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The dynamics of a two-dimensional array of Josephson junctions under an external load is shown to be
equivalent to that of a one-dimensional nonlinear chain of nonidentical, globally, and nonuniformly coupled
oscillators. This allows us to determine the dynamical states and collective spatiotemporal patterns the array
exhibits in response to varying initial conditions, input patterns, coupling strengths, and bias current. When the
bias current goes through critical values, successive bifurcations activate spatially distinct, coupled oscillatory
compartments in the array, where semirotating, whirling, and quasiperiodic and aperiodic states coexist, and
induce staircase current-voltage characteristics. Classical and vortex-induced row switching phenomena, stable
families of frequency synchronized and phase-locked states, subharmonics in compartment couplings, stochas-
tic jumps, and hysteresis loops are deduced, and sequences of input patterns are shown to be dynamically
storable in the array’s attractors. The dynamical formation of oscillatory compartments is also a general feature
of three-dimensional Josephson-junction networks. Coherent microwave radiation emission is possible only for
specific input patterns or by using symmetry-breaking array architectures. The theoretical predictions are in
close agreement with the dynamics recently observed in low-temperature scanning electron microscopy ex-
periments.@S0163-1829~96!08126-X#

I. INTRODUCTION

The objective of this paper is to develop a comprehensive
theoretical framework for the description of two-dimensional
Josephson-junction arrays which is capable of explaining
quantitatively the dynamical states and spatiotemporal pat-
terns recently observed in experiments and provides insight
into the underlying nonlinear dynamics.

The increasing contemporary interest in the dynamics of
two-dimensional ~2D! Josephson-junction arrays derives
from the technological potential these systems hold as coher-
ently radiating on-chip high-frequency sources, magnetic
field sensors, and kryoelectronic switching circuits.1–4 In ad-
dition, layered 2D arrays and 3D lattices of Josephson junc-
tions play an important role in modeling high-temperature
superconductors.5 On the other hand, operating massively
parallel, Josephson networks possess both pattern generating
and recognizing capabilities depending on the system’s cou-
pling architecture and so can be used in the design of dy-
namical devices for ultrafast signal processing.

Experimental and theoretical studies of phase oscillations
in one-dimensional~1D! uniform Josephson arrays, in which
all junctions are globally coupled with each other under an
external load, have demonstrated the feasibility of phase-
locked coherent oscillations needed for high output
power.6,7,9–12 However, because of the complex nonlinear
dynamics associated with the many interacting degrees of
freedom in 2D and 3D Josephson networks, our understand-
ing of the possibility of phase and frequency synchronization
and of the dynamical states observed in such systems is still
far from being satisfactory.9,13–15To achieve stable states of
in-phase junction oscillations seems to require additional
mechanisms to be built into the arrays. On the other hand,
recent spatial imaging measurements using low-temperature
scanning electron microscopy~LTSEM! techniques16,17have
revealed a rich variety of dynamical patterns in 2D

Josephson-junction arrays, with a nonlinear theory still miss-
ing.

Since Josephson arrays represent discrete nonlinear dy-
namical systems for the set of phase differences across the
junction barriers, the central problem to be addressed here is
to model these systems by networks of nonlinear oscillators
whose collective spatiotemporal patterns, such as frequency
and phase synchronization, self-stabilization, and compart-
ment formation, reproduce the experimental findings quanti-
tatively.

In Sec. II we show that the nonlinear dynamical equations
for the phase oscillations of a 2D Josephson-junction array
coupled to an external load can be transformed into an equa-
tion system for a one-dimensional chain of nonlinear, glo-
bally, and nonuniformly coupled, nonidentical oscillators.
From this we determine, in Sec. III, the spatiotemporal pat-
terns and dynamical states the array exhibits in response to
varying input patterns, coupling strengths, bias current, and
external probes. As the dc bias current increases beyond the
critical current, the dynamics is governed by a succession of
bifurcations which activate spatially distinct, coupled com-
partments of oscillators with different frequencies in the ar-
ray in which fixed points, semirotating, whirling, and quasi-
periodic and aperiodic states coexist and interact. If the
current goes through critical values, the formation of oscil-
latory compartments induces successive staircase steps in the
current-voltage characteristics. For sufficiently large bias
current, the compartments merge into a single block and the
existence of constants of motion implies that the current-
voltage characteristics become linear with all array junctions
oscillating with the same frequency in an, in general, inco-
herent phase-locked state. To achieve coherence, the array’s
dynamical symmetry must be broken explicitly, either by
applying specific inputs, e.g., by microwave injection, or by
using special coupling schemes, e.g., hierarchic-modular ar-
ray architectures.18
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It is shown that the mechanisms described above give rise
to a variety of experimentally observable macroscopic quan-
tum phenomena, in particular to frequency-synchronized
families of phase-locked oscillations, classical and vortex-
induced row switching due to energy transport between com-
partments, and voltage drops, subharmonics, stochastic
jumps, and hysteresis loops in the current voltage character-
istics. Compartment formation is also revealed in three-
dimensional Josephson networks used to model high-
temperature superconductors. The striking dependence of the
network dynamics on the initial conditions imposed on the
Josephson array by given input patterns, such as applied mi-
crowave signals or electron beams in spatially resolved
LTSEM-based measurements, is analyzed. Since the currents
generated by input patterns change the array’s coupling
strengths in a dynamical process, the network can self-
organize its oscillatory behavior and, operating as a current-
pattern to voltage-pattern transducer, store different input
patterns in the array’s attractors. We confirm our findings by
numerically integrating the array’s equation system and test
the stability of the patterns against noise and parameter
spreads.

In Sec. IV we summarize our results and discuss implica-
tions for pattern sequences, coherent radiation, and layered
networks of Josephson-junction arrays. The theoretical pre-
dictions are in full agreement with the dynamical patterns
recently observed in LTSEM experiments on rectangular ar-
rays of underdamped and overdamped Josephson
junctions20,21and reproduce the measured data with high ac-
curacy.

II. ARRAY EQUATIONS

In this section we set up the dynamical equation system
for the two-dimensional rectangular array of identical Jo-
sephson junctions shown in Fig. 1~a! and discuss its basic
properties. The array is shunted by a load to provide global
coupling of the junctions symbolized by crosses. In experi-
ments bus-bar resistors are used on top and bottom to ensure
homogeneous input currents fed into the columns of the net-
work. The column index is denoted byi51, . . . ,M ~from
left to right! and the row index byj51, . . . ,N11 ~from top
to bottom!, each cross being represented by the resistively
and capacitively shunted junction~RCSJ! circuit of Fig. 1~b!.
Each junction on a vertical branch~vertical junctions! is
marked by the node above, each junction on a horizontal
branch~horizontal junctions! by the node to its left. The size
of the array is characterized by the number of vertical junc-
tions (N3M ) so that the total number of junctions in the
array isNM1(N11)(M21) and the total number of unit
cells equalsN(M21). We neglect magnetic field and induc-
tance effects. In Ref. 9 it was shown that this is justified for
arrays with ground planes and in Ref. 20 no qualitative dif-
ference in the experimentally observed spatiotemporal pat-
terns for arrays with and without a ground plane was found.
The applied dc currentI A is fed into the array at the top and
subtracted at the bottom@Fig. 1~a!#. Hence, current conser-
vation for the sum of the currents through the vertical junc-
tions in one row implies that for the horizontal junctions
three different types of dynamical states can be distinguished
depending on the currentI i j

H flowing through a single hori-

zontal junction:~i! All horizontal junctions are totally inac-
tive, i.e., I i j

H50 ; i , j . ~ii ! For each horizontal junction the
current remains less than its critical currentI c , i.e., I i j

H,I c
; i , j , so that the junctions exhibit the dc Josephson effect.
~iii ! The input currentI A is distributed over the array in such
a way that the horizontal junctions exhibit the dc (I i j

H,I c) or
the ac (I i j

H.I c) Josephson effect whenI A is sufficiently high.
According to the general Josephson relations, for type~i! and
~ii ! current distributions there exists no voltage drop between
different array columns so that the phase differencesF i j

H of
the horizontal junctions remain bounded. Case~i! is nonge-
neric because for real physical systems even small imperfec-
tions or perturbations lead to horizontal currents, so that~i!
and ~ii ! should be dealt with together. The above classifica-
tion is also indicated by the results of recent spatially re-
solved measurements on 2D arrays.16,17,20,21These experi-
ments show that, if the input current is nearly
homogeneously fed into and subtracted from the array by
using standard bus-bar resistors,3,9 the horizontal junctions
do not oscillate, implying that there is no voltage drop in the

FIG. 1. ~a! Geometry of a 2D Josephson-junction array with a
parallel shunted load. The junctions are indicated by crosses and
labeled by their column indexi51, . . . ,M ~from left to right! and
their row index j51, . . . ,N11 ~from top to bottom!. I i j

V and I i j
H

denote the current through the vertical and horizontal junctions,
respectively. On top and bottom of the array experimentally used
bus-bar resistors are sketched which provide homogeneous array
input and output currents.~b! RCSJ circuit for a single junction.
I i j
V,H is the current from a network node,i J the Josephson supercur-
rent, andi c and i r are the currents through capacitor and resistor.
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direction perpendicular to the bias current. In addition, even
if the array is influenced by external microwave irradiation to
which the vertical junctions lock in their phases, the horizon-
tal junctions do not switch into the voltage state and so do
not oscillate.20 Consequently case~iii ! does not apply to
these experiments sinceI i j

H.I c would imply oscillations. On
the other hand it is also experimentally known that the ver-
tical junctions in general oscillate incoherently,3,9 so that
horizontal currents necessarily must exist (I i j

HÞ0). There-
fore, the observed collective dynamical patterns must be the
result of type~ii ! current distributions. The spatiotemporal
patterns the array exhibits for type~iii ! current distributions
are qualitatively different from those for types~i! and~ii ! and
are extremely sensitive to the boundary conditions applied to
the array such as strongly nonhomogeneous input currents.
This is a consequence of the fact that the dynamics of the
array is restricted by the geometric flux quantization con-
straint which implies that the sum over all junction phase
differences arround any closed loop within the network must
be an integer multiple of 2p @Eq. ~9!#. As we will show
below, array equations for type~ii ! current distributions
which take into account this flux quantization condition and
reproduce the experimental data can be formulated in terms
of a nonlinear chain of coupled oscillators. This fact simpli-
fies greatly the analysis of the high-dimensional Josephson-
junction arrays considered here. The analysis of the dynami-
cal equation system for type~iii ! current distributions, for
which at present no experiments are availible, is much more
complex and will be discussed elsewhere.19

In this paper we discuss the Josephson-junction array
model based on the experimentally used array of Fig. 1~a!
with type ~ii ! current distributions. LetI i j

V be the current
through a single junction on a vertical branch,Vi j the voltage
at node (i j ), DVj the voltage drop between rowsj and
j11, I 0 a constant bias current, andI L the load current. The
current-voltage relation for the ideal junction is represented
in terms of the Josephson phase differencesF i j

V(t) across the
vertical andF i j

H(t) across the horizontal junction barriers.
The general Josephson relation states that forI i j

V,H,I c there
is no voltage drop across the junction with index (i j ) and for
I i j
V,H.I c the voltage drop is proportional to the time deriva-
tive of F i j

V,H . Hence, for type~i! and type~ii ! current distri-
butions it follows that

Vi j2Vi11,j50 ; i , j , ~1!

and the application of Kirchhoff’s voltage and current laws
to the network yields

Vi j2Vi , j115DVj ; i , ~2!

(
i

M

I i j
V1I L5I 0 ; j . ~3!

Equation~1! accounts for the fact that there is zero voltage
drop between different columns. IfI i j

H,I c and the phase dif-
ference semirotates with small amplitude~cf. Sec. III A!, Eq.
~1! remains valid since semirotations do not induce voltage
drops.8 The identical bus-bar resistors sketched in Fig. 1 are
not explicitly taken into account in the analytic description
since we deal with general type~ii ! current distributions. The

ideal RCSJ junction carries the supercurrenti J , a resistor
r , and a capacitorcJ with normal current i r and i c ,
respectively. Hence, I i j

V5( i J1 i r1 i c) i j ( i51, . . . ,M ,
j51, . . . ,N) is the total current through a junction in a col-
umn with index (i j ) and I i j

H5( i J) i j ( i51, . . . ,M21,
j51, . . . ,N11) the current through a junction in a horizon-
tal row with node (i j ). The supercurrent and the voltage
across the junctions are given by the Josephson relations

~ i J! i j5I csinF i j
V,H , ~4!

DVj5
\

2e

dF i j
V

dt
, ~5!

05
dF i j

H

dt
, ~6!

whereI c denotes the critical current of the junctions. Intro-
ducing reduced units by measuring the current in units of
I c , voltage in units ofI cr , resistance in units ofr , capaci-
tance in units of \/(2eIcr

2), and time in units of
\/(2eIcr ), and combining Eqs.~1!–~6! yields the differen-
tial equation system

bF̈i j
V1Ḟi j

V1
1

M(
k

M

sinFk j
V 1 Ī L5 Ī 0 , ~7!

I i j
H5sinF i j

H . ~8!

Hereb52eIcr
2cJ /\ is a dimensionless measure of the junc-

tions capacitance, overdots indicate derivatives with respect
to the timet, and Ī L5I L /M and Ī 05I 0 /M are the normal-
ized load and bias currents, respectively.

The macroscopic order parameter phases at each node of
the network must be unique. Hence, the 2D network topol-
ogy requires for the flux flow that, in the absence of external
fields, the sum over all junction phase differences,F i j

V,H ,
around any closed loop must be an integer multiple of 2p.
Therefore, the array equations~7! and ~8! must be supple-
mented by the flux quantization condition

(
loop

F i j
V,H52pk,

which for an elementary cell in the network can be written as

F i , j11
H 2F i , j

H 52pki j1F i11,j
V 2F i , j

V . ~9!

From Eq.~5! it follows that the right-hand side~RHS! of ~9!
possesses a constant value since the time derivatives of the
F i j

V are independent of the indexi . Consequently, for any
given set ofF i j

V which satisfy~7! the differences of the hori-
zontal phase differencesF i j

H on the LHS of ~9! are fixed.
Equation ~9! therefore provides current couplings between
vertical and horizontal phase differences such that, for any
applied input currentĪ A5 Ī 02 Ī L , a current distribution
within the network which satisfies the Kirchhoff current con-
servation law at each node of the array, viz.,

I i , j21
V 1I i21,j

H 2I i , j
V 2I i , j

H 50, ~10!
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can be computed numerically from the solutions of~7!. Dif-
ferentiating~9! with respect to time leads to Kirchhoff’s volt-
age law for a network unit cell, which therefore is automati-
cally satisfied for all times. By virtue of Eqs.~9! and ~10!,
and since for rectangular arrays of the type considered here
the number of horizontal junctions is greater than the number
of elementary network cells, the current distribution within
the array and the phase differences of the horizontal and
vertical junctions,F i j

H andF i j
V , are not uniquely determined

by the input currentI A . Therefore, the current distribution
for a given input current depends on inital conditions. For
example, for bias currents below the critical current of the
array we show in Figs. 2~a! and 2~b! two different supercur-
rent distributions for an 838 array with identical array input
currentI A . We used perfect homogeneous column input and
output currents and assumed slightly different critical cur-
rents of the junctions with a 1s spread ofI c less than 3%.
The results for slightly nonhomogeneous input currents are
similar. In both cases the small deviations from perfect ho-
mogeneity are sufficient to produce a type~ii ! current distri-
bution. This is in full accordance with the fact that in experi-
ments on arrays with bus-bar resistors type~ii ! current
distributions are the rule. Recently, the dependence of the
array dynamics on the initial conditions has also been found
experimentally by Doderer and Lachenmann.20 These au-
thors investigated row switching phenomena in arrays of un-
derdamped junctions using low-temperature scanning elec-
tron microscopy. They observed that the spatial distributions
of rows of vertical junctions, which are in the voltage state at
a fixed bias current, are different for the same sample if the
experiments are repeated but the number of rows of oscillat-
ing vertical junctions remains the same although their distri-
bution in the array changes. This will be shown in Sec. III to
be related to different sequences of row switchings for dif-
ferent initial conditionsF i j

V(0). The LTSEM images pre-
sented in Ref. 20 are also an impressive experimental proof
for the fact that the horizontal junctions do not switch into
the voltage state and do not oscillate. Figures 2~c! and 2~d!
show a possible evolution of the current distribution of Fig.
2~b! if the bias current is slowly increased up to a magnitude
just below the critical current of the array, which is approxi-
mately 5I c . In Sec. III C we will give an analytical expres-
sion for the value of the critical array current. In virtue of Eq.
~9! the current distribution remains of type~ii ! and the evo-
lution is mainly governed by the increasing currents through
the vertical junctions whereas the horizontal currents vary
only in a small range. The flux quantization condition and
the applied boundary conditions ensure that the horizontal
currents remain small, even if the input currentI A is larger
than the critical current of the array. On the other hand, the
flux quantization constraint also ensures that the horizontal
currents do not vanish. The dynamics of the oscillating array
states and spatiotemporal patterns is therefore governed by
Eq. ~7! because the horizontal junctions exhibit only dc Jo-
sephson effects. To understand the arrays oscillatory dynam-
ics, the analytical examination of~7! is sufficient. In Sec.
III C we test our analytical results by numerically simulating
the complete coupled array equation system, Eqs.~7!–~10!.

ForM51, Eq.~7! reduces to the familiar set of differen-
tial equations that describes 1D arrays.10,12 In the case with-
out an external load all junction phase differences are un-

coupled. Hence, the in-phase solution of such 1D systems,
where all junctions oscillate coherently, is neutrally stable so
that small perturbations or imperfections lead to uncorrelated
oscillator phases. In contrast to this, Eq.~7! shows that for
M.1 even in 2D arrays without an external load, junctions
on the vertical branches through the same row are coupled.
Furthermore, Eqs.~7!–~10! tell that the in-phase state of the
vertical junctions of this type of 2D array is also only neu-
trally stable because without a shunted load there exists no
coupling between junction phase differencesF i j

V belonging
to different rows. This result corresponds to the result ob-
tained in Ref. 9 for the macroscopic order parameter phases
of the nodes of the network with perfect homogeneous col-
umn input and output currents.

Considering the 2D array shunted by an appropriate load
we choose, without loss of generality, a load with capaci-
tancebL and resistancerL in parallel. In this case the rela-
tion between the load currentI L and the total voltageV
across the array becomes

I L5bLV̇1
V

rL
, ~11!

V5(
j

N

Ḟi j
V . ~12!

Substituting Eqs.~11! and~12! into ~7! we obtain the follow-
ing set of second-order differential equations for theF i j

V :

bF̈i j
V1Ḟi j

V1
n

N(
l

N

Ḟi l
V1

1

M(
k

M

sinFk j
V 2

m

MN(
k,l

M ,N

sinFkl
V5b,

~13!

where

b5 Ī 0~12m!, m5
NbL

Mb1NbL
, n5

N

MrL
~12m!2m.

~14!

We note that forbL50, i.e., without load capacitance,m and
the global nonlinear coupling term vanish. If in addition
b50, m becomes undetermined. In this case the resistively
shunted junction~RSJ! model can be used to derive a set of
differential equations for the phase differencesF i j

V which is
similar to Eq.~13!.

Next we show that Eq.~13! possesses (M21)3N con-
stants of motion. Setting

j j
~ i !5Ḟ1 j

V 2Ḟi j
V , 2< i<M , 1< j<N, ~15!

we obtain from~13! the set of linear differential equations
for (j1

( i ) , . . . ,jN
( i ))

bj̇ j
~ i !52j j

~ i !2
n

N(
l

j l
~ i ! . ~16!

The matrix on the RHS of~16! has an (N21)-fold eigen-
value21 and a single eigenvalue2(n/N1N). Therefore
j j
( i )→0 for t→` and there exists an attracting invariant sub-
space, given by

j j
~ i !50, 2< i<M , 1< j<N. ~17!
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FIG. 2. Current distributions within a 838 network of Josephson junctions for different input currentI A and slightly different critical
currents of the junctions, (I c) i j

V,H5I c(16e i j
V,H), e!1, for arrays with bus-bar resistors. The junctions themselves are not shown@see Fig.

1~a!#. The length of the arrows is proportional to the currentsI i j
V,H ~a full cell length corresponds to a current ofI c ; small arrows indicate

uI i j
V,Hu,1022I c). ~a!,~b! I A51I c , perfect homogeneous column inputs and outputs with 1s spread of the critical currents smaller than

3%. In virtue of different initial conditions in~a! and~b! represented here, e.g., by differentI i1
H , the supercurrent distributions in the array

differ significantly. ~c!,~d! Evolution of current distribution~b! with increasing array currentI A : ~c! I A53I c , ~d! I A54.5I c . In ~d! I A is
slightly below the array’s critical current of approximately 5I c . By virtue of flux quantization the horizontal currentsI i j

H remain less than
I c .
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For arbitrary initial conditions, this invariant subspace corre-
sponds to the constraints of Eq.~1!. It is therefore possible to
derive a reduced set of differential equations directly from
~7! and ~11!. With ~1! and ~2! it follows from ~5! that

Ḟi j
V5Ḟ1 j

V ~18!

; i and any givenj . The time evolution of the individual
junction phases can therefore be represented in the form

F i j
V~ t !5f j~ t !1C i j , ~19!

where theC i j are constants of motion, i.e., time independent
frozen phase slips andf j (0)50, without loss of generality.
TheC i j5F i j

V(0) define the initial conditions imposed on the
2D array by a given input pattern andḞi j

V(0)5ḟ j (0) satisfy
~12!. The same procedure used to derive Eq.~13! from ~7!
yields then forf j the equation system

bf̈ j1
bL

M(
k

f̈k1
1

Mr l
(
k

ḟk1ḟ j1
1

M(
i
sin~f j1C i j !

5 Ī 0 . ~20!

To rewrite~20! in a more convenient form we introduce new
coupling parametersaj and phase shiftsd j (1< j<N). By
setting (1/M )( isin(fj1Cij)5ajsin(fj1dj) theaj andd j are
related to theC i j by

1

M(
i
cosC i j5ajcosd j ,

1

M(
i
sinC i j5ajsind j ,

~21!

and

0<aj
25

1

M2(
k,l

cos~Ck j2C l j !

5
1

M
1

2

M2(
k, l

cos~Ck j2C l j !<1, ~22!

with

(
i
sin~C i j2d j !50. ~23!

The differential equation system~20! for the phasesf j takes
now the form

bf̈ j1ḟ j1
n

N(
l

ḟ l1ajsin~f j1d j !2
m

N(
l
alsin~f l1d l !

5b, ~24!

which, with the translationf j→f j2d j , simplifies to

bf̈ j1ḟ j1ajsinf j1
n

N(
l

ḟ l2
m

N(
l
alsinf l5b,

~25!

whereb, n, andm are defined by Eq.~14!.
In virtue of ~19! and ~21! the (N3M )-dimensional uni-

form 2D array equation system~13! has been transformed
into a one-dimensional, nonuniform, and nonlinear chain
equation system~25! for N phase oscillators and there is a

one-to-one correspondence between the solutions of~13! and
~25!. Equation~25! can be interpreted as a series array of
nonidentical, nonuniformly, and globally coupled Josephson
junctions with long-range interaction and different values of
the ‘‘reduced critical currents’’aj for different j . Alterna-
tively, Eq. ~25! can be viewed as the equation system for a
nonlinear chain of damped physical pendulums or rotating
disks with nonuniform mass distribution coupled globally to
each other and driven by a common torqueb. This visual-
ization of ~25! is helpful in an intuitive interpretation of our
results.

We observe that the 2D array, Eq.~13!, is invariant under
any permutation of the indices within the rows and under
permutations of the rows themselves and so possesses a
wreath product symmetry.23 Since the couplingsaj in Eq.
~25! are determined by the conditions~21!, i.e., by the initial
conditionsC i j , this symmetry reduces to a combined pa-
rameter symmetry where theaj and thef j can be permuted
simultaneousely. If theC i j are equally spaced around the
unit circle for a givenj , the correspondingaj vanishes.

III. DYNAMIC PATTERNS IN JOSEPHSON ARRAYS

In this and the subsequent section we discuss the macro-
scopic pattern dynamics described by Eqs.~13! and~25! ana-
lytically, compare the theoretical predictions with recent ex-
perimental results, and discuss their physical implications for
phase coherence, pattern recognition, and 3D high-
temperature superconductors. We begin in Sec. III A with a
brief description of the types of motion a single Josephson
phase oscillator@physical pendulum# can perform inside the
chain~25! and then consider in Sec. III B the coupled system
in the theoretical and experimental context. In Sec. III C we
discuss numerical simulations and in Sec. III D we analyze
the array’s phase space dynamics.

A. Dynamics of a single oscillator

Equation~25!, to which the 2D system~13! has been re-
duced, describes a one-dimensional chain of nonuniformly
and globally coupled, nonlinear and nonidentical phase os-
cillators. We consider first an isolated, uncoupled oscillator.
Its time evolution is governed by

bf̈ j1ḟ j1ajsinf j5b. ~26!

Since one of our goals is to elucidate the dependence of
the oscillation frequencies and phases in Eq.~25! on the
parametersaj , we do not perform a time rescaling which
would yield aj51, because for the coupled system such a
transformation is not possible and the different values of
uaj u<1 influence the degree of nonlinearities. We discuss
briefly the properties of Eq.~26! in the context of Eq.~25!.

For b,uaj u, Eq. ~26! has a stable rest point
f j

15sin21(b/aj). If in the case of the physical pendulum the
torqueb is slowly increased fromb50, the pendulum moves
away from the downward vertical to the new stable equilib-
rium anglef j

1 . When b.uaj u, Eq. ~26! has a stable 2p
periodic running, physically whirling, solution given by a
functionf j5f j* (t) with f j* (t1T)5f j* (t)12p whereT is
the rotation period. Interpreting~26! as an ac Josephson
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junction, the time-averaged angular velocityv5^ḟ j* & corre-
sponds to the junction voltageV, b to the bias currentI 0 ,
andaj to an~in general! reduced ‘‘effective’’ critical current.
For nonwhirling periodic solutions, in the nonlinear context
known as semirotors~cf. below!, v vanishes.8 If the junction
is underdamped, i.e., ifb is sufficiently large, then, due to
inertia, slowly decreasing the bias currentb from the whirl-
ing value induces a hysteresis loop in the current-voltage
curve. For largeb and smallaj it can therefore happen that
the whirling persists down tob50. If, on the other hand,b is
small~i.e.,b,1), the junction will retrace its originalb-v or
I -V curve.

For the interpretation of our numerical simulations of Eq.
~13! and for comparison with experiments and technical ap-
plications, the averaged frequencyv of the running solution
f j* (t) of Eq. ~26! must be determined as a function of the
parametersb, aj , andb. To this end we apply the method of
harmonic balance by setting

f j*5f01vt1Acos~vt ! ~27!

and neglecting higher-harmonic terms. Substituting this an-
satz into Eq.~26! we use the expansion

sin~f j* !.J0sin~vt1f0!1J1cos~f0!, ~28!

whereJn5Jn(A) is the nth-order Bessel function of argu-
mentA. By separately balancing terms which are constant,
proportional to cos(vt), and proportional to sin(vt) we find
three algebraic equations forf0 , v, andA:

v1ajJ1cos~f0!5b, ~29!

2Av1ajJ0cos~f0!50, ~30!

2Abv21ajJ0sin~f0!50. ~31!

From this the equation for the frequencyv follows:

~b2v!Av21
1

b25
aj
b
J1 . ~32!

Sinceuaj u<1 anduJ1u!1, for large enoughb, i.e.,b.1, the
averaged frequencyv is nearly identical for all oscillators
~and equal tob) irrespective of the value ofaj . Thus, in the
weakly coupled system~25! frequency synchronization will
occur. If b is small, especially ifb,1, we expect that for
low values ofb the coupled system shows quasiperiodic or
aperiodic behavior because several different frequencies can
coexist in the chain.

In the limit b5bL50, but also for smallb, the frequency
of a single oscillator can be determined using the fact that
f j* is 2p periodic and is given by

v5cA12
aj
2

c2
, ~33!

where for the coupled system of RSJ’s

c5 Ī 0~12x! and x5
N

N1Mr l
~34!

correspond to the torqueb and the couplingm in Eq. ~14!,
respectively. Depending on the value ofaj , for small bias

current the frequencies of the individual oscillators may dif-
fer significantly so that frequency synchronization is not en-
sured.

With regard to the coupled system~25! considered in the
next section, an additional periodic solution of Eq.~26!
which, although unstable in the uncoupled system, is known
to exist.10,22 This nonwhirling periodic solution is called
semirotor or libration since it is given by some function
f j** wheref j** (t1T)5f j** (t). The motion of a semirotor
corresponds to that of a pendulum in the small-angle ap-
proximation. If such a semirotor exists and is stable in the
coupled system~25! its approximated averaged frequency is
also given by~32! or ~33!, respectively.

B. Dynamics of 2D arrays

We are now prepared to discuss the dynamical patterns
which are generated in the 2D array~13! or ~25! in response
to variable bias currents, coupling strength, and initial con-
ditions.

The basic dynamical patterns to be expected arise~i! from
the set of nontrivial fixed points of~25!, ~ii ! from the bifur-
cation of semirotations from the latter, and~iii ! from the
bifurcations of whirling rotational states from fixed points or
semirotations which lose their stability when the bias current,
acting as a bifurcation parameter, goes through critical val-
ues given by theaj in Eq. ~25!. Since, in general, according
to Eq. ~32! or ~33! with each bifurcation into an oscillatory
state ~semirotating or whirling! a new frequency appears
with which groups of junctions oscillate, we discuss in detail
the mechanisms responsible for frequency synchronization.
The spatial distribution of the oscillatory patterns is related
to the wreath product symmetry of Eq.~13! and, therfore, to
the combined parameter symmetry of Eq.~25!, mentioned in
Sec. II. This symmetry of the network equations allows the
simultaneous coexistence of fixed points, semirotors, and
whirling states with different frequencies in different array
compartments, with the phases in general distributed inco-
herently.

The N3M dimensional equilibrium point of Eq.~13! is
given by

(
k

M

sinFk j
V 5I 0 ; j . ~35!

Hence, in virtue of Eq.~19!, the stable equilibria form a
@N3(M21)#-dimensional manifold in the space of the
F i j

V which is given byF i j
V5C i j2h j , where theh j satisfy

(
k

M

sin~Ck j2h j !5I 0 ; j , ~36!

with h jP@2p,p# andh j5d j for I 050. In contrast with 1D
arrays, even forI 050, the oscillators must not reach the
trivial equilibrium (F i j

V50) because the frozen phase slips
C i j , which are constants of motion, are in general different.
If we associate each phase differenceF i j

V with a point on the
unit circle, then, in the equilibrium position the phases of the
junctions are distributed nonuniformly on this circle. This is
allowed because in the 2D array only the sum of all vertical
currents has to satisfy Eq.~3!. For any fixedI 0 the values of
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the equilibrium manifold depend on the initial conditions
only and not on system parameters. This fact follows already
from Eq. ~7! because even without an external load the cou-
pling is identical for all junction phasesF i j

V within the same
row.

To discuss the oscillatory patterns of the 2D array analyti-
cally we use Eq.~25! rather than Eq.~13!. The stable equi-
librium point of Eq.~25! is given by the isolated fixed points
f j

115sin21(Ī0 /aj) with j51, . . . ,N. For Ī 0.uaj u they lose
their stability so that the onset of oscillations in the coupled
system, Eq.~13! @Eq. ~25!#, is governed by the smallest
uaj u. We order the individual critical currents or row cou-
plings aj by taking their absolute values and interchanging
their indices such that

ua1u<ua2u<ua3u<•••<uaNu. ~37!

For Ī 0.ua1u the stable fixed pointf j
11 of ~25! loses its

stability and the system begins to oscillate. We shall show
below that, in contrast with general globally coupled homo-
geneous systems,24–26 certain groups of junctions in the 2D
array~13! exhibit now different bifurcation scenarios and the
onset of qualitatively different oscillations occurs in spatially
localized compartments, which according to~25!, in the case
of absolutely identical junctions, consist of the array’s rows
themselves. Thus the geometrically uniform 2D array be-
haves dynamically nonuniform.

Indeed, if the normalized bias currentĪ 0 , considered as a
bifurcation parameter, approachesua1u from below, then, ac-
cording to~25! and Sec. III A the phase oscillators in the row
belonging toa1 , i.e., in the first compartment, start to whirl
simultaneously with the same frequency but phase incoher-
ently. This whirling generates the first voltage step atua1u in
the I -V characteristics because in the expression for the volt-
ageV5^(k51

N Ḟik
V & ~where the brackets denote time averag-

ing! Ḟik
V5ḟk is different from zero only for thek belonging

to a1 while V50 for fixed points and semirotors. If there
would be no coupling between compartments constituted by
the array’s rows belonging toaj , j>1, then, as the increas-
ing Ī 0 passes through the sequence of critical values~37!, the
oscillator phases in the succcessive rows start immediately to
whirl, producing a staircase succession of voltage steps at

Ī 05uaj u, j51, . . . ,N, until the I -V characteristics become
linear for Ī 0.uaNu when all junction phasesF i j

V of the net-
work oscillate with the same frequency but phase incoher-
ently and the compartments merge into a single block. Since,
however, the rows are coupled, the whirling of phase oscil-
lators in the first row (a1) generated atĪ 05ua1u leaves the
other rows staying in their fixed points as long asĪ 0,ua2u. If
Ī 0 reaches the bifurcation pointua2u, the phases in row 2
start to oscillate as semirotors. Since^Ḟi j

V&50 for fixed
points and semirotors these do not contribute toV. If Ī 0
increases further, the semirotating oscillators of row 2 bifur-
cate into fully whirling states at someĪ 05a2*.ua2u because
the damping termn/N( lḟ l in Eq. ~25! is now counterbal-
anced by the sufficiently high value ofĪ 0 . In this way, at
successive valuesĪ 05aj*.uaj u, j>2, the rows in the
coupled system start to whirl, giving rise to steps in theI -
V characteristics at valuesaj* rather thanaj whose magni-

tude depends on the coupling strengthsm, n and @by virtue
of Eq. ~25!# sensitively on the values and signs of the re-
maining set of theaj @cf. Fig. 3~a!#. However, the succession
of fully whirling oscillation onsets ataj* and voltage steps
follows that of Eq.~37!. The frequencyv of the incoherent
phase oscillations in a single row compartment is given by
Eq. ~32! or ~33!, depending on the value ofb. v is a func-
tion of the bias currentI 0 and the load parametersrL and
bL , while the incoherence of the oscillations is due to the, in
general, nonuniform distribution of the phase slipsC i j on
which the aj depend. The height of the steps in theI -V
characteristics depends on the initial frequency of the whirl-
ing oscillations. Since the fixed pointf j

11 loses its stability
at I 05M uaj u the staircase steps begin foruaj u!1 at values of
I 0 less than the critical current (I c) of a single junction. This
explains, at a dynamical level, the ‘‘row switching’’ phe-
nomena@cf. Fig. 3~b!# found recently in experiments.13,16,17

From Eq. ~32! it follows that for sufficiently largeb all
whirling oscillators will synchronize their frequencies~cf.

FIG. 3. ~a! Simulation of theI -V characteristics~thick! of Eq.
~13! taking account of Eqs.~9! and ~10! for a 535 array with
b510 ~top!. The thin curves~bottom! describe the onset of oscil-
lations in successive rowsj53,4,5,1,2. Adding these curves yields
the curve above.~b! Row switching ~in row j53) for the same
array withb55. The frequencies do not synchronize between rows
3,4 ~double curves!.
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Fig. 3! completely, although not their phases, even within the
transition interval, whereas forb,1 frequency entrainment
is not ensured~cf. Fig. 4!.

For sufficiently high values ofĪ 0.aN* , i.e., beyond the
transition interval@ ua1u,aN* #, frequency entrainment occurs
according to~32! or ~33!, the compartments merge into a
single oscillating block, and the current-voltage characteris-
tics of the 2D array become linear with the common fre-
quency of the junctions increasing withĪ 0 . At the same time
the dynamics of the 2D network tends towards a continuous
family of incoherent phase oscillations with equal frequency.
The phase slips between the oscillator phases within one row
are given by theC i j of Eq. ~19! and the phase shiftsd j
between different rows converge to constant values~cf. Fig.
8!, implying in this case a totally phase-locked spatially in-
coherent limiting state depending on the input pattern de-
fined by the initial condition imposed on Eq.~13!. This fam-
ily of incoherent phase-locked oscillations forms the
attractors of the Josephson network dynamics.

C. Simulation of I -V characteristics

We have tested our analytical predictions by numerically
integrating Eq.~13! taking account of Eqs.~9! and~10!. We
simulated square arrays with 5<M5N<10. Impedance
matching, i.e.,rL51, and large blocking capacitance, i.e.,
bL510b, ensured sufficiently large global coupling
strengthsm andn. According to the discussion in Sec. II we
observed in all simulations that the phase differences of the
horizontal junctions do not whirl (I i j

H,I c), and that they do
not influence the oscillatory states and spatiotemporal pat-
terns the arrays exhibit. The phase differencesF i j

H of the
horizontal junctions possibly semirotate with low amplitude,
but according to Sec. III A these semirotations are not ac-
companied by voltage drops in the horizontal direction.
Above the bifurcation point the current distribution in the

array is, according to Eqs.~3! and~8!, similar to that in Fig.
2~d! and for increasingI A determined by the increasing ver-
tical currents. The current-voltage curves are generated by
slowly increasing or decreasing the bias currentI 0 and ob-
serving the long-time average voltageV5^1/M(k,l

M ,NḞkl
V &.

The bias currentI5I 0 is measured in units ofI c , andV in
units of I cr . The thick lines in theI -V characteristics de-
scribe the characteristics of the whole circuit, the thin curves
the onset of whirling solutions in particular rows. For a given
I 0 the initial conditions for theF i j

V are chosen by random
such that Eqs.~9!, ~10!, and~13! are satisfied. From Eq.~21!
it follows that for randomly chosen initial valuesC i j equally
partitioned in the interval@2p/2,p/2# the mean value of the
reduced critical currentuaj u converges rapidly to 2/p50.63
for increasingM . For M510 this implies that in a 10310
array the measured critical current of the array is 63% of the
value 10I c whereI c is the critical current of a single tunnel-
ing contact. This theoretical prediction agrees with the criti-
cal current measured by Lachenmannet al.16 Our examina-
tion of the possible inhomogeneous current distributions~cf.
Sec. II! indicates that for values of the vertical currentsI i j

V

that correspond to such initial conditions the occurrence of
eddy currents in the network unit cells is extremly unlikely.
The accordance with the experimental measurement may be
explained with the tendency of the current distribution to
avoid eddy currents for array currentsI A that are comparable
with the critical current of the array because they are ener-
getically unfavorable.27 This argument can also explain why
in experiments theI -V characteristics are reproducible in
some details within measurement accuracy. If there are no
perturbations by moving vortices, the couplingsaj and there-
fore the sequence of bifurcations~37! are strongly influenced
by perturbation matrices which are given by the deviations of
the individual junction parametersI c , r , and cJ from the
assumed equality of all junctions which are produced by im-
perfections~cf. Sec. II!. Since these imperfections are a natu-
ral result of the fabrication process, the perturbation matrices
are fixed for a given array and do not change if the experi-
ments are repeated. To reproduce this experimental situation,
the initial conditions for theC i j in all simulations are chosen
from the interval@2p/2,p/2# andḞi j

V(0)50 and, if pertur-
bations are included in the simulations, it is assumed that
they have the form of time-constant perturbation matrices.

Figure 3~a! shows theI -V curve of a 535 array with
b510 andbL5100. Using Eq.~21! the set of couplings is
given by (a1, . . . ,a5)5(0.63,0.81,0.34,0.41,0.53). The
first bifurcation point occurs exactly atI5Ma351.7, as ex-
pected from our calculation of the fixed points of Eq.~25!.
All other bifurcations into the whirling state occur at points
I5aj*.uaj u. The staircase with theN predicted steps is eas-
ily recognized, because successive rows switch into the volt-
age state ~whirling state! according to the sequence
j5(3,4,5,1,2). In addition, although theaj are different,b
and the global coupling parametersn andm are large enough
to enforce frequency entrainment already within the transi-
tion interval. The small decreasing steps in theI -V charac-
teristics of the individual rows are due to this entrainment
mechanism because for large blocking capacitancebL and
impedance matching the value of the coupling parametern
becomes negative.

FIG. 4. SimulatedI -V characteristics for a 10310 array with the
experimental valueb50.7 for overdamped junctions and large
blocking capacitance, and differential resistance (dV/dI)(I ). The
sharp peaks in the (dV/dI)(I ) resistance curve are generated by the
onset of whirling oscillations and by partial frequency synchroniza-
tion. Distinct array rows self-synchronize to compartments with
subharmonic frequencies. The first step takes place atI57I c .
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The I -V curve for the same array configuration but with
b55 is shown in Fig. 3~b!. The individual row couplings are
given by the setaj5(0.46,0.57,0.04,0.25,0.2). The first bi-
furcation point appears atI5Ma350.2 and the row switch-
ing phenomena is obvious. However, in contrast with Fig.
3~a!, there is no frequency entrainment within the transition
interval. Only for values ofI beyond the last bifurcation
pointa2* do the frequencies synchronize. From Eq.~32! such
behavior is to be expected becausea350.04 differs signifi-
cantly from the absolute values of the otheraj .

Next we consider values ofb,1. Figure 4 shows the
I -V curve of a 10310 array with b50.7 together
with the differential resistance (dV/dI)(I ). For
aj5(0.7,0.72,0.87,0.77,0.75,0.79,0.71,0.76,0.85,0.91) the
initial bifurcation point is given byI57.0. In theI -V curve
only the first step of the staircase is properly resolved be-
cause within the transition interval the different frequencies
of the bifurcating rows do not synchronize with the fre-
quency of their predecessors. In accordance with our theo-
retical considerations, bias currentsI much larger thanMIc
will be needed to achieve frequency synchronization. The
(dV/dI)(I ) resistance curve shows sharp peaks at the onset
of whirling oscillations in succeeding rows and additional
peaks when frequency synchronization occurs. Moreover, by
inspection of theI -V characteristics of the individual rows
for 12.5,I,13.7 and 15.8,I,17.1, regions in which dis-
tinct rows of oscillators self-synchronize to subharmonic fre-
quencies can be observed and the magnitude of these subhar-
monic frequencies is half of that of the frequency of the
remaining oscillators. These array states appear to be stable
for intervals ofI which are larger thanI c and, therefore, have
the consequence that the value of the bias current for which
the I -V characteristics becomes linear is shifted towards
I.25. Figure 4 reproduces the experimentally measured
curve.20

If small parameter spreads and noise are included in the
numerical simulations of the array model~9!, ~10!, and~13!,
stochastic switchings between different array states take
place near the voltage steps and hysteresis loops of different
orientations occur within the transition interval. These results
are also in close agreement with recent experimental data.21

The junction parametersI c , r , andcJ are chosen to have a
1s spread of less than 3% and to the bias currentI white
noise with magnitude less than 1% is added. Figure 5 shows
the I -V curve of a 535 array with b50.7 and
aj5(0.33,0.09,0.44,0.47,0.1). Within the transition interval
on and off switchings of different rows occur. To examine
the stochastic nature of these switchings, in Fig. 6,V is plot-
ted versus time at one distinct value of the bias current. For
I54 andb510 the 10310 array indeed exhibits irregular
jumps between different array states. Moreover, by careful
inspection five distinct states can be observed where different
compartments are in the voltage state. The lifetimes of the
different states depend on the magnitude of the perturbations
and on the value ofI . Near the voltage jumps they are typi-
cally some ms, but in the intermediate regions they can also
take values of some minutes or even days.

From Eq.~21! it follows that for equally distributed initial
conditionsC i j for a given j the corresponding couplingaj
and the nonlinear term pertaining to it in Eq.~25! vanish.

Hence, if in the case of smallaj b is chosen sufficiently
large, theI -V characteristics exhibit a hysteresis loop whose
smooth return branch to lowI passes alternatively above and
below the staircase and reaches theV axis at a positive value
of the voltage, implying that collective whirling persists
down to vanishing current. Figure 7 shows a hysteresis loop
in one compartment of a perturbed 10310 system. The re-
turn branch of theI -V characteristics crosses theV axis at a
small but positive value so that in the corresponding com-
partment whirling continues some time after the bias current
is switched off. In virtue of the perturbations, hysteresis
loops of different orientation are observable.

D. Phase space dynamics

Within the transition interval defined by the range of val-
ues of Ī 0 betweenua1u and the last stepaN* of the staircase,
the nonwhirling semirotating oscillators of the Josephson ar-
ray are driven by the whirling ones and vice versa. Conse-
quently, depending on the values ofb and the coupling

FIG. 5. Simulation of theI -V curve of a 535 array with
b50.7 including small parameter spreads and current fluctuations.
Within a transition interval the system jumps between different ar-
ray states. Several array rows switch on and off with increasing bias
current.

FIG. 6. Long-time averaged voltageV vs time t near a voltage
step for the perturbed 2D array. ForI54 andb510 the 10310
array exhibits irregular jumpings between different energy levels.
By careful inspection five distinct energy levels can be observed.
The lifetimes of the different array states are typically some ms.
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strengthsaj , there exist simultaneously several different fre-
quencies and whirling solutions, semirotors, and fixed points
in different compartments of the array. Since the latter are
coupled, so are the different nonlinear oscillatory modes and,
therefore, aperiodic~chaotic! mixed states of whirling and
semirotating as well as quasiperiodic solutions coexist in the
2D Josephson array in different spatially localized domains.

These intrinsic interactions of different compartments and
the complicated sequences of phase states the array passes
through in generating staircase current-voltage characteris-
tics are revealed by numerically integrating~13! and plotting
bifurcation diagrams and snapshots of the phase space dy-
namics of the oscillators. Figures 8~a! and 8~b! show how
successive bifurcations of fixed points, semirotations, and
whirlings lead to entangled internal ‘‘crisis scenarios’’ in a
10310 array in virtue of the interaction of different dynami-
cal states in different array compartments. Out of these a new
order emerges for increasingI when all compartments whirl
and the array enters a frequency-synchronized and phase-
locked state. In both figures, for each dc bias level, the values
of the phasesF1 j ~modulo 2p) of the junctions in the first
column of the array are plotted as a function of the slowly
increasing bias current. Region~I! in Fig. 8~a! (b50.7) and
Fig. 8~b! (b510) shows the evolution, with increasingI , of
the fixed points of Eq.~13! for the same given input pattern.
In regions~II ! and~III ! the initial phases of the junctions for
each of 104 successive cycles are plotted when the leading
compartment in the column, i.e., that which first starts to
whirl (a1: I axis!, begins one cycle. The dynamics within the
transition interval~II ! depends strongly on the value ofb. In
region~IIa!, defined byM ua1u,I,M , the bifurcations from
theN3M dimensional fixed point predicted analytically in
Sec. III B take place and fixed points, semirotors and whirl-
ing solutions coexist in different rows. Region~IIb!, defined
by M,I,MaN* , exhibits only semirotations and whirlings.
Ascending or descending thick curves in region~II ! of Fig.
8~b! indicate periodic semirotations~librations!, whereas the

semirotors in region~IIa! of Fig. 8~a! are aperiodic and only
their tonguelike ‘‘ghosts’’ are visible. In region~IIb! of Fig.
8~a! it is not possible to distinguish between aperiodic semi-
rotations and mixed states of semirotation and whirling~cf.
Fig. 9!. The horizontal curves in regions~IIb! and ~III ! rep-
resent pure whirling states and indicate phase locking of par-
ticular compartments with the leading compartment. In Fig.
8~a! each onset of a whirling state in a particular compart-
ment can be directly compared with the corresponding one in
Fig. 4 which generates a voltage step in theI -V charcteristics
of Fig. 4. The spontaneous reordering of the phases at the
beginning of region~III ! is due to frequency synchronization
in accordance with our theoretical considerations in Sec.
III A. For b,1 region~IIb! is larger than forb.1 and one
can expect that forb@1 region~IIb! disappears. However,
according to Eqs.~23! and ~37! in all cases the phase shifts

FIG. 7. Hysteresis in theI -V characteristics of a single compart-
ment in the perturbed 2D array. The return branch~dotted line!
crosses the ascending branch~thick line! at different values ofI ,
implying a number of hysteresis loops with opposite direction. Ro-
tations persist down to vanishing bias current.

FIG. 8. Initial phases~modulo 2p) as a function of the dc bias
current I for a 10310 array with ~a! b50.7 and~b! b510. In
region ~I! the fixed points of Eq.~13! evolve along slightly bent
lines. In regions~II ! and ~III !, for each dc bias level, the values of
the phases in the first column at the beginning of the whirling cycle
of the first fully whirling row (a1) are plotted for 104 successive
cycles. The windows in region~II ! of ~a! indicate intervals ofI
where self-synchronization of particular compartments to subhar-
monic frequencies occurs~cf. Fig. 4!. The thick lines in region~II !
of ~b! represent semirotations.
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d j between different rows converge to constant values, im-
plying an incoherent but completely phase-locked state in
region ~III !, i.e., on the linear branch of theI -V characteris-
tics in Figs. 3 and 4. In the two small windows of Fig. 8~a!
‘‘aperiodic subharmonics’’ are present which imply that four
compartments self-synchronize to an averaged frequency
with half of the magnitude of the frequency of the leading
compartment. These are the subharmonics observed in Fig.
4.

To illustrate the array’s phase dynamics and the formation
of spatially localized compartments within the transition in-
terval, phase diagrams (F i j

V ,Ḟi j
V) are plotted in Figs. 9–11.

Since the phase space of a single-junction oscillator is ge-
nerically a cylinder, in all phase diagrams the right edge has
to be identified with the left edge. Large dots or closed
curves represent semirotations, i.e., librations, on the cylin-
der, while the long curves describe whirlings around it. In
Fig. 9 each box represents the (F i j

V ,Ḟi j
V) phase diagram

of a single junction oscillator in a 636 array. The num-
bers on the left are the values ofM uaj u for the
different rows. For b50.7, I54.0, and
aj5(0.32,20.63,20.22,0.55,0.6,20.07), there are six dis-
tinct row compartments, each of them exhibiting different
spatiotemporal activity patterns. The oscillators in the rows
with j52,4, and 5 semirotate with very low amplitude
around different nontrivial fixed points and show on the av-
erage a stationary pattern. Their first bifurcation points
M uaj u lie at values just belowI . In the row with j51 the
junction phases are in different mixed states of whirling and
semirotation. All oscillators belonging to the row have the
same frequency. The values of the phase slips between dif-
ferent oscillations in a row correspond to the values ofC i j

predicted by Eq.~21!. In the rows withj53,6 the couplings
force the junctions into quasiperiodic oscillations.

In Figs. 10 and 11, phase diagrams of junction oscillators
in selected rows are plotted. Forb50.7, I52.5, and
a150.9, Fig. 10 shows an oscillator in an aperiodic mixed
state of whirling and semirotation familiar from the motion
of a single chaotic pendulum. The coexistence of semirotors
and whirling solutions in different rows is shown in Fig. 11.
Forb510, I52.0, a150.4, anda350.9 the oscillators with
j51 ~top! semirotate with approximately the same fre-
quency as the quasiperiodic whirling oscillators in row num-
ber 3 ~bottom!.

FIG. 9. Phase diagrams of oscillations in a 636 array with
b50.7 for bias currentI54. Each box represents the phase space
(F,Ḟ) of a distinct oscillator in one of the six row compartments.
The numbers on the left are the values of the row parameters
M uaj u. The phase space of a single junction is a cylinder. Large
dots ~resolved in Figs. 10 and 11! represent semirotations on the
cylinder, the curves whirlings around the cylinder.

FIG. 10. Spatially resolved phase space diagram of the single
junction i51, j51 in Fig. 9 in an aperiodic mixed state of whirling
and semirotation within the transition interval.

FIG. 11. Phase diagrams of two different oscillatory modes in
different rows forb510 andI52. The upper oscillator semirotates
with approximately the same averaged frequency as the whirling
one below. The whirling oscillator is in a quasiperiodic state.
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IV. DISCUSSION

We have shown that the nonlinear dynamical equations
for the phases of a uniform 2D Josephson junction array with
type ~ii ! current distribution under an external load are
equivalent to an equation system for a one-dimensional chain
of nonlinear, nonuniformly coupled, and nonidentical oscil-
lators. We have determined the spatiotemporal patterns and
dynamical states of the array in response to varying input
patterns and coupling strengths, bias currents, and external
probes. For increasing bias current the dynamics is governed
by a succession of bifurcations which activate spatially dis-
tinct, coupled oscillating compartments in the array with co-
existing semirotors, whirling, and quasiperiodic and aperi-
odic states, and which generate staircase current-voltage
characteristics. These results have the following conse-
quences.

~1! The Josephson-junction array~13! has the property
that the dynamical couplingsaj in ~25! and, therefore, the
pattern dynamics of the array depend on and vary with the
given initial conditions F i j

V(0)5C i j , i.e., on an
(N3M )-dimensional input pattern. This property enables
the system to self-organize the stable oscillatory patterns
which arise with increasing bias current. In particular, if an
electron beam directed on an oscillating sample array is
switched off in an LTSEM experiment, this imposes new
initial conditions andaj on the array to start with and thus
generates new stable dynamical patterns. This dynamical
buildup of coupling strengths due to external probes explains
the succession of patterns found experimentally by Lachen-
mannet al.16

For dc bias currents the 2D Josephson array operates as a
‘‘current or frequency-pattern to voltage-pattern’’ transducer
so that different input patterns are transformed, via
$C i j %→$aj%, into distinct equivalence classes of observable
voltage output patterns in theI -V and differential resistance
characteristics, independently of phase slips and the actually
very high oscillator frequencies. This is technologically rel-
evant because the number of experimentally observed steps
in the I -V characteristics is a measure for the degree of co-
herence of the oscillating states. If, in particular, there exists
only one voltage step, then, on the subsequent linear branch
of the I -V characteristics the array junctions oscillate per-
fectly in phase if the initial input pattern is uniform with all
C i j being equal so that according to~21! all aj
( j51, . . . ,N) assume the same value. In the case of two or
more steps coherence cannot take place. Consequently, the
simplest way to achieve maximal power output consists of
the application of a uniform external coherent microwave
signal over the whole array. After switching this signal off,
the array stores this input pattern and stays in a perfectly
coherent phase-locked state. Recent experiments by Doderer
and Lachenmann20 confirm these theoretical predictions.

~2! Our theoretical analysis has shown that in a uniform
2D array current couplings alone cannot induce coherent
phase locking of the junction oscillations. That all vertical
and horizontal junctions cannot oscillate with the same fre-
quency is already implicit also in Kirchhoff’s voltage law. In
striking contrast to this technologically unsatisfactory result
we have shown in Ref. 18, both theoretically and experimen-
tally, that in hierarchic-modular architectures of current-

coupled nonlinear oscillators withD33D3 symmetry stable
coherent phase-locked oscillations can be achieved with ap-
propriately chosen couplings. Different coupling architec-
tures can be tested in LTSEM experiments on rectangular
arrays by switching distinct compartments off and on with an
electron beam and measuring the increase or decrease of the
coherence degree. Hybrid-modular Josephson-junction archi-
tectures with normal conducting bridges possess the addi-
tional advantage of impeding vortex propagation.

~3! A novel way to determine the attractors in Josephson-
junction networks from the output voltageV consists of us-
ing Takens’ embedding theorem28 for time series: For a fixed
value of the bias currentI 0 in the region of the linear branch
of the I -V characteristics, the time variations ofV(t) are
measured. Each input setC i j corresponds to a class of at-
tractors in the phase spaceV(t) vs V(t2t), wheret is a
given fixed time delay. Since for such high frequencies it is
experimentally not possible to measure voltages time con-
tinuously, voltage was averaged in the simulations over
about 106 oscillation periods. ForI530 Fig. 12 shows five
different attractors of the dynamics at the linear branch in a
10310 array for five arbitrarily chosen different input pat-
terns. The voltage variations observed in these simulations
have a magnitude of about some nV. We conclude, therefore,
that Josephson networks furnish highly efficient pattern rec-
ognition devices.

~4! The dynamical equation system of a stack of 2D
Josephson-junction layers~13! along the crystallographicc
axis with perpendicular bias current and approximately zero
voltage drop in the (a,b) direction of the layers can be trans-
formed into a nonlinear chain equation similar to Eq.~25!
with the subscripti replaced by the index pair (i ,k) of the
layers so that F ik j

V (t)5f j (t)1C ik j . Consequently,
in layered 3D Josephson-junction networks such as
Bi-Sr-Ca-Cu-O crystals we find the same dynamical patterns

FIG. 12. Reconstruction of the array’s attractors~closed curves!
in the phase space of long-time averaged observables^V(t2t)& vs
^V(t)& from numerical data obtained by simulating Eq.~13! for five
different input patterns imposed on a 10310 array. ForI530 the
attractors generating the linear branch of theI -V characteristics can
be distinguished by their positions and shapes.
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and switching phenomena as the ones discussed above, in
particular the successive formation of compartments of os-
cillating junctions and the corresponding staircases for in-
creasing bias current. Therefore, experimental data on high-
Tc superconductors

5 can be interpreted in terms of the non-
linear chain of nonidentical junctions with nonuniform glo-
bal couplings discussed in Sec. III. On the basis of such a
chain the observed dynamical patterns find a simple and
natural explanation.19

~5! With Eq. ~8!, the horizontal currents defined by~9!
together with the vertical dc currents from~19!, which origi-
nate from nontrivial fixed points of Eq.~13!, may generate
persistent circular currents of different strength and vorticity
if the initial input patternC i j is nonuniform@cf. Fig. 2~b!#.
For small bias current, the circular currents along the edges
of the array parallel to the bias current are very sensitive to
external perturbations produced, e.g., by an electron beam
directed on the sample, while inside the array the current
distribution is able to compensate the perturbation. Using
LTSEM techniques, Doderer and co-workers have imaged
such pinned vortices16 on the array edges for bias currents
below the array’s measured critical current. In the present
theoretical framework, vortices moving through the 2D array
induce voltage drops in theI -V characteristics which are in
general much smaller than the step heights in the transition
region and play no role in the linear branch. However, if
moving vortices are interpreted as stochastic perturbations of
the junctions they cross on their way through the array, our
numerical simulations including parameter spreads provide
strong evidence that on or near the voltage jumps, moving
vortices can be responsible for the on and off switching of
the corresponding array rows.

V. CONCLUSIONS

The theory presented here describes the basic nonlinear
mechanisms underlying a variety of experimentally observed
phenomena in Josephson-junction arrays, in particular, clas-
sical and vortex-induced row switching and voltage drops,
frequency-synchronized families of phase-locked oscillators,
stochastic jumps, subharmonics, and hysteresis loops in the
current-voltage characteristics as a result of the intricate
phase dynamics. Implications for pattern formation in high-
Tc superconductors and applications in pattern recognition
have been discussed and it has been shown that specific input
patterns must be applied to the array or special coupling
architectures be used to achieve stable coherent microwave
radiation emission in 2D arrays. The theoretically predicted
spatiotemporal patterns are in close agreement with the pat-
tern dynamics observed in recent LTSEM experiments on
rectangular arrays of underdamped and overdamped Joseph-
son junctions and reproduce the measured data quantita-
tively.
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