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We study a 1D array of Josephson coupled superconducting grains with kinetic inductance which dominates
over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in
terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological
excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon
model. We find that their classical relativistic motion leads to saturation branches in theI -V characteristic of
a ring-shaped array. We then discuss the semiclassical quantization of the charge soliton, and show that it is
consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton
in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum
charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and
coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of
100mm, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the
quantum behavior of the charge soliton.@S0163-1829~96!06325-4#

I. INTRODUCTION

Arrays of Josephson junctions in 1D~one dimension!, 2D,
or 3D have been studied extensively in recent years, both
theoretically and experimentally.1 When the capacitance of
the junctions is small, the arrays are usually characterized by
the Josephson energy,( iEJ@12cos(fi2fi11)#, and by the
charging energy, (1/2)( i j QiCi j

21Qj . Heref i andQi denote
the phase and the charge on thei th grain of the array, re-
spectively,Ci j

21 is the inverse capacitance matrix, andEJ is
the Josephson coupling energy. This description in terms of
variables defined on the grains and not on the junctions is
consistent with the fact that the kinetic and the geometric
inductances of the grains are typically smaller than the Jo-
sephson inductance. As a result, the charge redistribution
time in the grains is shorter than the tunneling time. In this
paper we study the opposite limit, namely a 1D array where
the kinetic inductance of the grains,

Lkin5
me* l x
e* 2nsS

, ~1!

dominates over the Josephson inductance

LJ5
1

~2p!2
F0

2

EJ
. ~2!

Hereme* and e* are the Cooper pair mass and charge, re-
spectively,ns the Cooper pairs density,l x the length of a
grain, andS the cross section of a grain. As we show below
this limit is experimentally accessible. However, to the best

of our knowledge, this kind of array has not been constructed
yet. The large kinetic inductance means that in this case the
charge redistribution time in the grains is longer than the
tunneling time, thus the dynamic variables should be defined
on the junctions of the array and not on the grains. This array
can be represented by the electric circuit shown in Fig. 1.
C0 denotes the self-capacitance of the superconducting
grains, while the combined effect of the Josephson and
charging energies of the junctions results in a nonlinear ca-
pacitance,C, as we explain in the next section. We show that
in this kind of array the concept of ‘‘charge soliton’’2–8

arises, i.e., an excess Cooper pair in the array gives rise to a
compact topological solitonic excitation. This appears to be
in contrast to the usual model which does not incorporate the
inductive effects. That model suggests that an excess Cooper
pair delocalizes as a consequence of the Josephson tunneling.
We show, however, that a sufficiently large kinetic induc-
tance decouples the individual junctions quantum mechani-
cally. We study the dynamics of the charge soliton both clas-
sically and quantum mechanically.

The paper is organized as follows: In Sec. II we develop a
continuum approximation of a serially coupled array of Jo-
sephson junctions with a dominant kinetic inductance. In
Sec. III we show that this array has compact solitonic exci-
tations~‘‘charge solitons’’!, and discuss some of their clas-
sical properties and dynamics. In this section we discuss the
small amplitude oscillations of the array~‘‘plasmons’’! as
well. In Sec. IV we study the classical dynamics of the
charge soliton further, using collective coordinates. The
quantization of the charge soliton is done in Sec. V. We
discuss the meaning of the semiclassical quantization of the
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soliton, and study its quantum dynamics in a ring-shaped
array. We demonstrate that quantum charge solitons can, in
principle, exhibit quantum phenomena without classical ana-
logues, like persistent motion in response to an external flux,
and coherent current oscillations. We then discuss possible
dephasing mechanisms of charge solitons, and address the
effects caused by the discreteness of the array. We summa-
rize our results in Sec. VI.

II. KINETIC INDUCTANCE DOMINATED 1D ARRAY
OF SERIALLY COUPLED JOSEPHSON JUNCTIONS

A. The Lagrangian

We consider a chain ofN identical superconducting
grains ~thus formingN21 Josephson junctions!. The junc-
tions are characterized by the Josephson coupling energy and
by the charging energy scale:

EC[
~2e!2

2C
. ~3!

We assume thatC'10215 F, and thatEJ is of the same order
asEC . The grains are capacitively coupled to a conducting
substrate with a capacitanceC0!C, which we assume to be
C0'10217F. The energy scale of this coupling energy,

EC0
[

~2e!2

2C0
, ~4!

is thus much larger than the junction charging energy

EC0
@EC . ~5!

The grains are characterized by the inductive energy scale
associated withLkin:

EL[
F0

2

2Lkin
, ~6!

whereF0[h/2e. As we have said in the Introduction, we
assume that the kinetic inductance of the grain dominates
over the Josephson inductance. In fact, due to the numerical
coefficient (2p)2/2 difference in the relations~2! and ~6!,
Lkin should be larger than 2p

2LJ for the inductive effects to
be important. For a typicalEJ of the order of 100meV it
means thatLkin dominates if it is of the order of 1027H or
larger. This situation can be achieved, for instance, when
l x'10mm and S'103nm2. Nevertheless we assume that
the width of the grains is of the order of the London penetra-
tion depth to avoid tunneling of flux quanta through the
grains. The width of the junctions,d, is much smaller than
l x ~typically d'2 nm!, and the distance between adjacent

grains ~the unit cell! is denoted bya (a[ l x1d' l x).
L[Na is the total length of the chain. We assume that the
chain is very long (N@1).

Using the values given above, we find that the impedance
of the array, considered as a transmission line,

ZLC5ALkin /C0, ~7!

is of the order of 100 KV, i.e., it is much larger than the
quantum resistance,RQ[h/(2e)2:

ZLC@RQ . ~8!

Note that this impedance inequality can be expressed alter-
natively as an inequality of the coupling energy and the in-
ductive energy scales

EC0
@EL . ~9!

A similar condition to ~8! has been studied before in the
context of single electron tunneling in a normal junction,9

and it has been shown that it leads to a quantum mechanical
decoupling of the junction from its environment. Using the
same reasoning here, we are led to the conclusion that con-
dition ~8! means that each junction is quantum mechanically
decoupled from its environment, i.e., from the other junc-
tions of the array. We can thus solve the Schro¨dinger equa-
tion for each junction separately, and obtain a local potential
energy of the array. This situation has been named the ‘‘local
rule’’ in the context of single electron tunneling.10

The eigenstates of the junctioni depend onq̃i , the dimen-
sionless charge~in units of 2e) induced on this junction. As
a function of q̃i , the energy levels are made of a set of
charging energy parabolas, with gaps at the intersection re-
gions due to the Josephson energy11–14 ~see Fig. 2!. The
energy levels are, thus, periodic functions ofq̃i with a period
1. Under appropriate conditions~not too small gaps, adia-
batic changes! Zener transitions between the levels can be
avoided.15,16 We also ignore, for the time being, quasi-
particle tunneling, which is a dissipative process. We discuss
this issue in Sec. V. We thus may consider only the first
level, which we denote byEq̃i

. This level represents coher-
ent superposition of charge states in the bulk superconduct-
ors, which differ by one Cooper pair.Eq̃i

is formally given
as an eigenvalue of Mathieu’s equation. As it does not have
a simple analytical form whenEC is of the same order of
EJ , and our results do not depend qualitatively on the exact
form of Eq̃i

, we adopt the following form:

Eq̃i
5

2

~2p!2
EC@12cos~2pq̃i !#. ~10!

This form preserves the correct parabolic dependence for
smallqi , and reduces the amplitude of the energy level from
its maximal height~in the limiting case whereEJ50) by a
factor of p2/4. We emphasize that the important feature of
Eq̃i

is its periodicity, which allows us to represent the Jo-
sephson junction as a nonlinear capacitor~see Fig. 1!. In the
next section we show that the periodicity gives rise to the
soliton description.

Due to the tunneling of Cooper pairs the variableq̃i is
compact, i.e.,q̃i115q̃i . It is convenient to introduce an

FIG. 1. An equivalent electric circuit of a 1D array of serially
coupled Josephson junctions.
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extended variableqi , which is the dimensionless charge~in
units of 2e) brought to thei th junction.qi is related toq̃i
through

qi[q̃i1 (
i 85 i11

N

Qi 8, ~11!

whereQi is the net charge on thei th grain. Qi has, of
course, only discrete values, whileqi and q̃i are continuous.
This change of variables corresponds to changing from a
‘‘reduced zone’’ scheme to an ‘‘extended zone’’ scheme in
the junction’s energy bands~see Fig. 2!. This variable was
used in the study of 1D arrays of serially coupled normal
junction as well.2,4 In the next section we show the impor-
tance ofqi for the solitonic description. The form of the
energy of the junction~the potential energy! does not change
when expressed as a function ofqi :

Epot5Eqi
5

2

~2p!2
EC@12cos~2pqi !#. ~12!

The voltage across the junction,Vqi
, is given by the deriva-

tive of the energy levels with respect to the charge

Vqi
5

1

2e

]Eqi

]qi
. ~13!

Using ~12! we express the voltage as

Vqi
5

1

2p
VCsin~2pqi ! , ~14!

whereVC[2e/C.
Sinceqi is defined on the junction it is already contains an

averaging over the fast tunneling process. A time dependent
qi is therefore related to the slow process of charge redistri-
bution in the grains by means of a supercurrent. This gives
rise to an inductive energy in the grains, which serves as the
kinetic energy of the array:

Ekin5
1
2 ~2e!2Lkinq̇i

2 . ~15!

In the parameters range we consider, the kinetic energy scale
is smaller than the potential energy one:

EC.EL . ~16!

The three inequalities,~5!, ~9!, and ~16!, can be combined
into a single condition for the energy scales of the system:

EC0
.EC.EL . ~17!

The relation between the dynamic variableqi and the
voltageVi between thei th grain and the substrate can be
found by consecutive applications of Gauss’ law:

qi5q12
1

2e
C0 (

i 851

i

Vi 8, ~18!

whereq1 is the charge that was brought to the first junction
of the array. From now on we assume that the continuum
limit can be taken.~We will show the necessary condition for
this soon.! Discreteness effects are discussed in Sec. V. In
the continuum limit Eqs.~11! and ~18! have the form:

q~x![q̃~x!1E
x

L

Q~j!dj/a, ~19!

q~x!5q~0!2
1

2e
C0E

0

x

V~j!dj/a. ~20!

The array is thus described by the charge fieldq(x). Relation
~20! betweenq(x) and V(x) can be expressed in a local
form:

V~x!52a
2e

C0
qx~x!. ~21!

We see that theqx(x) is the dimensionless charge between
the grains and the substrate. The charging energy which
couples the unit cells of the array can be expressed, there-
fore, as

Ecoupling5a2
~2e!2

2C0
qx
2 . ~22!

As we have mentioned above, its energy scale isEC0
~4!.

SinceC0!C we haveEC0
@EC . In this case even small

amounts of charge induce high voltages on the capacitors
between the grains and the substrate, and these voltages
strongly couple the Josephson junctions. In the opposite
case, whenC0 is large, there is almost no voltage on the
capacitors and the junctions are practically decoupled. A
small C0 is thus needed for the picture of serially coupled
Josephson junctions.

From the above discussion we conclude that the array we
consider is characterized by the three energies: the potential
energy~12!, the kinetic~or inductive! energy~15!, and the
coupling ~or charging! energy~22!. When these three ener-
gies are combined, we get the following sine-Gordon La-
grangian:

FIG. 2. Energy levels of a Josephson junction as a function
of q̃i for the caseEJ'EC .
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L5
1

2a
~2e!2Lkinq̇

22a
~2e!2

2C0
qx
2

2
1

a

2

~2p!2
~2e!2

2C
@12cos~2pq!#.

~23!

This is a description of a 1D Josephson junctions array,
which is valid when condition~17! holds. The three effects
of the large kinetic inductance are reflected in the Lagrangian
~23!: ~1! an additional inductive energy, which is an inertial
term; ~2! a representation of each junction by a periodic
charging energy, as a result of the quantum mechanical de-
coupling of the junctions;~3! a description of the array by
degrees of freedom which are defined on the junctions and
not on the grains. This Lagrangian is electromagnetically
dual to the Lagrangian representing a long Josephson junc-
tion. The latter system can be understood as the continuum
version of an array of parallely coupled Josephson junctions.
Interchanging parallel coupling with series coupling and in-
ductors with capacitors one gets the Lagrangian of the seri-
ally coupled Josephson junctions. Note, especially that the
periodic inductive energy in the long Josephson junction
~i.e., the Josephson energy! is replaced here by the periodic
charging energy.

B. The equation of motion and the Hamiltonian

Following the standard sine-Gordon treatment,17,18we re-
define the charge field:q(x)→q8(x)[q(x)/2p, and express
the Lagrangian~23! as

L5
\vC
2pb2 F 1

2vC
2 q̇

22
1

2
qx
22

1

LC
2 ~12cosq!G . ~24!

The three bulk parameters:C, Lkin , andC0 are replaced in
~24! by LC , vC , andb2. Here

LC[aAC

C0
, ~25!

is the characteristic length of the system. The condition
needed for the validity of the continuum limit is therefore

LC@a, ~26!

or

C@C0 , ~27!

which is consistent with the limit~5!. This is another mani-
festation of what we have discussed above: a smallC0 im-
plies a large coupling, hence a largeLC . Using the values
given above we getLC'100mm. The second parameter in
the Lagrangian~24!,

vC[
a

ALkinC0

, ~28!

is the wave velocity of the system. It is of the order of
102121022c, where c is the vacuum light velocity. It is
related toLC via the characteristic frequency

vC5
vC
LC

5A 1

LkinC
, ~29!

which is of the order of 1011 sec21. The third parameter in
the Lagrangian~24!,

b2[
2p\vCC0

~2e!2a
, ~30!

sets the energy scale of the system. It does not affect the
classical equation of motion, but its value is important in
determining whether the system behaves classically or quan-
tum mechanically. We return to this point in Sec. V, where
we discuss the quantum dynamics of the system.

The equation of motion derived from the Lagrangian~24!
is

1

vC
2 q̈2qxx1

1

LC
2 sinq50. ~31!

It is a voltage equation for the junction, as can be shown
more clearly by multiplying it by 2evC

2Lkin/2p and using Eq.
~21! to obtain

1

2p
2eLkinq̈2

1

2p
a2
2e

C0
qxx1

1

2p
VCsinq50. ~32!

The first term is an inductive voltage induced along the
grains when the current is time dependent. From Eq.~21! we
see that the second term is the continuum form of
Vi112Vi , i.e., it is the difference of the voltages between
two adjacent cells and the substrate. The third term is the
voltage across the junctions, resulting from the superposition
of charge states@Eq. ~14!#. The voltage equation~32! is thus
a Kirchoff’s law for a closed loop of the equivalent electrical
circuit of the array~see Fig. 1!. The conjugate momentum of
the fieldq,

pq[
]L
]q̇

5
1

a S 2e2p D 2Lkinq̇[\ñF0
, ~33!

is the number of flux quanta per unit length that have tun-
neled through the junctions of the array. UsingñF0

we get
the Hamiltonian of the system:

H5\vCE H 2pb2
1

2
ñF0

2

1
1

2pb2 F12 qx21 1

LC
2 ~12cosq!G J dx. ~34!

When the array is coupled to an external voltage,Vext, the
equation of motion~31! changes to

1

vC
2 q̈2qxx1

1

LC
2 sinq52p

1

a2
C

2e
Vcell , ~35!

where

Vcell[
a

L
V ext ~36!
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is the part of the external voltage that is distributed on one
unit cell. Equation~35! represents, alternatively, the case
where the array has a shape of a ring and an external flux is
applied through its center. In this caseVext[2Ḟ ext is the
electromotiv force acting on the array. The flux source has,
of course, the advantage that the effects of the leads are
eliminated. In any case, Eq.~35! can be derived from the
following Hamiltonian:

H5\vCE H 2pb2
1

2
~ ñF0

2ñFext
!2

1
1

2pb2 F12 qx21 1

LC
2 ~12cosq!G J dx. ~37!

In the case of a voltage sourceñFext
is defined as the integral

of the external voltage per unit length and unit flux

ñFext
[2

1

LF0
E Vextdt, ~38!

while in the case of a flux source it is simply the dimension-
less flux density. The external source thus appears in the
Hamiltonian as a time dependent gauge potential, in analogy
to the external current in the long Josephson junction
Hamiltonian.19 The gauge nature of the external voltage
gives rise to the following shift of the conjugate momentum:

\ñF0
5
1

a S 2e2p D 2Lkinq̇1\ñFext
. ~39!

Dissipation processes in the system produce additional
q-dependent voltage drops. Ohmic dissipation can be repre-
sented phenomenologically by adding to each unit cell a re-
sistor connected to the other elements in this cell in series. In
this case the voltage equation~35! becomes

1

vC
2 q̈1

1

a2
C0Rq̇2qxx1

1

LC
2 sinq52p

1

a2
C0

2e
Vcell . ~40!

This representation, which was named the ‘‘serially resistive
junction’’ ~SRJ! in Ref. 2, is the analogue of the RSJ
model.20,21

III. CHARGE SOLITONS AND PLASMONS

A. A static charge soliton

Since the 1D array of serially coupled Josephson junc-
tions can be described by a sine-Gordon Lagrangian~24!, we
expect that it has solitonic excitations, i.e., compact, stable
topological configurations. Using the definition ofq as an
extended variable ~19!, we observe that q(x) and
q(x12p) can be distinguished if there is an excess or a
deficiency of Cooper pairs in intermediate grains. The one-
soliton excitation represents the charging of the junctions~or
the polarization of the grains! due to an excess Cooper pair
in the array, and is called a ‘‘charge soliton.’’ This term was
coined in Ref. 2 in the context of a 1D array of normal tunnel
junctions. Recently, charge solitons in a 1D array of
SQUID’s were studied experimentally,8 and a zero current
state below a threshold voltage was found. This voltage was
interpreted as an injection voltage for a charge soliton.

The charge soliton solution of Eq.~31! with the appropri-
ate boundary conditions is@see Fig. 3~a!#

qsol~x!54tan21FexpS x2X0

LC
D G22p. ~41!

Its center is atX0 , which we take in this section to be zero.
The excess charge of the Cooper pair is the topological
charge of this soliton:

Q5
2e

2p E ]xqsoldx522e. ~42!

We would like to emphasize once more that under the con-
ditions we consider here, the existence of a topological soli-
tonic excitation and its stability do not depend on the exact
form of the potential energy of the junctions, but only on its
having degenerate minima. Thus our qualitative results are
valid for other forms of the potential as well.

As was mentioned above, charge solitons in 1D arrays of
normal tunnel junctions have been studied previously.2–7 In
this context a question was raised whether a charge soliton
can be regarded as a coherent dynamic object whose equa-
tion of motion contains an inertial term, as was proposed in
Refs. 2–4, or that it merely represents a static charge distri-
bution profile, as was argued in Refs. 5 and 6. Here we have
shown that this question should not rise in the Josephson
junction array context. The coherence of the charge soliton
ensues from the coherent superconducting ground state, and
the inertia term comes from the kinetic inductance of the
grains. Moreover, we have shown that the impedance condi-

FIG. 3. ~a! The charge soliton configuration representing an ex-
cess Cooper pair in the array. The center of the soliton is taken to be
X050. ~b! The profile of the voltage between the array and the
substrate induced by the charge soliton.V is measured in mV.~c!
The distribution of voltages on the junctions of the array corre-
sponding to a charge soliton configuration.Vq is measured in mV.
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tion ~8! should be met in order that the concept of a charge
soliton will be different from that of a point charge~be it a
Cooper pair or an electron!.

From Eq.~41! we see that the characteristic length scale
of the array,LC , is the characteristic width of the soliton as
well. In order to interpret the charge soliton as a particle its
width should be much smaller than the total length of the
array, i.e.,

L@LC . ~43!

This assumption is met whenL>103 mm. Here we assume
that L'103mm. The number of grains the soliton is spread
over is

NC[LC /a5AC/C0. ~44!

NC is larger than one due to the continuum limit condition
~26!. For the parameters given aboveNC510. When condi-
tion ~26! fails, one should take into account corrections to the
continuum sine-Gordon model. We address this point in Sec.
V. The finite width of the charge soliton is clearly seen from
its density, which, according to Eq.~21!, is proportional to
the profile of the voltage between the array and the substrate
@see Fig. 3~b!#:

V~x!52
a

2p

2e

C0
]xqsol~x!

52
2

2p

1

NC

2e

C0
sechS x

LC
D . ~45!

LC sets the scale for the static distribution of voltages on the
junctions of the array as well. Using Eqs.~14! and ~31! we
find that this distribution is proportional to the second deriva-
tive of the soliton configuration@see Fig. 3~c!#:

Vq~x!5
1

2p
VCLC

2 ]xxqsol~x!

52
2

2p
VCsechS x

LC
D tanhS x

LC
D . ~46!

The energy needed to create a charge soliton is the value
of the Hamiltonian calculated for a static solution@Eq. ~41!#:

E05
8

LC

\vC
2pb2 5

8

~2p!2
~2e!2

ACC0

5
16

~2p!2
ECNC . ~47!

This rest energy depends onC andC0 but not onLkin , since
it is determined by the potential and coupling energies. It can
be written as the potential energy density (eC[EC /S), times
the effective area of the soliton (Seff[SNC):

E05
16

~2p!2
eCSeff . ~48!

Dividing Eq. ~47! by vC
2 we get the soliton rest mass

M0[E0 /vC
25

8

~2p!2
~2e!2

Lkin
a

1

LC
. ~49!

In analogy to the rest mass of a fluxon in a long Josephson
junction,19 the charge soliton’s rest mass is proportional to

the inductance per unit length and inversely proportional to
the characteristic length,LC . Using the typical parameters
we find that the charge soliton mass is of the order of
10236Kg, i.e., 6 orders of magnitude less than the electron
rest mass. This result indicates that the charge soliton should
not be understood as a Cooper pair dressed with a polariza-
tion cloud, but as the polarization cloud itself. We return to
this point when we discuss the dynamics of the charge soli-
ton in the next section.

B. A dynamic soliton

In order to describe a charge soliton moving with a veloc-
ity v, we make use of the Lorentz invariance of the Lagrang-
ian ~24! to perform a Lorentz transformation of the static
configuration~41! and obtain

qsol~x,t !5qsol@g~x2vt !#

54tan21H expFgS x2x02vt
LC

D G J 22p

, ~50!

whereg[1/A12(v2/vC
2 ). We thus expect that a relativistic

charge soliton suffers a Lorentz contraction. Since the light
velocity in the array,vC , is smaller than the vacuum light
velocity, relativistic effects of the charge soliton can be ob-
served more easily than relativistic effects of electrons or
Cooper pairs.

A moving charge soliton induces, of course, a current
along the array. The spatial distribution of the current is
given by

I ~x,t !5
2e

2p
q̇sol~x,t !. ~51!

This is a current pulse with a widthLC , concentrated around
the moving center of the charge soliton. It has the same
profile as the voltage between the array and the substrate@see
Fig. 3~b!#. The average current produced by the moving soli-
ton is

Ī5
1

LE I ~x!dx52
1

L
2ev. ~52!

For a soliton moving with a velocity 106 m/sec, it is of the
order of 0.1 nA.

C. Plasmons

Besides topological solitons, the sine-Gordon Lagrangian
~24! admits small amplitude excitations. Their dynamics is
governed by the linearized equation of motion

1

vC
2 q̈2qxx1

1

LC
2 q50. ~53!

As this equation describes electromagnetic field oscillations
with a confining potential, its solutions are longitudinal
plasma oscillations~‘‘plasmons’’! propagating along the ar-
ray. The propagation of the plasmons does not involve any
tunneling process. The plasmons have the dispersion relation

v25vC
21vC

2k2, ~54!
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i.e., there is an energy gap\vC in their spectrum with the
corresponding temperatureTg'1 K. The plasmons have,
therefore, a mass

MP5
\vC

vC
2 5

\

LCvc
, ~55!

which is of the order of 10237 Kg. The ratio between the
mass of a plasmon to the mass of the soliton~49! is
2pb2/8, i.e., it is of the order ofb2.

Plasmons can also be excited when there is a soliton in
the array. In that case they can be considered as vibrations of
the soliton. Their analytical form is

ck~x!;F tanhS x

LC
D2 ikLCGexp~ ikx!. ~56!

The dispersion relation is the same as above@Eq. ~54!#, but
there exists now an additional zero mode~whosev50). It
reflects the translational invariance of the system, i.e., the
homogeneity of the array~at distances larger thana).

IV. COLLECTIVE COORDINATES
FOR THE CHARGE SOLITON

A. Equations of motion and the dynamic mass

The topological stability of the charge soliton and its fi-
nite width allow for its interpretation as a particle. Thus we
would like to describe the charge soliton by a pair of conju-
gate coordinates which correspond to its center of mass,X,
and to its momentum,P. This can be done by using the
‘‘collective coordinates’’ method. This method was studied
extensively in the context of general soliton theory,22–25 as
well as for long Josephson junctions in particular.2,4,19,26,27

We assume that the form of the charge soliton is

q~x,t !5qsol@x2X~ t !#, ~57!

i.e., that it is a rigid object moving with a velocityẊ. This
assumption means that we neglect the effects of the plas-
mons. It is justified when the temperature is much lower than
the plasmons’ energy gap.

The collective coordinates can be expressed in an explicit
form:27

X[2
1

2pE x]xqsoldx, ~58!

P[E pq]xqsoldx. ~59!

Inserting the soliton configuration~50! into definitions~58!
and~59! we get the equations of motion of a free relativistic
particle

X5X01vt, ~60!

Ẋ5v, ~61!

P5gM0Ẋ, ~62!

Ṗ50. ~63!

The mass that appears in~62! is actually the dynamic
mass of the charge soliton

Md[2
1

a S 2e2p D 2LkinE ]xqsol
2 dx. ~64!

Its value is identical to the rest mass~49! in the limit
L@LC , and differs from it by a factor of 2 in the opposite
limit L!LC . As we consider here the first limit, we denote
it by M0 as well. We can understand the origin of the dy-
namic mass by observing the way the charge soliton propa-
gates. Starting from the static distribution of voltages on the
junctions @see Fig. 3~c!#, the center of the charge soliton
moves from its position in the middle of a grain towards one
of the neighboring junctions, say the right one, by a charge
redistribution in the grains. A superposition of charge states
in the two adjacent grains is built, and the~negative! voltage
on this junction is reduced. When the superposition is of
states of equal weight, the voltage is zero. As the motion
continues, the charge redistribution increases the weight of
the charge state on the right grain and the voltage on the
junction is increased. When the absolute value of this voltage
reaches the initial one, the center of the charge soliton has
been shifted by one unit cell, i.e., it is in the middle of the
right grain. One sees that the propagation of the charge soli-
ton is determined by the kinetic inductance and not by the
Josephson one. The dynamic mass leads us, therefore, to the
same conclusion that we got from the rest mass: the charge
soliton is the polarization cloud that accompanies the excess
Cooper pair that exists in the array.

Transforming now the Hamiltonian~34! into collective
coordinates form, we get

H5AM0
2vC

41P2vC
2 , ~65!

so the energy of the moving soliton is

E5gM0vC
25gE0 . ~66!

If we assume the nonrelativistic limit, i.e.,v!vc , the Hamil-
tonian describing the soliton as a particle reads

H5M0vC
21

P2

2M0
, ~67!

where now

P5M0Ẋ. ~68!

The rest energy term in the Hamiltonian~67! is made out of
the two charging energies@the last two terms in~34!#, while
the contribution to the kinetic term in~67!, comes only from
the inductive energy@the first term in~34!#. We thus see that
the inductive energy, although being the smallest energy in
the system, is the one that governs the dynamics of the
charge soliton. The independence of the Hamiltonian~67! on
X is another manifestation of the translation invariance of the
system.

B. A voltage biased array

The collective coordinates can be used to describe a volt-
age~or a time varying flux! biased array as well. Introducing
the external voltage in the form

1240 54ZIV HERMON, ESHEL BEN-JACOB, AND GERD SCHO¨ N



Ḟext[2Vext, ~69!

we find that the collective momentum is shifted to

P5M0Ẋ1
2p\

L

Fext

F0
, ~70!

and the nonrelativistic particle Hamiltonian is

H5M0vC
21

1

2M0
S P2

2p\

L

Fext

F0
D 2. ~71!

The equations of motion derived from~71! are

Ẋ5
1

M0
S P2

2p\

L

Fext

F0
D , ~72!

and

Ṗ50. ~73!

Combining the two equations we get

M0Ẍ52
2p\

L

Ḟext

F0
, ~74!

i.e., the external voltage accelerates the charge soliton with-
out changing its momentum. The origin of this acceleration
is simply the electrostatic force exerted on the excess Cooper
pair by the external voltage. In order that the rigid soliton
assumption will be valid in this case as well, the external flux
must be changed adiabatically, or the external voltage should
be small enough,

U Ḟext

F0
U5U Vext

F0
U!vC , ~75!

which means thatVext should be of the order of 10mV or
less.

When there are Ohmic dissipation processes in the array
an application of an external voltage results in a steady state
velocity ~or current! of the soliton. Using the Hamiltonian
~34!, the equation of motion~40!, and the average current
~52!, we find that the steady state condition is

Vext5ReffĪ steady, ~76!

where the effective resistance of the array is constant in the
nonrelativistic case

Reff[
8

~2p!2
L2

aLC
R, ~77!

and is Ī steadydependent in the relativistic case

Reff, rel~ Ī steady![
8

~2p!2
L2

aLC
g~ Ī steady!R. ~78!

The effective nonrelativistic resistance of the array is thus
increased by about 2 orders of magnitude, while relativity
increases it further by theg factor. Relation~76! between the
external voltage and the steady state current is dual to the
relation between the external current biasing a long Joseph-
son junction and the steady state voltage a moving fluxon
creates.26,28The I -V characteristic of the array is expected to

show saturation branches, where each branch corresponds to
a certain number of solitons reaching the limit velocity,vC
~see Fig. 4!. These branches are expected to be observed in a
ring-shaped array, since charge solitons can enter and leave
an open array in a continuous manner.

V. QUANTUM DYNAMICS OF THE CHARGE SOLITON

A. The semiclassical expansion

In this section we study the quantum dynamics of the
charge soliton as a particle. For this we utilize the semiclas-
sical quantization of the sine-Gordon theory.17,18,22,29The ex-
pansion parameter is the coupling constantb2, which was
defined in~30!. In this method the total Fock space is taken
to be composed of disconnected sectors, each one corre-
sponds to different topological boundary conditions, i.e., to a
different number of solitons in the system. The ground state
of each sector is the corresponding solitonic configuration.
Here we concentrate on the one-soliton sector. Due to the
translational invariance of the system there is, in fact, a de-
generate family of eigenstates of the position operator, con-
nected by space translations. Higher states are found by a
semiclassical expansion around the ground state. The excita-
tions of the first order correspond to the plasmons, and their
quantum interpretation is as light particles scattering from
the static massive soliton. These plasmons are, thus, the fun-
damental quanta of the theory. The degeneracy of the states
is completely removed in the second order, as the position
eigenstates are replaced by momentum eigenstates, and the
translation invariance of the theory is recovered on the quan-
tum level. The semiclassical expansion breaks down when
b2>2, where the soliton becomes lighter than the plasmons.

FIG. 4. I -V characteristic of a ring-shaped dissipative array bi-
ased by a time varying flux (Vext[2Ḟext is the electromotiv force
produced by the flux!. Each branch corresponds to a certain number
of charge solitons in the system.Vext is measured inmV
and Ī steady is measured in nA. The parameters areR510V and
vC51022c.
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The soliton then takes the role of the fundamental quantum,
and loses its correspondence to the classical particle configu-
ration ~in a sense it becomes ‘too’ quantum!. Since the typi-
cal value ofb2 is 1021, we can use the expansion for the
array. Note thatb2 can be expressed in the form:30

b25A EL

EC0

5
RQ

ZLC
. ~79!

Comparing Eq.~79! with ~8! and~9!, we see that the condi-
tion for using the semiclassical expansion,b2!1, is identical
to the impedance condition. This is not a surprise, as the
impedance condition is the one that enables us to decouple
the junctions quantum mechanically. Our model of the
charge soliton as a classical configuration is thus self-
consistent.

However there are several differences between the system
we study and the field theoretical model. First of all, the
array is very long~compared toLC), but finite. Apart from a
slight distortion to the soliton’s shape that we neglect, the
finiteness means that solitons can enter and leave the array,
and also get reflected from the edges. To avoid this situation,
we consider a ring-shaped array. Second, since the gap in the
plasmons’ spectrum is of the order of 1 K, their population
can be made negligible if the temperature is kept below the
gap. Thus we can discard all the plasmons’ contribution to
the dynamics. This assumption is equivalent to the rigid soli-
ton assumption~57!. A finite population of plasmons can be
considered as an internal environment which produces a
phase breaking mechanism.31 We comment on this dephas-
ing process at the end of this section. Another different fea-
ture is that we couple the array to an external~classical! flux
source as a gauge coupling, and study the quantum dynamics
of the soliton in response to this source. Finally, the array we
study deviates from the ideal sine-Gordon model by its dis-
creteness, by the exact form of the potential energy, by struc-
tural inhomogeneities and disorder, and by quasiparticle tun-
neling. The effects of these deviations from the ideal model
are discussed below.

B. Persistent motion of the charge soliton

In the presence of an external flux,Fext, the assumption
of rigidity leads to the following nonrelativistic quantum
Hamiltonian for a ring-shaped array of serially coupled Jo-
sephson junctions:

Ĥ5M0vC
21

1

2M0
S P̂2

2p\

L

F ext

F0
D 2. ~80!

Higher order contributions to the energy give rise to quantum
corrections to the soliton’s rest mass.32 The renormalized
mass in the array language~up to the order ofb0) is

M0 ren5
8

LC

\

2pb2vC
S 12

b2

4 D5M0S 12
b2

4 D . ~81!

However sinceb2 is small we can useM0 instead of
M0 ren. As we have discussed in the previous section, the
Hamiltonian isX̂ independent due to the homogeneity of the
array. Thus it commutes with the collective momentum op-
erator, P̂, and the eigenstates are collective momentum

eigenstates with a discrete set of eigenvalues,pN5\kN de-
termined by the periodic boundary conditions:

kN5
2p\

L
N, N50,61,62, . . . . ~82!

The energy spectrum is discrete, too, and is given by~ne-
glecting the constant termM0vC

2 )

EN5
1

2M0
S 2p\

F0L
D 2~F0N2Fext!

2. ~83!

Defining an effective inductance by

Leff[M0S F0L

2p\ D 2 ~84!

(Leff'1025 H!, the energy levels can be expressed in the
form of inductive levels:

EN5
1

2Leff
~F0N2Fext!

2. ~85!

The inductive form of the energy levels suggests the inter-
pretation ofN as the number of flux quanta that have tun-
neled outside or inside the ring through one of the junctions.
The quantization ofP̂ is, therefore, the statement that only an
integral number of flux quanta can tunnel in or out of the
ring. However, the conservation of the momentum means
that there can be no flux tunneling in an homogeneous array,
i.e., the external flux is completely screened.

The spectrum of the charge soliton’s Hamiltonian~83! is
periodic with respect to the external flux with a periodF0 . It
is composed of a set of parabolas centered atFext5NF0 .
Each parabola intersects its two adjacent parabolas at
(N11/2)F0 ~see Fig. 5!. The current along the array is given
by

^ Î &52
]EN

]Fext
5

1

Leff
~F0N2Fext!. ~86!

It is proportional to the expectation value of the velocity of
the charge soliton:

^X̂
˙

&5
L

2p\

]EN

]N
5

L

2e
^ Î &. ~87!

This is the quantum version of relation~52!. We see that the
external flux induces a persistent motion of the charge soli-
ton, which is manifested in a persistent current along the
array. As was shown above, no net number of flux quanta
can tunnel in or out of the junction. However, during the
motion of the soliton one can think of flux quanta flowing in
and out of the array through the junctions, thus forming a
flux loop around the moving center of the soliton.~A similar
idea for 2D superconducting films was given in Ref. 33.!
This interpretation is dual to the interpretation of the fluxon
in a long Josephson junction as a~charge! current loop. The
charge soliton’s persistent current has the same origin as the
persistent current of electron in a metal ring.34 It is a mani-
festation of the Aharonov-Bohm effect35 of a charged par-
ticle encircling a flux tube, and its persistency is due to the
particle being in an exact eigenstate of the system. However,
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in contrast to the electron, the charge soliton is a macro-
scopic particle (LC'100mm!, so the possibility that it ex-
hibits quantum effects is very intriguing. The quantum be-
havior of the charge soliton is dual to the quantum behavior
of the fluxon in a long Josephson junction.19 The latter ex-
hibits a persistent motion in response to an external bias
charge, which is the manifestation of the Aharonov-Casher
effect.36 Being a magnetic particle, this motion results in a
persistent voltage across the junction.

A weak spatial inhomogeneity in the array, e.g., noniden-
tical grains or junctions or disordered grains, gives an addi-
tional X̂-dependent term in the Hamiltonian~80!. The mo-
mentum is not conserved anymore, and flux quanta can
tunnel across the array, reflecting in the spectrum by gaps
which are opened at the intersection points of the parabolas
~see Fig. 5!. If the array is now adiabatically biased by a time
varied flux source, the persistent current oscillates as a func-
tion of Fext with a periodF0 . In each period a flux quantum
tunnels across the array. This tunneling creates a current in
the inverse direction to the existing current, thus eliminating
the net current and reducing the energy. Since the energy
bands are exact eigenstates, the tunneling process is a coher-
ent one. When the external flux is not equal to an integral
number of flux quanta, the quantum state of the array is a
superposition of two flux quantum states. The amplitude of a
persistent current of one charge soliton decreases as the
amount of inhomogeneity increases. The maximal amplitude,
corresponding to a vanishing amount of inhomogeneity, is of
the order of 0.1 nA.

C. Other quantum effects

The quantum nature of the charge soliton can be revealed
in transport phenomena as well. For instance, if solitons are

sent through a ring-shaped array connected to two leads~all
consist of serially coupled Josephson junction!, and the
dephasing mechanisms are suppressed, we expect that they
will split into partial waves propagating along the two arms
of the ring. The partial waves will then interfere at the out-
going leads, with the interference pattern being dependent on
the length of the arms and on an external flux applied
through the center of the ring. The transmission of quantum
charge solitons through the ring is thus expected to show
oscillations as a function of the external flux and of the op-
tical path similar to theh/e oscillations in the transmission
of electrons through a metal ring,37 and in analogy to the
transmission of fluxons through a Josephson junction ring.38

D. Dephasing mechanisms

The quantum phenomena described above were a conse-
quence of the fact that in our approximation the Hamiltonian
~80! was a one-particle Hamiltonian. Thus, even in the pres-
ence of a weak inhomogeneity, the degree of freedom asso-
ciated with the charge soliton’s center of mass (X0) can
maintain its quantum coherence. In order to make the model
more realistic, one should take into account interactions be-
tween the soliton and other degrees of freedom. These inter-
actions can produce, in principle, phase breaking mecha-
nisms. Whenever the phase breaking length, defined as the
length over which the soliton’s phase has an uncertainty of
2p, is smaller than the length of the array, the quantum
phenomena exhibited by the charge soliton will be sup-
pressed. As in the case of the fluxon in a long Josephson
junction,31 we can distinguish between internal and external
dephasing mechanisms. The internal mechanism is due to the
interaction between the charge soliton and the other degrees
of freedom of the junction, i.e., the plasmons. When the sine-
Gordon model is exact and continuous, the system is com-
pletely integrable and the soliton is decoupled from the plas-
mons. Nevertheless, it has been shown in the context of the
fluxon in a long Josephson junction31 that there is a possibil-
ity of dephasing in this case as well. In order to avoid this
dephasing, the temperature should be below the plasmons’
energy gap. In the context of the charge soliton, where the
sine-Gordon model is only an approximation and the system
is discrete, we expect that the plasmons give rise to a stron-
ger dephasing due to their inelastic interaction with the soli-
ton. From the study of the discrete sine-Gordon model it is
known that the rest energy of a soliton whose center resides
in a junction is higher than the rest energy for a soliton
whose center resides in the middle of a grain.39,40 Thus the
soliton propagates in a periodic potential and not in a flat
one. This deviation from the continuum model produces a
coupling between the plasmons and the soliton. The soliton
can emit or absorb plasmons,39,40 and the circulating soliton
can become phase locked with these plasmons.41 This effect
has been recently observed for the fluxon in the discrete long
Josephson junction.42 We expect that similar phenomena oc-
cur in the system we study here when the continuum condi-
tion ~26! does not hold. Apart from producing a phase break-
ing length, these phenomena will affect the classical
dynamics as well, for instance by creating resonances in the
I -V characteristic. The influence of both the discreteness of
the array and the deviation from the exact sine-Gordon

FIG. 5. The spectrum of a quantum charge soliton in a 1D
ring-shaped array of serially coupled Josephson junctions as a func-
tion of an external flux,Fext . In an ideal ring the spectrum consists
of inductive energy parabolas without a possibility of crossing at
the intersection points. When there is some inhomogeneity in the
ring ~e.g., due to disorder!, gaps are open at the intersection points,
and the spectrum develops into energy bands.
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model on the classical and quantum mechanical dynamics of
the charge soliton should be studied further.

The most important external dephasing mechanisms are
due to interaction with quasiparticles, which was neglected
in our model. Since the bulk superconductors energy gap,
D, is typically of the same order or higher than the plas-
mons’ energy gap, the condition needed to suppress the ther-
mal activation of the plasmons is sufficient to suppress the
thermal activation of the quasiparticles. The effects of ther-
mal quasiparticles will be studied elsewhere. The quasiparti-
cles can destroy the quantum coherence of the array in an-
other way, which is temperature independent. The complete
spectrum of a single junction includes charging energy pa-
rabolas associated with quasiparticles as well, which are
separated in the charge axis bye. Excitation of quasiparticles
leads to transitions between these parabolas, thus destroying
the quantum coherence ofq. This effect can be neglected if
the charging energy of the quasiparticles plus the supercon-
ducting energy gap is larger than the Cooper pairs charging
energy, i.e., 2D1e2/8C.e2/2C or (32/3)D.EC . Since
EC should be smaller thanD for the existence of the Joseph-
son effect, this condition is met automatically.

VI. SUMMARY

We have studied a 1D array of serially coupled Josephson
junctions in the limit when the kinetic inductance of the su-
perconducting grains dominates over the Josephson induc-
tance. In this case the array is described by variables which
are defined on the junctions and not on the grains. We have
shown that the large kinetic inductance decouples the junc-
tions quantum mechanically. As a result each junction is
characterized by a periodic charging energy. This periodic
energy, when combined with the inductive energy of the

grains and the charging energy between the grains and the
substrate, gives rise to a model with topological solitons ex-
citations. Thus we have found that an excess Cooper pair in
the array creates a charge soliton via polarization of the su-
perconducting grains. The charge soliton is a dual topologi-
cal excitation to the fluxon in a long Josephson junction. We
have studied the classical dynamics of the charge soliton,
and shown that in the presence of dissipation and an external
time varying flux theI -V characteristic of a ring-shaped ar-
ray should consist of saturation branches corresponding to
the number of charge solitons in the array. We have quan-
tized the charge soliton semiclassically, showing that this
quantization is consistent with the large kinetic inductance.
We have found that a quantum soliton in a flux-biased ring-
shaped array is expected to show persistent motion, mani-
fested in a persistent current. A weak inhomogeneity in the
array gives rise to coherent current oscillations. These phe-
nomena, which are usually associated with electrons~or
Cooper pairs!, suggests that the quantum charge soliton can
be considered as a macroscopical quantum object. Finally,
we have discussed possible internal and external dephasing
mechanisms of the charge soliton. These mechanisms de-
serve future study.
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Lübbig ~Springer-Verlag, Berlin, 1992!.

5K. K. Likharev, N. S. Bakhvalov, G. S. Kazacha, and S. I. Ser-
dyukova, IEEE Trans. Magn.25, 1436~1989!.

6N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. Ser-
dyukova, Zh. E´ksp. Teor. Fiz.95, 1010~1989! @Sov. Phys. JETP
68, 581 ~1989!#.

7P. Delsing, inSingle Charge Tunneling, edited by H. Grabert and
M. H. Devoret~Plenum Press, New York, 1992!.

8D. B. Haviland and P. Delsing~unpublished!.

9M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier,
and C. Urbina, Phys. Rev. Lett.64, 1824~1990!; S. M. Girvin,
L. I. Glazman, M. Jonson, D. R. Penn, and M. D. Stiles,ibid. 64,
3183 ~1990!.

10U. Geigenmu¨ller and G. Scho¨n, Europhys. Lett.10, 765 ~1989!.
11A. Widom. G. Megaloudis, T. D. Clark, H. Prance, and R. J.

Prance, J. Phys. A15, 3877~1982!.
12E. Ben-Jacob and Y. Gefen, Phys. Lett.108A, 289 ~1985!.
13K. K. Likharev and A. B. Zorin, J. Low Temp. Phys.59, 347

~1985!.
14G. Schön and A. D. Zaikin, Phys. Rep.198, 237 ~1990!.
15E. Ben-Jacob, Y. Gefen, K. Mullen, and Z. Schuss, inSQUID’85,

edited by H. D. Hahlbohm and H. Lu¨bbig ~de Gruyter, Berlin,
1985!.

16E. Ben-Jacob, Y. Gefen, K. Mullen, and Z. Schuss, Phys. Rev. B
37, 7400~1988!.

17S. Coleman,Aspect of Symmetry~Cambridge University Press,
Cambridge, 1985!, Chap. 6.

18R. Rajaraman,Solitons and Instantons~North-Holland, Amster-
dam, 1982!.

19Z. Hermon A. Stern, and E. Ben-Jacob, Phys. Rev. B49, 9757
~1994!.

20D. E. McCumber, J. Appl. Phys.39, 3113~1968!.

1244 54ZIV HERMON, ESHEL BEN-JACOB, AND GERD SCHO¨ N



21W. C. Stewart, Appl. Phys. Lett.12, 277 ~1968!.
22N. H. Christ and T. D. Lee, Phys. Rev. D12, 1606~1975!.
23J. L. Gervais and B. Sakita, Phys. Rev. D11, 2943~1975!.
24R. Rajaraman and E. Weinberg, Phys. Rev. D11, 2950~1975!.
25E. Tomboulis, Phys. Rev. D12, 1678~1975!.
26D. W. McLaughlin and A. C. Scott, Phys. Rev.18A, 1652~1978!.
27D. J. Bergman, E. Ben-Jacob, Y. Imry, and K. Maki, Phys. Rev.

27A, 3345~1983!.
28P. M. Marcus and Y. Imry, Solid State Commun.33, 345~1980!.
29R. Jackiw, Rev. Mod. Phys.49, 681 ~1977!.
30Z. Hermon, Ph.D. thesis, Tel-Aviv University.
31Z. Hermon, A. Shnirman, and E. Ben-Jacob, Phys. Rev. Lett.74,

4915 ~1995!.
32R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D10, 4130

~1974!; 11, 3424~1975!.
33M-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P.

Young, Phys. Rev. B44, 6883~1991!.
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