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We present a combined molecular dynamics and Monte Carlo simulation method that treats the vibrational
and magnetic degrees of freedom on an equal footing in calculating the equilibrium properties of
magnetovolume-coupled local moment systems. We apply this method to a simple model system, a single-
species ferromagnet with nearest-neighbor-only interatomic Lennard-Jones potential and nearest-neighbor-only
intermoment Ising interactions, and calculate the relevant equilibrium properties. Some results occur that are
not predicted by previous calculations that use mean-field or Landau-type approximations.
@S0163-1829~96!01342-2#

I. INTRODUCTION

Within local moment models, any ferromagnet in which
the intermoment magnetic exchange parameterJ depends on
the intermoment separationr will exhibit spontaneous~i.e.,
zero applied field! magnetovolume effects. Depending on the
sign of the magnetovolume coupling parameter]J/]r , the
ferromagnet either contracts or expands when magnetic order
sets in below and around the Curie pointTC . The most well-
known example is classical Invar@quenched face-centered-
cubic ~fcc! Fe65Ni 35# where magnetovolume coupling gives
rise to its near zero thermal expansion coefficient in a broad
range around room temperature.1–4Other recent examples of
materials in which magnetovolume coupling is important in-
clude giant magnetoresistive perovskites5,6 and diluted mag-
netic semiconductors.7

In the context of local moment ferromagnets, the general
problem is a difficult one because both magnetic and phonon
excitations must be treated simultaneously and on an equal
footing in terms of the energies involved. The cooperative
magnetic behavior arising from the ferromagnetic interac-
tions and the thermal expansion arising from the asymmetry
in the interatomic potential occur simultaneously and affect
each other. They are coupled in a nontrivial manner and are
not simply additive, as is often assumed in phenomenologi-
cal models and in analyzing experimental data. The two
components~magnetic and phonon! cannot be separated and
solved independently.

The local moment formalism dealing with magnetome-
chanical effects, including magnetovolume, magnetoelastic,
and anisotropic effects such as magnetostriction, has been
developed by Callen and others.8–15Magnetovolume effects
in general, by local moments and other mechanisms, have
been reviewed by Lee16 and more recently by Campbell and
Creuzet.17 The concomitant contributions from both local
moments and itinerant electrons to magnetovolume effects in
metallic magnets has been discussed and elucidated by
Holdenet al.18 and by Moriya and Usami.19 The latter works
show that purely local moment effects dominate the magne-
tovolume behavior in strong local moment systems such as
iron and nickel, which are known to have large local mo-

ments persisting far above their magnetic ordering tempera-
tures.

With actual calculations, past work on magnetovolume
phenomena has usually not been extended beyond average
uniform lattice expansion~as expressed simply by the
sample volume or, more completely, by the strain tensor! in
a single-component magnet whose decoupled magnetism is
treated by mean-field theory or in the context of a Landau-
type expression for the free energy that includes some terms
from the decoupled phonon system.8–14,18–24The Landau ap-
proach has also been used to study magnetovolume and mag-
netoelastic effects in systems exhibiting helimagnetism,25 a
spin-Peierls transition,26 quasi-one-dimensionality,27 a sinu-
soidally modulated phase,28 and a spin-density-wave
phase.29,30

Typically,20 the magnetism is calculatedin vacuo for a
given fixed volume. The resulting magnetic internal energy
is included in a macroscopic expression that includes a
volume-dependent chemical cohesive energy, and magnetic
and vibrational entropy terms, but not the vibrational kinetic
energy. Each term in the free energy is then calculated as
though the magnetic and phonon systems could be separated.
This free energy is then minimized to obtain the sample vol-
ume as a function of temperature. Here, only a select few of
the phenomenological parameters contained in the free en-
ergy ~compressibility, Debye temperature, normal thermal
expansion coefficient, etc.! are allowed to exhibit their intrin-
sic volume, pressure, and temperature dependences.

Except for some interesting but limited work in one di-
mension~1D!,31–35some Monte Carlo~MC! simulations that
do not include atomic vibrations,36,37 and renormalization-
group calculations that examine behavior in the critical
region,38 no microscopic calculations or simulations have
been performed that use only microscopic parameters and
allow complete microscopic freedom and local response to
wide ranging changes in temperature, pressure, and applied
field.

Here, we present a microscopic approach which combines
molecular dynamics~MD! simulation for the atomic vibra-
tions and MC simulation for the magnetic excitations, treated
in the Ising approximation. We apply this method to a simple
model system, a nickel-like fcc single-species local-moment
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ferromagnet with nearest-neighbor-only interactions. Our
simulations yield new quantitative predictions and qualita-
tive features related to magnetovolume effects.

Our method for the composite simulation is based on the
experimental fact that, in most real situations, the moment
~or spin! autocorrelation time is much larger than the period
for typical atomic vibrations.31,39That is, in the average time
between successive spin fluctuations on a given moment, the
moment-bearing atom experiences many (102–105) atomic
vibration cycles. As a result, the magnetic and vibrational
events can be partially separated in time on a microscopic
scale without any loss of generality, at least for simulating
equilibrium properties. Of course, the kinetics would depend
in detail on how this separation is applied.

In practice, the intermoment interaction for a given spin
pair is sensed on the time scale of the spin autocorrelation
time and, therefore, depends only on a vibrationally averaged
interatomic distance instead of on the instantaneous one. On
the other hand, the total force on a given atom has a mag-
netic component that has an instantaneous dependence on the
interatomic separations. The latter force is sensed on a time
scale that is small compared to the time that a particular spin
configuration, on the moments within a sphere of influence,
lives.

II. HAMILTONIAN AND SIMULATION ALGORITHM

The Hamiltonian contains both the magnetic energy and
the elastic energy:

H5Hm1He . ~1!

We chose a simple Lennard-Jones potential to model the
elastic energy:

He5 (
^NN&

4eF S s

r i j
D 122S s

r i j
D 6G . ~2!

Even though this potential is not a realistic one for transition
metals and their alloys, it should mimic quantitatively well
the structural properties of our nickel-like model system,
provided we choosee ands appropriately. The sum is taken
on nearest-neighbor~NN! atoms.

Let us now elaborate on the part of the Hamiltonian deal-
ing with the magnetic energy. Within local moment models,
the isotropic magnetovolume effect arises because the mag-
netic coupling constant depends on the spacing between the
atoms on which the spins reside. Thus, we can write

Hm52 (
^NN&

Ji j
mNi
2

4mB
2 s is j . ~3!

HereJi j is the magnetic coupling constant which depends on
r i j , s i ands j are neighboring Ising variables (561),mB is
Bohr magneton, andmNi50.6mB . Again, the sum is on near-
est neighbors.

We do a Taylor expansion of the magnetic coupling con-
stant aroundr 0, the equilibrium atomic spacing atT50:

Ji j.J01J8~r i j2r 0!, ~4!

with

J05Ji j ur0 ~5!

and

J85
]Ji j
]r U

r0
. ~6!

We then substitute this expression into our Hamiltonian to
obtain

H52 (
^NN&

J0
mNi
2

4mB
2 s is j2 (

^NN&
J8~r i j2r 0!

mNi
2

4mB
2 s is j

1 (
^NN&

4eF S s

r i j
D 122S s

r i j
D 6G . ~7!

In order for this Hamiltonian to be as realistic as possible,
the values used for the various parameters were either di-
rectly taken or extrapolated from experimental data for
nickel, when possible. The measured cohesive energy allows
us to sete511.8595310220 J ~8590 K!. The equilibrium
lattice parameter obtained from x-ray diffraction sets
r 053.524 Å. Finally,J050.9664310220 J ~700 K! is in-
ferred from the Curie point of nickel, assumingJ850 and
using MC simulations.3

Since, as mentioned above, spin flips occur on a different
time scale from atomic motion, it is natural to separate the
simulation of the whole Hamiltonian into two parts. Thus we
introduce the following procedure. We, for example, first
perform nMD MD time steps on the atomic positions alone
with the full Hamiltonian @Eq. ~1!# but with the spins in
frozen orientations. Equilibrium average atomic positions
@and associated average interatomic separationsr i j (1)# cor-
responding to the preset spin-structure-1 result. These
r i j (1) are used to determine newJi j values,Ji j (1), using Eq.
~4! where J0 and J8 are user defined. Then, we perform
nMC MC time steps on the spin system alone usingHm @Eq.
~3!# but with the newJi j (1) values. There results an equilib-
rium spin-structure-2 corresponding to the presetr i j (1).
Next, nMD MD time steps are again performed, with frozen
spin-structure-2, to giver i j (2) andJi j (2), and so onuntil
neither the bulk magnetization or the average atomic separa-
tion change and overall equilibrium is attained. In this pro-
cedure, one step corresponds tonMC MC time steps and
nMD MD time steps. We made several checks to insure that
the results did not depend on the choice ofnMC andnMD .

III. SIMULATION DETAILS

The MC simulations were performed using a standard
spin-flip algorithm.40 The method goes as follows: A spin is
chosen at random, and the program tries to flip its sign. If the
total energy is lowered through this procedure, the spin is
flipped. If the total energy is increased, then the spin is
flipped according to the probability distribution
exp(2DE/kBT), whereDE is the energy difference between
the two configurations,kB is Boltzmann’s constant, andT is
the temperature.

For the MD part, we used a constant temperature, con-
stant pressure algorithm.41,42Only this type of algorithm al-
lows us to look at magnetovolume effects in a straightfor-
ward fashion. In a standard MD algorithm, the motion of the
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atoms is calculated by numerically integrating the accelera-
tion they are subjected to over time. The acceleration itself is
calculated from the interatomic forces.43 In the case of the
constant pressure algorithm, the method roughly goes as
follows.44 The atoms are thought of as moving in an elastic
medium which can be expanded or contracted at will. This
medium has an effective massM which is set so that the
motion of the atoms cannot exceed the phonon speed of the
system. It is by this expansion-contraction procedure that the
average pressure is kept constant. The pressure itself is the
sum of the static pressure—the pressure due to the inter-
atomic forces—and the dynamic pressure—the pressure due
to the motion of the atoms. Using this algorithm, we can also
apply a pressure on the system to explore different parts of
the phase diagram.

Because our simulations involved temperature ramps,
care was also taken so as to avoid a biasing in the thermal
expansion data. This biasing is due to the fact that, as the
temperature increases, the average atomic velocity also in-
creases. Because of the finite time step used in the simula-
tion, this causes the round-off errors on the integrated atomic
trajectories to increase. To minimize this effect, we scaled
the time step used in our simulation by a factor 1/AT. We
checked our preliminary results by decreasing the time step
and verifying that we obtained the same results.

The simulation program went as follows. The initial MD
time step was taken to beDt55310215 s. The effective
mass used in the constant pressure MD algorithm was taken
to beM5131012 kg m24. Finally, nMD andnMC were both
chosen equal to 25. Starting from a ferromagnetically aligned
spin configuration on a fcc lattice, the system was equili-
brated for 40 steps (nMC54032551000,nMD51000) at the
lowest temperature of the temperature ramp. For the next
200 steps (nMC520032555000,nMD55000), the magneti-
zation, the energy, and the average lattice parameter were
recorded. We then increased the temperature and repeated
this procedure. This allowed for a better equilibration of both
the spins and the atomic positions, since the initial configu-
ration was closer to the equilibrium one. In the special case
of the T50 simulations, we used the standard relaxation
technique, which consists in letting the atoms go to their
equilibrium positions.

Most of the simulations were performed on a
10310310 cell, which is equivalent to 4000 atoms and
spins on the fcc lattice. Finite-size effects were investigated
by simulating with various system sizes with the same pa-
rameters. Figures 1 and 2 show results from simulations of a
53535 cell, an 83838 cell, a 10310310, cell and a
12312312 cell with J85131029 J m21. As can be seen
from these two figures, finite-size effects for the magnetiza-
tion and the average lattice parameter are only important for
the smallest lattice.

As for the rounding-off effects related to the use of a
finite time step in the integration procedure, Fig. 3 shows the
average lattice parameter data for three different values of
the time step for a 10310310 system withJ85131029

J m21. Notice that even if the largestDt value yields a curve
which is quantitatively different, it still yields the same ex-
pansion coefficient as the simulations with the smallerDt
values. This allows us to conclude that the scaling ofDt is
effective in canceling out the above-mentioned biasing ef-

fects due to the increase in temperature. Nevertheless, we
still used the intermediate time step in our simulation to get
as quantitatively accurate data as possible.

IV. RESULTS

Figure 4 shows the zero-pressure spontaneous~i.e., zero
applied magnetic field! average magnetic moment per atom
~or magnetization!, m, as a function of temperature, for dif-
ferent values of the magnetovolume coupling parameterJ8.
A value of J851029 J/m .104 K/Å is typical of what is
required to explain the ground-state magnetovolume anoma-
lies in classical Fe65Ni 35 Invar.

45 We see that the Curie tem-
perature itself is significantly affected by the value ofJ8.
This is also shown in Fig. 5 where the zero-pressureTC
obtained from the maximum in the specific heat is plotted as
a function ofJ8. This method for obtainingTC gave a suffi-

FIG. 1. Spontaneous average magnetic moment per atom as a
function of temperature for various cell sizes~as indicated, in units
of the fcc conventional unit cell lattice parameter! with periodic
boundary conditions andJ851029 J/m.

FIG. 2. Equilibrium lattice parameter as a function of tempera-
ture for various cell sizes~as indicated, in units of the fcc conven-
tional unit cell lattice parameter! with J851029 J/m and for a
10310310 cell with J850.
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cient accuracy of;1% such that it was not necessary to use
the cumulant intersection method.40

The dependence ofTC on J8 suggests both that, when
J8Þ0, the magnetic short-range order~SRO! aboveTC in-
duces a significant magnetovolume expansion~or contraction
if J8,0) and that relatively strong magnetic SRO above
TC is stabilized by the magnetovolume coupling. A large
magnetic SRO-induced magnetovolume expansion is con-
firmed by our simulations, as shown in Fig. 6 where the
average zero-pressure equilibrium lattice parametera is plot-
ted as a function of temperature for various values ofJ8.
Here, in addition to the expected spontaneous magnetovol-
ume expansion that sets in atTC as temperature is lowered
and that is strongly correlated tom(T), we note a large mag-
netovolume expansion aboveTC that extends far above
TC . This is emphasized in Fig. 7 where (a2a0)/a0 at zero
pressure is plotted versusT/TC for various values ofJ8.
Here,a0 is the value ofa(T) whenJ850.

The large magnetic SRO induced magnetovolume expan-
sion aboveTC shown in Figs. 6 and 7 has not previously
been calculated. It is a demonstration that the validity of the
usual practice of extrapolating the normal~i.e., J850) be-
havior from the paramagnetic state is tenuous and that this
procedure is subject to large errors. It is also, therefore, a
good example of the necessity of treating the magnetic and
phonon degrees of freedom on an equal footing in ferromag-
nets with magnetovolume coupling.

The large magnetovolume expansion aboveTC is not a
finite-size-effect artifact, even thoughm(T) exhibits un-
avoidable finite-size effects aboveTC . This is demonstrated
in Fig. 2. Neither the magnetic energy or the magnetovolume
expansion show any detectable finite size effects for sizes
10310310 or larger. Also, the fact that the large magneto-
volume expansion aboveTC is due to magnetic SRO is es-
tablished by comparisons with simulations in which we im-
pose perfectly random spin orientations~and exactly zero net
magnetization! at the same temperatures aboveTC ~and with
the same values ofJ8).

FIG. 3. Lattice parameter as a function of temperature for three
different MD time steps~as indicated, in seconds!.

FIG. 4. Spontaneous average magnetic moment per atom as a
function of temperature for various values of the magnetovolume
coupling parameterJ8 ~as indicated, in J/m!, using a 10310310
cell.

FIG. 5. Curie point, at zero pressure and zero applied magnetic
field, as a function ofJ8, using a 10310310 cell.

FIG. 6. Equilibrium lattice parameter as a function of tempera-
ture for various values ofJ8 ~as indicated, in J/m!, using a
10310310 cell.
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This is shown in Fig. 8 wherea(T) is plotted ~1! for
J850, ~2! for J85231029 J/m, and~3! for J85231029

J/m with an imposed random spin configuration and an im-
posed exactly zero net magnetization at each temperature.
The large difference between the curve corresponding to
spontaneous spin alignment and the other two curves estab-
lishes that magnetic SRO is the main cause of a large mag-
netovolume expansion aboveTC that, here, persists to at
leastT51.7TC .

The smaller but systematic difference between theJ850
curve and theJ85231029 J/m and random spin configura-
tion curve ~Fig. 8! is real in that it is typically 2–4 times
greater than the sum of the standard deviation errors for the
two curves, at nonzero temperatures and for a size of

10310310. Its authenticity is further established by simula-
tions atT50 K that are illustrated in Fig. 9. Here,T50 K
lattice parameters are shown that correspond to either
J850 with a cell edge length of 10~cell size of
10310310) or J85231029 J/m with an imposed random
spin configuration and imposed exactly zero net magnetiza-
tion, as a function of the cell edge length. The error bars arise
from considering several different random spin configura-
tions for a given cell size.

This feature~i.e., the difference between theJ850 lattice
parameter and aJ8Þ0 lattice parameter, in a perfectly ran-
dom spin configuration state as must occur atT@TC) does
not occur in any mean-field or Landau-type calculation that
imposes uniform lattice expansion rather than allow atomic-
scale local variations in NN separation. Here, these local
variations are induced by the long-lived spin disorder, via the
nonzeroJ8. The observed difference~Figs. 8 and 9! also
could not occur if the interatomic chemical potential were
symmetric. This new effect, therefore, arises from the fluc-
tuations in NN separation induced by long-lived spin disor-
der in the presence of an asymmetric interatomic potential.
In real systems, it would not occur at temperatures or in
cases where the on-site spin fluctuations might be as fast as
or faster than the atomic vibrations.

Figure 10 shows the same data as in Fig. 4 but plotted as
a function ofT/TC instead ofT. Note that, in the neighbor-
hood of but belowTC , the magnetic order parameter (m) for
larger values ofJ8 is larger, within numerical accuracy, than
for smaller values ofJ8. This suggests a nonuniversal behav-
ior of m(T/TC), possibly withJ8-dependent critical expo-
nents and a transition that becomes first order for large
enough J8, in agreement with renormalization-group
calculations.38

Our simulations also allow us to change the applied pres-
sure. Figure 11 shows theJ851029 J/m average magnetic
moment per atom as a function of temperature, for different
values of the applied hydrostatic pressure. A pressure of

FIG. 7. Reduced equilibrium lattice parameter@(a2a0)/a0,
wherea0 is the temperature-dependent equilibrium lattice param-
eter corresponding toJ850# as a function of reduced temperature
(T/TC) for various values ofJ8 ~as indicated, in J/m!, using a
10310310 cell.

FIG. 8. Equilibrium lattice parameter as a function of tempera-
ture for three situations~as indicated! with equilibrium spin con-
figuration and J850, with equilibrium spin configuration and
J85231029 J/m, and with a perfectly random spin configuration
~RSC! andJ85231029 J/m.

FIG. 9. The T50 K equilibrium lattice parameters for
J85231029 J/m and a perfectly random spin configuration~RSC!
and for J850 ~as indicated! as functions of the cubic simulation
cell edge length~in units of the fcc conventional unit cell lattice
parameter!. The standard deviation error bars are based on several
different perfectly random spin configurations for a given cell size.
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1010 Pa is typical of what can be obtained in the laboratory,
using diamond anvil cell technology. We note that, given the
large and positiveJ8, the average lattice parameter is de-
creased as pressure is increased and the corresponding Curie
temperature is significantly decreased. This variation with
pressure of theJ851029 J/m TC , obtained from the maxi-
mum in the specific heat, is shown in Fig. 12.

Figure 13 shows the same data as in Fig. 11 but plotted as
a function ofT/TC instead ofT. Here, we observe scaling of
m(T), within numerical accuracy, showing that applied pres-
sure does not change the nature of the transition.

Finally, Fig. 14 showsa(T) for different values of the
pressure. Such curves directly give the bulk modulus, here
for J851029 J/m, as a function of temperature. Zero-
pressure bulk modulus curvesB(T) for different values of
J8 are shown in Fig. 15. Here,B[2V(DP/DV) whereV is

theP50 sample volume andDP553109 Pa. One notes the
main features that are observed in real ferromagnetic Invar
alloys:46 a broad and asymmetric trough that starts on the
high-temperature side ofTC as temperature is lowered and
that ends in a depressed value ofB at magnetic saturation.
The latter depression is approximately proportional to the
value ofJ8.

V. CONCLUSION

We have presented a combined MD and MC approach for
simulating the equilibrium properties of magnetovolume ac-
tive local moment magnets. The approach is easily general-
ized to magnetic alloys with more than one moment-bearing
species and with both chemical and spin disorder or to par-
ticular magnetic compounds having any type of spin struc-
ture. The only restriction is that the local moment autocorre-

FIG. 10. Spontaneous average magnetic moment per atom as a
function of reduced temperature (T/TC) for various values of the
magnetovolume coupling parameterJ8 ~as indicated, in J/m!, using
a 10310310 cell.

FIG. 11. Spontaneous average magnetic moment per atom as a
function of temperature for various values of the applied hydrostatic
pressureP ~as indicated, in Pa!, using a 10310310 cell and
J851029 J/m.

FIG. 12. Curie point as a function of the applied hydrostatic
pressure, using a 10310310 cell andJ851029 J/m.

FIG. 13. Spontaneous average magnetic moment per atom as a
function of reduced temperature (T/TC) for various values of the
applied hydrostatic pressureP ~as indicated, in J/m!, using a
10310310 cell andJ851029 J/m.
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lation timestm be much larger than typical periodstv of
atomic vibrations~i.e., inverses of characteristic Debye or
Einstein frequencies!, as is often the case in real systems.
This allows local average atomic positions to be used in
calculating the effective exchange parameters seen by the
magnetic moments, even though instantaneous interatomic
separation-dependent exchange parameters are seen by the
atoms as they execute their vibrations with a given~long-
lived! spin configuration. As long astm@tv , our algorithm
should give correct equilibrium properties without any ap-
proximations other than the chosen model dependent ones
~Ising interactions, NN interactions only, classical MD, etc.!.

We have applied this approach to a simple model system
which is a single-species local-moment ferromagnet with
NN-only Lennard-Jones interatomic potential and NN-only
Ising magnetic interactions. It is nickel-like in that it is fcc,
has the same saturation moment per atom as nickel, the same
T50 K lattice parameter in the absence of magnetovolume
coupling (J850), the same Curie point whenJ850, and the
same cohesive energy whenJ850. This sets all of the mi-
croscopic parameters exceptJ8. The latter parameter is given
various values large enough to induce spontaneous magneto-
volume expansions comparable to those observed in strongly
magnetovolume-coupled systems which, for example, are
Fe-based metallic alloys such as Fe65Ni 35 Invar.

All of the J850 simulated properties, such as ordinary
thermal expansion, bulk modulus, and magnetic ordering, are
in good agreement with those of metallic nickel and give a
reliable base line for identifying the magnetovolume effects
that occur whenJ8Þ0. The main magnetovolume properties
and effects evidenced by our simulations are~1! realistic
thermal expansion curves@a(T), Fig. 6# that have the same
qualitative features as measured curves, including smooth
tails aboveTC and regions of zero or near-zero net thermal
expansion,~2! magnetovolume coupling stabilized magnetic
SRO that causes magnetovolume expansion far aboveTC
~Figs. 6–8!, ~3! a net true paramagnetic state~i.e., zero mag-
netic SRO! magnetovolume expansion~Figs. 8 and 9! that

persists as long astm@tv , ~4! a significant dependence of
TC on J8 ~Fig. 5!, ~5! perturbed reduced magnetization ver-
sus reduced temperature curves~Fig. 10! that suggest a pos-
sible dependence of critical behavior onJ8, ~6! accurately
calculated effects of applied hydrostatic pressures~Figs. 11–
14!, and~7! realistic bulk modulus versus temperature curves
~Fig. 15! that have the same qualitative features as measured
curves, including large asymmetric troughs nearTC and
negative saturation magnetovolume contributions.

This is the first combined MC-MD simulation to treat a
magnetovolume-coupled magnetic system exactly at any
temperature, applied field, and applied pressure. The vibra-
tional and magnetic degrees of freedom are both allowed and
they are coupled in a way that is consistent with the assump-
tion thattm@tv . It is possible to relax this assumption or to
consider the opposite limit oftm!tv simply by changing the
parameters of the simulation (nMD andnMC , Sec. II!.

Three surprising results are found. The first is the extent
to which magnetic SRO is enhanced by the magnetovolume
coupling, leading to large magnetovolume expansions far
aboveTC . The second is the observation that, even in a true
paramagnetic state with zero magnetic SRO, a net nonzero
magnetovolume expansion occurs. The latter two points sug-
gest a critical examination of the widespread practice of ex-
trapolating measured values from the paramagnetic state
(T.TC) in order to obtain the zero magnetovolume coupling
behavior. Finally, the third surprising result is the suggestion
that the critical behavior and the magnetic order parameter
scaling are dependent on the strength of the magnetovolume
coupling, in agreement with renormalization-group
calculations.38
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FIG. 14. Equilibrium lattice parameter as a function of tempera-
ture for various values of the applied hydrostatic pressureP ~as
indicated, in Pa!, using a 10310310 cell andJ851029 J/m.

FIG. 15. Zero-pressure bulk modulusB52V(DP/DV), where
V is theP 5 0 sample volume andDP553109 Pa, as a function
of temperature for various values ofJ8 ~as indicated, in J/m! and
using a 10310310 cell.
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