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Nonlinear pattern dynamics in Josephson-junction arrays
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The dynamics of a two-dimensional array of Josephson junctions under an external load is shown to be
equivalent to that of a one-dimensional nonlinear chain of nonidentical, globally, and nonuniformly coupled
oscillators. This allows us to determine the dynamical states and collective spatiotemporal patterns the array
exhibits in response to varying initial conditions, input patterns, coupling strengths, and bias current. When the
bias current goes through critical values, successive bifurcations activate spatially distinct, coupled oscillatory
compartments in the array, where semirotating, whirling, and quasiperiodic and aperiodic states coexist, and
induce staircase current-voltage characteristics. Classical and vortex-induced row switching phenomena, stable
families of frequency synchronized and phase-locked states, subharmonics in compartment couplings, stochas-
tic jumps, and hysteresis loops are deduced, and sequences of input patterns are shown to be dynamically
storable in the array’s attractors. The dynamical formation of oscillatory compartments is also a general feature
of three-dimensional Josephson-junction networks. Coherent microwave radiation emission is possible only for
specific input patterns or by using symmetry-breaking array architectures. The theoretical predictions are in
close agreement with the dynamics recently observed in low-temperature scanning electron microscopy ex-
periments[S0163-182606)08126-X]

I. INTRODUCTION Josephson-junction arrays, with a nonlinear theory still miss-
ing.

The objective of this paper is to develop a comprehensive Since Josephson arrays represent discrete nonlinear dy-
theoretical framework for the description of two-dimensionalnamical systems for the set of phase differences across the
Josephson-junction arrays which is capable of explainingunction barriers, the central problem to be addressed here is
guantitatively the dynamical states and spatiotemporal pato model these systems by networks of nonlinear oscillators
terns recently observed in experiments and provides insighwhose collective spatiotemporal patterns, such as frequency
into the underlying nonlinear dynamics. and phase synchronization, self-stabilization, and compart-

The increasing contemporary interest in the dynamics ofment formation, reproduce the experimental findings quanti-
two-dimensional (2D) Josephson-junction arrays derives tatively.
from the technological potential these systems hold as coher- In Sec. Il we show that the nonlinear dynamical equations
ently radiating on-chip high-frequency sources, magnetidor the phase oscillations of a 2D Josephson-junction array
field sensors, and kryoelectronic switching circditdln ad-  coupled to an external load can be transformed into an equa-
dition, layered 2D arrays and 3D lattices of Josephson junction system for a one-dimensional chain of nonlinear, glo-
tions play an important role in modeling high-temperaturebally, and nonuniformly coupled, nonidentical oscillators.
superconductors.On the other hand, operating massively From this we determine, in Sec. lll, the spatiotemporal pat-
parallel, Josephson networks possess both pattern generatitggns and dynamical states the array exhibits in response to
and recognizing capabilities depending on the system’s cousarying input patterns, coupling strengths, bias current, and
pling architecture and so can be used in the design of dyexternal probes. As the dc bias current increases beyond the
namical devices for ultrafast signal processing. critical current, the dynamics is governed by a succession of

Experimental and theoretical studies of phase oscillationbifurcations which activate spatially distinct, coupled com-
in one-dimensionallD) uniform Josephson arrays, in which partments of oscillators with different frequencies in the ar-
all junctions are globally coupled with each other under array in which fixed points, semirotating, whirling, and quasi-
external load, have demonstrated the feasibility of phaseperiodic and aperiodic states coexist and interact. If the
locked coherent oscillations needed for high outputcurrent goes through critical values, the formation of oscil-
power®79-12 However, because of the complex nonlinearlatory compartments induces successive staircase steps in the
dynamics associated with the many interacting degrees afurrent-voltage characteristics. For sufficiently large bias
freedom in 2D and 3D Josephson networks, our understanagurrent, the compartments merge into a single block and the
ing of the possibility of phase and frequency synchronizatiorexistence of constants of motion implies that the current-
and of the dynamical states observed in such systems is stifbltage characteristics become linear with all array junctions
far from being satisfactory**15To achieve stable states of oscillating with the same frequency in an, in general, inco-
in-phase junction oscillations seems to require additionaherent phase-locked state. To achieve coherence, the array’s
mechanisms to be built into the arrays. On the other handdynamical symmetry must be broken explicitly, either by
recent spatial imaging measurements using low-temperatupplying specific inputs, e.g., by microwave injection, or by
scanning electron microscoy TSEM) technique¥’have  using special coupling schemes, e.g., hierarchic-modular ar-
revealed a rich variety of dynamical patterns in 2Dray architectures®
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It is shown that the mechanisms described above give rise
to a variety of experimentally observable macroscopic quan- ‘ Iy
tum phenomena, in particular to frequency-synchronized - -
families of phase-locked oscillations, classical and vortex- Fou b o :
induced row switching due to energy transport between com- 151
partments, and voltage drops, subharmonics, stochastic Iyi

.
|
—

4,

jumps, and hysteresis loops in the current voltage character- -
istics. Compartment formation is also revealed in three- I
dimensional Josephson networks used to model high- --
temperature superconductors. The striking dependence of the 8 LoaD | : : : :
network dynamics on the initial conditions imposed on the
Josephson array by given input patterns, such as applied mi-
crowave signals or electron beams in spatially resolved "
LTSEM-based measurements, is analyzed. Since the currents
generated by input patterns change the array’s coupling
strengths in a dynamical process, the network can self- . T T
organize its oscillatory behavior and, operating as a current- N
pattern to voltage-pattern transducer, store different input(a)
patterns in the array’s attractors. We confirm our findings by
numerically integrating the array’s equation system and test
the stability of the patterns against noise and parameter
spreads.

In Sec. IV we summarize our results and discuss implica- i
tions for pattern sequences, coherent radiation, and layered i
networks of Josephson-junction arrays. The theoretical pre- */ L T
dictions are in full agreement with the dynamical patterns
recently observed in LTSEM experiments on rectangular ar-
rays of underdamped and overdamped Josephson
junctiong®?! and reproduce the measured data with high ac-(o)
curacy.

N +1

V.H
I

i

FIG. 1. (a) Geometry of a 2D Josephson-junction array with a
parallel shunted load. The junctions are indicated by crosses and
labeled by their column indeix=1, ... M (from left to right and

In this section we set up the dynamical equation systentheir row indexj=1, ... N+1 (from top to botton. I}f and I}]
for the two-dimensional rectangular array of identical Jo-denote the current through the vertical and horizontal junctions,
sephson junctions shown in Fig(al and discuss its basic respectively_. On top and bottom of_ the array experimentally used
properties. The array is shunted by a load to provide g|oba_lpus-bar resistors are sketched WhICh p_rovnde hqmoge_neOL_ls array
coupling of the junctions symbolized by crosses. In experiiTPut and output currentb) RCSJ circuit for a single junction.
ments bus-bar resistors are used on top and bottom to ensuse 'S the current from a network nod, the Josephson supercur-
homogeneous input currents fed into the columns of the ne{_ent, andi. andi, are the currents through capacitor and resistor.
work. The column index is denoted by1,... M (from ) L . . . .
left to right) and the row index by=1, . . . N+ 1 (from top zontal junction:(i) All horizontal junctions are totally inac-

to bottom, each cross being represented by the resistiveljiVe: I-€-, 'ikii:.o Vi,j. (i) For each honzontaI'Junct'Lon the
and capacitively shunted junctigRCSJ circuit of Fig. 1(b). current remains less than its critical curreépt i.e., Iij<|C
Each junction on a vertical branc@vertica] juncti0n$ is Vi,j, so that the junctions exhibit the dc Josephson effect.
marked by the node above, each junction on a horizontdliii) The input current  is distributed over the array in such
branch(horizontal junctionsby the node to its left. The size a way that the horizontal junctions exhibit the d €1) or

of the array is characterized by the number of vertical juncthe ac {H>Ic) Josephson effect when is sufficiently high.
tions (NXM) so that the total number of junctions in the According to the general Josephson relations, for {ypand
array isNM+(N+1)(M—1) and the total number of unit (ii) current distributions there exists no voltage drop between
cells equal$N(M —1). We neglect magnetic field and induc- different array columns so that the phase differenbﬁ'sof
tance effects. In Ref. 9 it was shown that this is justified forthe horizontal junctions remain bounded. Céigds nonge-
arrays with ground planes and in Ref. 20 no qualitative dif-neric because for real physical systems even small imperfec-
ference in the experimentally observed spatiotemporal pations or perturbations lead to horizontal currents, so (hat
terns for arrays with and without a ground plane was foundand (ii) should be dealt with together. The above classifica-
The applied dc currerity is fed into the array at the top and tion is also indicated by the results of recent spatially re-
subtracted at the bottofifFig. 1(a)]. Hence, current conser- solved measurements on 2D arrd§$/?%?' These experi-
vation for the sum of the currents through the vertical junc-ments show that, if the input current is nearly
tions in one row implies that for the horizontal junctions homogeneously fed into and subtracted from the array by
three different types of dynamical states can be distinguishedsing standard bus-bar resistdrsthe horizontal junctions
depending on the currerhfjI flowing through a single hori- do not oscillate, implying that there is no voltage drop in the

II. ARRAY EQUATIONS
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direction perpendicular to the bias current. In addition, everideal RCSJ junction carries the supercurrent a resistor

if the array is influenced by external microwave irradiation tor, and a capacitorc; with normal currenti, and i,
which the vertical junctions lock in their phases, the horizon—respectively. Hence, Ii\fz(i3+ir+ic)ij (i=1,... M,

tal junctions do not switch into the voltage state and so dg=1, ... N) is the total current through a junction in a col-
not oscillate?® Consequently caséii) does not apply to ymn with index (i) and |H:(iJ)ij (i=1,...M-1,
these experiments sin¢f>1; would imply oscillations. On  j=1, ... N+1) the current through a junction in a horizon-
the other hand it is also experimentally known that the vertal row with node {j). The supercurrent and the voltage
tical junctions in general oscillate incoherenty,so that  across the junctions are given by the Josephson relations
horizontal currents necessarily must exii;'g'{éO). There-

fore, the observed collective dynamical patterns must be the (i9)ij =Icsin<I>i\J/'H, 4
result of type(ii) current distributions. The spatiotemporal

patterns the array exhibits for tyg#i) current distributions 3 dcpi\J/

are qualitatively different from those for typ&$ and i) and AVi=%¢ gt ()

are extremely sensitive to the boundary conditions applied to

the array such as strongly nhonhomogeneous input currents. doH

This is a consequence of the fact that the dynamics of the 0=—1 (6)
array is restricted by the geometric flux quantization con- dt

straint which implies that the sum over all junction phase

differences arround any closed loop within the network mus,%/vherelc denotes the critical current of the junctions. Intro-

. . ; ducing reduced units by measuring the current in units of
be an integer multlple of 2 [Eq.__(9)]. As we .W'I.l Sh.OW I, voltage in units ofl .r, resistance in units af, capaci-
below, array equations for typéi) current distributions ; . > : . .

. ; : N o tance in units of #/(2el.,r), and time in units of
which take into account this flux quantization condition and /(2el,r), and combining Eqs(1)—(6) yields the differen
reproduce the experimental data can be formulated in ter % c 9 EQs. y

ial equation system

of a nonlinear chain of coupled oscillators. This fact simpli-

fies greatly the analysis of the high-dimensional Josephson- 1M
junction arrays considered here. The analysis of the dynami- B‘.I')i\f“i’i\ﬁ = Sinq)\k/j 1 =1y, 7)
cal equation system for typ@ii) current distributions, for MK

which at present no experiments are availible, is much more
complex and will be discussed elsewhéte. Ii} =sind;; . (8)
In this paper we discuss the Josephson-junction array

model based on the experimentally used array of Fig) 1 Herep=2elcr?c,/% is a dimensionless measure of the junc-
with type (ii) current distributions. LetY be the current tions capacitance, overdots indicate derivatives with respect

|
through a single junction on a vertical brénmj, the voltage ~ to the timet, andl =1, /M andlo=1,/M are the normal-

at node {j), AV; the voltage drop between rowjs and ized load and b|as' currents, respectively.

j+1, 1, a constant bias current, ahdthe load current. The ~ The macroscopic order parameter phases at each node of
current-voltage relation for the ideal junction is representedhe network must be unique. Hence, the 2D network topol-
in terms of the Josephson phase diﬁerenb%{ﬁ) across the 09y requires for the flux ﬂpw that, in the apsence of e>H<ternaI
vertical and®j/(t) across the horizontal junction barriers. fields, the sum over all junction phase d|fferen(.:®$’j,' :

The general Josephson relation states that fot<1, there around any closed loop must be an integer multiple of 2

is no voltage drop across the junction with indei) (and for Therefore, the array equ_amo_rﬁ%) and (8) must be supple-
I}]('H>IC the voltage drop is proportional to the time deriva- mented by the fiux quantization condition

tive of @' . Hence, for typdi) and type(ii) current distri-

butions it follows that > =27k,

loop
Vij=Vie=0 Vi, @ which for an elementary cell in the network can be written as
and the application of Kirchhoff's voltage and current laws

to the network yields DL -0 =27k + @Y, — DY ©)
Vii—Vi i =AV: Vi, (20  From Eq.(5) it follows that the right-hand sideéRHS) of (9)
. ! . possesses a constant value since the time derivatives of the
M CI)i\J( are independent of the index Consequently, for any
Z Ii\](+ l,=1g Vj. 3 given set offI)i\f which satisfy(7) the differences of the hori-
I

zontal phase difference@i*j| on the LHS of(9) are fixed.
Equation(1) accounts for the fact that there is zero voltageEquation(9) therefore provides current couplings between

drop between different columns. I <1 and the phase dif- Vertical and horizontal phase differences such that, for any
ference semirotates with small amplitu@é. Sec. Ill A), Eq.  applied input currentia=1o—1,, a current distribution

(1) remains valid since semirotations do not induce Vo|tagéN|th|n the network which satisfies the Kirchhoff current con-

drops® The identical bus-bar resistors sketched in Fig. 1 aréervation law at each node of the array, viz.,

not explicitly taken into account in the analytic description v " vV H

since we deal with general tyjgié) current distributions. The -1ty — 1= 17=0, (10
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can be computed numerically from the solutiongdf Dif- coupled. Hence, the in-phase solution of such 1D systems,
ferentiating(9) with respect to time leads to Kirchhoff's volt- where all junctions oscillate coherently, is neutrally stable so
age law for a network unit cell, which therefore is automati-that small perturbations or imperfections lead to uncorrelated
cally satisfied for all times. By virtue of Eq$9) and (10,  oscillator phases. In contrast to this, E@) shows that for
and since for rectangular arrays of the type considered hefd>1 even in 2D arrays without an external load, junctions
the number of horizontal junctions is greater than the numbe@n the vertical branches through the same row are coupled.
of elementary network cells, the current distribution within Furthermore, Eqs(7)—(10) tell that the in-phase state of the

the array and the phase differences of the horizontal andertical junctions of this type of 2D array is also only neu-
vertical junctions®}! and®}/ , are not uniquely determined trally stable because without a shunted load there exists no
by the input current 5. Therefore, the current distribution coupling between junction phase differenck§ belonging

for a given input current depends on inital conditions. Forto different rows. This result corresponds to the result ob-
example, for bias currents below the critical current of thetained in Ref. 9 for the macroscopic order parameter phases
array we show in Figs.(@) and 2b) two different supercur- of the nodes of the network with perfect homogeneous col-
rent distributions for an & 8 array with identical array input Umn input and output currents.

currentl , . We used perfect homogeneous column input and Considering the 2D array shunted by an appropriate load
output currents and assumed slightly different critical cur-we choose, without loss of generality, a load with capaci-
rents of the junctions with ad spread ofl ; less than 3%. tanceg_ and resistance, in parallel. In this case the rela-
The results for slightly nonhomogeneous input currents aréon between the load current and the total voltage/
similar. In both cases the small deviations from perfect ho-across the array becomes

mogeneity are sufficient to produce a tyfii¢ current distri-

bution. This is in full accordance with the fact that in experi- I,=8 Vs X (11)
ments on arrays with bus-bar resistors tyf® current LR ’

distributions are the rule. Recently, the dependence of the

array dynamics on the initial conditions has also been found N v

experimentally by Doderer and Lachenm&frThese au- V=2 &, (12
thors investigated row switching phenomena in arrays of un- .

derdamped junctions using low-temperature scanning eleSubstituting Eqs(11) and(12) into (7) we obtain the follow-
tron microscopy. They observed that the spatial distributionsng set of second-order differential equations for dn}é:

of rows of vertical junctions, which are in the voltage state at

a fixed bias current, are different for the same sample if the .. ., v N v Ly M iy Y
experiments are repeated but the number of rows of oscillaté®ij + Pij + NEI: Pij+ MEKD SInDy;— W% sindy; =b,
ing vertical junctions remains the same although their distri- ' (13)
bution in the array changes. This will be shown in Sec. Il to

be related to different sequences of row switchings for dif-where

ferent initial conditionsCI)i\J((O). The LTSEM images pre-

M

sented in Ref. 20 are also an impressive experimental proofp—| (1— ), u= & y= l(l—,u)—,u,.
for the fact that the horizontal junctions do not switch into MB+NBL MpL
the voltage state and do not oscillate. Figurés 2and 2d) (14)

show a possible evolution of the current distribution of Fig.\ye note that foy3, =0, i.e., without load capacitance,and
2(b) if the bias current is slowly increased up to a magnitudethe global nonlinear coupling term vanish. If in addition
just below the critical current of the array, which is approxi- =0, 1, becomes undetermined. In this case the resistively
mately 3¢. In Sec. Ill C we will give an analytical expres- shunted junctiofRSJ model can be used to derive a set of
sion for the value of the critical array current. In virtue of EQ. gifferential equations for the phase differen@¥ which is

(9) the current distribution remains of tyg#) and the evo-  gimilar to Eq.(13).

lution is mainly governed by the increasing currents through  Next we show that Eq(13) possessesM —1)XN con-
the vertical junctions whereas the horizontal currents vangisnts of motion. Setting

only in a small range. The flux quantization condition and

the applied boundary conditions ensure that the horizontal g(i):(i)\l/._ci)i\(, 2<i<M, 1<j=<N, (15)
currents remain small, even if the input currégtis larger . . .

than the critical current of the array. On the other hand, théve obtain from(13) the set of linear differential equations

flux quantization constraint also ensures that the horizontdor (£, ... ()

currents do not vanish. The dynamics of the oscillating array

states and spatiotemporal patterns is therefore governed by ﬂé(‘)= O 12 £l (16)
Eq. (7) because the horizontal junctions exhibit only dc Jo- ! NG o

sephson effects. To understand the arrays oscillatory dynam- _ _

ics, the analytical examination &) is sufficient. In Sec. The matrix on the RHS of16) has an N—1)-fold eigen-

Il C we test our analytical results by numerically simulating Value —1 and a single eigenvalue (v/N+N). Therefore

the complete coupled array equation system, Efjs=(10). éj(')—>0 for t—oo and there exists an attracting invariant sub-
For M =1, Eq.(7) reduces to the familiar set of differen- space, given by

tial equations that describes 1D arrd{3?In the case with- . . .

out an external load all junction phase differences are un- g''=0, 2<i=M, 1sj=N. (17)
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FIG. 2. Current distributions within a*88 network of Josephson junctions for different input curdgpaind slightly different critical
Vv

currents of the junctions,| g)i\f'H:IC(li sij'H), e<1, for arrays with bus-bar resistors. The junctions themselves are not §ksewrig.
1(a)]. The length of the arrows is proportional to the currdri‘{tg (a full cell length corresponds to a currentl@f, small arrows indicate
|I¥’H|<1O’2IC). (@,(b) 14,=1I., perfect homogeneous column inputs and outputs withspread of the critical currents smaller than
3%. In virtue of different initial conditions ifa) and (b) represented here, e.g., by differéﬁt, the supercurrent distributions in the array
differ significantly. (c),(d) Evolution of current distributior{b) with increasing array currenty: (c) [,=3l., (d) 1,=4.5;. In (d) 15 is
slightly below the array’s critical current of approximately.5 By virtue of flux quantization the horizontal currenﬁ remain less than

le.
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For arbitrary initial conditions, this invariant subspace corre-one-to-one correspondence between the solutios3and

sponds to the constraints of E4). It is therefore possible to

(25). Equation(25) can be interpreted as a series array of

derive a reduced set of differential equations directly fromnonidentical, nonuniformly, and globally coupled Josephson

(7) and(11). With (1) and(2) it follows from (5) that

Vi and any givenj. The time evolution of the individual
junction phases can therefore be represented in the form

D (t)= () + W, (19

where theW;; are constants of motion, i.e., time independent

frozen phase slips and;(0)=0, without loss of generality.
TheW;; =<I>i\f(0) define the initial conditions imposed on the
2D array by a given input pattern aﬂd{(0)= #;(0) satisfy
(12). The same procedure used to derive EB) from (7)
yields then for¢; the equation system

. . 1 . : 1
ﬂ¢,—+%§ Dt oo bt byt 2 s+ )

:Io.

(20)
To rewrite(20) in a more convenient form we introduce new
coupling parameters; and phase shift$; (1<j<N). By
setting (1M)Z;sin(¢;+ V) =asin(¢;+ &) the a; and §; are
related to thel;; by

1 1 . .
MZ cosV;; = a;coss; MZ sin¥;; =a;sing; ,

(21)
and
, 1
OSaj :WE COi\Pk]‘—\I’”)
k.|
1 2
Mﬂvﬂ% cog ¥y — W) <1, (22)
with
> sin(Wy;—§,)=0. (23)

The differential equation syste(R0) for the phase; takes
now the form

Byt byt (S hirajsin ey 8) - G asin(d+a)

b!
which, with the translatiorp;— ¢;— 6;,

(24)

simplifies to

Lo . AN .
B+ ¢j+a;sing;+ NZI b — Nzl a,;sing,=b,

(25)
whereb, v, andu are defined by Eq.14).

In virtue of (19) and (21) the (NX M)-dimensional uni-
form 2D array equation systerfi3) has been transformed

junctions with long-range interaction and different values of
the “reduced critical currents’a; for different j. Alterna-
tively, Eq. (25) can be viewed as the equation system for a
nonlinear chain of damped physical pendulums or rotating
disks with nonuniform mass distribution coupled globally to
each other and driven by a common tordueThis visual-
ization of (25) is helpful in an intuitive interpretation of our
results.

We observe that the 2D array, B§.3), is invariant under
any permutation of the indices within the rows and under
permutations of the rows themselves and so possesses a
wreath product symmet’. Since the coupling®; in Eq.
(25) are determined by the conditiofl), i.e., by the initial
conditionsW;; , this symmetry reduces to a combined pa-
rameter symmetry where tteg and the¢; can be permuted
simultaneousely. If theV;; are equally spaced around the
unit circle for a givenj, the corresponding; vanishes.

IIl. DYNAMIC PATTERNS IN JOSEPHSON ARRAYS

In this and the subsequent section we discuss the macro-
scopic pattern dynamics described by H48) and(25) ana-
Iytically, compare the theoretical predictions with recent ex-
perimental results, and discuss their physical implications for
phase coherence, pattern recognition, and 3D high-
temperature superconductors. We begin in Sec. lll A with a
brief description of the types of motion a single Josephson
phase oscillatofphysical pendulurhcan perform inside the
chain(25) and then consider in Sec. Ill B the coupled system
in the theoretical and experimental context. In Sec. Il C we
discuss numerical simulations and in Sec. Ill D we analyze
the array’s phase space dynamics.

A. Dynamics of a single oscillator

Equation(25), to which the 2D systenil3) has been re-
duced, describes a one-dimensional chain of nonuniformly
and globally coupled, nonlinear and nonidentical phase os-
cillators. We consider first an isolated, uncoupled oscillator.
Its time evolution is governed by

B¢j+¢j+aj3in¢j:b. (26)

Since one of our goals is to elucidate the dependence of
the oscillation frequencies and phases in EZp) on the
parametersa;, we do not perform a time rescaling which
would yield a;=1, because for the coupled system such a
transformation is not possible and the different values of
|aj|=<1 influence the degree of nonlinearities. We discuss
briefly the properties of Eq26) in the context of Eq(25).

For b<laj|, Eq. (26) has a stable rest point
¢J—*:sin‘1(b/aj). If in the case of the physical pendulum the
torqueb is slowly increased frorh =0, the pendulum moves
away from the downward vertical to the new stable equilib-
rium angle ;. Whenb>|a|, Eq. (26) has a stable 2
periodic running, physically whirling, solution given by a

into a one-dimensional, nonuniform, and nonlinear chairfunction </>j=¢}‘ (t) with ¢J-*(t+T)=¢j*(t)+27r whereT is

equation systeni25) for N phase oscillators and there is a

the rotation period. Interpreting26) as an ac Josephson



54 NONLINEAR PATTERN DYNAMICS IN JOSEPHSON- ... 1219

junction, the time-averaged angular veloaj;ty:(épj*) corre-  current the frequencies of the individual oscillators may dif-

sponds to the junction voltagé, b to the bias current,, fer significantly so that frequency synchronization is not en-

anda; to an(in general reduced “effective” critical current. sured.

For nonwhirling periodic solutions, in the nonlinear context ~ With regard to the coupled syste(®5) considered in the

known as semirotor&f. below), v vanished If the junction ~ Next section, an additional periodic solution of E@6)

is underdamped, i_e_, ;8 is Sufficienﬂy |arge, then, due to which, although unstable in the UnCOUpled SyStem, is known

inertia, slowly decreasing the bias currénfrom the whirl-  to exist:>** This nonwhirling periodic solution is called

ing value induces a hysteresis loop in the current-voltag@€mirotor or libration since it is g|ven_by some fL_mct|on

curve. For large8 and smalla; it can therefore happen that ;™ whereg™ (t+T)= ¢ (t). The motion of a semirotor

the whirling persists down tb=0. If, on the other hanggis  corresponds to that of a pendulum in the small-angle ap-

small(i.e., B<1), the junction will retrace its origindl-v or ~ Proximation. If such a semirotor exists and is stable in the

-V curve. coupled systeni25) its approximated averaged frequency is
For the interpretation of our numerical simulations of Eq.also given by(32) or (33), respectively.

(13) and for comparison with experiments and technical ap-

plications, the averaged frequeneyof the running solution B. Dynamics of 2D arrays

¢ (t) of Eq. (26) must be determined as a function of the

parameterg, a;, andb. To this end we apply the method of

harmonic balance by setting

We are now prepared to discuss the dynamical patterns
which are generated in the 2D arrédB) or (25) in response
to variable bias currents, coupling strength, and initial con-
ditions.
*= o+ ot + . . .
¢j = dot wl+Acogwl) @7) The basic dynamical patterns to be expected drjfeom
and neglecting higher-harmonic terms. Substituting this anthe set of nontrivial fixed points a5), (ii) from the bifur-

satz into Eq.(26) we use the expansion cation of semirotations from the latter, arii) from the
. . bifurcations of whirling rotational states from fixed points or
sin( ¢’ ) =Josin(wt+ o) +J1€0K ¢bg), (28)  semirotations which lose their stability when the bias current,

where J,=J,(A) is the nth-order Bessel function of argu- acting as a bifurcgtion parameter, goes through critica'l val-
mentA. By separately balancing terms which are constantU€S diven by the; in Eq. (25). Since, in general, according

proportional to cost), and proportional to sirft) we find to Eq. (32) or (33) with each bifurcation into an oscillatory
three algebraic equations fgy, , andA: state (semirotating or whirlingg a new frequency appears
0 ™ ' with which groups of junctions oscillate, we discuss in detail

w+a;J1c09 ¢po) =b, (299  the mechanisms responsible for frequency synchronization.
The spatial distribution of the oscillatory patterns is related
—Aw+a;Jocog ¢g) =0, (300  to the wreath product symmetry of E@.3) and, therfore, to
the combined parameter symmetry of E25), mentioned in
—ABw?+ a;JoSiN( o) =0. (31)  Sec. Il. This symmetry of the network equations allows the

simultaneous coexistence of fixed points, semirotors, and
whirling states with different frequencies in different array

1 a compartments, with the phases in general distributed inco-
(b—w) \/ w2+ i Ejal. (32)  herently.

The NXM dimensional equilibrium point of Eq13) is
Sincela;|<1 and|J;|<1, for large enouglB, i.e.,3>1,the  given by
averaged frequency is nearly identical for all oscillators
(and equal td) irrespective of the value & . Thus, in the
weakly coupled systert5) frequency synchronization will
occur. If 8 is small, especially if3<1, we expect that for
low values ofb the coupled system shows quasiperiodic orHence, in virtue of Eq(19), the stable equilibria form a
aperiodic behavior because several different frequencies caiNx (M —1)]-dimensional manifold in the space of the
coexist in the chain. @, which is given by®} =¥~ »;, where they; satisfy

In the limit 8= B, =0, but also for smalp, the frequency

From this the equation for the frequenayfollows:

M
; sindy =1y Vj. (35)

of a single oscillator can be determined using the fact that Mo _
¢} is 2 periodic and is given by Ek sinWy;—n)=1o Vj, (36)
o1 a_j2 (39 with n; e[ — 7, 7] and ;= 6; for 1,=0. In contrast with 1D
@= c? arrays, even for =0, the oscillators must not reach the

trivial equilibrium ((D}J(:O) because the frozen phase slips
W;;, which are constants of motion, are in general different.
If we associate each phase differem}-ﬁ- with a point on the
(34 unit circle, then, in the equilibrium position the phases of the
junctions are distributed nonuniformly on this circle. This is
correspond to the torque and the couplinge in Eq. (14),  allowed because in the 2D array only the sum of all vertical
respectively. Depending on the value &f, for small bias  currents has to satisfy E(g). For any fixedl, the values of

where for the coupled system of RSJ’s

c=lp(1—x) and x= N+ Mp,
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the equilibrium manifold depend on the initial conditions
only and not on system parameters. This fact follows already
from Eg. (7) because even without an external load the cou-
pling is identical for all junction phasehi\]( within the same
row.

To discuss the oscillatory patterns of the 2D array analyti-
cally we use Eq(25) rather than Eq(13). The stable equi-
librium point of Eq.(25) is given by the isolated fixed points Vv
¢; " =sin"Ylo/a)) with j=1,... N. Forlo>|a;| they lose
their stability so that the onset of oscillations in the coupled
system, Eq.(13) [Eg. (25)], is governed by the smallest
|aj|. We order the individual critical currents or row cou-
plings a; by taking their absolute values and interchanging
their indices such that

lai|<lay|<|as|<---<|ay|. (37 (@) I

For 1o>]ay| the stable fixed poinip;” " of (25) loses its
stability and the system begins to oscillate. We shall show
below that, in contrast with general globally coupled homo-
geneous systent§;2® certain groups of junctions in the 2D
array(13) exhibit now different bifurcation scenarios and the 5
onset of qualitatively different oscillations occurs in spatially
localized compartments, which according(®), in the case
of absolutely identical junctions, consist of the array’s rows
themselves. Thus the geometrically uniform 2D array be-
haves dynamically nonuniform. o

Indeed, if the normalized bias curret, considered as a
bifurcation parameter, approaches| from below, then, ac-
cording to(25) and Sec. Il A the phase oscillators in the row
belonging toa,, i.e., in the first compartment, start to whirl —————
simultaneously with the same frequency but phase incoher- 10
ently. This whirling generates the first voltage stepaat in (o) I
thel-V characteristics because in the expression for the volt-
ageV=(ZN_,®Y) (where the brackets denote time averag—(ls;:'tGk?- @ Sim”la“?rl‘zo“(g;e' 'Vd ‘E?S)rafderisgciéhi(’k) of E?h
: 2V : aking account of Egs(9) an or a 5X5 array wi
ng; (D\',‘\(/h”(ebk\}sz(gﬁ% rre;:;;ré)moziﬁ{;) gzg ;(;rrr:::gtgresm?fglﬂgre B=_ 10 (_top). The t_hin cur_ves(bottom) descr_ibe the onset of o_scil-

1 . P T lations in successive rows=3,4,5,1,2. Adding these curves yields
would be, no caupling b?tween c_:ompartments Con§t|tuted the curve above(b) Row switching(in row j=3) for the same
the array’s rows belonging @y, ]=1, then, as the increas- array withg=5. The frequencies do not synchronize between rows
ing | o passes through the sequence of critical val@&s the 3 4 (double curves
oscillator phases in the succcessive rows start immediately to
whirl, producing a staircase succession of voltage steps fide depends on the coupling strengthsy and[by virtue
I o=1]aj|, j=1,... N, until thel-V characteristics become of Eq. (25)] sensitively on the values and signs of the re-
linear for Iy>|ay| when all junction phase@i\]( of the net-  maining set of they; [cf. Fig. 3a)]. However, the succession
work oscillate with the same frequency but phase incoheref fully whirling oscillation onsets aa} and voltage steps
ently and the compartments merge into a single block. Sincdpllows that of Eq.(37). The frequencyw of the incoherent
however, the rows are coupled, the whirling of phase oscilphase oscillations in a single row compartment is given by
lators in the first row 4,) generated at,=|a,| leaves the Eq.(32) or (33), depending on the value @.  is a func-
other rows staying in their fixed points as longlgs |a,|. If ~ tion of the bias current, and the load parameters and
| o reaches the bifurcation poi#,|, the phases in row 2 B, while the m_coherencg of Fhe oscillations is dqe o the, in
start to oscillate as semirotors. Sin(f@i\f):O for fixed general, nonuniform distribution of the phase sligg on

hich thea; d d. The height of the st in the/
points and semirotors these do not contributeVtolf 1, wie & depen © ASgT OF 18 Seps 1

! further. th otati lat f 2 bif characteristics depends on the initial frequency of the whirl-
nereases Urher, 1he semirotating oSciialors ot row & Bilulyg gscillations. Since the fixed poikt * loses its stability

cate into f_uIIy whirling st_atgs at som@f a3 >|a,| because atlo=M|a,| the staircase steps begin fas| <1 at values of
the damping termv/NZ, ¢, in Eq. (25 is now counterbal- | jess than the critical currentg) of a single junction. This
anced by the sufficiently high value of. In this way, at  explains, at a dynamical level, the “row switching” phe-
successive valueso=a’>|aj|, j=2, the rows in the nomena[cf. Fig. Ib)] found recently in experimenis:'®’
coupled system start to whirl, giving rise to steps in the From Eg. (32) it follows that for sufficiently largeg all

V characteristics at Va|UGI:]* rather thana; whose magni-  whirling oscillators will synchronize their frequenciésf.
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array is, according to Eq$3) and(8), similar to that in Fig.
2(d) and for increasind , determined by the increasing ver-
tical currents. The current-voltage curves are generated by
slowly increasing or decreasing the bias currgntind ob-
serving the long-time average voltage=(1/MSNdy).
The bias current=1, is measured in units df,, andV in
units of I.r. The thick lines in thel-V characteristics de-
scribe the characteristics of the whole circuit, the thin curves
the onset of whirling solutions in particular rows. For a given
I o the initial conditions for the@i\f are chosen by random
such that Eqs(9), (10), and(13) are satisfied. From E@21)

it follows that for randomly chosen initial valuels;; equally
partitioned in the intervgl— 7/2,7/2] the mean value of the
reduced critical currenia;| converges rapidly to 2/=0.63

for increasingM. For M =10 this implies that in a 1810

I array the measured critical current of the array is 63% of the
value 10l . wherel is the critical current of a single tunnel-
ing contact. This theoretical prediction agrees with the criti-
cal current measured by Lachenmaetral ® Our examina-

sharp peaks in thed(V/d1)(l) resistance curve are generated by thetlon of the possible inhomogeneous current distributifeis

onset of whirling oscillations and by partial frequency synchroniza-sec' I indicates that for.vf';lllues of Fhe vertical Currelh)]/s
tion. Distinct array rows self-synchronize to compartments withthat correspond to such initial conditions the occurrence of

subharmonic frequencies. The first step takes plade=at . eddy currents in the network unit cells is extremly unlikely.
The accordance with the experimental measurement may be
Fig. 3 completely, although not their phases, even within theexp!amed with the tendency of the current distribution to
transition interval, whereas fg8<1 frequency entrainment @void eddy currents for array currenjsthat are comparable
is not ensuredcf. Fig. 4). with the critical current of the array because they are ener-
For sufficiently high values of_0> a¥, ie., beyond the getically unfavorablé’ This argument can also explain why
transition interval[|a,|,a%], frequency entrainment occurs " €XPeriments thd-V characteristics are reproducible in
according to(32) or (33), the compartments merge into a some details within measurement accuracy. If there are no
single oscillating block, and the current-voltage characterisperturb"’Itlons by moving vort|_ces, the couplmagsand there-
tics of the 2D array become linear with the common fre_fore the sequence of bifurcatiof7) are strongly influenced

f the iunci : : th. At th i by perturbation matrices which are given by the deviations of
quency of the junctions increasing witl. € same ime e individual junction parameteis., r, andc; from the

Assumed equality of all junctions which are produced by im-
perfectiongcf. Sec. I). Since these imperfections are a natu-
| result of the fabrication process, the perturbation matrices

bet diff A ¢ tant valigésFi are fixed for a given array and do not change if the experi-
etween ditierent rows converge to constant valeesiig. . mantg are repeated. To reproduce this experimental situation,

8), |mply|ng n this case a totall_y phase-loc_ked spatially " the initial conditions for theb;; in all simulations are chosen
coherent limiting state depending on the input pattern de; :

. > Vo : °
fined by the initial condition imposed on E¢L.3). This fam- Lror_n the mte.rvall[ q Z/Z.’W/ﬁ] andq)lii(.o) 0 and, if pertudr h
ily of incoherent phase-locked oscillations forms the ations are included in the simulations, it Is assumed that

: they have the form of time-constant perturbation matrices.
attractors of the Josephson network dynamics. Figure 3a) shows thel-V curve of a 5<5 array with
B=10 andB, =100. Using Eq.(21) the set of couplings is
given by @4, ...,25)=(0.630.81,0.34,0.41,0.53). The

We have tested our analytical predictions by numericallyfirst bifurcation point occurs exactly &&Maz=1.7, as ex-
integrating Eq(13) taking account of EqY9) and(10). We  pected from our calculation of the fixed points of Eg5).
simulated square arrays with<BM=N=10. Impedance All other bifurcations into the whirling state occur at points
matching, i.e.,o. =1, and large blocking capacitance, i.e., | :aj*>|aj|. The staircase with thH predicted steps is eas-
BL=108, ensured sufficiently large global coupling ily recognized, because successive rows switch into the volt-
strengthsu andv. According to the discussion in Sec. |l we age state (whirling stat¢ according to the sequence
observed in all simulations that the phase differences of th¢=(3,4,5,1,2). In addition, although tte are different,3
horizontal junctions do not whirll(j'<lc), and that they do and the global coupling parameterandu are large enough
not influence the oscillatory states and spatiotemporal pato enforce frequency entrainment already within the transi-
terns the arrays exhibit. The phase differendé% of the  tion interval. The small decreasing steps in th¥ charac-
horizontal junctions possibly semirotate with low amplitude, teristics of the individual rows are due to this entrainment
but according to Sec. Il A these semirotations are not acmechanism because for large blocking capacitgBceand
companied by voltage drops in the horizontal direction.impedance matching the value of the coupling parameter
Above the bifurcation point the current distribution in the becomes negative.

FIG. 4. Simulated-V characteristics for a 2010 array with the
experimental valueg8=0.7 for overdamped junctions and large
blocking capacitance, and differential resistand&/dl1)(l). The

family of incoherent phase oscillations with equal frequency
The phase slips between the oscillator phases within one ro
are given by the¥;; of Eq. (19) and the phase shifts;

C. Simulation of |-V characteristics
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The I-V curve for the same array configuration but with
B=5 is shown in Fig. &). The individual row couplings are
given by the set;=(0.46,0.57,0.04,0.25,0.2). The first bi-
furcation point appears &&= Maz=0.2 and the row switch-
ing phenomena is obvious. However, in contrast with Fig. |
3(a), there is no frequency entrainment within the transition
interval. Only for values offt beyond the last bifurcation
pointaj do the frequencies synchronize. From Ep) such v
behavior is to be expected becawsg=0.04 differs signifi-
cantly from the absolute values of the otfegr.

Next we consider values g8<1. Figure 4 shows the
-V curve of a 1X10 array with 8=0.7 together
with the differential resistance di/dl)(l). For
a;=(0.7,0.72,0.87,0.77,0.75,0.79,0.71,0.76,0.85,0.91) the
initial bifurcation point is given byi=7.0. In thel-V curve
only the first step of the staircase is properly resolved be-
cause within the transition interval the different frequencies s 5 simulation of thel-V curve of a 5<5 array with

of the bifurcating rows do not synchronize with the fre- 3_ 7 including small parameter spreads and current fluctuations.
quency of their predecessors. In accordance with our theayjithin a transition interval the system jumps between different ar-
retical considerations, bias currentsnuch larger tharM| . ray states. Several array rows switch on and off with increasing bias
will be needed to achieve frequency synchronization. Theurrent.
(dv/d1)(I) resistance curve shows sharp peaks at the onset
of whirling oscillations in succeeding rows and additional Hence, if in the case of sma#l; B is chosen sufficiently
peaks when frequency synchronization occurs. Moreover, blarge, thel -V characteristics exhibit a hysteresis loop whose
inspection of thel-V characteristics of the individual rows smooth return branch to lowpasses alternatively above and
for 12.5<1<13.7 and 15.81<17.1, regions in which dis- below the staircase and reaches ‘thaxis at a positive value
tinct rows of oscillators self-synchronize to subharmonic fre-of the voltage, implying that collective whirling persists
guencies can be observed and the magnitude of these subhgpwn to vanishing current. Figure 7 shows a hysteresis loop
monic frequencies is half of that of the frequency of thein one compartment of a perturbed>@0 system. The re-
remaining oscillators. These array states appear to be statflern branch of thé-V characteristics crosses thaxis at a
for intervals ofl which are larger thah, and, therefore, have small but positive value so that in the corresponding com-
the consequence that the value of the bias current for whichartment whirling continues some time after the bias current
the 1-V characteristics becomes linear is shifted towardds switched off. In virtue of the perturbations, hysteresis
|=25. Figure 4 reproduces the experimentally measuretpops of different orientation are observable.
curve?®

If small parameter spreads and noise are included in the D. Phase space dynamics
numerical simulations of the array mod#é), (10), and(13), . o .
stochastic switchings between }tljifferent array states take Within the transition interval deflned*by the range of val-
place near the voltage steps and hysteresis loops of differeHES ©flo between/a;| and the last stepy of the staircase,
orientations occur within the transition interval. These resultdh€ nonwhirling semirotating oscillators of the Josephson ar-
are also in close agreement with recent experimental@data.r@y are driven by the whirling ones and vice versa. Conse-
The junction parametets., r, andc, are chosen to have a guently, depending on the values gf and the coupling
1o spread of less than 3% and to the bias curtenthite
noise with magnitude less than 1% is added. Figure 5 shows v()
the I-V curve of a 5«5 array with g=0.7 and
a;=(0.33,0.09,0.44,0.47,0.1). Within the transition interval
on and off switchings of different rows occur. To examine
the stochastic nature of these switchings, in Fig/ & plot-
ted versus time at one distinct value of the bias current. For i.s
=4 and8=10 the 10< 10 array indeed exhibits irregular
jumps between different array states. Moreover, by careful 1
inspection five distinct states can be observed where different
compartments are in the voltage state. The lifetimes of the
different states depend on the magnitude of the perturbations
and on the value of. Near the voltage jumps they are typi- )
cally some ms, but in the intermediate regions they can also F|G. 6. Long-time averaged voltagévs timet near a voltage
take values of some minutes or even days. step for the perturbed 2D array. Fbe=4 and 8=10 the 10<10

From Eq.(21) it follows that for equally distributed initial array exhibits irregular jumpings between different energy levels.
conditions¥;; for a givenj the corresponding coupling; By careful inspection five distinct energy levels can be observed.
and the nonlinear term pertaining to it in E@5) vanish.  The lifetimes of the different array states are typically some ms.

0.5

t
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2

INITIAL PHASES

50

FIG. 7. Hysteresis in the-V characteristics of a single compart-
ment in the perturbed 2D array. The return braridbtted ling 2
crosses the ascending branghick line) at different values of,
implying a number of hysteresis loops with opposite direction. Ro-
tations persist down to vanishing bias current.

strengthsg; , there exist simultaneously several different fre-
guencies and whirling solutions, semirotors, and fixed points

i

INITIAL PHASES

M - — = - - -

in different compartments of the array. Since the latter are i ,
1ot |

therefore, aperiodi¢chaotio mixed states of whirling and

semirotating as well as quasiperiodic solutions coexist in the

2D Josephson array in different spatially localized domains.
These intrinsic interactions of different compartments and

coupled, so are the different nonlinear oscillatory modes and, /

N

o l.g, H
IITI|IIll]IlII|IIIIIIIII|IIII|II|I'IIlI T T

50

the complicated sequences of phase states the array passé® 1
through in generating staircase current-voltage characteris-
tics are revealed by numerically integratifi) and plotting FIG. 8. Initial phasegmodulo 2r) as a function of the dc bias

bifurcation diagrams and snapshots of the phase space dgurrent! for a 10<10 array with(a) 8=0.7 and(b) 8=10. In
namics of the oscillators. FiguregaB and &b) show how  region(l) the fixed points of Eq(13) evolve along slightly bent
successive bifurcations of fixed points, semirotations, andines. In regions(il) and(lll), for each dc bias level, the values of
whirlings lead to entangled internal “crisis scenarios” in a the phases in the first column at the beginning of the whirling cycle
10x 10 array in virtue of the interaction of different dynami- ©f the first fully whirling row (a;) are plotted for 16 successive
cal states in different array compartments. Out of these a nef/¢les: The windows in regiofil) of () indicate intervals of
order emerges for increasiigvhen all compartments whirl wher_e self-sync_hronlzatlon of particular c_ompartments _to subhar-
and the array enters a frequency-synchronized and phas@Cnic frequencies occulst. Fig. 4. The thick lines in regiorll)
locked state. In both figures, for each dc bias level, the vaIue‘%f (b) represent semirotations.

of the phasesb,; (modulo 27) of the junctions in the first

column of the array are plotted as a function of the slowlysemirotors in regiorlia) of Fig. 8a) are aperiodic and only
increasing bias current. Regidh in Fig. 8@ (8=0.7) and  their tonguelike “ghosts” are visible. In regiofilb) of Fig.

Fig. 8(b) (8=10) shows the evolution, with increasihgof  8(a) it is not possible to distinguish between aperiodic semi-
the fixed points of Eq(13) for the same given input pattern. rotations and mixed states of semirotation and whirlioy

In regions(Il) and(lll) the initial phases of the junctions for Fig. 9). The horizontal curves in regiorifib) and(lll) rep-
each of 10 successive cycles are plotted when the leadingesent pure whirling states and indicate phase locking of par-
compartment in the column, i.e., that which first starts toticular compartments with the leading compartment. In Fig.
whirl (a;: | axis), begins one cycle. The dynamics within the 8(a) each onset of a whirling state in a particular compart-
transition intervalll) depends strongly on the value 8f In ment can be directly compared with the corresponding one in
region(lla), defined byM|a,|<I <M, the bifurcations from  Fig. 4 which generates a voltage step in thé charcteristics

the NXM dimensional fixed point predicted analytically in of Fig. 4. The spontaneous reordering of the phases at the
Sec. |l B take place and fixed points, semirotors and whirl-beginning of regior(lll ) is due to frequency synchronization
ing solutions coexist in different rows. Regiditb), defined in accordance with our theoretical considerations in Sec.
by M<I<May, exhibits only semirotations and whirlings. 1l A. For 8<1 region(llb) is larger than for3>1 and one
Ascending or descending thick curves in regid) of Fig.  can expect that fog>1 region(llb) disappears. However,
8(b) indicate periodic semirotatiori§ibrations, whereas the according to Egs(23) and (37) in all cases the phase shifts
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FIG. 9. Phase diagrams of oscillations in &6 array with FIG. 10. Spatially resolved phase space diagram of the single

B=0.7 for bias current=4. Each box represents the phase spacgunctioni=1, j=1 in Fig. 9 in an aperiodic mixed state of whirling
(®,d) of a distinct oscillator in one of the six row compartments. and semirotation within the transition interval.
The numbers on the left are the values of the row parameters
Mla;|. The phe_lse space of a single junction is_ a C){Iinder. Largepredicted by Eq(21). In the rows withj = 3,6 the couplings
dot.s (resolved in Figs. 10 and )lYepresent §em|rotat|ons on the force the junctions into quasiperiodic oscillations.
cylinder, the curves whirlings around the cylinder. In Figs. 10 and 11, phase diagrams of junction oscillators
in selected rows are plotted. Fg8=0.7, 1=2.5, and

d; between different rows converge to constant values, ima;=0.9, Fig. 10 shows an oscillator in an aperiodic mixed
plying an incoherent but completely phase-locked state irstate of whirling and semirotation familiar from the motion
region(lll), i.e., on the linear branch of tHeV characteris- 0f a single chaotic pendulum. The coexistence of semirotors
tics in Figs. 3 and 4. In the two small windows of Figag  and whirling solutions in different rows is shown in Fig. 11.
“aperiodic subharmonics” are present which imply that four For 8=10,1=2.0, a;=0.4, andaz=0.9 the oscillators with
compartments self-synchronize to an averaged frequendy=1 (top) semirotate with approximately the same fre-
with half of the magnitude of the frequency of the leadingduency as the quasiperiodic whirling oscillators in row num-
compartment. These are the subharmonics observed in Fige" 3 (bottom.
4.

To illustrate the array’s phase dynamics and the formation
of spatially localized compartments within the transition in-
terval, phase diagramsb{{ ,®;/) are plotted in Figs. 9—11.
Since the phase space of a single-junction oscillator is ge-
nerically a cylinder, in all phase diagrams the right edge has
to be identified with the left edge. Large dots or closed
curves represent semirotations, i.e., librations, on the cylin-
der, while the long curves describe whirlings around it. In
Fig. 9 each box represents th{ @) phase diagram b
of a single junction oscillator in a6 array. The num-
bers on the left are the values of|a]| for the
different rows. For pB=0.7, 1=4.0, and
a;=(0.32,-0.63,-0.22,0.55,0.6;-0.07), there are six dis-
tinct row compartments, each of them exhibiting different
spatiotemporal activity patterns. The oscillators in the rows
with j=2,4, and 5 semirotate with very low amplitude
around different nontrivial fixed points and show on the av-
erage a stationary pattern. Their first bifurcation points 1)
Mla;| lie at values just below. In the row withj=1 the
junction phases are in different mixed states of whirling and  FiG. 11. Phase diagrams of two different oscillatory modes in
semirotation. All oscillators belonging to the row have the different rows forg= 10 andl = 2. The upper oscillator semirotates
same frequency. The values of the phase slips between difrith approximately the same averaged frequency as the whirling
ferent oscillations in a row correspond to the valuestgf  one below. The whirling oscillator is in a quasiperiodic state.
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IV. DISCUSSION

We have shown that the nonlinear dynamical equations
for the phases of a uniform 2D Josephson junction array with
type (ii) current distribution under an external load are
equivalent to an equation system for a one-dimensional chain
of nonlinear, nonuniformly coupled, and nonidentical oscil-
lators. We have determined the spatiotemporal patterns and
dynamical states of the array in response to varying input
patterns and coupling strengths, bias currents, and external®
probes. For increasing bias current the dynamics is governed
by a succession of bifurcations which activate spatially dis-
tinct, coupled oscillating compartments in the array with co-
existing semirotors, whirling, and quasiperiodic and aperi-
odic states, and which generate staircase current-voltage
characteristics. These results have the following conse-
guences.

(1) The Josephson-junction arrd$3) has the property <V(t-1)>
that the dynamical couplings; in (25) and, therefore, the
pf"‘“em QYQamICS of _t_he arra)\// depend on f”‘”d vary with the FIG. 12. Reconstruction of the array’s attract@rksed curves
given 'n'_t'al F:ondltl_ons @;i(0) ="V, o L&, 0N an g e phase space of long-time averaged observdblfs- 7)) vs
(NXM)-dimensional input pattern. This property enables y, () from numerical data obtained by simulating E4@) for five
the system to self-organize the stable oscillatory patterngitterent input patterns imposed on ax1@0 array. Forl =30 the

which arise with increasing bias current. In particular, if anattractors generating the linear branch of kié characteristics can
electron beam directed on an oscillating sample array ie distinguished by their positions and shapes.

switched off in an LTSEM experiment, this imposes new
initial conditions anda; on the array to start with and thus coupled nonlinear oscillators witb; X D3 symmetry stable
generates new stable dynamical patterns. This dynamic&loherent phase-locked oscillations can be achieved with ap-
buildup of coupling strengths due to external probes explaingropriately chosen couplings. Different coupling architec-
the succession of patterns found experimentally by Lacheriures can be tested in LTSEM experiments on rectangular
mannet al1® arrays by switching distinct compartments off and on with an
For dc bias currents the 2D Josephson array operates agkectron beam and measuring the increase or decrease of the
“current or frequency-pattern to voltage-pattern” transducercoherence degree. Hybrid-modular Josephson-junction archi-
so that different input patterns are transformed, viatectures with normal conducting bridges possess the addi-
{W;}—{a;}, into distinct equivalence classes of observabletional advantage of impeding vortex propagation.
voltage output patterns in tHeV and differential resistance  (3) A novel way to determine the attractors in Josephson-
characteristics, independently of phase slips and the actualjynction networks from the output voltagé consists of us-
very high oscillator frequencies. This is technologically rel-ing Takens’ embedding theoréfifor time series: For a fixed
evant because the number of experimentally observed stepglue of the bias current, in the region of the linear branch
in the |-V characteristics is a measure for the degree of coof the |-V characteristics, the time variations ¥ft) are
herence of the oscillating states. If, in particular, there existsneasured. Each input s#t;; corresponds to a class of at-
only one voltage step, then, on the subsequent linear brandtactors in the phase spatét) vs V(t— ), wherer is a
of the |-V characteristics the array junctions oscillate per-given fixed time delay. Since for such high frequencies it is
fectly in phase if the initial input pattern is uniform with all experimentally not possible to measure voltages time con-
W, being equal so that according t¢21) all a; tinuously, voltage was averaged in the simulations over
(j=1, ... N) assume the same value. In the case of two ogbout 18 oscillation periods. Fot=30 Fig. 12 shows five
more steps coherence cannot take place. Consequently, tHiéferent attractors of the dynamics at the linear branch in a
simplest way to achieve maximal power output consists ofl0X 10 array for five arbitrarily chosen different input pat-
the application of a uniform external coherent microwaveterns. The voltage variations observed in these simulations
signal over the whole array. After switching this signal off, have a magnitude of about some nV. We conclude, therefore,
the array stores this input pattern and stays in a perfectljhat Josephson networks furnish highly efficient pattern rec-
coherent phase-locked state. Recent experiments by Doderegnition devices.
and Lachenmarffi confirm these theoretical predictions. (4) The dynamical equation system of a stack of 2D
(2) Our theoretical analysis has shown that in a uniformJosephson-junction layef&3) along the crystallographic
2D array current couplings alone cannot induce coherenaxis with perpendicular bias current and approximately zero
phase locking of the junction oscillations. That all vertical voltage drop in theg,b) direction of the layers can be trans-
and horizontal junctions cannot oscillate with the same freformed into a nonlinear chain equation similar to EB5)
guency is already implicit also in Kirchhoff's voltage law. In with the subscripi replaced by the index paiii k) of the
striking contrast to this technologically unsatisfactory resultlayers so that <I>i\{<j(t): #j(t)+ Wi . Consequently,
we have shown in Ref. 18, both theoretically and experimenin layered 3D Josephson-junction networks such as
tally, that in hierarchic-modular architectures of current-Bi-Sr-Ca-Cu-O crystals we find the same dynamical patterns

Vit) >
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and switching phenomena as the ones discussed above, in V. CONCLUSIONS

particular the successive formation of compartments of os- The th ted h q ibes the basi i
cillating junctions and the corresponding staircases for in- € theory presented hereé describes he basic noniinear

creasing bias current. Therefore, experimental data on higihéchanisms underlying a variety of experimentally observed
T, superconductoPscan be interpreted in terms of the non- Phenomena in Josephson-junction arrays, in particular, clas-
linear chain of nonidentical junctions with nonuniform glo- Sical and vortex-induced row switching and voltage drops,
bal couplings discussed in Sec. Ill. On the basis of such frequency-synchronized families of phase-locked oscillators,
chain the observed dynamical patterns find a simple angtochastic jumps, subharmonics, and hysteresis loops in the
natural explanatiof® current-voltage characteristics as a result of the intricate
(5) With Eq. (8), the horizontal currents defined 49) phase dynamics. Implications for pattern formation in high-
together with the vertical dc currents frofh9), which origi- T, superconductors and applications in pattern recognition
nate from nontrivial fixed points of Eq13), may generate have been discussed and it has been shown that specific input
persistent circular currents of different strength and vorticitypatterns must be applied to the array or special coupling
if the initial input pattern¥;; is nonuniform[cf. Fig. 2b)]. architectures be used to achieve stable coherent microwave
For small bias current, the circular currents along the edgegadiation emission in 2D arrays. The theoretically predicted
of the array parallel to the bias current are very sensitive tgpatiotemporal patterns are in close agreement with the pat-
external perturbations produced, e.g., by an electron beagérn dynamics observed in recent LTSEM experiments on
directed on the sample, while inside the array the currengectangular arrays of underdamped and overdamped Joseph-

distribution iS-able to Compensate the perturbation.. USin%on junctions and reproduce the measured data quantita_
LTSEM techniques, Doderer and co-workers have imagegyely.

such pinned vorticé& on the array edges for bias currents

below the array’s measured critical current. In the present
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