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Domain-wall coercivity in ferromagnetic systems with nonuniform local magnetic field
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Domain-wall (DW) coercive field,Hcy, which characterizes pinning of DW's in soft magnetic materials,
decreases strongly with increasing value of gradient, G, of the effective local DW-position-restoring magnetic
field. Particular shapes of the dependentg,(G), can be calculated from the mean energy dissipation of the
DW moving over the particular profile of the DW pinning field, . In this paperHcw(G) is calculated from
a wall-pinning field,H,, which is expressed as a stochastic function of the DW coordinglg, The
wall-pinning field,H,,, is described as a Wiener-e stochastic process modified by two correlation lengths
in such a way thaH , is stationary for large DW displacements aiid,, /dxpy is well defined for small DW
displacements. The computétl-,\(G) is close to a hyperbolic decrease, but it approaches finite values if
G—0 and it decreases in a much steeper way thdifG for high values ofG, which agrees with the
experimental observations. Experimentally, the dependeiRgg G) was measured on close-packed arrays of
cylindrical bubble domains in two thin films of magnetic garnets, where the local field gra@entias
controlled within the range 10-10'° A/m? by changing distances between neighboring DW’s. The DW
coercive fieldHcy, extrapolated from the measured values@s# 0 was close to 80 A/m for both samples,
while Hoy(G~10° A/Im?) was several times smaller. Fitting the calculatég,(G) dependence to the
experimental data, we obtained values of the WienaryLeorrelation lengths well comparable to the DW
width parameterd.S0163-18206)00941-1

I. INTRODUCTION H;i (Xpw) = GXpw+ Hp(Xpw), @

Coercive properties of magnetic materials and the relatedihere xp,, is the DW position andH, is the wall-pinning
width of their magnetic hysteresis loops are caused by sewfield expressed as a stochastic function of the DW position
eral different magnetization mechanisms. The main ones ang,,,. The termGxpy, is an odd function ofkpy,, and it is
sudden flips over or rotation of the magnetization vector in-associated with the presence of some large-scalmpared
side magnetically saturated volum@®mains and/or graifns  to the mean period of the wall-pinning fietd;) parabolic
generation and annihilation of magnetic domains and domaignergy well, which controls the average response of the
walls (DW'’s), and movement of the already existing domainDW'’s to external fields. We will often refer to it as the mean
walls through the nonuniform material. The latter processfield gradient experienced by the DW. On the other hand, the
namely the pinning and depinning of domain walls duringwall-pinning fieldH,(xpw) is a random function of the DW
their motion, is often dominant in soft magnetic materials. position, describing the short-scale DW interaction with de-

The aim of the present work is to investigate the mechafects and other sources of the structural disorder. In Fig. 1 we
nism of the hysteretic behavior of the moving domain walls.see a schematic representation of the effective domain wall
In particular, we study the influence of nonuniform internalenergy and its derivativé.e., of the internal DW position-
effective fields and/or of nonuniform external real fields ap-restoring fieloH; vs the domain-wall positior), for low and
plied at the wall position on the hysteretic properties of thehigh field gradients. In the frame of this description, the field
wall pinning and depinning process. Both the experimentapradientG and the wall-pinning fieldd ,(xpw) are the only
study and the accompanying theory are carried out for such physical quantities that determine the half-widHhg,y,, of
magnetic material, sample geometry and an applied fielthe quasistatic hysteresis loop generated by the DW motion,
range that ensures the whole investigated change of thahich can be truly called the DW coercive field.
sample magnetic moment to be exclusively due to motion of The calculation oH¢yy is the basic problem in any de-
180° DW's. scription of the DW hysteresis and coercivity properties.

In our treatment, the internal DW position-restoring field, In the literature, the large-scale wall-position-restoring forces
H;(Xpw), experienced by the moving DW is described as acting on the domain structurfanalogous to the term
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Hcow(G) by a statistical approach, where the wall-pinning
field H,(xpw) was described by a modified Ornstein-
Uhlenbeck process. They predicted the DW coercive field
Hcwe 1/G, with suitable cutoffs at low and high values of
the field gradientG. In the present work, this approach is
developed in full detail, and thd -(G) dependence is de-
termined by analytical and numerical methods, as a function
of the statistical properties of thid,(xpy) stochastic pro-
cess. The theoretical predictions are compared with the ex-
perimentalH(G) dependence measured on two magnetic
garnet films with cylindrical bubble domain structure. In the
experiments, the field gradie@ was changed in the range
10°-10%° A/m? by modifying the bubble size and density.
The comparison between the theory and the experiments
leads to a quantitative estimate of the typical wavelength of
FIG. 1. Schematic representation of the domain structure energfpe structural disorder space variations, which is in agree-
(top) and of its derivativdi.e., of the related internal DW position- ment with what is expected for the investigated materials.
restoring fieldsH;(x)] (bottom vs the dimensionless domain wall The problem addressed in this article is of a general na-
position,x, for low (left) and high(right) field gradient,8, respec-  ture and it is at the heart of the hysteresis mechanisms. The
'[iVE|y. The energy and the effective fields consist of two COMpo-gctual origin of the effective restoring fOfC@,XDw, is not
nents: the short-range stochastic fluctuations due to the local Wa”nportant in determination of the coercivity reduction. It can

pinning and the long-range parabolic energy well. The magnitude OBe due to an externally applied real nonuniform figk
the field gradient in the right figures is 15 times larger than in the

left figures. It is obvious that the range of quasiequilibrium DW considered by Ref.)7or to the.general rate .Of change of the
positions is much wider if domain wall is in low gradigifeft) than energy of the sample domain structu@s in the present
if it is in high gradient(right). Therefore the hysteresis losses are €XPerimentsor to the sample geometry, or to other causes.
lower for domain walls constrained at their positions by higher fieldOnly the magnitude of the field gradief is important in
gradients. Compare the corresponding Barkhausen jumps repréetermining how much the DW pinning is suppressed in
sented by the arrows in the bottom figures. comparison with a free DW@& = 0) which exhibits the

. . , largest value of the DW coercive fieldc\(0). As aconse-
Gxpw of Eq. (1)] are readily recognized to determine the ,ance of this generality, thec,(G) dependence is likely
permeability, ., of the system, but their possible influence v, pe yesponsible for such rather peculiar, not yet well de-
on the value of the DW coercive fieldcy is rarely taken scribed effects, like théd o, dependence on domain struc-

Into consu_jeranon as itwas dof“?' €.g.,In Refs.'4—'7. Ye't, thi ure subtle features or on the size and shape of the sample,
influence is by no means negligible and the principal aim o . :
experimentally observed on various materfals.

the present work is to extend the latest considerations and {0
give theoretical and experimental support to this statement.
The basic point is that the DW coercive fieltl.,, is ex-
pected to be a decreasing function of the field grad@nt IIl. MODEL

The effect of the field gradier® on the DW coercivity A. General considerations
was measured directly by Grigorenkoal’ on thin films of ] ] )
low magnetization magnetic garnets with large uniaxial an- N 0ur model calculations, we consider a certain part of a
isotropy perpendicular to the film plane. A system of spe-given sample, with just one rigid plane 18DW, character-
cially designed permanent magnets was applied for generdzed by its position coordinates,y . We neglect any effect
tion of the field gradient(, around the position of a single related to the internal DW degrees of freedomall flexibil-
DW, the magnitude of5 being changed by positioning of ity, internal deformation modes, ecin this sense, all the
the pole pieces. An additional uniform field,, was applied quantities introduced here are to be interpreted as averages
to move the DW. The DW coercive field,, was found to  over the whole DW surface. We assume that the DW sweeps
decrease approximately linearly with the field gradi€ntip ~ the distance R (with —I<xpyw=<I) when the sample is
to G~2.2x10° A/m?2. The measuredi,, was equal to zero brought from saturation to saturation, which means thas 2
(within the experimental errdabove this critical value, i.e., of the order of the average magnetic domain size. Finally, we
the observed DW moved without any measurable hysteresigssume the problem to have a scalar nature, with all fields

energy [arb. units]

loss. and magnetization vectors aligned along the same direction,
Calculations based on a simple schematic description gbarallel to the DW surface.
the wall-pinning fieldH, led to the conclusici™’ that the In order to calculate the DW coercive fielticy, we

DW coercive fieldHcy should be approximately a linear have to evaluate the amount of energy dissipation during the

function of the field gradientG, of the form Hcw(G) DW motion. This can be done if we know the equation gov-

=Hcw(0)—aG, with a being a suitable constant and erning the DW dynamics. The simplest assumption, sup-

Hcw(0) the coercive field of a DW free of any position- ported by many experiments on various matetfdiSis that

restoring force. the DW motion has a viscous character, and thus obeys an
Recently Pst and Bertotfi calculated the dependence equation of the form
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(G7)vow=Ha(t) ~ Hi(Xow) =Ha(t) = Gxow—Hp(Xow), dE dH, /dt
Tvow oW oW DW(Z) <a>:2|SHDW<UDW>:2|sHDW?- (5)

wherev pyw=dXpy/dt is the DW velocity,H,(t) is the ap- Equation (5) is valid for constant rate of field sweep
plied field, assumed to be a known function of time, anddH,/dt. On the other hand, after taking into account that the
H;(xpw) is the DW position-restoring field discussed in the energy associated with the ter@xp,y is reversibly stored
introduction[Eq. (1)]. The damping coefficient multiplying and released and that the wall-pinning fiélg is zero on the
vpw in Eg. (2) is determined by the dissipation mechanismaverage taken over the stochastic fluctuations, we obtain
acting on the system. By expressing it &, we introduce  from Eg. (2):

the characteristic time constantof the process. In metallic

materials, where the dissipation takes place dominantly 2

through eddy currents@7) = 21 o yd, wherel is the satu- <E> =21(G7){vow)- ©®
ration magnetizationy is the electric conductivityd is the

sample thickness, angis a numerical factor ¢~ 0.1356 for By comparing these two expressions for the energy dissi-

I>d (Ref. 12. In nonconducting systems, dissipation may pation rate, we obtain
be due to other mechanisms, like spin relaxation, a&d)(

generally attains much smaller values. <U%w>
According to Eq.(2), the set of the DW rest positions HDW:(GT)ma (7)
(vpw = 0), which is described by the quasistatic magnetiza- bw.
tion curve of the system, obeys the equation which links the value of the coercive fieldp,, to the sto-
chastic character of the DW velocitypy. The quantity
Ha(t) — GXpw—Hp(Xpw) =0 . 3) Hcw previously introduced is just the quasistatic limit of
Hpw:
Since, as discussed below],(xpy) values fluctuate <U%W>
around zero, th&py(H,) dependence averaged over the sto- Hew=(G7) lim . (8
chastic fluctuations is simplyxpw)=H./G. This result (vow)—0 {vow)
shows that the field gradienG, is directly related to the
slope of the magnetization curve=1/(Gl), averaged over In the numerical studies presented below, a small but nev-

the stochastic fluctuations. Any individual magnetizationertheless finite DW mean velocity must be used. In this case,
curve, however, will show irregular deviations from this av- the purely dynamic tern) can give an additional contribu-
erage behavior, as a consequence of the random fluctuatiofign which alters the value of the DW coercive figtth,y .

of the pinning fieldH ,(Xpw). H, is proportional to the local  To avoid this spurious effect, the pure dynamic part was
gradient of the DW energyH ,(Xpw) =[ dow(Xpw)/dXpwl/ always subtracted from the numerical estimates, Heyy
(21,). Due to the nonuniformity of the sampluctuations Wwas evaluated as
of anisotropy, exchange, defects, gto.,(Xpy) fluctuates

randomly around some constant average valag(Xpw))- _ <U2DW> _

This means, that the DW cannot store energy during its mo- Hew~(G7) (vpw) {vow) ©)
tion, and consequently that the wall-pinning fietgh(Xpw) .

fluctuates around zero. for small DW velocityv py -

B. Energy losses and magnetic hysteresis C. Stochastic pinning field, Wiener-Lery process

In the frame of the present description, the microstructural

Given the viscouslike dynamics described by Ef), ; . ) ) "
where the DW velocity is proportional to the local magnetic prqpertles of a given material (_1eterm|ne the statistical prop-
erties of theH,(xpw) stochastic process, and we have to

field, there is always a finite dynamic width of the hysteresis DV A .
loop, Heyn, for a given finite rate of change of magnetiza- make some explicit assumption on such properties before

; ; ; . ) being able to make any quantitative prediction for the sys-
tion, even without any static DW pinning(H ,=0): S .
’ y pinnig(H,=0) tem. Investigations by several authtdrs' on picture-frame

single crystals containing a very simple domain structure
Hayn=(Ha—Hi)=(G7)(vow)- (4)  have shown that the statistical properties of the wall-pinning
field H, are not far from those of a Wiener-yg (WL) pro-

However, if the random pinning field,, is also present, cess, 1.e.,

there is an additional contribution to dissipation, and a more
refined analysis is needed. In this case, an estimate of the dH, _ dw
pertinent coercive fieldH 5y, can be obtained by comparing dxpw dXpw'
two different expressions for the mean energy loss during the ) i i
DW motion. On one hand, we know that, given a DW hys-Where the WL proces#/(xpy) is characterized by indepen-
teresis loop with the half-widthHp,,, the mean rate dentincrementsl\W obeying the equation

(dE/dt) of the energy dissipation per unit time and unit DW ) )
area is (dW)=0, (|dW|*)=2(A}/&;)dxpw, 11

(10
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where Ay is a parameter with the dimension of field that
measures the WL process intensity &pjds a proper corre-
lation length, used later in this section.

DOMAIN-WALL COERCIVITY IN FERROMAGNETIC ...

A WL process is self-similar on all scales, and this has

two important, but rather unphysical consequendéésithe
processN(Xpy) is nonstationary in such a way that the wall-
pinning field H, can reach arbitrarily high valueg2) the
processW(xpy) is nondifferentiable at any point. The de-
rivative dW/dxpy used in(10) is actually only a formal
notation to indicate a white noise process.

The fact thalW is nondifferentiable implies that the slope

dH,/dxpyw cannot be defined no matter how small is the

DW displacement irxpy, . On the contrary, we would expect
that, on the averagedH,/dxpw>(1/x;), where yx; is the

12 265

dhijh B ds s_ldw 15
ax TS0, L T L ax (15)
(dw)=0, (|dw|?)=2dx. (16)

The dimensionless coercive fieldg,,, can be expressed
similarly to Egs.(8) and(9) as

(v?)

U2
(% -

hCW:ﬂ I|m el
(v)—0 (v)
where the equation to the right is valid for small DW veloc-
ity v. The evaluation of the coercive fiel., is thus re-

Y

hew~B

initial susceptibility. In order to overcome these drawbacksduced to the problem of the evaluation(@®) and(v).
we describe the stochastic behavior of the wall-pinning field

H,(Xpw) by including two finite correlation lengthg; and

&> (£1<¢&,), into the WL process. The physical meaning of

the correlation lengths is followingil) for Axpw> &, the

pinning field H,(Xxpw) becomes stationary and fluctuates

within a finite range; (2) for Axpw<<&; the slope

dH,/dxpy attains a well-defined value related to the local

short-scale initial susceptibility of the DW at that position.

The short-scale susceptibility is given by local properties o

the wall-pinning fieldH, and it is in general very different
from the large-scale susceptibility;1/G, corresponding to
the large-scale slope of the hysteresis loop.

These features are described by the set of coupled Lange-

vin equations

dH,
dXpw

Hp : ds ' S_1 dw

= =SXow), Tt =% :
& oW dxpw &1 &1 dXpw
where the WL proces®/(xpy) is characterized by Edq11)

and S(xpy) describes the slope 1, .
It should be noted that E¢12) can be rewritten as

+

12

dw _Hp+(1+ gl) dHy |, FHy
dXpw &2 &) dxpw “rdxGy’

which gives in the limit of lengthg; —0 and§,— =« just Eq.
(10).

D. Dimensionless description

E. Pure WL process

As a first step, we calculate the DW coercive field for a
stochastic pinning fieldd,, following the pure WL process
[Egs.(10) and(11)], i.e., for correlation lengthg;—0 and
&,—, which impliesae—0. In such a simple case, when
a(ds/dx) is negligible in comparison taw/dx, so that
dh,/dx)+h,=(dw/dx) according to Eq(15). In addition,
since the correlation lengtf,— o, we have to consider DW
displacementsAx<1, which implies that the wall-pinning
field is given just by the WL stochastic process,
hp(X)~w(x). In this case, by taking the time derivative of
g. (14), we obtain

dv

du

1dw
3 du (|dw|?)=2dx=2vdu.

(18

+(w—{(v))=

The stationary probability densi®y, for the values of the
DW velocity v at a generic timei is obtained by solving the
stationary Fokker-Planck equation associated with (E§).

1 d[Upo] _
[(v_<v>)P0]+FT_O’ (19
which gives
Po(v)xv® le A%, c=p%(v). (20)

We can introduce a convenient dimensionless description |n order to calculate the DW coercive fielgy, we need
by normalizing the relevant quantities with respect to theto evaluate(v?) from the probability distributiorPy, :

distanceé,, time 7, field A, and gradientAy /&, in the
following way: DW positionx=xpy /&5, time u=t/7, DW
velocity v=dx/du=rvpy/&,, magnetic fields h,(u)
=Ha(t)/Ay, hy(X)=Hp(Xpw)/An, coercive field hey
=Hcw/Ay gradient B=G& A, slope
s(X) =S(Xpw) &2/Ay . The correlation lengths are character-
ized by their ratioa=¢,/&,, while the dimensionless WL
process isvn=W/Ay .

In terms of these quantities, the basic equati@ntakes
the form

Bv=hy(u) — Bx— hp(x)-
Equations(12) and(11) become

(14

(v)

B

By substituting Eq(21) into Eq. (17) we obtain the DW
coercive field

<v2>=f:v2Po(v>dv:<u>2 %(ﬂc). 21

1

Al &
hCW:E, .

ow=—g (22
It should be noted that this result is meaningful if the param-
eter of the WL process, is chosen in such a way that the

ratio Aﬁ/gz remains finite for the correlation lengtjz—o°.
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FIG. 3. Schematic plot of a hexagonal array of bubble domains
in a thin film with large uniaxial magnetic anisotropy perpendicular

FIG. 2. The dimensionless domain-wall coercive fielgy, to the sample plane. The bias field,, applied parallel to the
calculated numerically for finite correlation lengthis, and &,, for magnetization vector inside bubbles makes the bubbles large, and
constant ratioa=¢;/é,= 1, 0.1, and 0.01 for a wide range of pushes DW's close to one another. Consequently, the position of
values of the dimensionless field gradighitalong with thehcy DW'’s is more restricted by the domain structure eneegyie., the
«1/G dependence evaluated according to @) for the pure WL  local field gradientG, experienced by DW's is large and the mea-
process(i.e., for a = 0). Asymptotic behavior for very small and sured DW coercive fieldH .y is low. Under theH, antiparallel to
very largeg values(in the range not accessible by experimgtigs  the bubble magnetization, the bubbles are small and the DW'’s are
also clearly seen in this plot. far from one another. In this case the field gradiénts low and

Hcw is high.

Equation(22) gives a hyperbolic decrease of the DW co-
ercive field Hey with increasing magnetic field gradient, exponentially with the field gradiens, i.e. much more
G, independent ofvpy). The divergence iHcy, for zero  strongly than 18. These numerical curves are the basis for
gradient,G, is a consequence of the absence of any limit orthe interpretation of the experimental results presented in the
the correlation lengthé,. A more realistic situation is ob- following section.
tained when finite correlation lengtlis and &, (i.e., finite
a= 5_1/52) are considered, as discussed in the following sub- Il EXPERIMENT
section.

DW hysteresis in samples of magnetic garnet films with
chemical compositioflYSmCa 3(FeGe 504, (sample no. 1
and (YSmCaly ;(FeGg 50, (sample no. 2was measured

No simple analytic results could be obtained for finite and the results compared with the above model.
@, so that this case was studied by computer simulations. A Thin film samples of thickness], were grown by the
proper statistical ensemble of pinning field profiles was gentiquid phase epitaxyLPE) method on(111) gadolinium gal-
erated through Eqs15) and (16). On the basis of these lium garnet(GGG) substrates. Due to the growing conditions
profiles, the behavior of the DW velocity was numerically  of the preparation process they exhibited large uniaxial an-
generated from Eq14) and the DW coercive fieltic,, was  isotropy, K,, with the easy axis of magnetization perpen-
estimated by Eq(17). Calculations were performed as func- dicular to the film plane. The original cubic crystalline an-
tions of the field gradieng, for three different values of isotropy of the garnet material was negligibly small with
a= 0.01, 0.1, and 1. All the simulations were performedrespect to the induced uniaxial one. The saturation magneti-
under sufficiently small mean dimensionless DW velocityzation, |, inside all domains was perpendicular to the film
(v), in order to avoid spurious dynamic effects. According toplane and the metastable close-packed bubble domain struc-
Eg. (20, the quasistatic regime is attained whenture of the type shown in Fig. 3 was produced by magnetiz-
c=pB%v)<1. All calculations were performed at=0.1. In  ing the samples up to the saturation in their planes and by a
addition, the DW coercive fieltic,y was evaluated from the subsequent slow decrease of the applied field down to zero.
approximate expression given in Hd.7), in order to correct The basic parameters of the samples chosen for the hys-
for any residual dynamic effect. teresis experiments were determined at room temperature by

Results of these numerical simulations fe= 0.01, 0.1, standard methods for bubble garnet film characteriz&tion
and 1 are plotted in Fig. 2. The dependence of the DW coand they are listed in Table I.
ercive fieldhcyw=1/8, corresponding to the pure WL pro- The low-frequency (200 H2 domain-wall oscillation
cess @=0) is also given. For finitew values where the method based on the response of the domain system to a
statistics of the pinning field is considerably affected, thesmall ac magnetic field perpendicular to the film pfneas
results clearly show a large departuretgjy from the 18 used to determine the domain wall coercive fidit,,, of
dependence. In the low-gradient regigh<€1), thehqy de-  the samples. The fielddy, was measured in each sample
pendence on the field gradieptis much weaker than the on a series of the bubble domain structures whose geometri-
1/8 function, while in the opposite limit of very high gradi- cal parameters were changed step by step by an externally
ents, 8, the coercive fieldhqy, decreases approximately applied static bias fieldd,, normal to the sample plane, see

F. Numerical solution for finite a
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TABLE I. Parameters of the thin film samples: thicknaks
saturation magnetizatidny, uniaxial anisotropy consta#t, , char-
acteristic material length, normalized to the sample thickneds
and the domain-wall width parametep,,=A/K,, where
A~2.05< 1072 J/m is the exchange constant of garnets.

Sample d Ig Ky A Sw
No. (um)  (mT)  Qmd) 1 (nm)
1 53 20.0 634 0.09 57
2 2.8 23.8 1510 0.30 37

Fig. 3. A typical result of the DW coercive field cyw(H,)

measurement is shown in Fig. 4. While density of bubble
magnetic domains is constant, size of particular domains

changes significantly by application of bias magnetic field
H, as indicated by insets in Fig. 4. While for small domains
with DW's far from each other the gradie@® of the effec-
tive local DW position-restoring magnetic field is small and
consequently the coercive fieldcy is large (right side of
Fig. 4), in opposite bias field the DW’s of bubble domains
are close to each otheg is large, andHcyy, is small (left
side of Fig. 4.

Using the magnetic parameters of the samples and the
geometrical parameters of their domain structures at different

bias field valuesH,, the effective local field gradients,
G=G(H,), were computed according to the formulas given

N FERROMAGNETIC ... 12 267

107"

B=G EJSAL)

in Ref. 5. In dimensionless variables, the measured DW co-

ercive field,H¢cyw, was normalized to the parameter of the
WL processAy and the gradients, computed in this way
was normalized toAy/&,. The normalization parameters
Ay andAy /&, were used as variable fitting parameters to fit

H,,, [A/m]

Hy [kA/m]

o

FIG. 4. The dependence of the DW coercive figl;,,, mea-

FIG. 5. Experimental dependence of the measured DW coercive
field, hcw, on the local magnetic field gradiegt, evaluated from
domain structure modificatior(see Fig. 4 of sample nos. 1 and 2.
The experimental data were fitted independently to the three curves
calculated for ratios of the correlation lengths=¢,/&,= 1 (full
circles, 0.1 (open circley and 0.01(squares The values of the
normalization parameters were used as the fitting parameters:
hcw=Hcw/Ay and B=G/(Ay/§,) (see Table ). The quality of
fit is very comparable for all three values af and so it is not
possible to determine in this way the bestvalue. However, we
believe that the valuer = 1 is probably the closest to the real
situation. The dashed line corresponds to the unrealistic pure WL
process & = 0). The fits of the theoretical linear approximation
discussed in Ref. 5 are shown as the dotted curves for each of the
samples.

the dependence of the dimensionless experimental coercive
field, hcw=Hcw/Ay, on the dimensionless field gradient,
B=G&, /A, to the computed dimensionle$g\(B) de-
pendencies. The experimental data of both samples were fit-
ted to thehqyw(B) curves, which were calculated indepen-
dently for the three values of the ratio of the correlation
lengthsa=¢,/¢,= 1, 0.1 and 0.01. The result is summa-

sured on a hexagonal array of bubble domains in sample no. 1 3t;ad in Fig. 5 where all computed dimensionldssy(5)

various bias field,H,, parallel (negative, left and antiparallel

dependencies are plotted along with the fitted experimental

(positive, righi to the magnetization vector inside the bubbles.da,[a Values of the fitting parameters are in Table I
Computation of the eye-leading curve was based on a best fit third- '

order polynom. Changes in domain struct(@empare to Fig. Bare

illustrated in two circular insets corresponding to large positive and

negative applied fieldd,, respectively: The period of the domain
structure keeps constant but the DW positions chdityz bubble
domain diameter varigsfrom one experimental point to another.

IV. DISCUSSION
A. Domain structures

Generally, there are several different contributions to the

Hcw Changes considerably with changing distance between neigtguasistatic hysteresis losses which occur during any change

boring DW's.

of the magnetization state. While the contribution due to sud-
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TABLE Il. The parameteA of the WL process and the corre- with the cylindrical bubble domain structure were used in
lation lengths¢; andé, of the pinning field obtained from the fitof our experiment and the relevant formulas fromere used
the experimental data to the curves calculated for three differenfor determination of the magnitude of the field gradiénin
assumed values af=¢,/é;= 1, 0.1, and 0.0see Fig. 5. The — pybble domain arrays with different diameters of bubbles.
value of A,/ &, characterizing the WL process is also presented.  an external uniform magnetic fieldi,, along the easy axis
of magnetization of the samples changed the bubble diameter

Sample  « An &1 &2 ﬁﬁ/% , easily, see Fig. 3. By application &f,, values of the field

No. @0 Am  (m) (nm) (107 A%/m°) gradientG were varied within the ratio of about 1:5.

1 1 350 64 64 19

1 0.1 200 10 100 4 _ , .

1 0.01 350 48 480 26 B. Effective local field gradients

2 1 140 7.4 7.4 27 It was shown in Ref. 5 that pressures acting on the domain
2 0.1 60 0.6 6 6 walls in any domain structure originate from the shape of the
2 0.01 55 0.085 8.5 3.6 domain structure energy, They can be understood as being

due to presence of nonuniform effective internal fields,
H;(Xpw) ~ (de/ dxpw), and the shape df;(xpy) close to
den flips over of the magnetization is mostly linked with any equilibrium DW position can be describegp to a linear
extreme material parameters and/or with extreme geometrgpproximation with the aid of effective field gradients at the
of the material grains, and while the contribution due to ro-wall sites,H;(x) ~Gxpy. This approximation was subjected
tation of the magnetization vector inside magnetic domainso the statistical analysis of the present paper. The analysis
or grains is generally negligible, the recorded quasistatic hyssame to the conclusion that the larger is the field gradient
teresis losses are usually caused by generation and/or an@,; the more effectively it decreases the sensitivity of the DW
hilation of magnetic domains and domain walls and by transto feel presence of the wall pinning defects. This drop of the
lation of the already existing domain walls through thewall sensitivity brings about a decrease of the sample DW
nonuniform material. We study the latter process in this pacoercive field and of the static hysteresis losses. It is impor-
per, namely the pinning and depinning of domain walls intant to emphasize at this point that the effective field gradi-
soft magnetic materials. In order to investigate the coerciv%nt,e~(32£/axéw), is composed of at least three effective
fields caused by the pure DW pinning and depinning onlyield gradient contributions, expressed as the second deriva-
we keep such experimental conditions and the DW geomtives of the demagnetizing energy, of the domain-wall en-
etry, where contributions of any DW generation and annihi-ergy, and of the Zeeman energy, together, and iisiden-
lation, and of any rotation of the magnetization vector can bejcal with the real demagnetizing field gradients existing at
neglected. the sites of the walls. The real demagnetizing field gradients
The necessary condition for experimental verificationexisting at the DW positions are only one component of the
which describes the presented theoretical model of the relaptal G value.
tionship between the efficiency of pinning of the domain  The effective local magnetic field gradients, can be
walls by the sample random defedise., the value of the changed and controlled in various ways. In case of a single
DW coercive field,Hcy) and the magnitude of the large- domain wall a straightforward application of axternal
scale position stiffness of the domain walls within the do-magnetic gradient fielccan be used.In periodic domain
main structure of the samplelescribed by the effective local structures, changes dfmensions of domairisy application
field gradientG), is the requirement of uniformity of the of an external uniform fieldH,, is the easiest way of influ-
type, of the quality and of the identical local conditions of all encing the field gradien®. Variation of dimensions of the
the domain walls involved. In other words it means that thesamp|epresents another way of Changi®9
investigated domain structure in the sample should be regu- |n the present model, energy dissipation and coercivity
lar and periodic. Such domain structures not only insure obgre derived from the existence of DW Barkhausen jumps.
taining equivalent response to identical applied field excitaThege jumps are due to the fluctuating character of the
tion of any of the walls but they also make it possible tojnternal DW position-restoring  field, H;(Xpw) = GXow
determine the total area of the yvalls, to express the tc_)ta.L Ho(Xow)- A local position of the DW expressed by HG)
energy of the domain structure in a reasonable analyticgk staple if the SIOpeQ+de/dXDW)XDW>Oi and it is un-

shape, and to normalize the calculated values to unit DW .
area. Uniaxial plane-parallel magnetic garnet films prepareatable i (G+de/dXDW)XDW<O' When the DW reaches a

by liquid phase epitaxy support domain structufesy., a local maximum, G+dH,/dxpw)x,,, =0, it irreversibly
system of parallel stripe domains magnetized alternativeljumps to a new stable position and dissipates some energy.
“up” and “down” perpendicularly to the sample plane, or a The pinning fieldH,(xpw) has an equal proportion of re-
close-packed array of cylindrical bubble domains, see Fig. 2gions wheredH,/dxp is positive and negative, but this
with the required regularity, periodicity and the mutual proportion is altered by the presence of the te@mpyy,
equivalence of all the domain walls. The range of the locawhich favors local positive slopes. With increasifg the

field gradients at the DW positions reached by field modifi-system progressively becomes more stable, the average size
cations of the bubble domain structures is considerably wideof Barkhausen jumps becomes smaller, and the associated
(by about one order of magnitudhan the range of the field energy dissipation is reduced. This is the basic mechanism
gradientG reached by similar modifications of the stripe responsible for the decrease of the DW coercive flaldy,
domains’ Therefore, samples of the magnetic garnet filmswith the field gradienG. In the case whefs is so large that
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it compensates any local negative slopeHig(xpw), we get  field Hcy for large G values in Fig. 2. On the other hand,
only positive slopes and the DW motion becomes fully re-when the field gradienG is low, the DW coercive field
versible Hcw=0). See the schematic illustration in the bot- Hew is controlled by the local maxims of the wall-pinning
tom plots of Fig. 1. field H,(xpw) only. These can be estimated from Ef2),

To analyze the coercive pinning of DW under different by considering the limitt;—O0 (i.e., by neglecting the fine
conditions in detail, we introduced three coercive fields desjope details which are not important in determining the
fined in the following way:(i) Hpy is the half-width of the maximg. Then, the equation for the wall-pinning field
total hysteresis loop at finite DW velocityow, (i) HayniS 1 reduces to the standard Langevin equation and, by con-
the half-width of the hysteresis loop caused only by the dy'sigerations similar to the previous ones on the slope

n??icg\)’ssﬁi’nﬂna”) trh(iav valctj:c;ercive ﬁelrdHC‘a’iriS tzher S(Xpw), We get the estimatél,~Ay, independent of the
;:a C_I. P choe_cH ene it ?DV‘I’dagp oatcd tﬂ tetho field gradientG and of ratioa = &, /£,. This explains the low
cw=limg, s o(Hpow—Hayn). [It should be noted that the G part of Fig. 2.

static DW pinning coercive fielddcw, can be expressed  The numerical simulation according to Sec. Il F enables

also asHcw=1limq, ) —~oHow because lim, ,.oHayn=0.  cajculation of dimensionless coercive fieltsy, as a func-
but as the expressiorHow—Hgyn) is much less velocity-  tion of the dimensionless field gradieng, for various «.
dependent thakip,, the former expression is more suitable Shape of the stochastic pinning field,, is determined by
for physical considerations and numerical calculatipns. three parameterd\,, &;, and&,, which can be determined
in general by fitting of the experimentbl.(G) dependen-
cies to the calculateld\(8) curves using the normalization
parameters of the fieldA,, and of the field gradient,
While it is difficult to change the field gradieyit experi- A, /&,, as the fitting parameters. Both the parameter of the
mentally by more than 1 order of magnitude, the dimensionWL processAy and ¢, can be determined in this way. How-
less coercive field can be calculated for a very wide range oéver, the dimensionlesg.(8) curves calculated for differ-
field gradients. The general case of the coercive interactioBnta = &; /£, have similar shapéhey are mostly just shifted
of DW with the pinning field given by the WL process modi- with respect to each otherThe quality of the fit is therefore
fied by two finite correlation lengthg,; and§,, was inves- nearly the same in all cases and we have to assume a par-
tigated by a numerical simulation for the dimensionless graticular value ofa to determine als¢;. Moreover, the depen-
dient field, 8, changing by more than 4 orders of magnitudedence of the DW coercive fielth - (G) was measured in
(see Fig. 2 Such dependencies have a very specific shapanuch narrower range of the experimental values of the field
While a simple but unrealistic hyperbolic dependence of theyradientG (up to one order of magnitugiéhan the calcu-
dimensionless coercive fielthe dashed straight line in Fig. lated hey(8), where the range o covered more than 4
2) was obtained for the pinning field corresponding to theorders of magnitude. Therefore, in Fig. 5 and Table 1l we
pure Wiener-Ley process &—0), thehcy(8) dependence present the fits of experimental data to the curves calculated
calculated for any finite ratio of the correlation lengtas, for all the three investigated finite values @f= 1, 0.1, and
was close to the B hyperbolic dependence between about0.01. By choosing a particular value af= &, /&, we deter-
B =1andB = a Y2 only. Thehcyw(B) dependencies cal- mine the normalization parametets and &, /A, the field
culated for different finite values of are to a large extent hoy,=Hcw/Ay, the gradient3=G&, /A, and &=aé,
similar to one another. The slope of the high-gradient tailfrom the fit. Their values for both samples are listed in Table
for & = 0.1 and 0.01 can be approximatedtyy<B8 3%in Il
the rangegB< a1, and they are shifted with respect to each  Considering the limited range of the experimental data,
other by a factor 2.3 on thg axis. In the low gradient range their scatter, and the smooth shape of the calculated curves,
(0.001<B<0.1) the coercive field varies with3 only  there can be easily an error of about 50% in determination of
slightly, with a slope ohcyw B8~ %2 In other words, the DW  the parameter of the WL proce8s,, &;, andé, from the fit.
coercive fieldHy, tends to a finite valueHq,(0) as the The data of sample no. 1 fit the calculated curves in general
field gradientG approaches zero. Another realistic deviationbetter than those measured on sample no. 2. The normaliza-
from the hyperbolic pure WL dependence takes place fotion parameter of the magnetic field,,;, was found to fall
G> Ay /é1&,, with the DW coercive fieldHy rapidly ap-  between 200 and 350 A/m for sample no. 1 and between 55
proaching zero. These results are in good agreement with trend 140 A/m for sample no. 2, for differeat The shape of
experimental findings and permit a quantitative descriptiorthe pinning field is given by the Wiener-izg stochastic pro-
of the measuretH -, vs G behavior. cess according to Eq11) as(|dW|?)=2(A2/&,)dXpw . The
This picture also makes the role of the correlation lengthy/alue of A2/ £, was found for both samples between 2.6 and
& and &, more transparent. According to the theory of 27 x 10" A?/m3. The values of the correlation lengths of
Langevin equations; the procesS(xpy) of Eq. (12) takes  sample no. 1 are larger by about 1 order of magnitude than
values whose mean square is of the order of the correlatiofor sample no. 2.
length &; times the intensity of the white noise term, and it  The correlation lengthg; and &, were formally intro-
controls the slopedH,/dx, so that dH,/dxpw~A4/  duced to be distances such that fhkpy<¢; the slope,
V€1, This means that when the field gradientdH,/dxpy, attained a well defined value and for
G>Ay/\EE,, ie., B>a 12 the process tends to become Axpy> &, the pinning fieldH (xpw) becomes stationary.
fully reversible and the DW coercive fieldy quickly de-  Qualitatively speaking it means th&f characterizes the fin-
cays to zero. This explains the behavior of the DW coerciveest profile of the pinning field experienced by DW, some-

C. The theory and the experimental fit
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thing like an effective distance between relevant neighboringrease of the DW coercive field,, by increasing of the
pinning points, whereag, characterizes a critical distance field gradientG, the material in question must be operated at
the wall has to be shifted in order to “forget” past local 5 decreased effective susceptibility and permeability. Evi-

pinning influences. Obviously, both such limits should begently, an optimum has to be chosen depending on the actual
related to the DW width: the DW cannot effectively interact (ochnical task.

with any pinning field profile which is much finer than the
DW width, and any shift of the DW by a distanc&xpyy ,
much larger than the DW width makes the DW forget its
history surely. Such considerations focus the experimentally
most relevant choice o& to «=1, i.e., to the choice of a (1) The model proposed here gives a natural interpretation
single correlation lengtl; =&, =¢, with the expectation that  of the coercivity effects associated with the DW motion sub-
¢ will_be of the order of the DW width parameter, jected to effective local field gradient§, in a randomly
Sw=VAJK,, where A~2.05<107** J/m is the exchange nonunifom material. It predicts the DW coercive field,
constant of garnets. The results of such a choice give64 | to be a decreasing function of the field gradiGt
nm, 8, = 57 nm for sample no. 1 angl= 7.4 nm,é,, = 37 ich is in agreement with both experimental observation

nm for sample no. 2. It is certainly a good agreement Conynq with expectations from a simple model with a periodic
sidering that the values of; were obtained from the fit DW potential*

without any a-priori assumptions about the DW and the ma-
terial structure.

V. CONCLUSIONS

(2) We applied a model description of the DW pinning
field, H,, described by the Wiener-kg stochastic process
for an analysis of the coercive pinning of DW'’s in soft mag-
D. Linear approximation and the rule of thumb netic materials. The basic feature of the model is the descrip-

It is important to investigate as wide range of the fieldion ©f the random DW pinning fieldi ,(xpw), by a set of
gradientG values as possible, which is typically about onecPUPIed Langevin equatiori@2) containing two correlation
order of magnitud®’ in our experiments. A very consider- 1€ngthsé; and&; such thatli) Hp(xpw) is stationary for the
able decrease of the DW coercive figtth,, was observed DW displacementa xpy> &5; (ii) the slopedHp/dxpy con-
within such a range, yet to determine the exact shape of thiolling the DW susceptibility tends to be well defined when
Hew(G) functional dependence is difficult. The DW coer- AXpw<§1.
cive field Hcy(G) dependence was approximated in Refs. 5 (3) Three coercive fieldsHpy, Hayn, andHcy, were
and 7 by a linear function a$lcw(G)=Hcw(0)—aG, introduced. By a combination of analytical calculation meth-
where Hoy(0) was the coercive field of a free walhot ~ ods and numerical simulation algorithms we estimated the
subjected to any gradient in the sampésd a was a phe- total dynamic DW coercive fielddpy, associated with the
nomenological proportionality constant which was related tagiven DW velocity averaged over the stochastic fluctuations,
the distribution of the coercivity-causing defects and to thg(v ), and the static coercive fieltdc, representing the
actual domain geometry. However, the result of the DW copart of Hp,, that survives in the quasistatic limiting condi-
ercive fieldHqw(G) computation carried out in our much tjon: Hew=lim(,_)—o(How—Hagyn). In all cases we consid-

wider range of the field gradient valu€sas shown in Fig. 5, ooy the coercive fields caused by pure DW pinning and
is highly nonlinear. It is hyperboli€22) in the limiting case depinning only, i.e., we worked with such a DW geometry,

of the pure WL process«(=0) or, more realistically it is where any DW generation and/or annihilation, and any rota-

given .by the shapes .Obta'F‘ed from the. numerical SImUIatlonﬁon of the magnetization vector within the domains could be
for finite @ as described in Sec. Il F in the present paper.

However, in the narrow experimental range of thevalues, neglllect?_?]. h th tochasti - field
X(G) can really be roughly approximated by a linear depen- (4) ? ”case when - the  stochas 'Ch pinning 1etd,
dence similarly to results of Ref. 5, see Fig. 5. It also quali-p(*ow), follows a pure WL process characterized by

tatively corresponds to the expectations of the simple analytldHpl*)=2(Ak/&;)dxow (i.e., for the correlation lengths
sis published earlier in Ref. 4. £1—0 andé,—x), can be solved analytically but it is not
An experimental rule of thumb which connects the expecvery realistic. We obtained the simple hyperbolic relation
tations on the DW coercive field o,y values with the effec- between the DW coercive field and the field gradieig,y
tive local field gradient,G, and with the sample domain =G~ ', which qualitatively reproduces the experimentally
structure qualitydensity, and which was pointed out in Ref. observed decrease of the DW coercive fielgy with in-
5 follows also from the present results: The smaller the docreasing the field gradiet®, but which yields an unrealistic
main structure perioéthe larger the effective field gradigent divergence ofHc,, at G—0 and relatively large values of
the lower is the domain-wall coercive fieldnd the quasis- Hcw at large field gradientss.
tatic hysteresis lossesThis can be mathematically shown (5 The general case of finite values of the correlation
for actual regular periodic domain structures but the messagengths,§; and §,, was investigated by numerical simula-
is quite general and valid in any domain structure where th&ons. In contrast to the hyperbolic solution and in agreement
notion of its period has a reasonable meaning. This may giveith the experimental observations, the DW coercive field
an important hint for tailoring soft magnetic devices towardsHcw Was finite and approximately given by, as G ap-
decrease of coercive hysteresis losses. However, the existimgoached zero, andic,, decayed rapidly to zero for large
inverse proportionality between the field gradi&@iand the field gradientsG> A, /&1 &,.
sample susceptibility implies also, that for achieving a de- (6) The dependencies of the DW pinning field on the field
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gradientH c,,(G) calculated for differentv= £, /¢, are simi-  has a very fine structure and its interaction with DW is lim-
lar. Therefore fitting of the computed,,(G) curves to any ited by the finite DW width.

value <1 cannot answer the question of the best choice of
a. However, qualitative considerations suggest to prefer
a=1 and to expect;=¢&,=¢ to be comparable with the
DW width parameterg,,= VA/K,. The agreement between  The authors are indebted to K. L. Metlov for his careful
¢ and 6,, was found satisfactory in the two investigated reading of the manuscript and many valuable remarks. This
samples. This result thus implies that the pinning field re-work was supported by the PECO Joint Research Project No.
sponsible for the DW coercivity in the investigated materialsCIPA-CT93-0239 and Grant No. GACR No. 202/95/0022.
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