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One-dimensional Josephson arrays as superlattices for single Cooper pairs
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We investigate uniform one-dimensional arrays of small Josephson jungibrsEc, Ec=(2€)?/2C]
with a realistic Coulomb interactiod (x) = Echexp(—|x//\) (herex>1 is the screening length in units of the
lattice constant of the arrayAt low energies this system can be described in terms of interacting Bose particles
(extra single Cooper pair®n the lattice. With increasing concentratiorof extra Cooper pairs, a crossover
from the Bose gas phase to the Wigner crystal phase and then to the superlattice regime occurs. The phase
diagram in the superlattice regime consists of commensurable insulating phases=wlith (I is integejy
separated by superconducting regions where the current is carried by excitatiofregtitnal electric charge
g= *2¢€/l. The Josephson current through a ring-shaped array pierced by magnetic flux is calculated for all of
the phased.S0163-18206)08026-3

[. INTRODUCTION The estimates of parametdiSec. 1)) show that at low con-
centrations the ECP’s form incommensurable phases: Bose

The investigation of arrays of small Josephson junctiongas and Wigner crystal. With increasing concentration the
has attracted growing interest by theoreticians and expersystem enters the superlattice regime where commensurabil-
mentalists(see Ref. 1 for a reviewIn such arrays the Cou- ity with the lattice becomes important. We analyze the phase
lomb energyE=(2€)?/2C can be of the order of the Jo- diagram of the superconductor-insulator transition in this re-
sephson energyE; (here C is the capacitance of the gime in Sec. IV. In the insulating phase the ECP’s form a
junctions. Since the Josephson phageand the electric regular superlattice with the peridd(»=1/). The system
chargeQ on the islands are canonically conjugated operastarts showing superconducting properties when the first mo-
tors,[ ¢,Q]=2ei, a number of nontrivial quantum phenom- bile excitation appears. The latter corresponds to a change of
ena arise due to a competition between the pliaseortey  the distance between two neighboring ECP’s in a superlattice
and charge degrees of freedom. In particular, the point of thby Al=* 1. This excitation can be treated as a quasiparticle
superconductor-insulator transition depends on the magnetigith fractional chargeq==2e/l. The superconducting
frustratiorf and on the electrochemical potential of the  phase can be viewed as a gas of such quasiparticles on the
array>~° lattice.

Existing theories of electric-field-induced superconductor- Our estimates show that the superconductor-insulator
insulator transitiofi © treat predominantly the cases of on- transition can be observed experimentally by measuring the
site or nearest-neighbor Coulomb interactions, although fogosephson current through a circular array pierced by a mag-
typical experimental parameters the range of the interactionetic flux. This current is evaluated for all the phases. Fi-
is largel A=3-20 (in units of the lattice constant of the nally, we discuss some specific effects due to a finite size of
array). The phase diagram of the superconductor-insulatofn array. The conclusions are presented in Sec. V.
transition becomes rather complicated for1 and large

concentrationsy~1/\% of electric-field-induced(“extra’ )
. . ; : N Il. EFFECTIVE HAMILTONIAN
Cooper pairs (hered is the dimension of the arrayThis is
related to the fact that the extra Cooper pdE€P’S can The HamiltonianH=H:+H; of a 1D Josephson array

form a variety of configurations commensurable with the lat-consists of a Coulomb terrH: and a Josephson terhh;.
tice of junctions. On the other hand, it is knolthat at very  The Coulomb energy is given by
small concentratiofsy<1/\% the ECP’s form a Bose gas
with a hard-core interaction and commensurability with the 1 b
lattice plays no role. In tr_ns work we study the transition HC:E E nU(i—j)n;—uN, 2
between these two very different regimes. hj=1
We consider uniform one-dimensiondD) Josephson ar-
rays with large Coulomb energf.>E; and long-range Where n; is a (positive or negative number of ECP on

Coulomb interactionsh>1. We focus on the regime with the electrode i, N=3{_;n;, and the interaction
low concentrations’ of ECP’s, U(i —j)=2e2(C‘1)i,j is determined by the inverse of the
capacitance matrig; ;. A standard modélof the Josephson

exp — 1M\ v)<1. (1)  array accounts for the capacitanCeof the Josephson junc-

tions and the capacitaneg, of the superconducting islands
In this regime the problem can be reduced to the effectivéo the ground. In this case the interaction potential can be
Hamiltonian of impenetrable bosons on the lattiec. ). approximated by
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U(x)=Echexp —|x|/N), (3)

E,/(\°Ey) AE,/E, eV
where\ = (C/Cg4)*2 The gate voltag¥ plays the role of the . 2 =
. f E,/A\ \'E "
chemical potentialy=2 eV. ’ 1
We consider first the limit of zero Josephson coupling. State: Bose gas Wigner crystal ~ Superlattice
For |M|<MtrE)\EC/2 there is no ECP’s in the arrayli(=0 Interaction: unharmonic harmonic harmonic
for all i). Just above the threshold,<Qu— uy<<uy, the Band: parabolic parabolic cos p

ground state is still characterized by the absence of ECP’s on
most of the islandsr;=0). The rest of the islands are oc-
cupied by one ECPn;=1). The configurations withn;
#0,1 (for somei) are separated from the ground state by a .

Coulomb gapA-=Ec/\, which corresponds to the differ- v=]] sin#G)(lxi—xﬂ—d), 7
ence between the Coulomb energies of the configurations i<i L

{n}=(0,...,1-1,10...) and (0,..,1,0,...). In what
follows we restrict the space of states to low-energy configu
rations withn;=0 or 1. These configurations can be fully
characterized by the coordinates of ECP’s on the lattice

FIG. 1. Schematic phase diagram of a 1D Josephson array.

where the sizel of the core plays a role a variational param-
eter. The kinetic energy per particle in the stétgis given

bylo

(x; are integer numbeys 72E 12
The Josephson term of the Hamiltonian has a standard Klp:W' (8
form (1—vd)

Since K;,<E;, the energy band is effectively parabolic,

L
_ —EJcospj—a)HEJ(pj—a)zlz— E; in Eq. (6). The potential
Hy=— Eng cod i1~ di—a). (4 energy per particle can be evaluated as
Here ¢, is the operator of the Josephson phase of the island :2_772 (vA)® E e )
i obeying the commutation relation [n;,e %] P73 (1-wpd)2 € ’

=+ e"'%, anda=(2m/L)®/d, is the vector potential o ) )
(for circular array pierced by a magnetic fld). The Jo- for vd<1. Minimizing the total energy we obtain the opti-
sephson term acting on the restricted space of states dgwum value ford,

scribes a hoping of ECP’s on the lattice with the amplitude 3

E,e*'/2. Corrections to the tunneling amplitude due to the do=\ In( 2EcA ) (10

states withn#0,1 are small for E;
E,<Ac. 5) The chemical potential is given by
- S m2E;v?
Therefore, the original HamiltoniaH in the low-energy B =——"T[1+0(vdy)]. (11)

space is equivalent to the Hamiltonian of Bose particles 2

(ECP' on the latticé, This expression coincides with the chemical potential of a

N N 1D gas of impenetrable bosons up to the tedfwd,). A
_ 2 2 — variational ansat£7) breaks down whem, becomes com-
H= _EJJ=1 cog pj—a)+j=1 U(Xj=Xj-1)—uN, (6) parable to the interparticle distancevli.e., when

wherep; are quasimomenta of ECP’s apd=u— u . The . F{— i) E;
pairs ;,p;) are conjugate action-angle operators satisfying vN] N°Ec
[e*'Pi,x]=* & v 'Pi. We have taken into account only _ » _
the interaction of the neighboring ECP’s in H@), which is  This condition determines the upper boundary of the range of
legitimate in the regimél) under consideration. concentrations in which a hard-core approximation of the
interaction is applicabléFig. 1).
With increasing concentration the ECP’s get localized in
IIl. ESTIMATES OF PARAMETERS coordinate space. We assuaeriori that the ECP’s form a

Let us consider now the ground state of the system as 40 Wigner crystal. We introduce the deviations
function of the chemical potentigt at fixed E,. The first ~ Yi=Xj—Xj-1—| of the d|stanc§lbetween neighboring par-
ECP enters the array ai= —E,. We denote the deviation ticles from its average valde= v gnq expand the potermal
from this threshold byz =% +E,. At very low concentra- €Nergyu(x), Eq.(6), up to quadratic in; terms. Expanding
tions of ECP’s(a precise condition will be given belovhe als_o the kinetic energy we obtain a quadrat_lc _Ham|lton|an,
effect of interaction is negligible, unless two particles comeWhich enables one to estimate the characteristics of the sys-
close(to distances~\) to each other. Therefore, to a good M- I _partlczular, the kinetic energy per partiélg, and the
approximation, ECP’s form a Bose gas with a hard-cordluctuation(uj) of the interparticle distance are given by
interaction’ To treat this regime we use the trial ground-state

wave function Kip=m "2E U (uf)=7"12E;/Uy, (13
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whereU = (1/2)d?U(x)/dx?|,-, is a stiffness of the Wigner where the simplest commensurable configuration with equi-
lattice, distantly spacedat a distancé) ECP’s is the ground state of
the system. One can say that all neighboring ECP’s are con-
Uo(l)=(Ec/2n)exp(—I/N). (14 nected by “bonds” of length in this configuration. In order
to add(subtract a Cooper pair intgfrom) this configuration,
one has to conveft-1 (I +1) bonds of length into | bonds
of lengthl—1 (1+1). The energy required for this conver-
(150  sion determines the chemical potentials,

The chemical potential is given by

EcE, —1/2Ap
NS

where the first term is related to the energy of a static defor-  #1,+(0)==[IU(+1)=(=1)U()]=w = &/2\,
mation of the lattice of ECP’s, and the second term corre- (20
sponds to the energy of the normal modes of the latticgyjth w=e(L+N/1), e=Ecle™". One sees that
(phonong. Note that the concentratiozl of ECP's increases . (0)=p,_,_(0). Therefore, the ground state corre-
as a function of the chemical potentjalmuch more slowly  sponds to a regular superlattice of ECP’s in the array; the
than in the Bose gas regime. period of the superlattice changes abruptly frbbo | — 1 at
The expansion of the potential and kinetic energy up to, =, . (0); seeFig. 2a). This simple picture of the ground
quadratic terms is legitimate if the fluctuations of are  state is valid if one takes into account the interaction of
small, (u?)<\?, and the kinetic energy per ECP’s is much neighboring ECP’s onlysee Eq.(6)]. The interaction of
less thanE;. These conditions determine respectively thenext-nearest neighbors will lead to new ground statas
lower and the upper bounds of the range of concentrationsexponentially narrow regiongu— u, ,(0)|~€e™""* near
the pointsu, +(0).

1
TWO _ \E e vy
M C J—

E, _ p( 1)<>\EJ 6
—a—<exp — —|<—,
}\SEC 2 Ec A. Superconductor-insulator transition
in which the Wigner crystal phase exigfsig. 1). Note that First, we consider a stability of commensurable phi@se
the lower estimaté16) for the Wigner crystal is consistent superlattice of ECP’s with periot) in the presence of a
with the (uppe) estimate(12) for the Bose gas. small but finite Josephson couplingy;<U,(l). The com-

For both the phasetBose gas and Wigner crystahe  mensurable phase can be destroyedrimpile excitationgor
Hamiltonian is quadratic in momenta of the particles. Therequantum defec)swhich can be viewed as bonds of the
fore, the vector potentia is coupled to the momenta of the |engthl =1 surrounded by regular bonds of lengthLet us
center of mass only. For this reason the Josephson currepbnsider a bond of length+ 1. The tunneling of ECP’s on
through a ring-shaped array is given by a universal expreshe left (right) end of the bond to one lattice cell to the right

sion (left) will bring the excitation tol cells left (right). This
means that the excitation hdsactional chargé* —2e/l.
:4eUJ hd _ mvE, Analogously, the excitation of the lengtk 1 has the charge
|J [} UJ ) (17)
L @, % 2ell.

for |®|<dy/2. A similar result holds for the persistent cur- Tunneling of mobile excitations decreases the energy of

rent of interacting fermiond} v ; being the Fermi velocity in the system by an amousit per excitatior{see the first term

> . of Eqg. (6)]. This makes it more energetically favorable for
that case. Equatio(lL7) enables one to estimate the scale c?fmobile excitations to enter the system, i.e., shrinks the range

CELQ) of the commensurable phase. The boundary of commen-
surable phase can be determined by equating the total ener-
gies of the system with and without a mobile excitatithms
is the case for any ratio betwe&y andUg(l)]. Since addi-
tion (subtraction of one Cooper pair tdfrom) the array is

\E, 4 1) accompanied by the creation df mobile excitations, the

<ex ,

of parameterd =100, »=0.1, andE;=1 meV we obtain
[;=1.6 nA (for ®=dy/2). It seems that this current can be
measured using modern experimental technidue.

For larger concentrations of ECP’s

(18)  threshold chemical potential0) for the commensurable
phase are modified as follows,

the kinetic energy per particle becomes comparable to the _ _

bandwidthE; and the effects of the lattice become important m, (B =m = (0)FIE,. (21)

(see Fig. 1

C VA

We now turn to the evaluation of the boundary between
the commensurablénsulating and incommensurablésu-
IV. SUPERLATTICE REGIME perconductingphases for an arbitraig;. In the superlattice
To investigate this regime we start from the limit "egime(18) under consideration the fluctuations of the inter-

E,—0. In this case the ground state will correspond to conparticle distancesi;=x;—x;_;—| are small,(u?)<\? [cf.
figurations of ECP’s commensurable with the array of Jo-Ed. (16)] and we can again expand the potential energy
sephson junctions. First, we determine the range of th&/(X), Eq.(6), up to quadratic inu; terms(see Fig. 1. Let us
chemical potential, recall that the operatons; andx; have integer eigenvalues
since they describe the positions of the particles on the lat-
- (0)<u<um +(0), (190  tice. We introduce an operatgr; canonically conjugated to
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0.016 u; which satisfie§ e*'¢i,u,]=* 8, ,e*'¢i. The operatorp;
0 014 (@) is related to the operators; [see(6)] of qugsimomenta of
o o1 ECP’s,pj=¢j— ¢j+1. The number of particled), can be

’ expressed vial;, N=(L—2u;)/l. As a result, the Hamil-

0.01 tonian (6) can be written as
5 0.008 S
EC 0.006 I 2

H=—EJ$ cos(cpj+1—<p,-+a>+uo<l>; (uj+op)2,
0.002 | (22
T 0.1 _ 0.2 0.3 0.4 where du=\(u— )/ € . Hence, we have shown that the
WEC Hamiltonian of a Josephson array with a long-ranigat
. . . ‘ : screeneflCoulomb interaction in the superlattice regime can
2.5 ] be reduced to the Hamiltonid22) which formally describes
(b) . 1 : .
a 1D Josephson array with aon-site interaction. This
Hamiltonian has been extensively studied in Refs. 3—5,15 in
a the context of Josephson arrays and Bose Hubbard model.
As we have already discussed, the boundary of the com-
1.8k ] mensurable phase can be determined by equating the ground-
EJ state energies of the HamiltonigB2) in two subspaces of
U O(I) states: withSu;=0 (this corresponds to the absence of mo-
1F 1 bile excitationg and with>u;=*1 (i.e., in the presence of
one mobile excitation In the limit E;— 0 the ground states
0.5l ] in these subspaces are given Wg(uy, ... ,uN)=Hj5uj,0
and V. 1(uq, ... ,UN)=N71/22k5uk,ilﬂj¢k5uj,o- Evaluat-
0L , ‘ , , ing the energies of these states up to the third ordek;in
-0.4-0.2 0 0.2 0.4 (see Ref. #we obtain
o :
€l (Ep=pmr] Sy 1— i
N oo e I N e VN (DR P VT U
(©) (23
0.3 1-0987 for E;<Uy(1); see Fig. 2b). Note that up to a term linear in
025 € =] 5974 E; this equation coincides with the res(®1) obtained from
a simple argument.

0.9l 1 0961 With increasingE; the range of the chemical potential
|c v corresponding to commensurable phase shrinks and both
|_ 0.15} 1.0948 phase boundaries tend to the critical point,

cl wi +(ES) =, ; see Fig. ®). Clearly, the true behavior
0.1r 1-0935 near the critical point cannot be described by perturbation
theory of finite order. To extend the perturbative approach,
0.05 1-0922 an extrapolation to infinite order iE; was proposed.Un-
ol . ‘ L 0909 fortunately, thisS'somewhat speculatiyextrapolation fails to
10 -5 0 5 10 converge to a critical point for the 1D system.
TTING) To determine the behavior near the critical pdgst? one
S can map the Hamiltonia22) (with w=pu,;) onto 2-D XY
Ey model’® The parametef2U(1)/E;]*? plays the role of a

dimensionless temperatutgT/J in the XY model. The
FIG. 2. Phase diagram of the superconductor-insulator transitioR0!Nt of the Kosterlitz-Thouless trans't'%correSponds to

in a 1D Josephson array €3). (@) The overall view. The insulat- E9"=2.5Uo(1); see Fig. ). Below the transition tempera-
ing spikelike regions from right to left correspond to ture (E;>E{™") spin-spin correlations in th&Y model de-
v=1/10,1/11, ... .(b) Boundary of the insulating phase with cay algebraically with distance. The Josephson array shows
v=1/. The curves from bottom to top correspond to the results ofsuperconducting properties: the Josephson current is in-
the mean-field approach, the third-order perturbation theory, and thgersely proportional td_. It scales a¥ 1+C\/ﬁm at
extrapolation of the perturbation theory to infinite order connectedEJ_> Egcr)+0 (herec is a nonuniversal constanAbove the

with the extrapolation of the Kosterlitz-Thouless scalifg. Con- o (cr) . .
centrationv(u) of ECP’s and critical Josephson currdgfu) in transition temperature B,<E;™) the correlations in the

the superconducting region 14 <1/10 (=11). We normalize XY mo(gr?I decay exponentially. Near the critical point
I by the critical current5) for the concentration=1/ of ECP’'s, (E;—Ej”’—0) the coherence length is given by
I =2meE;/AlL. é=exp{—b[ES/(ES—E;)]1Y3, whereb=2. As a result,
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the Josephson current through a 1D array decays asl u and the Josephson currdntthrough a circular array
exp(—L/1§), signaling the formation of the insulating phase. as functions of the concentrationof ECP’s,
In the insulating phase, the energy gap for the mobile

excitations scales a8 ¢ 1. For this reason, the boundary of = +(0)—Ex{(I-g)cosrq+ 7 sinmq},  (27)
the insulating phase near the critical point is given by

_4eE; sinmq @
m,=(Ep)=m=alUg(1)/€, (24) D=0 T=q oy (28)

with «~1. The upper curve in Fig.(B) corresponds to an  for |d|<®dy/2. These dependences are presented in Fig.
extrapolation of Eq(24) from the neighborhood of the criti-  2(c).

cal point to lower values o, [1.56U4(1) <E;<E{"]. This

extrapolation is joined to the extrapolation of the perturba-
tive result(23) to infinite order inE; [drawn in the range ) o ) . . )
E,;<1.56U,(1)]. A smooth connection of the two curves oc- Finally, in view of possible experimental implementation,

C. Finite-size effects

curs fora=1.73 (andb=2). we discuss effects which are specific for finite-size circular
For completeness, we present the mean-field result for thafrays. If the sizé. of the array is commensurable with the
phase boundary?® spacingl of the superlattice of ECP’s, the Josephson current

is exponentially small in the insulating phase. However, if
L/l is not an integer, a number adsidualmobile excitations
(E,)= L6 /1_ 2E, 25 remain in the array in the insulating phase,
K== = M=o Uo()’ w—(Ey)<m<m (Ey). In the lower part of this range,
_ . o . _ w —(Ej)<u<pu o(E;), there arem=mod(,l) residual
Although this expression coincides with B3) to first or-  exitations(bonds of the length+1) in the ground state.
der inE;, the overall shape of the bounddiiyig. 2b)] and  one ECP’s enters into the array @t u, o(E,). As a result,
the critical value of the Josephson enet‘éﬁ) differ consid-  for woEy)<u<m +(Ej) anew grouﬁd state will contain
erably from the results discussed above. The reason for the-m residual excitationgbonds of the lengti—1). The
failure of thg mean—f_ield a_pproach is the absence of longthreshold chemical potentiak, o(E;) can be evaluated by
range order in one dimension. comparing the energies of the residual excitations in both
cases,

B. Superconducting phase

We consider now the incommensurable superconducting i o(Eg)=[mu; _(Ep)+(I—m)w (E)T/I. (29
phase and concentrate on the case of small Josephson cq I ce  each excitation contributes an  amount
pling, E;<Uq(l). In this case the incommensurable phase™" ™~ 5
exists in narrow regiongy, - (E;)<u<pu_1_(E,) of the l1cp=(4meE;/hL?)(P/Dy) to the Josephson curreptf.

width (21— 1)E, between two commensurable phases with=9" (17) with »=1/L], the latter shows a jump

v=11 and»=1/(1 - 1) [Fig. 2a)]. Al=|I=2mllicpat = pi o(Ey).-
In this region the ground state can be well approximated
by the configurations of ECP’s containing bonds of length V. CONCLUSIONS

I andl —1 only. These configurations form a reduced space In this paper we have investigated uniform 1D Josephson
of states. The other configurations can be ignored since the pap 9 P

. S arrays in the charging reginte->E;. We considered a re-
gp?ﬁ%y::(;gre ESS d(ﬁ’)ou:i::]e?gtrmggeﬁg?t;rrd);?]gil avle:Sa e alistic long-range(but screened Coulomb interaction and
A 9 9€ concentrated on the case of low charge frustration which
energy~ E; per bond in the ground state.

The problem(8) in the reduced space is equivalent to provides a low concentration of extra charg€soper pairs

impenetrable Bose particlébonds of lengtH —1) on a lat- in the array.

. . . This regime can be described by an effective low energy
tice formed by all the bondgquivalently, one can consider Hamiltonian (6). We found a crossover from the Bose gas

the bo?ds t())ft\ll\c;:‘ngththas partlt(_:kla}‘. N?"Feht_hat there is no ﬁgase to the Wigner crystal phase with increasing concentra-
Interaction between these particies which IS a CoNSEqUENCE P, ot ayirg Cooper pairs. At still higher concentrations the

the fact that only the interaction between neighboring ECP’sSystem enters the superlattice regime. In this regime a true

was taken into account i8). The concentratiog=N, /N of phase transition between commensurdbisulating and in-

bonds of lengtH —1 can be expressed via the concentration ;
. commensurablésuperconductingphases occurs. We found
v=N/L of ECP's, q=l—-v"! [0<qg<1 in the range ésup 9p

. . a simple structure of the phase diagram. In the insulating
M <v<1/(1-1) under consideratidn The energy of the 156 the extra Cooper pairs form a regular superiattice with
system is then given by the periodl, whereas the superconducting phase can be
viewed as a gas of fractionally charged excitations on the
sin(wq) __ lattice.
E=- EJC0$W—[M—M|,+(0)]N' (26) The boundary of the commensurable phase can be deter-
mined analitycally for small Josephson coupliBg<U (1)

where the first term is the energy Nf, impenetrable bosons [using perturbation theory; see EQ3)] and in the vicinity
on the lattice. Using Eq26) we obtain the chemical poten- of a critical pointESC’) [by mapping the problem onto clas-
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sical XY model; see Eq(24)]. We have also computed the ACKNOWLEDGMENTS

Josephson current through a circular array pierced by a mag-

netic flux (for all the phasesand considered the effects of a | would like to thank Yu.V. Nazarov and A. Shelankov
finite size of the array. for useful discussions and P. Hadley for a critical reading of

There is clearly a need for future investigations, such ashe manuscript. The financial support of the European Com-
an analysis of effects of disorder due to the offset chargemunity through Grant No. ERB-CHBI-CT94-1474 is grate-
(potential disorderand due to nonuniformity of the Joseph- fully acknowledged. This work is also a part of INTAS-93-
son coupling(kinetic disordey. 790 project.

1Single Charge Tunnelingedited by H. Grabert and M. H. De-  &For simplicity we omit logarithmic factor in this estimate; see Eq.
voret Vol. 294 of NATO Advanced Study Institute, Series B:  (12).
Physics(Plenum, New York, 1992 Chaps. 7, 8. ®Formally,H can be mapped also on the Hamiltonian of fermions
2M. P. A. Fisher, Phys. Rev. Letb5, 923(1990; H. S. J. van der on the lattice; see Ref. 10.
Zant, F. C. Fritschy, W. J. Elion, L. J. Geerligs, and J. E. Mooij, 1°F H. Lieb and W. Liniger, Phys. Revl130 1605 (1963;

ibid. 69, 2971(1992. M. Girardeau, J. Math. Phy4, 516 (1960.

3M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,'*F. D. M. Haldane, Phys. Rev. Let7, 1840 (1981); D. Loss,
Phys. Rev. B40, 546 (1989; E. Roddick and D. Stroudpid. ibid. 69, 343(1992.
48, 16 600(1993. 12p, Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Létf, 2020

4J. K. Freericks and H. Monien, Europhys. Le26, 545 (1994); (1993.
Phys. Rev. B53, 2691 (1996. 133, Hubbard, Phys. Rev. B7, 494(1978.

5C. Bruder, R. Fazio, A. Kampf, A. van Otterlo, and G. Ssho *Fractionally charged excitations occur in 1D systems like charge
Phys. Scr42, 159(1992; C. Bruder, R. Fazio, and G. Saho density waves and polymer chains. These systems are more
Phys. Rev. B47, 342(1993; A. van Otterlo, K. Wagenblast, R. complicated than a Josephson array because of the presence of
Baltin, C. Bruder, R. Fazio, and G. SahoPhys. Rev. B52, the electron and phonon subsystems; see, Elgctronic Prop-
16 176(1995. erties of Quasi-One-Dimensional Compoundxiited by P.

5G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi, and A. P. Kampf, = Monceau(Reidel, Dordrecht, 1985
Phys. Rev. Lett74, 2527(1995. 15R. M. Bradley and S. Doniach, Phys. Rev.3B, 1138(1984.

"A. A. Odintsov and Yu. V. Nazarov, Phys. Rev. Bl, 1133  16J. M. Kosterlitz and D. J. Thouless, J. Phys6C1181(1973;
(1995. J. M. Kosterlitz,ibid. 17, 1046 (1974).



