27_rvcsmq 0. (32
B. The equation of motion and the Hamiltonian The first term is an inductive voltage induced along the

Following the standard sine-Gordon treatmtrifwe re- ~ grains when the current is time dependent. From(Eg). we

define the charge fieldj(x) —q' (x)=q(x)/2m, and express Se€ that the second term is the continuum form of
the Lagrangian23) as Vi 1—V;, i.e., it is the difference of the voltages between

two adjacent cells and the substrate. The third term is the

voltage across the junctions, resulting from the superposition
. (24 of charge stateEEq. (14)]. The voltage equatio(82) is thus

a Kirchoff's law for a closed loop of the equivalent electrical
The three bulk parameter€, Ly;,, andC, are replaced in circuit of the array(see Fig. 1 The conjugate momentum of
(24) by Ac, ve, and 2. Here the fieldq,

[C L 1

is the characteristic length of the system. The conditioris the number of flux quanta per unit length that have tun-
needed for the validity of the continuum limit is therefore neled through the junctions of the array. Usﬁigo we get

the Hamiltonian of the system:

1

_2_1 2 1 -
ZU(Z;q qu A(Z:( cosy)

_ fLUC
C2mp

2

2e .
Lkind=7%Ng, (33

2

Ac>a, (26)
1_
or HZﬁUCf [ZWBZEH(ZI)O
C>Co, 27 1 1
2
which is consistent with the limit5). This is another mani- + 2732 70t Xg(l—coeq) ]dx. (34)
festation of what we have discussed above: a s@glim-
plies a large coupling, hence a large.. Using the values When the array is coupled to an external voltagg,, the
given above we ged c~100um. The second parameter in equation of motion(31) changes to
the Lagrangian(24),
1. 1 1C
a v—gq—qu+ TgSW\q:ZWgz 2¢ Veell (35
Vo= TT——, (28
LiinCo where
is the wave velocity of the system. It is of the order of
10 1—10 2c, wherec is the vacuum light velocity. It is Vo=2y (3
related toA ¢ via the characteristic frequency cell™ ¥ ext
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is the part of the external voltage that is distributed on one
unit cell. Equation(35) represents, alternatively, the case (a) °:_
where the array has a shape of a ring and an external flux is__ oL
applied through its center. In this ca¥g=—® . is the
electromotiv force acting on the array. The flux source has,
of course, the advantage that the effects of the leads are
eliminated. In any case, E¢35) can be derived from the
following Hamiltonian:

X
N
4
g |
oA

21 Y Y 2
H:hl)c 27TB E(nq)o_nq,ex()

1 |1 1
i —_
+_22’7TB [qu+ TAc(l coq)) }dx. (37

In the case of a voltage sourﬁgext is defined as the integral
of the external voltage per unit length and unit flux

- 1
nq)extE —_ rq)OJ’ VeXtdt’ (38)

while in the case of a flux source it is simply the dimension- x/A

less flux density. The external source thus appears in the

Hamiltonian as a time dependent gauge potential, in analogy FIG. 3. (@ The charge soliton configuration representing an ex-
to the external current in the long Josephson junctiorfess Cooper pair in the array. The center of the soliton is taken to be
Hamiltonian!® The gauge nature of the external voltageXo=0. (b) The profile of the voltage between the array and the

gives rise to the following shift of the conjugate momentum:Substrate induced by the charge solitvhis measured in mVv(c)
The distribution of voltages on the junctions of the array corre-

1 sponding to a charge soliton configuratiaf, is measured in mV.

hnq)O: a

2e\2
> LG +7AiNg, . (39
The charge soliton solution of E(B1) with the appropri-
Dissipation processes in the system produce additionadte boundary conditions [see Fig. 8a)]
g-dependent voltage drops. Ohmic dissipation can be repre-
sented phenomenologically by adding to each unit cell a re- x—Xo
ex Ac
Its center is alX,y, which we take in this section to be zero.

sistor connected to the other elements in this cell in series. In Qsof( X) =4tan
this case the voltage equati¢B5) becomes
1.1 ) 1 . 1Cy o ;
—+ —5CoRO— Oyt —5SiNg=27—5 = V. (400 The excess charge of the Cooper pair is the topological
ve @ Ac a® 2e charge of this soliton:

— 2. (41

This representation, which was named the “serially resistive

junction” (SRJ in Ref. 2, is the analogue of the RSJ 2e
mode|?0%t ? Q=5 | IUsodx=—2e. (42
Ill. CHARGE SOLITONS AND PLASMONS We would like to emphasize once more that under the con-

ditions we consider here, the existence of a topological soli-
tonic excitation and its stability do not depend on the exact
Since the 1D array of serially coupled Josephson juncform of the potential energy of the junctions, but only on its
tions can be described by a sine-Gordon Lagran{fdh we  having degenerate minima. Thus our qualitative results are
expect that it has solitonic excitations, i.e., compact, stablealid for other forms of the potential as well.
topological configurations. Using the definition qfas an As was mentioned above, charge solitons in 1D arrays of
extended variable (19, we observe thatq(x) and normal tunnel junctions have been studied previodsfyin
g(x+2m) can be distinguished if there is an excess or ahis context a question was raised whether a charge soliton
deficiency of Cooper pairs in intermediate grains. The one€an be regarded as a coherent dynamic object whose equa-
soliton excitation represents the charging of the junctimms tion of motion contains an inertial term, as was proposed in
the polarization of the grainglue to an excess Cooper pair Refs. 2—4, or that it merely represents a static charge distri-
in the array, and is called a “charge soliton.” This term wasbution profile, as was argued in Refs. 5 and 6. Here we have
coined in Ref. 2 in the context of a 1D array of normal tunnelshown that this question should not rise in the Josephson
junctions. Recently, charge solitons in a 1D array ofjunction array context. The coherence of the charge soliton
SQUID’s were studied experimentaflyand a zero current ensues from the coherent superconducting ground state, and
state below a threshold voltage was found. This voltage wathe inertia term comes from the kinetic inductance of the
interpreted as an injection voltage for a charge soliton. grains. Moreover, we have shown that the impedance condi-

A. A static charge soliton
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tion (8) should be met in order that the concept of a chargehe inductance per unit length and inversely proportional to
soliton will be different from that of a point chargbe it a  the characteristic length\-. Using the typical parameters
Cooper pair or an electron we find that the charge soliton mass is of the order of

From Eq.(41) we see that the characteristic length scale10 %%Kg, i.e., 6 orders of magnitude less than the electron
of the array,A ¢, is the characteristic width of the soliton as rest mass. This result indicates that the charge soliton should
well. In order to interpret the charge soliton as a particle itsnot be understood as a Cooper pair dressed with a polariza-
width should be much smaller than the total length of thetion cloud, but as the polarization cloud itself. We return to
array, i.e., this point when we discuss the dynamics of the charge soli-

ton in the next section.
L>Ac. (43

This assumption is met whdr=10° um. Here we assume B. A dynamic soliton
that L~10°xm. The number of grains the soliton is spread | order to describe a charge soliton moving with a veloc-

overis ity v, we make use of the Lorentz invariance of the Lagrang-

Ne=A~/a= W (44) ian (24) to perform a Lorentz transformation of the static
c—c 0 configuration(41) and obtain

Nc is larger than one due to the continuum limit condition

(26). For the parameters given aboMg=10. When condi- Osol(X,t) = Gsol Y(X—01)]

tion (26) fails, one should take into account corrections to the X—Xa—pt) 1] —27

continuum sine-Gordon model. We address this point in Sec. =4tan‘1[ exp{ 7(#) ] . (50

V. The finite width of the charge soliton is clearly seen from Ac

its density, which, according to E¢21), is proportional to wherey=1//T— (v7/02). We thus expect that a relativistic

the profile of the voltage between the array and the SubStr"’ucenarge soliton suffers a Lorentz contraction. Since the light

[see Fig. B)]: velocity in the arraypc, is smaller than the vacuum light
a 2e velocity, relativistic effects of the charge soliton can be ob-
V(X)=— Z—C—ﬁxqsm(x) served more easily than relativistic effects of electrons or
™0 Cooper pairs.
2 1 2e A moving charge soliton induces, of course, a current
= — secré ) (45) along the array. The spatial distribution of the current is
27T Nc CO A given by
A sets the scale for the static distribution of voltages on the e
junctions of the array as well. Using Eq4.4) and(31) we 1(x,t)= Eqsol(x,t)_ (51)

find that this distribution is proportional to the second deriva-

tive of the soliton configuratiofsee Fig. &)]: This is a current pulse with a width, concentrated around

the moving center of the charge soliton. It has the same

1
Vq(X)= 2—VCAéaquso|(x) profile as the voltage between the array and the sub$sege
m Fig. 3(b)]. The average current produced by the moving soli-
2 y{ X I-( X ) ton is
=—-—Vcsech—/tanh —|. 46
2’7T ¢ AC AC ( ) _ 1 1
o I=—f I(X)dx=— —2ev. (52
The energy needed to create a charge soliton is the value L L
of the Hamiltonian calculated for a static solutidfg. (41)]: For a soliton moving with a velocity fom/sec, it is of the
8 ﬁUC 8 (28)2 16 order of 0.1 nA.
Eo=71— 7= 2 = 7EcNc. (47
Ac2mp® (2m)° Jcc, (2m) C. Plasmons
This rest energy depends @handC, but not onlL,, since Besides topological solitons, the sine-Gordon Lagrangian

itis determined by the potential and coupling energies. It can4) admits small amplitude excitations. Their dynamics is
be written as the potential energy densie£Ec/S), times  governed by the linearized equation of motion
the effective area of the solitorSf=SN.):
1 1
16 ——Oyx+ —=q=0. 53
EOZ(ZW)ZGCSeff' (48) U%q hox A(qu ( )
As this equation describes electromagnetic field oscillations
with a confining potential, its solutions are longitudinal
plasma oscillationg‘plasmons”) propagating along the ar-
(49 ray. The propagation of the plasmons does not involve any
tunneling process. The plasmons have the dispersion relation

Dividing Eq. (47) by vé we get the soliton rest mass

8 Lyn 1
= 2 [ — Z_m —_—
MO_EO/UC (271_)2(28) a AC.
In analogy to the rest mass of a fluxon in a long Josephson 2 2, 202
junction’® the charge soliton’s rest mass is proportional to w*=wctucks, (54)
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i.e., there is an energy gdpwc in their spectrum with the The mass that appears 62) is actually the dynamic
corresponding temperatur,~1 K. The plasmons have, mass of the charge soliton

therefore, a mass

_1[2e)\? )
M :ﬁwcz h (55) Md=—5 Z Lkinj (9Xq50|dX. (64)
P Uc Acvc,

Its value is identical to the rest mag$d9) in the limit
which is of the order of 10°” Kg. The ratio between the L>Ac, and differs from it by a factor of 2 in the opposite
mass of a plasmon to the mass of the solit@®) is limit L<Ac. As we consider here the first limit, we denote
2wB2/8, i.e., it is of the order of3?. it by My as well. We can understand the origin of the dy-
Plasmons can also be excited when there is a soliton inamic mass by observing the way the charge soliton propa-
the array. In that case they can be considered as vibrations ghites. Starting from the static distribution of voltages on the
the soliton. Their analytical form is junctions [see Fig. &)], the center of the charge soliton
moves from its position in the middle of a grain towards one
of the neighboring junctions, say the right one, by a charge
redistribution in the grains. A superposition of charge states
) . o in the two adjacent grains is built, and tfreegative voltage
The dispersion relation is the same as abjd@. (54)], but  on this junction is reduced. When the superposition is of
there exists now an additional zero mo@ehosew=0). It states of equal weight, the voltage is zero. As the motion
reflects the translational invariance of the system, i.e., th@ontinues, the charge redistribution increases the weight of

P (X)~| tanh explikx). (56)

X ikA
Ao kA

homogeneity of the arragat distances larger thaa). the charge state on the right grain and the voltage on the
junction is increased. When the absolute value of this voltage
IV. COLLECTIVE COORDINATES reaches the initial one, the center of the charge soliton has

FOR THE CHARGE SOLITON been shifted by one unit cell, i.e., it is in the middle of the

right grain. One sees that the propagation of the charge soli-

ton is determined by the kinetic inductance and not by the
The topological stability of the charge soliton and its fi- Josephson one. The dynamic mass leads us, therefore, to the

nite width allow for its interpretation as a particle. Thus we same conclusion that we got from the rest mass: the charge

would like to describe the charge soliton by a pair of conju-soliton is the polarization cloud that accompanies the excess

gate coordinates which correspond to its center of m&ss, Cooper pair that exists in the array.

and to its momentumP. This can be done by using the  Transforming now the Hamiltoniaf34) into collective

“collective coordinates” method. This method was studiedcoordinates form, we get

extensively in the context of general soliton the®y?° as

well as for long Josephson junctions in partictar->26-27 H=\Mgue+P?g, (65)

We assume that the form of the charge soliton is

q(X,t) =Qsol Xx— X(1)], (57)

i.e., that it is a rigid object moving with a velocity. This S _
assumption means that we neglect the effects of the pladt we assume the nonrelativistic limit, i.e.<v, the Hamil-
mons. It is justified when the temperature is much lower tharfonian describing the soliton as a particle reads
the plasmons’ energy gap. )
The collective coordinates can be expressed in an explicit H=M w2+ P (67)
form:?’ —MoveT oMy

. 0

A. Equations of motion and the dynamic mass

so the energy of the moving soliton is

E=yMqvi=yE,. (66)

where now

3|
=5 X&xqsoldxr (58) .
2m P=MX. 68)

p— P (59 The rest energy term in the Hamiltoniéi7) is made out of
Tq9x0sodX. the two charging energidshe last two terms iri34)], while

the contribution to the kinetic term if67), comes only from

the inductive energfthe first term in(34)]. We thus see that

the inductive energy, although being the smallest energy in

Inserting the soliton configuratiofb0) into definitions(58)
and(59) we get the equations of motion of a free relativistic

particle the system, is the one that governs the dynamics of the
X=X+ pt (60) charge soliton. The independence of the Hamiltori&f) on
0 ! X is another manifestation of the translation invariance of the
y system.
X=uv, 6y >
B. A voltage biased array
P=yMyX, (62 The collective coordinates can be used to describe a volt-

) age(or a time varying flux biased array as well. Introducing
P=0. (63)  the external voltage in the form
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Ci)extE - Vexta (69)
we find that the collective momentum is shifted to 7
oM+ 2 Dex 70
and the nonrelativistic particle Hamiltonian is |
1 27h Do) 2
_ 2 i e ext
H=Mqug+ 2M0<P C <I>o) : (71) ]
The equations of motion derived frofil) are
- l 27Th (DeXt
X_M_O( T B ) (72 1
and
P=0. 73
Combining the two equations we get Lo
steady
- Zﬂﬁ d)ext L . . . . .
MoX=— T 3. (74 FIG. 4. 1-V characteristic of a ring-shaped dissipative array bi-
0

ased by a time varying fluXM= — P, is the electromotiv force

i.e., the external voltage accelerates the charge soliton withroduced by the flux Each branch corresponds to a certain number
out changing its momentum. The origin of this acceleratiorf charge solitons in the systenV, is measured inuV

is simply the electrostatic force exerted on the excess Coopé@fd Iseagy i measured in nA. The parameters &e 100 and

pair by the external voltage. In order that the rigid solitonvc=10""c.

assumption will be valid in this case as well, the external flux

must be changed adiabatically, or the external voltage shoulshow saturation branches, where each branch corresponds to
be small enough, a certain number of solitons reaching the limit velociiy

(see Fig. 4 These branches are expected to be observed in a

Cbext | Vext ring-shaped array, since charge solitons can enter and leave
Dy | | Do <wc, (79 an open array in a continuous manner.

which means thaV,; should be of the order of 12V or

less. V. QUANTUM DYNAMICS OF THE CHARGE SOLITON

When there are Ohmic dissipation processes in the array
an application of an external voltage results in a steady state . . .
velocity (or currenj of the soliton. Using the Hamiltonian ~ In this section we study the quantum dynamics of the

(34), the equation of motiorf40), and the average current charge soliton as a particle. For this we utilize the semiclas-
(52), we find that the steady state condition is sical quantization of the sine-Gordon thedf}®%22°The ex-

. pansion parameter is the coupling constgit which was

Vexi= Refil steady (76)  defined in(30). In this method the total Fock space is taken
to be composed of disconnected sectors, each one corre-

gponds to different topological boundary conditions, i.e., to a

different number of solitons in the system. The ground state

8 L2 of each sector is the corresponding solitonic configuration.

Re= =3 ——R, (777  Here we concentrate on the one-soliton sector. Due to the

(2m)* alc translational invariance of the system there is, in fact, a de-

generate family of eigenstates of the position operator, con-
nected by space translations. Higher states are found by a
— L2 semiclassical expansion around the ground state. The excita-

Reft, rell | steady) = 22 K?’(Istead))R- (78 tions of the first order correspond to the plasmons, and their

¢ quantum interpretation is as light particles scattering from

The effective nonrelativistic resistance of the array is thughe static massive soliton. These plasmons are, thus, the fun-
increased by about 2 orders of magnitude, while relativitydamental quanta of the theory. The degeneracy of the states

increases it further by the factor. Relation76) between the is completely removed in the second order, as the position
external voltage and the steady state current is dual to theigenstates are replaced by momentum eigenstates, and the

relation between the external current biasing a long Josephtranslation invariance of the theory is recovered on the quan-

son junction and the steady state voltage a moving fluxotum level. The semiclassical expansion breaks down when

create$®?® The |-V characteristic of the array is expected to 82=2, where the soliton becomes lighter than the plasmons.

A. The semiclassical expansion

where the effective resistance of the array is constant in th
nonrelativistic case

and isl_steadydependent in the relativistic case
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The soliton then takes the role of the fundamental quantungigenstates with a discrete set of eigenvalygss A ky de-
and loses its correspondence to the classical particle configtermined by the periodic boundary conditions:

ration (in a sense it becomes ‘to0’ quantunsince the typi-

cal value of 3% is 10" %, we can use the expansion for the 2mh

array. Note tha? can be expressed in the forfh: k=N NZ0LE2. (82
, E. Ro The energy spectrum is disczrete, too, and is given(riss
B*= =5 (79 glecting the constant terl v &)
C LC

2
Comparing Eq(79) with (8) and(9), we see that the condi- N=m— | | (PN— D). (83
tion for using the semiclassical expansi@i<1, is identical 2Mg | ®ol

to the impedance condition. This is not a surprise, as th?)efining an effective inductance by

impedance condition is the one that enables us to decouple

1 (271%

the junctions quantum mechanically. Our model of the DL \?
charge soliton as a classical configuration is thus self- Ler=My m) (84
consistent.

However there are several differences between the systefh .~10 ° H), the energy levels can be expressed in the
we study and the field theoretical model. First of all, theform of inductive levels:
array is very longcompared to\ ¢), but finite. Apart from a
slight distortion to the soliton’s shape that we neglect, the
finiteness means that solitons can enter and leave the array,
and also get reflected from the edges. To avoid this situation i i )
we consider a ring-shaped array. Second, since the gap in e inductive form of the energy levels suggests the inter-
plasmons’ spectrum is of the order of 1 K, their populationPretation ofN as the number of flux quanta that have tun-
can be made negligible if the temperature is kept below th&@eled outside or inside the ring through one of the junctions.
gap. Thus we can discard all the plasmons’ contribution tol' he quantization oP is, therefore, the statement that only an
the dynamics. This assumption is equivalent to the rigid soliintegral number of flux quanta can tunnel in or out of the
ton assumptiori57). A finite population of plasmons can be ring. However, the conservation of the momentum means
considered as an internal environment which produces that there can be no flux tunneling in an homogeneous array,
phase breaking mechanisthWe comment on this dephas- i-€., the external flux is completely screened.
ing process at the end of this section. Another different fea- The spectrum of the charge soliton’s Hamiltoni@3) is
ture is that we couple the array to an exterfddssical flux periodic with respect to the external flux with a peribg. It
source as a gauge coupling, and study the quantum dynamits composed of a set of parabolas centere@gt=N®.
of the soliton in response to this source. Finally, the array wé=ach parabola intersects its two adjacent parabolas at
study deviates from the ideal sine-Gordon model by its dis{N+ 1/2)®, (see Fig. 5. The current along the array is given
creteness, by the exact form of the potential energy, by struddy
tural inhomogeneities and disorder, and by quasiparticle tun-
neling. The effects of these deviations from the ideal model <|“>_ _ 3_EN: i(q) N—d,)
are discussed below. Doy Lo ° exv

1
En=5—(DoN—Dgy)?. (85)
2L o

(86)

. . . It is proportional to the expectation value of the velocity of

B. Persistent motion of the charge soliton the charge soliton:
In the presence of an external fluk.,,, the assumption

of rigidity leads to the following nonrelativistic quantum > L dEy L -

Hamiltonian for a ring-shaped array of serially coupled Jo- (X)= 27h N Em' (87)

sephson junctions: . , ,
This is the quantum version of relatidf2). We see that the

1 [~ 27h @ )2 external flux induces a persistent motion of the charge soli-
ZMO( L q)o) : (80)  ton, which is manifested in a persistent current along the
array. As was shown above, no net number of flux quanta
Higher order contributions to the energy give rise to quantuntan tunnel in or out of the junction. However, during the
corrections to the soliton’s rest ma¥sThe renormalized motion of the soliton one can think of flux quanta flowing in
mass in the array languagep to the order of3°) is and out of the array through the junctions, thus forming a
flux loop around the moving center of the solitdA. similar

,32> ( ﬁ2> idea for 2D superconducting films was given in Ref.)33.
1-—|=Myl 1—-=]. (81 o L : :

4 4 This interpretation is dual to the interpretation of the fluxon
in a long Josephson junction agcharge current loop. The
However sinces” is small we can useM, instead of charge soliton’s persistent current has the same origin as the
Moren- As we have discussed in the previous section, theersistent current of electron in a metal ritfgt is a mani-
Hamiltonian isX independent due to the homogeneity of thefestation of the Aharonov-Bohm efféétof a charged par-
array. Thus it commutes with the collective momentum op-ticle encircling a flux tube, and its persistency is due to the
erator, P, and the eigenstates are collective momentunparticle being in an exact eigenstate of the system. However,

|:|=Mové+

g 8
Oren_A_CZW,BZUC
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E sent through a ring-shaped array connected to two léaltls
N=-1 N=0 N=1 consist of serially coupled Josephson junctjoand the
dephasing mechanisms are suppressed, we expect that they
will split into partial waves propagating along the two arms
of the ring. The partial waves will then interfere at the out-
going leads, with the interference pattern being dependent on
the length of the arms and on an external flux applied
through the center of the ring. The transmission of quantum
charge solitons through the ring is thus expected to show
oscillations as a function of the external flux and of the op-
tical path similar to then/e oscillations in the transmission
of electrons through a metal rirfg,and in analogy to the
transmission of fluxons through a Josephson junction ¥ing.

D. Dephasing mechanisms

- " The guantum phenomena described above were a conse-
% 2% 20 % 9 ext quence of the fact that in our approximation the Hamiltonian
(80) was a one-particle Hamiltonian. Thus, even in the pres-
FIG. 5. The spectrum of a quantum charge soliton in a 1p€NCe of @ weak inhomogeneity, the degree of freedom asso-
ring-shaped array of serially coupled Josephson junctions as a fun&iated with the charge soliton’s center of mas&) can
tion of an external fluxd®,,,. In an ideal ring the spectrum consists Maintain its quantum coherence. In order to make the model
of inductive energy parabolas without a possibility of crossing atmore realistic, one should take into account interactions be-
the intersection points. When there is some inhomogeneity in théween the soliton and other degrees of freedom. These inter-
ring (e.g., due to disordgrgaps are open at the intersection points, actions can produce, in principle, phase breaking mecha-
and the spectrum develops into energy bands. nisms. Whenever the phase breaking length, defined as the
length over which the soliton’s phase has an uncertainty of
in contrast to the electron, the charge soliton is a macro2, is smaller than the length of the array, the quantum
scopic particle A c~100um), so the possibility that it ex- phenomena exhibited by the charge soliton will be sup-
hibits quantum effects is very intriguing. The quantum be-pressed. As in the case of the fluxon in a long Josephson
havior of the charge soliton is dual to the quantum behaviojunction! we can distinguish between internal and external
of the fluxon in a long Josephson junctibhThe latter ex- dephasing mechanisms. The internal mechanism is due to the
hibits a persistent motion in response to an external biaiiteraction between the charge soliton and the other degrees
charge, which is the manifestation of the Aharonov-Casheof freedom of the junction, i.e., the plasmons. When the sine-
effect® Being a magnetic particle, this motion results in aGordon model is exact and continuous, the system is com-
persistent voltage across the junction. pletely integrable and the soliton is decoupled from the plas-
A weak spatial inhomogeneity in the array, e.g., nonidendmons. Nevertheless, it has been shown in the context of the
tical grains or junctions or disordered grains, gives an addifluxon in a long Josephson junctirthat there is a possibil-
tional X-dependent term in the HamiltonigB0). The mo- ity of dephasing in this case as well. In order to avoid this
mentum is not conserved anymore, and flux quanta cafephasing, the temperature should be below the plasmons’
tunnel across the array, reflecting in the spectrum by gap€nergy gap. In the context of the charge soliton, where the
which are opened at the intersection points of the parabolagne-Gordon model is only an approximation and the system
(see Fig. 5. If the array is now adiabatically biased by a time is discrete, we expect that the plasmons give rise to a stron-
varied flux source, the persistent current oscillates as a fun@er dephasing due to their inelastic interaction with the soli-
tion of ®,, with a period®,. In each period a flux quantum ton. From the study of the discrete sine-Gordon model it is
tunnels across the array. This tunneling creates a current #hown that the rest energy of a soliton whose center resides
the inverse direction to the existing current, thus eliminatingh @ junction is higher than the rest energy for a soliton
the net current and reducing the energy. Since the energyhose center resides in the middle of a gr&iff) Thus the
bands are exact eigenstates, the tunneling process is a cohg@liton propagates in a periodic potential and not in a flat
ent one. When the external flux is not equal to an integraPne. This deviation from the continuum model produces a
number of flux quanta, the quantum state of the array is &0upling between the plasmons and the soliton. The soliton
superposition of two flux quantum states. The amplitude of £an emit or absorb plasmoii;®and the circulating soliton
persistent current of one charge soliton decreases as ti§@n become phase locked with these plasnibiiis effect
amount of inhomogeneity increases. The maximal amplitudé?as been recently observed for the fluxon in the discrete long

corresponding to a vanishing amount of inhomogeneity, is of0sephson junctioff. We expect that similar phenomena oc-
the order of 0.1 nA. cur in the system we study here when the continuum condi-

tion (26) does not hold. Apart from producing a phase break-
ing length, these phenomena will affect the classical
dynamics as well, for instance by creating resonances in the
The quantum nature of the charge soliton can be revealeldV characteristic. The influence of both the discreteness of
in transport phenomena as well. For instance, if solitons aréhe array and the deviation from the exact sine-Gordon

C. Other quantum effects
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model on the classical and quantum mechanical dynamics @frains and the charging energy between the grains and the
the charge soliton should be studied further. substrate, gives rise to a model with topological solitons ex-
The most important external dephasing mechanisms areitations. Thus we have found that an excess Cooper pair in
due to interaction with quasiparticles, which was neglectedhe array creates a charge soliton via polarization of the su-
in our model. Since the bulk superconductors energy gamerconducting grains. The charge soliton is a dual topologi-
A, is typically of the same order or higher than the plas-cal excitation to the fluxon in a long Josephson junction. We
mons’ energy gap, the condition needed to suppress the thdrave studied the classical dynamics of the charge soliton,
mal activation of the plasmons is sufficient to suppress thend shown that in the presence of dissipation and an external
thermal activation of the quasiparticles. The effects of thertime varying flux thel -V characteristic of a ring-shaped ar-
mal quasiparticles will be studied elsewhere. The quasipartiray should consist of saturation branches corresponding to
cles can destroy the quantum coherence of the array in atkhe number of charge solitons in the array. We have quan-
other way, which is temperature independent. The completézed the charge soliton semiclassically, showing that this
spectrum of a single junction includes charging energy paquantization is consistent with the large kinetic inductance.
rabolas associated with quasiparticles as well, which ar&/e have found that a quantum soliton in a flux-biased ring-
separated in the charge axis éayExcitation of quasiparticles shaped array is expected to show persistent motion, mani-
leads to transitions between these parabolas, thus destroyifested in a persistent current. A weak inhomogeneity in the
the quantum coherence qf This effect can be neglected if array gives rise to coherent current oscillations. These phe-
the charging energy of the quasiparticles plus the supercomomena, which are usually associated with electr(os
ducting energy gap is larger than the Cooper pairs charginfooper pairs suggests that the quantum charge soliton can
energy, i.e., A+e%/8C>e?/2C or (32/3A>E.. Since be considered as a macroscopical quantum object. Finally,
Ec should be smaller thaf for the existence of the Joseph- we have discussed possible internal and external dephasing
son effect, this condition is met automatically. mechanisms of the charge soliton. These mechanisms de-
serve future study.
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