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Some of the features of the superspace description of quasiperiodic structures, of the so-called superspace
embedding, can be arbitrarily chosen. The superspace approach is reviewed in such a way that these particular
features, which are not intrinsic to the theory, are explicitly indicated and separated from the fundamental
formalism. Although the superspace density as a scalar function ofn variables is uniquely defined, the em-
bedding is only fully determined once the internal subspace is chosen. As the internal subspace is usually
represented perpendicular to the ‘‘parallel’’ subspace, the different possible embeddings can be considered as
different choices for the metric associated with the superspace and, therefore, for then-dimensional represen-
tation of the superspace density. This freedom on the superspace description of a quasiperiodic system is
discussed and interpreted through the following examples: a modulated incommensurate structure, a com-
posite incommensurate structure, the Fibonacci chain, and an icosahedral quasicrystal. For each case, the
standard embedding usually considered in the literature is compared with other possible alternative choices. In
general, the standard embedding is clearly distinguished by the greater simplicity it conveys. However, there
are cases where a unique ‘‘better’’ embedding choice does not exist. The composite incommensurate structures
and the Fibonacci chain are two clear examples of this fact. A particular superspace embedding implies a
particular election for the so-calledphasondegrees of freedom in the system. The existence of different
equivalent superspace embedding evidences the impossibility in these cases of totally determining the phason
modes from purely static considerations.@S0163-1829~96!06241-8#

I. INTRODUCTION

The description and analysis of experimental quasiperi-
odic structures, such as incommensurate systems and quasi-
crystals, are being done very successfully using the so-called
superspaceapproach, where the structure isembeddedin an
n-dimensional superspace and is interpreted as a section of
ann-dimensionalsuperspace density. This approach is based
on the uniqueness of the indexation of the diffraction dia-
gram with a basis ofn vectors~n being larger than the di-
mensionality of the system!. The experimental Fourier am-
plitudes indexed withn indices are then interpreted as the
Fourier components of ann-dimensional periodic structure
~the superspace density!. The uniqueness of the indexation
guarantees that there is a one-to-one relation between the
so-defined superspace density and the experimental quasip-
eriodic structure. Hence the problem of describing the qua-
siperiodic structure is transformed into the description of an
n-dimensional periodic structure. Indeed, the symmetry of a
quasiperiodic structure can be interpreted as the
n-dimensional space group of the corresponding superspace
density.

The superspace formalism is specially powerful in direct
space as a sort of ‘‘bookkeeping’’ of theaperiodicbut or-
deredatomic positions in the structure. Every atomic posi-
tion in real space is associated with a certain point within the
n-dimensional unit cell of the superspace density. The super-
space description would be of no use if one needed to specify

one by one all these points. Fortunately, they seem to form in
experimental cases closed and dense domains in the
superspace,1 the so-calledatomic surfaces, which can in
principle be described with a few parameters. Then the de-
scription of the quasiperiodic structure reduces to a crystal-
lographic problem inn dimensions, where the position,
form, and composition of the atomic surfaces in a single
n-dimensional unit cell determine the whole structure.

Despite its success, one should not forget the purely math-
ematical meaning of the superspace construction and over-
come the temptation of giving much physical meaning to the
additional dimensions introduced when describing the struc-
ture in the superspace. In fact, Mermin and co-workers,2–4

have demonstrated that the Fourier spectrum and the super-
space groups of quasiperiodic systems can be described in
real physical space, without the need of ann-dimensional
formalism. The abstract features of the superspace construc-
tion imply some intrinsic ambiguity on the superspace em-
bedding. The superspace density is uniquely defined as a
scalar function ofn variables, but the geometrical meaning
of these variables in ann-dimensionalsuperspaceis unde-
fined and open to any choice. Hence the superspace embed-
ding of a quasiperiodic structure is not fully determined until
a definite metric is introduced in the superspace. Because of
historical reasons and, also, because some particular choices
of metric are simpler and natural for certain type of systems,
the superspace formalism is usually introduced with an im-
plicit metric for each type of structure.5–7 This has led to the
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widespread erroneous belief that these particular embeddings
are unique or have in general some absolute physical mean-
ing. This fact has been pointed out for some particular sys-
tems as the Fibonacci chain7 and incommensurate composite
structures,8 but, as shown below, has general validity. In the
present work, we consider the nonuniqueness of the super-
space embedding in a general context and show that it is a
rather general property of any quasiperiodic structure.

First, we review the superspace approach9–11 in such a
way that particular metric features which are not intrinsic of
the theory are explicitly indicated and separated from the
fundamental formalism.12 Then, by means of examples,
ranging from a modulated incommensurate structure to an
icosahedral quasicrystal, the freedom on the superspace im-
age of a quasiperiodic system is discussed and interpreted.

II. SUPERSPACE DESCRIPTION
OF A QUASIPERIODIC STRUCTURE

By definition, the vectors for which the Fourier transform
of a quasiperiodic system is nonzero can be indexed with a
finite set of rational independent vectorsk i :

H5(
i51

n

hik i , ~1!

with hi representing integers andn.d ~d being the dimen-
sion of physical space!. The quasiperiodic structure is then
given by a densityr~r !:

r~r !5(
H

F~H!expS 2p i(
i51

n

hik i•r D , ~2!

whereF~H! is the structure factor for the diffraction vector
H. Beingn.d, r~r ! is not in principle lattice periodic. How-
ever, a related ‘‘superspace density function’’ can be defined
as

rs~u1 ,u2 ,...,un!5(
H

F~H!expS 2p i(
i51

n

hiu i D , ~3!

which is periodic in itsn variables. The relation between
both functions is simply

r~r !5rs~k1•r ,k2•r ,...,kn•r !. ~4!

Hence the physical density is given by a three-dimensional
‘‘cut’’ of the n-dimensional superspace density. All the in-
formation about the structure is in the functionrs(u1 ,...,un).
Once the basis$k i% has been chosen, the indexation~1! is
unique, and, therefore, by definition, there is a one-to-one
relation between both functions, i.e., the functionrs is fully
determined by the physical densityr and vice versa. In prin-
ciple, there is no need for a geometrical picture of the ab-
stract superspace densityrs(u1 ,...,un). The embedding of
the real space structure within the superspace density, de-
fined in Eq.~3!, is independent of any geometrical meaning
we may associate to the variablesu1,...,un in an
n-dimensional ‘‘superspace.’’ These variables are, in fact,
adimensional and do not havea priori a geometrical
meaning.13 They can be interpreted as the phases of the
modulation waves associated with the wave vector basis
k i .

10,11

In order to work with a fixed reference frame in physical
space, we choose within it an arbitrary vector basis$aj % and
its reciprocal basis$aj* %, so that any generic vector in real
space can be described by

r5(
j51

3

xjaj , ~5!

while then wave vectorsk i in Eq. ~1! can be expressed in
terms of the reciprocal basis

k i5(
j51

3

a i jaj* , i51,...,n. ~6!

According to Eqs.~4! and~6!, a vectorr in real space~5!
corresponds to a superspace pointu5~u1,u2,...,un! satisfying

u i5(
j51

3

a i j xj , i51,...,n. ~7!

We can, therefore, define a linear coordinate transformation
in superspace with the subspace associated to the real space
being given by the three first coordinates:

u i5(
j51

3

a i j xj1 (
j51

n23

g i j xI j , i51,...,n. ~8!

The xi coordinates generate the so-called ‘‘parallel’’ space,
and the set$xIi % generates the ‘‘internal’’ or ‘‘perpendicu-
lar’’ space. The internal coordinatesxI j ( j51,...,n23) are
defined in such a way that the sectionxI j50 ( j51,...,n23)
of the superspace density represents the density in real space
as a function of the coordinatesxi ~i51,...,3!, with respect to
the chosen basis in Eq.~5!. This property of the defined
coordinatesxI j ( j51,...,n23) is independent of the actual
values ofgi j in Eq. ~8!. These values are, in fact, arbitrary,
except for the condition of linear independence of the set of
n equations. The transformation~8! can be abbreviated as

û5Ax̂5AS xxI D , ~9!

with x̂5(x1 ,x2 ,x3 ,xII ,...,xIn23), û5(u1 ,...,un),
x5(x1 ,x2 ,x3), xI5(xII ,...,xIn23), and

A5S a11

•••
an1

a12

•••
an2

a13

•••
an3

g11

•••
gn1

•••
•••
•••

g1n23

•••
gnn23

D . ~10!

The first three columns of the matrixA are fixed once we
have chosen the$ai% basis in physical space and then vectors
$k i% to index the diffraction pattern, while the remaining~n
23! columns are arbitrary, except for the condition that the
determinant ofA should be nonzero. Therefore,n(n23) pa-
rameters can be, in principle, arbitrarily chosen when defin-
ing the internal space.

If we call $êi% the basis in superspace corresponding to
the coordinatesui , the matrixA in Eq. ~9! represents a trans-
formation to a new basis$«̂ i% so that

«̂ i5(
j51

n

Aji êj , i51,...,n. ~11!
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The first three vectors$«̂1 ,«̂2 ,«̂3% generate the parallel space
representing the real space as explained above, and the rest
~n23! $«̂ i% ( i54,...,n) generate the complementary internal
space. It should be noted that no scalar product, and therefore
no metric, has been yet introduced in the superspace. It is
important to stress that for practical purposes as, for instance,
the calculation of the structure factors, atomic positions in
real space, etc., the specific metric attributed to the super-
space is irrelevant: All these quantities can be obtained from
expressions like Eqs.~3!, ~4!, and~5!, and no particular su-
perspace metric is needed. However, for the sake of con-
creteness, it is convenient to develop a simple graphical pic-
ture of the superspace density and its relation with the actual
structure in real space. For this purpose, a metric is being
usually introduced for the vectors$«̂1 ,«̂2 ,«̂3% equivalent, ex-
cept for a scale factor, to the one of the$a1,a2,a3% vectors in
physical space:

«̂ i• «̂ j5cai•aj , ~ i , j51,2,3!, ~12!

wherec is an arbitrary constant. For completeness, and in-
troducing no essential restriction, the rest of basis vectors«̂ i ,
i54,...,n, vectors are normally considered to be mutually
orthogonal and also perpendicular to the first three:

«̂ i• «̂ j5d i j , i51,...,n, and j54,...,n. ~13!

In the following, we will assume this condition for the
working basis which decomposes the superspace in their par-
allel space1internal space components. This is the usual as-
sumption in most of the works on the subject. Thus, the
actual metric of the superspace is then defined by Eqs.~12!
and ~13! and the matrixA, the partial arbitrariness of the
matrix A allowing different equivalent metrics in the super-
space. Different choices of the coefficientsgi j in A represent
alternative geometrical images of the superspace density, i.e.,
alternativeembeddings. A unique choice for the superspace
embedding can only result from some additional require-
ments which are not essential within the formalism. For in-
stance, as discussed below, the requirement of a simplified
expression for the algebraic equations describing the rota-
tional symmetry properties of the system can be used for this
purpose and sometimes is a sufficient condition for reaching,
in practice, a unique embedding choice.

One could rightly argue that the introduction of a metric
in the superspace is a step not essential in the superspace
description and can be avoided. As stressed above, the
n-dimensional geometrical picture of the superspace density
is irrelevant, and indeed, all experimental quantities can be
expressed in terms of the superspace density as a unique
well-defined scalar function ofn variables. But, in this case,
the freedom on the choice of the transformation matrixA can
be interpreted as an ambiguity on the definition of the inter-
nal subspace. Indeed, from a structural viewpoint, the matrix
A defines the coordinate system, under which the superspace
density is to be described. According to the formalism, the
superspace density within the unit cell can be considered as a
set of atomic surfaces centered at different points,

rs~ û !5(
m

rs
m~ û2 ûm! ~14!

and the structure factor of the real space structure is equal to
the structure factor of the superspace density:

F~H!5(
m

Gm~H!exp~2p i ĥ• ûm!, ~15!

with Gm~H! being the scattering form factors of the corre-
sponding atomic surfaces:

Gm~H!5E dû rs
m~ û !exp~2p i ĥ• û !, ~16!

where ĥ• û representsS i51
n hiu i (h1 ,....,hn)5ĥ being the

indices used in the indexation~1!. In practice, the
u-coordinate system is not used for the calculation of the
form factorsGm~H!. According to the superspace formalism,
a cut of the atomic surfaces along the parallel subspace must
consist of a peak of atomic density centered at some point in
parallel space. Therefore, in general, the atomic surfaces can
be expressed by functions of the form

rs
m~ û !5rm„x2um~xI !…, xIPSm ,

~17!
rs

m~ û !50, xI¹Sm ,

where, according to Eq.~9!, ~x,xI!5A21û, rm~r ! is the real
space density associated to the atom represented by the
atomic surface, andum~xI! is the position of the center of the
peak density, which depends on the value ofxI . Sm is the
domain in internal space occupied by the atomic surface.
Using Eq.~17!, the integral~16! transformed into the coor-
dinate system~x,xI! leads to the expression which can be
used in practice:

Gm~H!5
1

uAu
f m~H!E

Sm

dxIexp$2p i @hI•xI1h•um~xI !#%,

~18!

whereuAu is the absolute value of the determinant ofA and
~h,hI!5ATĥ.

The logical choice of the transformationA should, there-
fore, be one where the functionsum~xI! in Eq. ~17! are as
simple as possible, and this can depend, in principle, on the
form of the atomic surfaces.

III. ROTATIONAL SYMMETRY

The symmetry of a quasiperiodic structure can be defined
as the set of rotational~proper and improper! operators in
real spaceR, such that the structure factor in Eq.~2! satisfies,
for anyH;

F~R̃H!5F~H!exp~22p i ĥ• t̂ !, ~19!

whereĥ• t̂ represents( i51
n hi t i , with (t1 ,...,tn)5 t̂, a set ofn

numbers which depend on the operationR and the index-
ation basis used. The set of elements$Rut̂% form a group, the
so-called superspace group, that describes the symmetry of
the structure. Expression~19! implies that the diffraction dia-
gram should have the point group symmetry corresponding
to the set of rotations$R% in the superspace group, the ob-
served extinction rules being related to the nonprimitive
‘‘translations’’ t̂ of some elements.
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The symmetry relation~19! is difficult to visualize in
physical space; it means that the rotationR transforms the
structurer~r ! in a new atomic configuration that is physically
indistinguishable from the original one.2–4 But it has a
simple interpretation for the superspace density if an integer
n3n matrix R̂ is defined with its coefficientsr i j being given
by the transformation of the indexation basis vectorsk i
throughR:

R̃k i5(
j51

n

r i jk j , r i j : integers; i51,...,n. ~20!

From Eqs.~3!, ~19!, and~20!, it is straightforward to dem-
onstrate that the superspace density defined in Eq.~3! satis-
fies

rS~R̂û1 t̂ !5rS~ û !, ~21!

in which R̂û is the point in superspace with coordinates
( j51

n r i ju j . Hence the set of operations$R̂ut̂% form a n-dim
space group describing the symmetry of the superspace den-
sity in the basis$êi%.

From its definition, it can be easily seen that the parallel
subspace is invariant for any superspace transformationR̂
included in the superspace group. Hence, in general, the
form of the rotational symmetry elementsR̂ in the basis$«̂ i%
is

A21R̂A5SR0 RM

RI
D , ~22!

whereR is the 333 matrix associated~in the $ai% basis! with
the corresponding three-dimensional rotation in physical
space.

In general, the internal subspace is not invariant for the
rotational symmetry elements. The set of integer matricesR̂
is a representation of a point group and this representation is,
in general, reducible.14 Thegi j can be chosen so thatRM50
while bothR andRI in Eq. ~22! become orthogonal trans-
formations in parallel and internal subspaces, respectively.
The internal subspace becomes also invariant for the high-
dimensional rotational transformations. This is very conve-
nient to simplify the algebra: The symmetry relations
among the atomic surfaces and their consequences in expres-
sions like Eq.~15! are especially simple. This is the usual
choice and in the case of icosahedral and polygonal quasic-
rystals is enough for fixing the embedding, except for trivial
degrees of freedom~scale, etc.!.

IV. EXAMPLES OF ALTERNATIVE SUPERSPACE
EMBEDDINGS OF QUASIPERIODIC STRUCTURES

The possibility of making different superspace embed-
dings of the same quasiperiodic structure was pointed out
previously for two specific cases: the Fibonacci chain7 and
incommensurate composite structures,8 but as seen above,
this ambiguity is general for all quasiperiodic systems, in-
cluding incommensurate materials and quasicrystals. There
is, in many cases, a type of embedding which is simpler and
the obvious choice, but we do not know of any physical
reason which privileges this choice from any other possible
one. In this section, we apply the general arguments pre-

sented above in a unified context to four different examples
of quasiperiodic structures, including the particular cases
considered.7,8

A. Incommensurate modulated structure
with one modulation vector

As a first example, let us consider an incommensurate
modulated structure with a single modulation vector along
the z axis. Three vectors~k1, k2, and k3! index the main
reflections and are the reciprocal vectors of those that define
the unit cell of the average structure. A fourth vector, say,
k45ak3, is necessary to index the remaining reflections of
the diffraction pattern, i.e., the satellite reflections. Following
the prescription of the previous sections, we choose as basis
of the reciprocal space the first three vectors:

ai*5k i , i51,2,3. ~23!

The matrixA in Eq. ~9! can then be written as

A5S 1
0
0
0

0
1
0
0

0
0
1
a

g1

g2

g3

g4

D , ~24!

where still the coefficients of the last column are to be cho-
sen. Ask3 and k4 are collinear, according to Eq.~20!, the
form of then3n R̂ matrices corresponding to the structure
superspace group are necessarily of the form

R̂5S r I1
r 21
0
0

r 12
r 22
0
0

0
0
r 33
0

0
0
0
r 44

D , ~25!

with r 335r 44561; i.e., the subspaces generated byê3 andê4
have the same transformation properties, being both invari-
ant. The invariance of the subspace generated byê3 is forced
~and, hence, that of the second subspace! by the existence of
a single rationally independent modulation wave vector in
the structure. Any rotationR satisfying Eq.~19! and trans-
forming k3 into a linear combination containingk1 and/ork2
would also imply the existence of a second rationally inde-
pendent modulation wave vectorRk4.

From the general form~25! of the matricesR̂ in the basis
$êi%, the requirement on the transformationA to keepR̂ in a
block-diagonal form, with the internal subspace invariant, is
not enough to fix the fourth column in Eq.~24!. g1 andg2
must be zero, butg3 andg4 can take any value with the only
requirement thatg42ag3Þ0. As by definition the vectors
$«̂ i% are orthogonal, an arbitrary choice of~g3,g4! implies in
general thatê3 and ê4 have an oblique relative orientation.
The usual choice5,6 is ~g350, g451!, so thatê4 and «̂4 coin-
cide, andê3•ê452a. The first three vectors$«̂ i% define the
average unit cell in parallel space, while the fourth one rep-
resents the phase of the modulation. A typical example under
this embedding corresponding to a structure with a unit cell
containing only one atom and a sinusoidal modulation is
shown in Fig. 1~a! within the plane (x3 ,xI1). The modulation
is described by one ‘‘atomic surface’’ repeated in superspace
according to the lattice periodicity given by the cell vectors
ê3 and ê4. The coordinatesx3 in Eq. ~5! of the atomic posi-
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tions are the intersections of the atomic surfaces with the
planexI150. The curve describing the atomic surface asso-
ciated to cell ‘‘zero’’ is given by a sinusoidal function

x35x3
01 f sin~2pxI1!. ~26!

Instead of this embedding, we could choose infinitely
many others, for example, the one given by the following
matrix A:

A5S 1
0
0
0

0
1
0
0

0
0
1
a

0
0

2a
1
D . ~27!

This choice means a square lattice for the superspace density,
i.e., uê3u5uê4u andê3•ê450, while the«̂4 vector is no longer
parallel to ê4. The result is shown in Fig. 1~b!. The modu-
lated structure given by the sectionxI150 is the same as in
Fig. 1~a!, but the superspace density is rather different. The
two superspace densities can be considered to be related by a
deformation that keeps undeformed the section associated to
the parallel space. The atomic ‘‘surface’’ cannot be de-
scribed in this embedding by Eq.~26!. Taking into account
Eqs. ~8! and ~26!, the equation describing the form of the
atomic surface in theu-coordinate system is

u35x3
01 f sin@2p~u42au3!#. ~28!

This expression can be then transformed to any particular
xi ,x1i system, once the matrixA has been chosen. For in-
stance, for the choice given by Eq.~27!, it becomes

x35x3
01axI11 f sin@2p~11a2!xI1#. ~29!

In order to have simple block-diagonal forms for the four-
dimensionalR̂ matrices, we have restrictedg1 andg2 to be
zero. However, in principle, a more general matrix could be
chosen. In such case, the function that describes the atomic
surfaces would mix the coordinatesx1 and x2 with x3 and
xI1. Obviously, such choice would complicate unnecessarily
the description, i.e., the expression for the atomic surfaces,
but in principle is also mathematically valid.

B. Incommensurate composite structure

We consider now a composite structure consisting of two
periodic monatomic substructures with two common periods,
while the third one along a common direction is mutually
incommensurate. Also, in this case, the superspace is fourth
dimensional and the atoms are represented by one-
dimensional functions. The usual description of this type of
structures is similar to the one of an incommensurate modu-
lated structure. The reflections due to the average reciprocal
lattice of one of the substructures are taken as the ‘‘main’’
reflections and the rest as ‘‘satellites.’’ The choice of super-
space embedding is given by the same matrixA as in the
modulated case:

A5S 1
0
0
0

0
1
0
0

0
0
1
a

0
0
0
1
D , ~30!

with a being the factor relating the incommensurate cell pa-
rameters of both subsystems:a3*

(2)5aa3*
(1). In Fig. 2~a! an

example of this type of structures is depicted under this stan-
dard choice of embedding. The picture represents the plane
containing the direction of the parallel space in which both
superstructures have incommensurate periodicities and the
internal directionxI1. The physical structure is again given
by the sectionxI150. Obviously, one should consider that
the two independent sets of one-dimensional atomic surfaces
have different positions along the directions not included in
the figure so that the atoms atxI150 are never too close. In
general, each subsystem is modulated with the periodicity of
the other one. For simplicity, the two modulations have been
taken in the figure sinusoidal, so that the atomic surfaces at
the ‘‘zero’’ cell associated to the two subsystems are given
by the functions

x3
~1!5 f ~1!sin~2pxI1!,

~31!

x3
~2!52

xI1
a

2 f ~2!sinS 2pxI1
a D ,

for subsystems 1 and 2, respectively. Note that the atomic
surfaces repeat according to the lattice periodicity:

FIG. 1. Section, parallel to the direction of the modulation and
the internal subspace, of the superspace embedding of an incom-
mensurate structure with one atom per unit cell.~a! Usual embed-
ding. ~b! Alternative embedding described by Eq.~27!.
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x3
~1!~n3!5n31 f ~1!sin@2p~xI11n3a!#,

~32!

x3
~2!~n4!52

xI12n4
a

2 f ~2!sinS 2p~xI12n4!

a D ,
wheren3 andn4 are integers. The atomic positions along the
directionz are then given by the values of the functions~32!
at xI150, that is

x3
~1!~n3!5n31 f ~1!sin~2pn3a!,

~33!

x3
~2!~n4!5

n4
a

1 f ~2!sinS 2pn4
a D .

Thus, if we take into account thatua3
(1)u is being used as

length unit and that in these unitsua3
(2)u51/a, Eqs.~33! de-

scribe a configuration where atoms 1 are quasiperiodic, with
period ua3

(1)u, plus a sinusoidal modulation with wavelength
ua3
(2)u, while atoms 2 are quasiperiodic with periodua3

(2)u plus
a sinusoidal modulation of wavelengthua3

(1)u.
The embedding described in Fig. 2~a! privileges sub-

system 1, in the sense that it is taken as a reference for the
second one; i.e., a translation along the internal coordinate
xI1 ~the famous phason degree of freedom! represents a
translation of the subsystem 2 with respect to the subsystem
1, which is kept at rest. Obviously, as stressed by

Yamamoto,8 the roles of the two subsystems can be inter-
changed. In our notation, this corresponds to the choice of
the matrixA in the form

A5S 1
0
0
0

0
1
0
0

0
0
1
a

0
0
1
0
D . ~34!

Note that this inversion of the roles of the two subsystems
does not require to change the reference reciprocal basis vec-
tors in Eq.~6!, which are still the reciprocal cell vectors of
subsystem 1. As in the previous example, in order to express
the atomic surfaces~32! in this alternative embedding, it is
convenient to express them in the invariant form given by
the variablesui :

u35n31 f ~1!sin@2p~u42au31n3a!# for subsystem 1,
~35!

u4
a

5
n4
a

2 f ~2!sinS 2p
~u42au32n4!

a D for subsystem 2,

which with the use of the matrix~34! can be put in the form
adequate for the new embedding:

x3
~1!5n32xI12 f ~1!sin@2pa~xI12n3!#,

~36!

x3
~2!5

n4
a

1 f ~2!sinF2pS xI11 n4
a D G .

It is easy to check that the atomic positions along the axisx3
are again given by Eq.~33!, so that the ‘‘real’’ structure is
the same as the one represented in Fig. 2~a!. The internal
coordinatexI1, however, represents now a translation of the
subsystem 1 in the reference frame of subsystem 2.

Between these two embeddings, an infinite set of equiva-
lent ones can be used. For instance, one can introduce a
square lattice for the superspace lattice as in Fig. 2~b!, which
corresponds to a choice of the matrixA as

A5S 1
0
0
0

0
1
0
0

0
0
1
a

0
0

2a
1
D , ~37!

with the atomic functions becoming more complex:

x3
~1!5n31axI11 f ~1!sin$2p@~11a2!xI11n3a#%,

~38!

x3
~2!5

n4
a

2
xI1
a

2 f ~2!sinS 2p
~11a2!xI12n4

a D .
C. Fibonacci chain

The Fibonacci chain is a one-dimensional quasiperiodic
structure. Two types of elementary cells are arranged in a
quasiperiodic form along the space. The ratio of the lengths
of the two segments is the ‘‘golden mean’’f5(A521)/2
51/t. If the two segments area1 and a2, the diffraction
pattern of that structure can be indexed by means of two
one-dimensional ‘‘vectors’’k151/a1 and k251/a2 , so that
k25fk1 . The superspace is then two dimensional, and if we

FIG. 2. Section, parallel to the direction of the modulation and
the internal subspace, of the superspace embedding of a composite
structure with two subsystems.~a! Usual embedding with sub-
system 1 privileged.~b! Alternative embedding with square unit
cell.
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take as real space bases in Eqs.~5! and~6! the parametersa1
anda1*5k1, respectively, then the general form of the matrix
A is

A5S 1f g1

g2
D . ~39!

As the only possible ‘‘rotational’’ operations in one dimen-
sion are reduced to the identity and the inversion, the re-
quirement that the symmetry elements~22! have a block-
diagonal form does not restrict the possible values of thegi
parameters in Eq.~39!. The usual superspace embedding of
the Fibonacci chain introduces a square lattice~uê1u5uê2u
and ê1•ê250!. This corresponds to the choiceg152f and
g251. The atomic surfaces are parallel to the internal space
and are the projection on this subspace of the unit cell. In the
u-coordinate system, the atomic surface at the origin is the
segment joining the points

S f2

11f2 ,2
f

11f2D and S 2
f

11f2 ,
1

11f2D . ~40!

As an alternative embedding to Eq.~39!, we can consider,
for instance, the typical one for an incommensurate modu-
lated structure:

A5S 1f 0
1D . ~41!

The segment that defines the atomic surface in the
u-coordinate system is still described by its two extreme
points given by Eq.~40!, but the meaning of the internal
space is changed, as shown in Fig. 3~a!. The atomic surfaces
are no longer parallel to the internal space, and the unit cell
takes the typical form of the one used for an incommensurate
modulated structure. The atomic surfaces are rather charac-
teristic, since the modulation functions are two valued within
some intervals of the internal coordinate, but this is no ob-
stacle for interpreting the structure as modulated. In fact,
there are experimental structures which have been worked
out as incommensurately modulated, where this type of two-
valued modulation functions have been observed.15

However, we can even find a matrixA which produces an
embedding typical of a modulated structure with single-
valued modulation functions:

A5S 1f 1
21D . ~42!

With this choice, the superspace structure becomes that of
Fig. 3~b!. The unit cell of the superspace lattice in this figure
can be changed toê185ê2 and ê285ê12ê2 . This would cor-
respond to an alternative choice of the indexing vectorsk

i
in

Eq. ~1!: k185k11k2 and k285k1 . With this unit cell, the
superspace picture of the structure depicted in Fig. 3~b! can
be fully identified with a modulated structure, with the
modulation of the atomic positions having a sawtooth form.
This fact was already pointed out by Janssen.7

D. Icosahedral quasicrystal

The diffraction pattern of an icosahedral structure can be
indexed by means of six vectors pointing to six vertices of a

regular icosahedron. If we take an orthonormal basis$ai* %,
theai j parameters in Eq.~6! can be chosen in the following
way:

~a11,a12,a13!5S 0,0, 1
&

D ,
~43!

~a i1 ,a i2 ,a i3!5S 2

A10
cos

2p i

5
,

2

A10
sin

2p i

5
,

1

A10D
for i52,...,6.

The usual requirement of a block-diagonal form for the sym-
metry rotational operators~RM50 in Eq. ~22!# strongly re-
stricts in this case the possible choices for the matrixA. The
internal subspace is uniquely determined, and the remaining
arbitrariness on the coefficientsgi j corresponds to the trivial
freedom on the choice of the coordinate system within this
internal subspace. If we want a coordinate system in the
internal subspace which makes theRI in Eq. ~22! to be or-
thogonal, with the orientation of the symmetry elements in
internal subspace being given by expressions analogous to
those in parallel space~for the basisai used!, the choice of
the coefficientsgi j is reduced to

FIG. 3. Embedding of a Fibonacci chain in~a! incommensurate-
type description with double-valued functions as atomic surfaces.
~b! Incommensurate description with single-valued functions as
atomic surfaces.
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~g11,g12,g13!5S 0,0, 1
&

D ,
~44!

~g i1 ,g i2 ,g i3!5S 2
2s

A10
cos

4p i

5
,2

2s

A10
sin

4p i

5
,

2
s

A10D for i52,...,6,

where only a single scale factors remains arbitrary. The
metric implicit on this choice is such that the moduli of all
vectors$êi% are equal, but their relative orientation, being in
general oblique, depends on the scale factors. The usual
~standard! embedding considerss51, which makes the vec-
tors $êi% mutually orthogonal, i.e., an orthonormal basis. Al-
though an hypercubic unit cell in superspace may be estheti-
cally appealing, it is fully irrelevant and does not introduce
any further simplification of the algebra. In fact, it is concep-
tually misleading, and can be seen, for instance, in the cus-
tom of measuring in Å the distances in the internal subspace,
when in fact this space is adimensional.

Let us consider, now, an imaginary monatomic icosahe-
dral quasicrystal with a single atomic surface per unit cell
centered at the cell origin, perpendicular to the parallel sub-
space and with its boundaries in the internal subspace of the
standard embedding given by the projection of the six-
dimensional unit cell onto this subspace. The form of a
single atomic surface is then a rhombic triacontahedron.16

Figure 4~a! represents a section of the corresponding super-
space density within the standard~hypercubic! embedding.
This section contains the vectorsê22ê3 and ê42ê6 , and it
includes one direction in parallel space and another one of
internal space~horizontal and vertical axes, respectively, in
the figure!. The sections of the triacontahedra are linear seg-
ments parallel to the internal space forming a structure analo-
gous to that of the Fibonacci chain. The exact squarelike
lattice in Fig. 4~a! is an artifact of the standard hypercubic
embedding, with no special meaning. As stressed above, the
scale of the internal subspace is arbitrary and independent of
the one used for the parallel subspace. In a more general
embedding, but standard in the sense of maintaining the
block-diagonal form of the rotational operations, the length
of the ‘‘sticks’’ in the pattern can be made to have any value,
with the unit cell sections becoming an oblique parallelo-
gram. Only relative volumes and relative lengths in internal
space have any physical meaning. This rather trivial scale
arbitrariness within the superspace embedding in icosahedral
quasicrystals, already pointed out in previous literature,9 is at
odds with the persistent custom of giving to the atomic sur-
faces of experimental quasicrystals ‘‘Angstrom-like’’ sizes
in internal space.17–19

We can make more radical changes in the embedding
chosen, but in this case at the cost of having to use nondi-
agonal block matrices for the rotational operators. For ex-
ample, as in the Fibonacci chain, we can find a matrixA
which produces an embedding typical of a modulated struc-
ture, at least in three directions:

S g11

g21

g31

g41

g51

g61

g12

g22

g32

g42

g52

g62

g13

g23

g33

g43

g53

g63

D 5S 1
21
21
21
21
21

1
1
1

21
1

21

0
1

21
1
0

21

D . ~45!

Figure 4~b! depicts the same section of Fig. 4~a!, but in this
alternative embedding that describes the system as a modu-
lated structure. The atomic surfaces remain flat, but they are
not parallel to the newly defined internal~perpendicular!
space, and can now be viewed as forming a specific modu-
lation functionu(x11,x12,x13) with sawtooth sections. Under
this embedding, there are three periodic directions
ê22ê31ê42ê6 @vertical direction in Fig. 4~b!#,
ê12ê22ê32ê42ê52ê6 , and ê11ê21ê32ê41ê52ê6 ,
which have no component in parallel subspace, so that their
reciprocal ones lie in the parallel-reciprocal subspace. In this
description, these three reciprocal vectors can be viewed as
the basis for indexing the set of ‘‘main’’ reflections, the rest
being ‘‘satellites.’’ Obviously, icosahedral symmetry opera-
tions will relate ‘‘satellite’’ and ‘‘main’’ reflections, as the
corresponding 6-dim matrices have not a block diagonal
form, but, in principle, the description is perfectly valid, and
only requires a scarcely more complex algebraic treatment of

FIG. 4. ~a! Planar section parallel tov̂1[ê22ê3 and
v̂2[ê42ê6 of the imaginary icosahedral structure described in the
text in the usual, hypercubic, description.~b! The same section of
~a! in an incommensurate-type embedding.
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the rotational symmetry, when describing the symmetry re-
lations among the atomic surfaces.

V. CONCLUSIONS

Some of the features of the superspace description of qua-
siperiodic structures, of the so-called superspace embedding,
can be arbitrarily chosen. The superspace density, as a scalar
function ofn variables, is uniquely defined, but its practical
description in terms of atomic surfaces requires a transfor-
mation into a coordinate system that separates the so-called
parallel subspace, isomorphous to real space, and its comple-
mentary, the so-called internal subspace. Part of the transfor-
mation matrix defining this coordinate system is arbitrary.
The different embeddings materialized in different choices
for this matrix can be interpreted as different choices for the
internal subspace. As the internal subspace is usually repre-
sented as being perpendicular to the parallel subspace, the
different embeddings imply different metrics associated to
the superspace and, therefore, different geometrical represen-
tations of the superspace density. Under this viewpoint, the
superspace densities of two different embeddings are in gen-
eral related by ann-dimensional strain that keeps unde-
formed the parallel subspace.

In practical terms, a choice of embedding represents a
specific coordinate system to be used for the description of
the atomic surfaces forming the superspace density. Through
the examples discussed above, it is clear that the description
of simple atomic surfaces can be rather complex in the origi-
nal ‘‘periodic’’ coordinates, while the standard embeddings
for the different cases correspond to a transformation into a
coordinate system where, in general, the description of the
corresponding atomic surfaces is particularly simple. Thus,
the more adequate embedding and, therefore, more adequate
definition of the internal subspace depend in general on the
form of the atomic surfaces. In the case of highly symmetric
quasicrystals, the rotational symmetry strongly restricts the
form of the atomic surfaces, and the simplest embedding is
then essentially determined by this symmetry. There are
other cases, however, where a unique choice is not obvious.
For instance, in composite incommensurate structures each
substructure is simpler under a different embedding, and so
there is no clear unique choice. In fact, each substructure can

be in practice considered under its own embedding. In the
case of the Fibonacci chain, the embedding usual for modu-
lated structures yields a description of the atomic surfaces so
simple as the usual ‘‘quasicrystalline’’ embedding. In this
sense, the Fibonacci chain can be considered an incommen-
surate modulated structure with a specific type of modulation
function.

From a physical viewpoint, the internal subspace is iden-
tified with the so-called phason degrees of freedom in the
structure, which correspond to modes that, although involv-
ing local rearrangements of the atoms, have null-energy cost.
One could then think that this physical property could be
used for obtaining an absolute definition of the internal sub-
space and, hence, of the superspace embedding. Indeed, in
the case of incommensurately modulated structures, the stan-
dard embedding corresponds to choosing the phase~s! of the
structural modulation as the degrees of freedom correspond-
ing to the internal subspace. As seen in the first example, a
nonstandard embedding in the incommensurately modulated
structures implies, in general, nonbounded displacements of
the atomic positions when moving along the internal space,
i.e., an undesired translational component in the definition of
the internal coordinate~s!. However, the other examples dem-
onstrate that this criterion is not valid for a general case. Up
to our knowledge, there is no absolute general criterion for
‘‘orthogonalizing’’ the phason degrees of freedom with re-
spect to the translational modes. Contrary to previous state-
ments in the literature,10 phason modes, in general, shift the
mass center of the system, both locally and globally. So this
property cannot be used to distinguish the internal subspace.
The example of the Fibonacci chain demonstrates how two
different definitions of the phason mode can be equally valid.
In fact, the actual structure of the phason modes as dynami-
cal degrees of freedom and the weight of the translational
modes on them will depend on their coupling at finite wave-
lengths and, therefore, cannot be determineda priori by
purely static arguments.
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