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Simulation of magnetovolume effects in ferromagnets by a combined molecular dynamics
and Monte Carlo approach

Bruno Grossmann and Denis G. Rancburt
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
(Received 31 May 1996

We present a combined molecular dynamics and Monte Carlo simulation method that treats the vibrational
and magnetic degrees of freedom on an equal footing in calculating the equilibrium properties of
magnetovolume-coupled local moment systems. We apply this method to a simple model system, a single-
species ferromagnet with nearest-neighbor-only interatomic Lennard-Jones potential and nearest-neighbor-only
intermoment Ising interactions, and calculate the relevant equilibrium properties. Some results occur that are
not predicted by previous calculations that use mean-field or Landau-type approximations.
[S0163-182696)01342-3

I. INTRODUCTION ments persisting far above their magnetic ordering tempera-
tures.

Within local moment models, any ferromagnet in which ~ With actual calculations, past work on magnetovolume
the intermoment magnetic exchange paramétepends on phenomena has usually not been extended beyond average
the intermoment separatianwill exhibit spontaneousi.e., ~ uniform lattice expansion(as expressed simply by the
zero applied fielimagnetovolume effects. Depending on the Sample volume or, more completely, by the strain tensor
sign of the magnetovolume coupling paramedfor, the @ Single-component magnet whose decoupled magnetism is
ferromagnet either contracts or expands when magnetic ord%rfeitid bésrg%?]”f'gfltﬂg}?géyeg;rm ﬂt]r?af?r?ct:leuxéeosf :ohin?earlrjr;s

; ; X i
sets in below and around the Curie polig. The most well- f?/gm thgdecoupled ohonon S stégﬁ};r“'m‘z“The Landau ap.
known example is classical Invdquenched face-centered- roach has also been used toystud .ma netovolume and mag-
cubic (fcc) FeggNi 5] where magnetovolume coupling gives ﬁetoelastic effects in systems exh)i/biting helimagnefidm ’
rise to its near zero thermal expansion coefficient in a broagpin-Peierls transitiof® quasi-one-dimensionalit/, a Sinu-
range'aroynd room temperaturé Other repenF examples qf soidally modulated phag8, and a spin-density-wave
materials in which magnetovolume coupling is important IN-phase®30
clude giant magnetoresistive perovskitéand diluted mag- Typically,2° the magnetism is calculateid vacuofor a

netic semiconductors. iven fixed volume. The resulting magnetic internal energy
In the context of local moment ferromagnets, the generaiqs included in a macroscopic expression that includes a
problem is a difficult one because both magnetic and phonogolume-dependent chemical cohesive energy, and magnetic
excitations must be treated simultaneously and on an equahd vibrational entropy terms, but not the vibrational kinetic
footing in terms of the energies involved. The cooperativeenergy. Each term in the free energy is then calculated as
magnetic behavior arising from the ferromagnetic interacthough the magnetic and phonon systems could be separated.
tions and the thermal expansion arising from the asymmetrihis free energy is then minimized to obtain the sample vol-
in the interatomic potential occur simultaneously and affecume as a function of temperature. Here, only a select few of
each other. They are coupled in a nontrivial manner and arthe phenomenological parameters contained in the free en-
not simply additive, as is often assumed in phenomenologiergy (compressibility, Debye temperature, normal thermal
cal models and in analyzing experimental data. The twaexpansion coefficient, ejcare allowed to exhibit their intrin-
componentgmagnetic and phongrcannot be separated and sic volume, pressure, and temperature dependences.
solved independently. Except for some interesting but limited work in one di-
The local moment formalism dealing with magnetome-mension(1D),3'~*®*some Monte Carl¢MC) simulations that
chanical effects, including magnetovolume, magnetoelastigjo not include atomic vibration$;*” and renormalization-
and anisotropic effects such as magnetostriction, has begoup calculations that examine behavior in the critical
developed by Callen and othé¥s® Magnetovolume effects region3® no microscopic calculations or simulations have
in general, by local moments and other mechanisms, haveeen performed that use only microscopic parameters and
been reviewed by Lé€and more recently by Campbell and allow complete microscopic freedom and local response to
Creuzet’! The concomitant contributions from both local wide ranging changes in temperature, pressure, and applied
moments and itinerant electrons to magnetovolume effects ifield.
metallic magnets has been discussed and elucidated by Here, we present a microscopic approach which combines
Holdenet al® and by Moriya and Usant® The latter works  molecular dynamic$MD) simulation for the atomic vibra-
show that purely local moment effects dominate the magnetions and MC simulation for the magnetic excitations, treated
tovolume behavior in strong local moment systems such am the Ising approximation. We apply this method to a simple
iron and nickel, which are known to have large local mo-model system, a nickel-like fcc single-species local-moment
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ferromagnet with nearest-neighbor-only interactions. Our JOZJij |0 (5)
simulations yield new quantitative predictions and qualita-
tive features related to magnetovolume effects. an
Our method for the composite simulation is based on the
. : L Jii
experimental fact that, in most real situations, the moment J=—4 (6)
(or spin autocorrelation time is much larger than the period I o

for typical atomic vibration$*°That is, in the average time
between successive spin fluctuations on a given moment, t
moment-bearing atom experiences many*d10®) atomic

hWe then substitute this expression into our Hamiltonian to
obtain

vibration cycles. As a result, the magnetic and vibrational 2 2

events can be partially separated in time on a microscopic = }H=— E JO’u—Négigj_ 2 J'(rij_ro)’u_N;Uigj

scale without any loss of generality, at least for simulating NNy Aup (NN) App

equilibrium properties. Of course, the kinetics would depend o\12 [ 5\6

in detail on how this separation is applied. + > 4de _) - _) i (7)
In practice, the intermoment interaction for a given spin (NN) Fij Fij

pair is sensed on the time scale of the spin autocorrelatiof, grder for this Hamiltonian to be as realistic as possible,
time and, therefore, depends only on a vibrationally averageghe vajues used for the various parameters were either di-
interatomic distance instead of on the instantaneous one. %Cﬂy taken or extrapolated from experimental data for
the other hand, the total force on a given atom has a magsickel, when possible. The measured cohesive energy allows
netic component that has an instantaneous dependence on {h€ 1 sete=11.8595¢ 10 2° J (8590 K). The equilibrium
interatomic separations. The latter force is sensed on a timggijce parameter obtained from x-ray diffraction sets
scale that is small compared to the time that a particular spipo_3 5o4 A Finally, J°=0.9664x 10-2 J (700 K) is in-
configuration, on the moments within a sphere of influencesaraq from the Curie point of nickel, assumidg=0 and

lives. using MC simulations.
Since, as mentioned above, spin flips occur on a different
Il. HAMILTONIAN AND SIMULATION ALGORITHM time scale from atomic motion, it is natural to separate the

The Hamiltonian contains both the maanetic ener anclfimulation of the whole Hamiltonian into two parts. Thus we
. i 9 gy ntroduce the following procedure. We, for example, first
the elastic energy:

performnyp MD time steps on the atomic positions alone
HeH+H 1) with the full Hamiltonian[Eq. (1)] but with the spins in
=Hmn+He. ) ) o . -
frozen orientations. Equilibrium average atomic positions
We chose a simple Lennard-Jones potential to model th@slnd as;ouated average interatomic separatip()] cor-
elastic energy: responding to the preget spin-structure-1 res_ult. These
rij(1) are used to determine nely values,J;;(1), using Eq.
o\12 [ o\ (4) where J° and J’ are user defined. Then, we perform
He= D, 4e (—) - (—) . (20 nyc MC time steps on the spin system alone ushig [Eq.
(NN) Fij Fij (3)] but with the newd;; (1) values. There results an equilib-
Even though this potential is not a realistic one for transitionfium spin-structure-2 corresponding to the presg{1).
metals and their alloys, it should mimic quantitatively well Next, nyp MD time steps are again performed, with frozen
the structural properties of our nickel-like model system,spin-structure-2, to give;;(2) andJ;;(2), and so onuntil
provided we choose ando appropriately. The sum is taken neither the bulk magnetization or the average atomic separa-
on nearest-neighbdNN) atoms. tion change and overall equilibrium is attained. In this pro-
Let us now elaborate on the part of the Hamiltonian dealcedure, one step corresponds rigc MC time steps and
ing with the magnetic energy. Within local moment models,"wp MD time steps. We made several checks to insure that
the isotropic magnetovolume effect arises because the matjie results did not depend on the choicengt andnyp .
netic coupling constant depends on the spacing between the
atoms on which the spins reside. Thus, we can write Ill. SIMULATION DETAILS

w The MC simulations were performed using a standard
Hop=— E Jij—=0i0j. 3 spin-flip algorithm?® The method goes as follows: A spin is

W) Aus chosen at random, and the program tries to flip its sign. If the

HereJ;; is the magnetic coupling constant which depends orjlilqtal ?jnelggyh IS Iowlered through this pr%ceiure, Lhe spin Is

rij, o; anda; are neighboring Ising variables=(= 1), ug is ﬂ!ppe - If the total energy Is increased, then the spin Is
Bohr magneton, angy;=0.6ug . Again, the sum is on near- ipped _ according ~ to , the probab_|l|ty distribution
est neighbors. exp(—AE/kgT), whereAE is the energy difference between

We do a Taylor expansion of the magnetic coupling conthe two configurationskg is Boltzmann's constant, antiis

stant around®, the equilibrium atomic spacing at=0: the temperature.
For the MD part, we used a constant temperature, con-

3 =304 3 (r;: —19), (4)  stant pressure algorithf*2 Only this type of algorithm al-
! ! lows us to look at magnetovolume effects in a straightfor-
with ward fashion. In a standard MD algorithm, the motion of the
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atoms is calculated by numerically integrating the accelera- — —— ——
tion they are subjected to over time. The acceleration itself is —+ 12x12x12
calculated from the interatomic forc&In the case of the »— 10x10x10 -

@
o

constant pressure algorithm, the method roughly goes as — gxgxg

follows.** The atoms are thought of as moving in an elastic

medium which can be expanded or contracted at will. This

medium has an effective mad4 which is set so that the

motion of the atoms cannot exceed the phonon speed of the

system. It is by this expansion-contraction procedure that the

average pressure is kept constant. The pressure itself is the

sum of the static pressure—the pressure due to the inter-

atomic forces—and the dynamic pressure—the pressure due

to the motion of the atoms. Using this algorithm, we can also I

apply a pressure on the system to explore different parts of 0.0l

the phase diagram. 0
Because our simulations involved temperature ramps,

care was also taken so as to avoid a biasing in the thermal

expansion data. This biasing is due to the fact that, as the FIG. 1. Spontaneous average magnetic moment per atom as a

temperature increases, the average atomic velocity also ifiunction of temperature for various cell siz&s indicated, in units

creases. Because of the finite time step used in the simul&f the fcc conventional unit cell lattice parametevith periodic

tion, this causes the round-off errors on the integrated atomigoundary conditions and’ =10~ J/m.

trajectories to increase. To minimize this effect, we scaled ) .

the time step used in our simulation by a factogT/ We feets due to 'Fhe increase in temper'ature. Nevertheless, we

checked our preliminary results by decreasing the time steﬁ“” used the intermediate time step in our simulation to get

w (in ws per atom)
I~
~
T T

@
20
—

and verifying that we obtained the same results. as quantitatively accurate data as possible.
The simulation program went as follows. The initial MD
time step was taken to bat=5x10 '°s. The effective IV. RESULTS

mass used in the constant pressure MD algorithm was taken
to beM =1X 10" kg m~4. Finally, nyp andnyc were both . e ;
chosen equal to 25. Starting from a ferromagnetically aligne pplied magnetlc fieldaverage magnetlc moment per atem
spin configuration on a fcc lattice, the system was equili- or magnetization x, as a function of temperature, for dif-
brated for 40 stepsg,c= 40X 25=1000,nyp=1000) at the ferent values; of thg magnetovolume coupllng paramﬂz’t.er
lowest temperature of the temperature ramp. For the nest va]ue of J :19 J/m =10* K/A is typical of what is

200 steps e = 200X 25=5000,n,,o=5000), the magneti- r_equ_lred to explaln the groung—state magnetovolum_e anoma-
zation, the energy, and the average lattice parameter WePéaS N cla§S|caI_Fg5N|3_5_lnvar. We see that the Curie tem-
recorded. We then increased the temperature and repeat@&ra“_”e itself is 5|gr_1|f|ca_1ntly affected by the value It

this procedure. This allowed for a better equilibration of both | NiS 1S also shown in Fig. 5 where the zero-presstige

the spins and the atomic positions, since the initial configu®Ptained from/the maximum in the specific heat is plotted as
ration was closer to the equilibrium one. In the special cas& function ofJ’. This method for obtaining'c gave a suffi-

of the T=0 simulations, we used the standard relaxation

Figure 4 shows the zero-pressure spontandbes zero

technique, which consists in letting the atoms go to their 2526 o 1o%10 .
equilibrium positions. L lox10%10
Most of the simulations were performed on a 25200 o« 8x8x8 ]
10x10x10 cell, which is equivalent to 4000 atoms and |~ 5x5x5 ’ ;
spins on the fcc lattice. Finite-size effects were investigated oyl 0 1OXIOXI0 (1'=0) Y ]
by simulating with various system sizes with the same pa- 5 i 7
rameters. Figures 1 and 2 show results from simulations of a = [
5x5X5 cell, an 8<8x8 cell, a 10<10x 10, cell and a o =509¢ ]
12x12x 12 cell with J’=1x10"° Jm~1. As can be seen = ;
from these two figures, finite-size effects for the magnetiza- 2.503 ]
tion and the average lattice parameter are only important for L
the smallest lattice. 2.497F 1
As for the rounding-off effects related to the use of a [ o
finite time step in the integration procedure, Fig. 3 shows the 24910 . . . . 4, L ]
average lattice parameter data for three different values of 0 500 1000 1500
the time step for a 1810x 10 system with)’=1x10° T (K)

Jm™ 1. Notice that even if the largedit value yields a curve

which is quantitatively different, it still yields the same ex-  F|G. 2. Equilibrium lattice parameter as a function of tempera-
pansion coefficient as the simulations with the smallér  ture for various cell sizeéas indicated, in units of the fcc conven-
values. This allows us to conclude that the scaling\bfis  tional unit cell lattice parametemwith J’=10"° J/m and for a
effective in canceling out the above-mentioned biasing ef10x10x 10 cell withJ’=0.
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FIG. 3. Lattice parameter as a function of temperature for three,

different MD time stepgas indicated, in seconds

FIG. 5. Curie point, at zero pressure and zero applied magnetic

field, as a function of)’, using a 1 10X 10 cell.

) ) The large magnetic SRO induced magnetovolume expan-
cient accuracy of-1% such that it was not necessary to Usesjon aboveT. shown in Figs. 6 and 7 has not previously

the cumulant intersection meth8d. been calculated. It is a demonstration that the validity of the

The dependence ofc on J’ suggests both that, when ysyal practice of extrapolating the nornfak., J'=0) be-
J'#0, the magnetic short-range ord8RO aboveTc in-  havior from the paramagnetic state is tenuous and that this
duces a significant magnetovolume expansmrcontraction  procedure is subject to large errors. It is also, therefore, a
if J’<0) and that relatively strong magnetic SRO abovegood example of the necessity of treating the magnetic and
Tc is stabilized by the magnetovolume coupling. A largephonon degrees of freedom on an equal footing in ferromag-
magnetic SRO-induced magnetovolume expansion iS COrhets with magnetovolume coupling.
firmed by our simulations, as shown in Fig. 6 where the The large magnetovolume expansion abdyeis not a
average zero-pressure equilibrium lattice parameeiemlot-  finjte-size-effect artifact, even though(T) exhibits un-
ted as a function of temperature for various valueslaf  ayoidable finite-size effects abole. . This is demonstrated
Here, in addition to the expected spontaneous magnetovojn Fig. 2. Neither the magnetic energy or the magnetovolume
ume expansion that sets in & as temperature is lowered expansion show any detectable finite size effects for sizes
and that is strongly correlated (o(T), we note a large mag- 10x 10x 10 or larger. Also, the fact that the large magneto-
netovolume expansion abovE: that extends far above yglume expansion abovE: is due to magnetic SRO is es-
Tc. This is emphasized in Fig. 7 whera<ao)/a, at zero  taplished by comparisons with simulations in which we im-
pressure is plotted versu§ T for various values ofl’.  pose perfectly random spin orientatio@asd exactly zero net
Here,a, is the value ofa(T) whenJ’'=0. magnetizationat the same temperatures abdve(and with

the same values af’).

—7=0 ]
—x J'=5x107" 2535, g T T T T
0.6 — J,:lofe _- Fox—x J’:5x10’1°
E S e J'=1.5x107"] e I'=107
o a—=a J'=2x10"° [ J'=1.5x10"°
= I J'=2x107"
© i i __28201r% "
¢ 0.4 2
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Q‘ i o
3 o
R =
~ 0.2F E I i
< _ 2.505
0.0 L pefEgagay
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FIG. 4. Spontaneous average magnetic moment per atom as a
function of temperature for various values of the magnetovolume FIG. 6. Equilibrium lattice parameter as a function of tempera-
coupling parameted’ (as indicated, in J/im using a 1k 10X 10 ture for various values of)’ (as indicated, in J/m using a
cell. 10X 10x 10 cell.
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FIG. 9. The T=0 K equilibrium lattice parameters for
FIG. 7. Reduced equilibrium lattice paramefgla—ag)/a;,  J’=2x10"° J/m and a perfectly random spin configurati®s0
wherea, is the temperature-dependent equilibrium lattice param-and forJ’=0 (as indicatetl as functions of the cubic simulation
eter corresponding td’ =0] as a function of reduced temperature cell edge length(in units of the fcc conventional unit cell lattice
(T/T¢) for various values of)’ (as indicated, in J/jp using a  parameter The standard deviation error bars are based on several
10X 10X 10 cell. different perfectly random spin configurations for a given cell size.

This is shown in Fig. 8 whera(T) is plotted (1) for  10x10x 10. Its authenticity is further established by simula-
J'=0, (2) for J’=2X10"" J/m, and(3) for J’=2X10""  {ions atT=0 K that are illustrated in Fig. 9. Her&=0 K
J/m with an imposed random spin configuration and an iMyatiice parameters are shown that correspond to either
posed exactly zero net magnetization at each temperaturg:—q with a cell edge length of 10(cell size of
The large difference between the curve corresponding tqgx 10x 10) orJ’=2x10"? J/m with an imposed random
spontaneous spin alignment and the other two curves estalyin configuration and imposed exactly zero net magnetiza-
lishes that magnetic SRO is the main cause of a large magyyn, a5 a function of the cell edge length. The error bars arise
netovolume expansion abovk: that, here, persists t0 at fom considering several different random spin configura-
leastT=1.7Tc. o tions for a given cell size.

The smaller but systiagnatlc difference betweenlhe 0 This feature(i.e., the difference between té=0 lattice
curve and thel’=2x10"" J/m and random spin configura- pharameter and 4’ #0 lattice parameter, in a perfectly ran-
tion curve (Fig. 8) is real in that it is typically 2—4 times 4o, spin configuration state as must occuTatT) does
greater than the sum of the standard deviation errors _for thRot occur in any mean-field or Landau-type calculation that
two curves, at nonzero temperatures and for a size ofnposes uniform lattice expansion rather than allow atomic-
scale local variations in NN separation. Here, these local
variations are induced by the long-lived spin disorder, via the
nonzeroJ’'. The observed differencéigs. 8 and 9 also
could not occur if the interatomic chemical potential were
symmetric. This new effect, therefore, arises from the fluc-
tuations in NN separation induced by long-lived spin disor-
der in the presence of an asymmetric interatomic potential.
In real systems, it would not occur at temperatures or in
cases where the on-site spin fluctuations might be as fast as
or faster than the atomic vibrations.

Figure 10 shows the same data as in Fig. 4 but plotted as
a function of T/T¢ instead ofT. Note that, in the neighbor-
hood of but belowl ¢, the magnetic order parameter) for
: larger values ofl’ is larger, within numerical accuracy, than

24900 . . . . s for smaller values 08’. This suggests a nonuniversal behav-
0 500 1000 1500 ior of u(T/T¢), possibly withJ'-dependent critical expo-

T (K) nents and a transition that becomes first order for large
enough J’, in agreement with renormalization-group

FIG. 8. Equilibrium lattice parameter as a function of tempera—CTJ"CU|ati0nsg-8
ture for three situationgas indicateyl with equilibrium spin con- Our simulations also allow us to change the applied pres-
figuration andJ’'=0, with equilibrium spin configuration and Ssure. Figure 11 shows th# =10"° J/m average magnetic
J'=2x10"° J/m, and with a perfectly random spin configuration moment per atom as a function of temperature, for different
(RSQ andJ’=2x10"° J/m. values of the applied hydrostatic pressure. A pressure of

2530 T 7

2.520

2.510

a (107 m)

2.500
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FIG. 10. Spontaneous average magnetic moment per atom as a FIG. 12. Curie point as a function of the applied hydrostatic
function of reduced temperaturd/(Tc) for various values of the ~Pressure, using a *Q10x10 cell and)’=10"° J/m.
magnetovolume coupling parametEr (as indicated, in J/im using
a 10x10x10 cell.

the P=0 sample volume andP=>5x 10° Pa. One notes the
main features that are observed in real ferromagnetic Invar

10%° Pa is typical of what can be obtained in the laboratory,alloys® a broad and asymmetric trough that starts on the
using diamond anvil cell technology. We note that, given theéhigh-temperature side dfc as temperature is lowered and
large and positivel’, the average lattice parameter is de-that ends in a depressed valueBfat magnetic saturation.
creased as pressure is increased and the corresponding Cufiee latter depression is approximately proportional to the
temperature is significantly decreased. This variation withvalue ofJ’.
pressure of thd’=10"° J/m T, obtained from the maxi-
mum in the specific heat, is shown in Fig. 12.

Figure 13 shows the same data as in Fig. 11 but plotted as
a function of /T instead ofT. Here, we observe scaling of
w(T), within numerical accuracy, showing that applied pres- We have presented a combined MD and MC approach for
sure does not change the nature of the transition. simulating the equilibrium properties of magnetovolume ac-

Finally, Fig. 14 showsa(T) for different values of the tive local moment magnets. The approach is easily general-
pressure. Such curves directly give the bulk modulus, herezed to magnetic alloys with more than one moment-bearing
for J’=10"° J/m, as a function of temperature. Zero- species and with both chemical and spin disorder or to par-
pressure bulk modulus curveXT) for different values of ticular magnetic compounds having any type of spin struc-
J’ are shown in Fig. 15. Her&=—V(AP/AV) whereV is  ture. The only restriction is that the local moment autocorre-

V. CONCLUSION

LN AL B B L B
—+ P=0 +— P=0

0.6 —— P=2.5x10° 1 0.6 » xP=2.5x10° -
z — P=5x10" | = | o o P=5x10° |
S —s P=7.5x10° | 3 s & P=7.5x10°
c o4l e P=10" c 04l ° o P=10"
(] : ]
o i o8
3 3
g g
= o02r 1 2 g2l
3 3

0.0 N B . . 00l v v v | CRURIP D WD OXAIOK AN ARK 4D

0 500 1000 1500 00 05 10 15 20 25
T (K) T/Te

FIG. 11. Spontaneous average magnetic moment per atom as a FIG. 13. Spontaneous average magnetic moment per atom as a
function of temperature for various values of the applied hydrostatidunction of reduced temperaturd/T) for various values of the
pressureP (as indicated, in Pa using a 1k10x10 cell and applied hydrostatic pressurB (as indicated, in J/m using a

'=10"° J/m. 10x10x 10 cell andd’ =10"° J/m.
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FIG. 14. Equilibrium lattice parameter as a function of tempera- g5, 15. Zero-pressure bulk modulBs= —V(AP/AV), where
ture for various values of the applied hydrostatic presfuréds v s thep = 0 sample volume andP=5x 10° Pa, as a function
indicated, in P3 using a 1 10x 10 cell and)’=10"° J/m. of temperature for various values af (as indicated, in J/inand

using a 1x10x10 cell.

lation times 7, be much larger than typical periods of

atomic vibrations(i.e., inverses of characteristic Debye or . .
persists as long as.,>7,, (4) a significant dependence of

Einstein frequencigs as is often the case in real systems. R o
This allows local average atomic positions to be used inTC onJ’ (Fig. 5), (5 perturbed reduced magnetization ver-

calculating the effective exchange parameters seen by tha!S reduced temperature cur¢ed. 10 that suggest a pos-

magnetic moments, even though instantaneous interatom%ble Idep;n?fence ?f crltl!czl hbedhawor_ dh, (6) aqcuraltily
separation-dependent exchange parameters are seen by culated effects of applied hydrostatic pressgfégs. 11—

atoms as they execute their vibrations with a givlang- 4), and(7) realistic bulk modulus versus temperature curves
lived) spin configuration. As long as, 7, , our algorithm (Fig. 19 that have the same qualitative features as measured

should give correct equilibrium properties without any ap_curveg, mcludm_g large asymrretrlc trou.gbhs. ndg and
proximations other than the chosen model dependent on&e%_it_'ve_ sz;tur?tlon mag_”ﬂg"l\‘jlgm,\f[)coﬂ”' Iut!ons.
(Ising interactions, NN interactions only, classical MD, tc. IS IS the first combine “MD simulation to treat a

We have applied this approach to a simple model Systenmagnetovolume—cpuplt_ad magnetic system exactly at any
which is a single-species local-moment ferromagnet withemperature, applied field, and applied pressure. The vibra-

NN-only Lennard-Jones interatomic potential and NN-onIyt'OnaI and magnetic degrees of freedom are both allowed and

Ising magnetic interactions. It is nickel-like in that it is fcc, they are coupled in a way that is consistent with the assump-

has the same saturation moment per atom as nickel, the sarfig" t,hat7m> 7, It i,s pqsgible to rela}x this assumpt_ion or to
T=0 K lattice parameter in the absence of magnetovolum&Pnsider the opposite limit af,<7, simply by changing the

coupling @' =0), the same Curie point wheli =0, and the parameters of _the simulatiomjgp andnyc, Sec. I,D'
same cohesive energy whéh=0. This sets all of the mi- Three surprising results are found. The first is the extent

croscopic parameters except The latter parameter is given to which magnetic SRO is enhanced by the magnetovolume

various values large enough to induce spontaneous magnet%QUp“ng’ leading to large magnetovolume expansions far

volume expansions comparable to those observed in strong oveTc. The second. is the observatl_on that, even in a true
magnetovolume-coupled systems which, for example, ar aramagnetic state Wlth zero magnetic SRO, a het nonzero
Fe-based metallic alloys such asggdi 55 Invar magnetovolume expansion occurs. The latter two points sug-

All of the J'=0 simulated properties, such as Ordinarygest a qutlcal examination of the widespread practice of ex-
apolating measured values from the paramagnetic state

thermal expansion, bulk modulus, and magnetic ordering, ar . . -
P g 9 %Er> Tc) in order to obtain the zero magnetovolume coupling

in good agreement with those of metallic nickel and give : X X - : .
reliable base line for identifying the magnetovolume effects ehavior. Finally, the third surprising result is the suggestion

that occur wherd’ #0. The main magnetovolume properties that the critical behavior and the magnetic order parameter
and effects evidenced by our simulations &t¢ realistic scaling are (_jependent on the strength of the r.naglnetovolume
thermal expansion curvégs(T), Fig. 6] that have the same colupllmtg, Sg'g agreement  with  renormalization-group
qualitative features as measured curves, including smooth?'cHations.

tails aboveT and regions of zero or near-zero net thermal

expansion{(2) magnetovolume coupling stapilized magnetic ACKNOWLEDGMENTS
SRO that causes magnetovolume expansion far afgve
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