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We investigate uniform one-dimensional arrays of small Josephson junctions@EJ!EC , EC5(2e)2/2C#
with a realistic Coulomb interactionU(x)5EClexp(2uxu/l) ~herel@1 is the screening length in units of the
lattice constant of the array!. At low energies this system can be described in terms of interacting Bose particles
~extra single Cooper pairs! on the lattice. With increasing concentrationn of extra Cooper pairs, a crossover
from the Bose gas phase to the Wigner crystal phase and then to the superlattice regime occurs. The phase
diagram in the superlattice regime consists of commensurable insulating phases withn51/l ( l is integer!
separated by superconducting regions where the current is carried by excitations withfractionalelectric charge
q562e/ l . The Josephson current through a ring-shaped array pierced by magnetic flux is calculated for all of
the phases.@S0163-1829~96!08026-5#

I. INTRODUCTION

The investigation of arrays of small Josephson junctions
has attracted growing interest by theoreticians and experi-
mentalists~see Ref. 1 for a review!. In such arrays the Cou-
lomb energyEC5(2e)2/2C can be of the order of the Jo-
sephson energyEJ ~here C is the capacitance of the
junctions!. Since the Josephson phasef and the electric
chargeQ on the islands are canonically conjugated opera-
tors, @f,Q#52ei, a number of nontrivial quantum phenom-
ena arise due to a competition between the phase~or vortex!
and charge degrees of freedom. In particular, the point of the
superconductor-insulator transition depends on the magnetic
frustration2 and on the electrochemical potentialm of the
array.3–6

Existing theories of electric-field-induced superconductor-
insulator transition3–6 treat predominantly the cases of on-
site or nearest-neighbor Coulomb interactions, although for
typical experimental parameters the range of the interaction
is large,1 l53–20 ~in units of the lattice constant of the
array!. The phase diagram of the superconductor-insulator
transition becomes rather complicated forl@1 and large
concentrationsn;1/ld of electric-field-induced~‘‘extra’’ !
Cooper pairs5 ~hered is the dimension of the array!. This is
related to the fact that the extra Cooper pairs~ECP’s! can
form a variety of configurations commensurable with the lat-
tice of junctions. On the other hand, it is known7 that at very
small concentrations8 n!1/ld the ECP’s form a Bose gas
with a hard-core interaction and commensurability with the
lattice plays no role. In this work we study the transition
between these two very different regimes.

We consider uniform one-dimensional~1D! Josephson ar-
rays with large Coulomb energyEC@EJ and long-range
Coulomb interactions,l@1. We focus on the regime with
low concentrationsn of ECP’s,

exp~21/ln!!1. ~1!

In this regime the problem can be reduced to the effective
Hamiltonian of impenetrable bosons on the lattice~Sec. II!.

The estimates of parameters~Sec. III! show that at low con-
centrations the ECP’s form incommensurable phases: Bose
gas and Wigner crystal. With increasing concentration the
system enters the superlattice regime where commensurabil-
ity with the lattice becomes important. We analyze the phase
diagram of the superconductor-insulator transition in this re-
gime in Sec. IV. In the insulating phase the ECP’s form a
regular superlattice with the periodl (n51/l ). The system
starts showing superconducting properties when the first mo-
bile excitation appears. The latter corresponds to a change of
the distance between two neighboring ECP’s in a superlattice
by D l561. This excitation can be treated as a quasiparticle
with fractional chargeq572e/ l . The superconducting
phase can be viewed as a gas of such quasiparticles on the
lattice.

Our estimates show that the superconductor-insulator
transition can be observed experimentally by measuring the
Josephson current through a circular array pierced by a mag-
netic flux. This current is evaluated for all the phases. Fi-
nally, we discuss some specific effects due to a finite size of
an array. The conclusions are presented in Sec. V.

II. EFFECTIVE HAMILTONIAN

The HamiltonianH5HC1HJ of a 1D Josephson array
consists of a Coulomb termHC and a Josephson termHJ .
The Coulomb energy is given by

HC5
1

2 (
i , j51

L

niU~ i2 j !nj2mN, ~2!

where ni is a ~positive or negative! number of ECP on
the electrode i , N5( i51

L ni , and the interaction
U( i2 j )52e2(C21) i , j is determined by the inverse of the
capacitance matrixCi , j . A standard model1 of the Josephson
array accounts for the capacitanceC of the Josephson junc-
tions and the capacitanceCg of the superconducting islands
to the ground. In this case the interaction potential can be
approximated by

PHYSICAL REVIEW B 1 JULY 1996-IIVOLUME 54, NUMBER 2

540163-1829/96/54~2!/1228~6!/$10.00 1228 © 1996 The American Physical Society



U~x!5EClexp~2uxu/l!, ~3!

wherel5(C/Cg)
1/2. The gate voltageV plays the role of the

chemical potential,m52 eV.
We consider first the limit of zero Josephson coupling.

For umu,m tr[lEC/2 there is no ECP’s in the array (ni50
for all i ). Just above the threshold, 0,m2m tr!m tr , the
ground state is still characterized by the absence of ECP’s on
most of the islands (ni50). The rest of the islands are oc-
cupied by one ECP (ni51). The configurations withni
Þ0,1 ~for somei ) are separated from the ground state by a
Coulomb gapDC5EC /l, which corresponds to the differ-
ence between the Coulomb energies of the configurations
$ni%5(0, . . . ,1,21,1,0, . . . ) and (0, . . .,1,0, . . . ). In what
follows we restrict the space of states to low-energy configu-
rations withni50 or 1. These configurations can be fully
characterized by the coordinatesxj of ECP’s on the lattice
(xj are integer numbers!.

The Josephson term of the Hamiltonian has a standard
form

HJ52EJ(
i51

L

cos~f i112f i2a!. ~4!

Heref i is the operator of the Josephson phase of the island
i obeying the commutation relation @ni ,e

6 ifk#
56d i ,ke

6 ifk, anda5(2p/L)F/F0 is the vector potential
~for circular array pierced by a magnetic fluxF). The Jo-
sephson term acting on the restricted space of states de-
scribes a hoping of ECP’s on the lattice with the amplitude
EJe

6 ia/2. Corrections to the tunneling amplitude due to the
states withnÞ0,1 are small for

EJ!DC . ~5!

Therefore, the original HamiltonianH in the low-energy
space is equivalent to the Hamiltonian of Bose particles
~ECP’s! on the lattice,9

H52EJ(
j51

N

cos~pj2a!1(
j51

N

U~xj2xj21!2m̄N, ~6!

wherepj are quasimomenta of ECP’s andm̄5m2m tr . The
pairs (xj ,pj ) are conjugate action-angle operators satisfying
@e6 ip j ,xk#56d j ,ke

6 ip j . We have taken into account only
the interaction of the neighboring ECP’s in Eq.~6!, which is
legitimate in the regime~1! under consideration.

III. ESTIMATES OF PARAMETERS

Let us consider now the ground state of the system as a
function of the chemical potentialm̄ at fixedEJ . The first
ECP enters the array atm̄52EJ . We denote the deviation
from this threshold bym̃5m̄1EJ . At very low concentra-
tions of ECP’s~a precise condition will be given below! the
effect of interaction is negligible, unless two particles come
close~to distances;l) to each other. Therefore, to a good
approximation, ECP’s form a Bose gas with a hard-core
interaction.7 To treat this regime we use the trial ground-state
wave function

C5)
i, j

sin
puxi2xj u

L
Q~ uxi2xj u2d!, ~7!

where the sized of the core plays a role a variational param-
eter. The kinetic energy per particle in the state~7! is given
by10

K1p5
p2EJn

2

6~12nd!2
. ~8!

Since K1p!EJ , the energy band is effectively parabolic,
2EJcos(pj2a)→EJ(pj2a)2/22EJ in Eq. ~6!. The potential
energy per particle can be evaluated as

U1p5
2p2

3

~nl!3

~12nd!2
ECle2d/l, ~9!

for nd!1. Minimizing the total energy we obtain the opti-
mum value ford,

d05l lnS 2ECl3

EJ
D . ~10!

The chemical potential is given by

m̃~BG!5
p2EJn

2

2
@11O~nd0!#. ~11!

This expression coincides with the chemical potential of a
1D gas of impenetrable bosons up to the termO(nd0). A
variational ansatz~7! breaks down whend0 becomes com-
parable to the interparticle distance 1/n, i.e., when

expS 2
1

nl D;
EJ

l3EC
. ~12!

This condition determines the upper boundary of the range of
concentrations in which a hard-core approximation of the
interaction is applicable~Fig. 1!.

With increasing concentration the ECP’s get localized in
coordinate space. We assumea priori that the ECP’s form a
1D Wigner crystal. We introduce the deviations
uj5xj2xj212 l of the distance between neighboring par-
ticles from its average valuel5n21 and expand the potential
energyU(x), Eq.~6!, up to quadratic inuj terms. Expanding
also the kinetic energy we obtain a quadratic Hamiltonian,
which enables one to estimate the characteristics of the sys-
tem. In particular, the kinetic energy per particleK1p and the
fluctuation^uj

2& of the interparticle distance are given by

K1p5p21A2EJU0,^uj
2&5p21A2EJ /U0, ~13!

FIG. 1. Schematic phase diagram of a 1D Josephson array.
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whereU0[(1/2)d2U(x)/dx2ux5 l is a stiffness of the Wigner
lattice,

U0~ l !5~EC/2l!exp~2 l /l!. ~14!

The chemical potential is given by

m̃~WC!5lECe
21/ln1

1

pn
AECEJ

l3 e21/2ln, ~15!

where the first term is related to the energy of a static defor-
mation of the lattice of ECP’s, and the second term corre-
sponds to the energy of the normal modes of the lattice
~phonons!. Note that the concentrationn of ECP’s increases
as a function of the chemical potentialm̃ much more slowly
than in the Bose gas regime.

The expansion of the potential and kinetic energy up to
quadratic terms is legitimate if the fluctuations ofui are
small, ^ui

2&!l2, and the kinetic energy per ECP’s is much
less thanEJ . These conditions determine respectively the
lower and the upper bounds of the range of concentrations,

EJ

l3EC
!expS 2

1

nl D!
lEJ

EC
, ~16!

in which the Wigner crystal phase exists~Fig. 1!. Note that
the lower estimate~16! for the Wigner crystal is consistent
with the ~upper! estimate~12! for the Bose gas.

For both the phases~Bose gas and Wigner crystal! the
Hamiltonian is quadratic in momenta of the particles. There-
fore, the vector potentiala is coupled to the momenta of the
center of mass only. For this reason the Josephson current
through a ring-shaped array is given by a universal expres-
sion

I J5
4evJ
L

F

F0
, vJ5

pnEJ

\
, ~17!

for uFu,F0/2. A similar result holds for the persistent cur-
rent of interacting fermions,11 vJ being the Fermi velocity in
that case. Equation~17! enables one to estimate the scale of
the Josephson current through a circular array. For a choice
of parametersL5100, n50.1, andEJ51 meV we obtain
I J.1.6 nA ~for F5F0/2). It seems that this current can be
measured using modern experimental technique.12

For larger concentrations of ECP’s

lEJ

EC
!expS 2

1

nl D , ~18!

the kinetic energy per particle becomes comparable to the
bandwidthEJ and the effects of the lattice become important
~see Fig. 1!.

IV. SUPERLATTICE REGIME

To investigate this regime we start from the limit
EJ→0. In this case the ground state will correspond to con-
figurations of ECP’s commensurable with the array of Jo-
sephson junctions. First, we determine the range of the
chemical potential,

m l ,2~0!,m̄,m l ,1~0!, ~19!

where the simplest commensurable configuration with equi-
distantly spaced~at a distancel ) ECP’s is the ground state of
the system. One can say that all neighboring ECP’s are con-
nected by ‘‘bonds’’ of lengthl in this configuration. In order
to add~subtract! a Cooper pair into~from! this configuration,
one has to convertl21 (l11) bonds of lengthl into l bonds
of length l21 (l11). The energy required for this conver-
sion determines the chemical potentials,

m l ,6~0!56@ lU ~ l71!2~ l71!U~ l !#.m l6e l /2l,
~20!

with m l5e l(11l/ l ), e l5ECle
2 l /l. One sees that

m l ,1(0)5m l21,2(0). Therefore, the ground state corre-
sponds to a regular superlattice of ECP’s in the array; the
period of the superlattice changes abruptly froml to l21 at
m̄5m l ,1(0); seeFig. 2~a!. This simple picture of the ground
state is valid if one takes into account the interaction of
neighboring ECP’s only@see Eq.~6!#. The interaction of
next-nearest neighbors will lead to new ground states13 in
exponentially narrow regionsum̄2m l ,1(0)u;e le

2 l /l near
the pointsm l ,1(0).

A. Superconductor-insulator transition

First, we consider a stability of commensurable phase~a
superlattice of ECP’s with periodl ) in the presence of a
small but finite Josephson coupling,EJ!U0( l ). The com-
mensurable phase can be destroyed bymobile excitations~or
quantum defects! which can be viewed as bonds of the
length l61 surrounded by regular bonds of lengthl . Let us
consider a bond of lengthl11. The tunneling of ECP’s on
the left ~right! end of the bond to one lattice cell to the right
~left! will bring the excitation tol cells left ~right!. This
means that the excitation hasfractional charge14 22e/ l .
Analogously, the excitation of the lengthl21 has the charge
2e/ l .

Tunneling of mobile excitations decreases the energy of
the system by an amountEJ per excitation@see the first term
of Eq. ~6!#. This makes it more energetically favorable for
mobile excitations to enter the system, i.e., shrinks the range
~19! of the commensurable phase. The boundary of commen-
surable phase can be determined by equating the total ener-
gies of the system with and without a mobile excitation@this
is the case for any ratio betweenEJ andU0( l )#. Since addi-
tion ~subtraction! of one Cooper pair to~from! the array is
accompanied by the creation ofl mobile excitations, the
threshold chemical potentials~20! for the commensurable
phase are modified as follows,

m l ,6~EJ!5m l ,6~0!7 lEJ . ~21!

We now turn to the evaluation of the boundary between
the commensurable~insulating! and incommensurable~su-
perconducting! phases for an arbitraryEJ . In the superlattice
regime~18! under consideration the fluctuations of the inter-
particle distancesuj5xj2xj212 l are small,^uj

2&!l2 @cf.
Eq. ~16!# and we can again expand the potential energy
U(x), Eq.~6!, up to quadratic inuj terms~see Fig. 1!. Let us
recall that the operatorsuj and xj have integer eigenvalues
since they describe the positions of the particles on the lat-
tice. We introduce an operatorw j canonically conjugated to

1230 54A. A. ODINTSOV



uj which satisfies@e6 iw j ,uk#56d j ,ke
6 iw j . The operatorw j

is related to the operatorspj @see~6!# of quasimomenta of
ECP’s,pj5w j2w j11 . The number of particles,N, can be
expressed viauj , N5(L2(uj )/ l . As a result, the Hamil-
tonian ~6! can be written as

H52EJ(
j
cos~w j112w j1a!1U0~ l !(

j
~uj1dm!2,

~22!

wheredm5l(m̄2m l)/e l . Hence, we have shown that the
Hamiltonian of a Josephson array with a long-range~but
screened! Coulomb interaction in the superlattice regime can
be reduced to the Hamiltonian~22! which formally describes
a 1D Josephson array with anon-site interaction. This
Hamiltonian has been extensively studied in Refs. 3–5,15 in
the context of Josephson arrays and Bose Hubbard model.

As we have already discussed, the boundary of the com-
mensurable phase can be determined by equating the ground-
state energies of the Hamiltonian~22! in two subspaces of
states: with(uj50 ~this corresponds to the absence of mo-
bile excitations! and with(uj561 ~i.e., in the presence of
one mobile excitation!. In the limit EJ→0 the ground states
in these subspaces are given byC0(u1 , . . . ,uN)5P jduj ,0
and C61(u1 , . . . ,uN)5N21/2(kduk ,61P jÞkduj ,0 . Evaluat-

ing the energies of these states up to the third order inEJ
~see Ref. 4! we obtain

m l ,6~EJ!5m l6H e l
2l

2 lEJF12
EJ

8U0~ l !
2

EJ
2

32U0
2~ l !G J ,

~23!

for EJ!U0( l ); see Fig. 2~b!. Note that up to a term linear in
EJ this equation coincides with the result~21! obtained from
a simple argument.

With increasingEJ the range of the chemical potential
corresponding to commensurable phase shrinks and both
phase boundaries tend to the critical point,
m l ,6(EJ

(cr))→m l ; see Fig. 2~b!. Clearly, the true behavior
near the critical point cannot be described by perturbation
theory of finite order. To extend the perturbative approach,
an extrapolation to infinite order inEJ was proposed.4 Un-
fortunately, this~somewhat speculative! extrapolation fails to
converge to a critical point for the 1D system.

To determine the behavior near the critical pointEJ
(cr) one

can map the Hamiltonian~22! ~with m̄5m l) onto 2-DXY
model.15 The parameter@2U0( l )/EJ#

1/2 plays the role of a
dimensionless temperaturekBT/J in the XY model. The
point of the Kosterlitz-Thouless transition16 corresponds to
EJ
(cr)>2.5U0( l ); see Fig. 2~b!. Below the transition tempera-

ture (EJ.EJ
(cr)) spin-spin correlations in theXY model de-

cay algebraically with distance. The Josephson array shows
superconducting properties: the Josephson current is in-
versely proportional toL. It scales as15 11cAEJ2EJ

(cr) at
EJ→EJ

(cr)10 ~herec is a nonuniversal constant!. Above the
transition temperature (EJ,EJ

(cr)) the correlations in the
XY model decay exponentially. Near the critical point
(EJ→EJ

(cr)20) the coherence length is given by
j5exp$2b@EJ

(cr)/(EJ
(cr)2EJ)#

1/2%, whereb.2. As a result,

FIG. 2. Phase diagram of the superconductor-insulator transition
in a 1D Josephson array (l53). ~a! The overall view. The insulat-
ing spikelike regions from right to left correspond to
n51/10,1/11, . . . . ~b! Boundary of the insulating phase with
n51/l . The curves from bottom to top correspond to the results of
the mean-field approach, the third-order perturbation theory, and the
extrapolation of the perturbation theory to infinite order connected
with the extrapolation of the Kosterlitz-Thouless scaling.~c! Con-
centrationn(m̄) of ECP’s and critical Josephson currentI c(m̄) in
the superconducting region 1/11,n,1/10 (l511). We normalize
I c by the critical current~5! for the concentrationn51/l of ECP’s,
I c,l52peEJ /\ lL .
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the Josephson current through a 1D array decays as
exp(2L/lj), signaling the formation of the insulating phase.

In the insulating phase, the energy gap for the mobile
excitations scales as3,4 j21. For this reason, the boundary of
the insulating phase near the critical point is given by

m l ,6~EJ!5m l6a lU 0~ l !/j, ~24!

with a;1. The upper curve in Fig. 2~b! corresponds to an
extrapolation of Eq.~24! from the neighborhood of the criti-
cal point to lower values ofEJ @1.56U0( l ),EJ,EJ

(cr)#. This
extrapolation is joined to the extrapolation of the perturba-
tive result ~23! to infinite order inEJ @drawn in the range
EJ,1.56U0( l )#. A smooth connection of the two curves oc-
curs fora.1.73 ~andb52).

For completeness, we present the mean-field result for the
phase boundary,3,5

m l ,6~EJ!5m l6
e l
2l
A12

2EJ

U0~ l !
. ~25!

Although this expression coincides with Eq.~23! to first or-
der inEJ , the overall shape of the boundary@Fig. 2~b!# and
the critical value of the Josephson energyEJ

(cr) differ consid-
erably from the results discussed above. The reason for the
failure of the mean-field approach is the absence of long-
range order in one dimension.

B. Superconducting phase

We consider now the incommensurable superconducting
phase and concentrate on the case of small Josephson cou-
pling, EJ!U0( l ). In this case the incommensurable phase
exists in narrow regionsm l ,1(EJ),m̄,m l21,2(EJ) of the
width (2l21)EJ between two commensurable phases with
n51/l andn51/(l21) @Fig. 2~a!#.

In this region the ground state can be well approximated
by the configurations of ECP’s containing bonds of length
l and l21 only. These configurations form a reduced space
of states. The other configurations can be ignored since the
energy of the bonds of the length different froml andl21 is
of the order ofU0( l ) which is much larger than average
energy;EJ per bond in the ground state.

The problem~6! in the reduced space is equivalent to
impenetrable Bose particles~bonds of lengthl21) on a lat-
tice formed by all the bonds~equivalently, one can consider
the bonds of lengthl as particles!. Note that there is no
interaction between these particles which is a consequence of
the fact that only the interaction between neighboring ECP’s
was taken into account in~6!. The concentrationq5N1 /N of
bonds of lengthl21 can be expressed via the concentration
n5N/L of ECP’s, q5 l2n21 @0,q,1 in the range
1/l,n,1/(l21) under consideration#. The energy of the
system is then given by

E52EJcosa
sin~pq!

sin~p/N!
2@m̄2m l ,1~0!#N, ~26!

where the first term is the energy ofN1 impenetrable bosons
on the lattice. Using Eq.~26! we obtain the chemical poten-

tial m̄ and the Josephson currentI J through a circular array
as functions of the concentrationn of ECP’s,

m̄5m l ,1~0!2EJ$~ l2q!cospq1p21sinpq%, ~27!

I J5
4eEJ
\L

sinpq

l2q

F

F0
, ~28!

for uFu,F0/2. These dependences are presented in Fig.
2~c!.

C. Finite-size effects

Finally, in view of possible experimental implementation,
we discuss effects which are specific for finite-size circular
arrays. If the sizeL of the array is commensurable with the
spacingl of the superlattice of ECP’s, the Josephson current
is exponentially small in the insulating phase. However, if
L/ l is not an integer, a number ofresidualmobile excitations
remain in the array in the insulating phase,
m l ,2(EJ),m̄,m l ,1(EJ). In the lower part of this range,
m l ,2(EJ),m̄,m l ,0(EJ), there arem5mod(L,l ) residual
excitations~bonds of the lengthl11) in the ground state.
One ECP’s enters into the array atm̄5m l ,0(EJ). As a result,
for m l ,0(EJ),m̄,m l ,1(EJ) a new ground state will contain
l2m residual excitations~bonds of the lengthl21). The
threshold chemical potentialm l ,0(EJ) can be evaluated by
comparing the energies of the residual excitations in both
cases,

m l ,0~EJ!5@mm l ,2~EJ!1~ l2m!m l ,1~EJ!#/ l . ~29!

Since each excitation contributes an amount
I 1CP5(4peEJ /\L

2)(F/F0) to the Josephson current@cf.
Eq. ~17! with n51/L#, the latter shows a jump
DI5u l22muI 1CP at m̄5m l ,0(EJ).

V. CONCLUSIONS

In this paper we have investigated uniform 1D Josephson
arrays in the charging regimeEC@EJ . We considered a re-
alistic long-range~but screened! Coulomb interaction and
concentrated on the case of low charge frustration which
provides a low concentration of extra charges~Cooper pairs!
in the array.

This regime can be described by an effective low energy
Hamiltonian ~6!. We found a crossover from the Bose gas
phase to the Wigner crystal phase with increasing concentra-
tion of extra Cooper pairs. At still higher concentrations the
system enters the superlattice regime. In this regime a true
phase transition between commensurable~insulating! and in-
commensurable~superconducting! phases occurs. We found
a simple structure of the phase diagram. In the insulating
phase the extra Cooper pairs form a regular superlattice with
the period l , whereas the superconducting phase can be
viewed as a gas of fractionally charged excitations on the
lattice.

The boundary of the commensurable phase can be deter-
mined analitycally for small Josephson couplingEJ!U0( l )
@using perturbation theory; see Eq.~23!# and in the vicinity
of a critical pointEJ

(cr) @by mapping the problem onto clas-
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sical XY model; see Eq.~24!#. We have also computed the
Josephson current through a circular array pierced by a mag-
netic flux ~for all the phases! and considered the effects of a
finite size of the array.

There is clearly a need for future investigations, such as
an analysis of effects of disorder due to the offset charges
~potential disorder! and due to nonuniformity of the Joseph-
son coupling~kinetic disorder!.
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