PHYSICAL REVIEW B VOLUME 54, NUMBER 17 1 NOVEMBER 1996-I

Superspace description of quasiperiodic structures
and the nonuniqueness of superspace embedding

Luis Elcoro
Departamento de IngenieriMecanica, Energéica y de Materiales, Universidad Blica de Navarra, Campus de Arrosads/n,
31006 Pamplona, Spain

J. Manuel Perez-Mato
Departamento de Bica de la Materia Condensada, Facultad de Ciencias, Universidad del Pasco, Apdo 644, 48080 Bilbao, Spain
(Received 9 May 1996; revised manuscript received 11 July )1996

Some of the features of the superspace description of quasiperiodic structures, of the so-called superspace
embedding, can be arbitrarily chosen. The superspace approach is reviewed in such a way that these particular
features, which are not intrinsic to the theory, are explicitly indicated and separated from the fundamental
formalism. Although the superspace density as a scalar functionwvafriables is uniquely defined, the em-
bedding is only fully determined once the internal subspace is chosen. As the internal subspace is usually
represented perpendicular to the “parallel” subspace, the different possible embeddings can be considered as
different choices for the metric associated with the superspace and, therefore, fiedithensional represen-
tation of the superspace density. This freedom on the superspace description of a quasiperiodic system is
discussed and interpreted through the following examples: a modulated incommensurate structure, a com-
posite incommensurate structure, the Fibonacci chain, and an icosahedral quasicrystal. For each case, the
standard embedding usually considered in the literature is compared with other possible alternative choices. In
general, the standard embedding is clearly distinguished by the greater simplicity it conveys. However, there
are cases where a unique “better” embedding choice does not exist. The composite incommensurate structures
and the Fibonacci chain are two clear examples of this fact. A particular superspace embedding implies a
particular election for the so-callephasondegrees of freedom in the system. The existence of different
equivalent superspace embedding evidences the impossibility in these cases of totally determining the phason
modes from purely static consideratiofS0163-182806)06241-§

I. INTRODUCTION one by one all these points. Fortunately, they seem to form in
experimental cases closed and dense domains in the
The description and analysis of experimental quasiperisuperspacé,the so-calledatomic surfaceswhich can in
odic structures, such as incommensurate systems and quagiinciple be described with a few parameters. Then the de-
crystals, are being done very successfully using the so-callestription of the quasiperiodic structure reduces to a crystal-
superspaceapproach, where the structureembeddedn an  lographic problem inn dimensions, where the position,
n-dimensional superspace and is interpreted as a section fdrm, and composition of the atomic surfaces in a single
ann-dimensionakuperspace densit¥his approach is based n-dimensional unit cell determine the whole structure.
on the uniqueness of the indexation of the diffraction dia- Despite its success, one should not forget the purely math-
gram with a basis of vectors(n being larger than the di- ematical meaning of the superspace construction and over-
mensionality of the systemThe experimental Fourier am- come the temptation of giving much physical meaning to the
plitudes indexed witm indices are then interpreted as the additional dimensions introduced when describing the struc-
Fourier components of an-dimensional periodic structure ture in the superspace. In fact, Mermin and co-worKefs,
(the superspace densityThe uniqueness of the indexation have demonstrated that the Fourier spectrum and the super-
guarantees that there is a one-to-one relation between thlspace groups of quasiperiodic systems can be described in
so-defined superspace density and the experimental quasipal physical space, without the need of mitimensional
eriodic structure. Hence the problem of describing the quaformalism. The abstract features of the superspace construc-
siperiodic structure is transformed into the description of artion imply some intrinsic ambiguity on the superspace em-
n-dimensional periodic structure. Indeed, the symmetry of dedding. The superspace density is uniquely defined as a
qguasiperiodic  structure can be interpreted as thescalar function o variables, but the geometrical meaning
n-dimensional space group of the corresponding superspaad these variables in an-dimensionalsuperspacds unde-
density. fined and open to any choice. Hence the superspace embed-
The superspace formalism is specially powerful in directding of a quasiperiodic structure is not fully determined until
space as a sort of “bookkeeping” of theperiodicbut or-  a definite metric is introduced in the superspace. Because of
deredatomic positions in the structure. Every atomic posi-historical reasons and, also, because some particular choices
tion in real space is associated with a certain point within theof metric are simpler and natural for certain type of systems,
n-dimensional unit cell of the superspace density. The supetthe superspace formalism is usually introduced with an im-
space description would be of no use if one needed to specifglicit metric for each type of structure.’ This has led to the
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widespread erroneous belief that these particular embeddings In order to work with a fixed reference frame in physical
are unigue or have in general some absolute physical measpace, we choose within it an arbitrary vector bdaj$ and
ing. This fact has been pointed out for some particular sysits reciprocal basiga }, so that any generic vector in real
tems as the Fibonacci chdiand incommensurate composite space can be described by
structure$ but, as shown below, has general validity. In the
present work, we consider the nonuniqueness of the super- 3
space embedding in a general context and show that it is a r= .Zl Xj 8y, )
rather general property of any quasiperiodic structure. =
First, we review the superspace approachin such a  while then wave vectors; in Eq. (1) can be expressed in
way that particular metric features which are not intrinsic ofterms of the reciprocal basis
the theory are explicitly indicated and separated from the
. 3
fundamental formalisn¥> Then, by means of examples, .
ranging from a modulated incommensurate structure to an ki:jzl ajg;, 1=1..n. ®)
icosahedral quasicrystal, the freedom on the superspace im-
age of a quasiperiodic system is discussed and interpreted. According to Eqs(4) and(6), a vectorr in real spacé5)
corresponds to a superspace pdrt(6;,6,,...,6,) satisfying
Il. SUPERSPACE DESCRIPTION
OF A QUASIPERIODIC STRUCTURE

3
ei:.z aijXj, i=1,...n. 7)
By definition, the vectors for which the Fourier transform j=1

of a quasiperiodic system is nonzero can be indexed with ye can, therefore, define a linear coordinate transformation
finite set of rational independent vectdes in superspace with the subspace associated to the real space
being given by the three first coordinates:

n
H=2, hiki, (1) 3 n3
1= .
. . . ) ) 0i=2 ainj+z YiiXij » i=1,...n. (8)
with h; representing integers amt>>d (d being the dimen- j=1 j=1
sion of physical spage The quasiperiodic structure is then The x; coordinates generate the so-called “parallel” space,

given by a density(r): and the sefx,;} generates the “internal” or “perpendicu-

n lar” space. The internal coordinates; (j=1,...h—3) are

p(r)=>, F(H)exp( 27 >, hiki- r) ' (2)  defined in such a way that the sectigp=0 (j=1,... h—3)
H i=1 of the superspace density represents the density in real space

as a function of the coordinates (i=1,...,3, with respect to
the chosen basis in Ed5). This property of the defined
8oordinates<,j (j=1,...n—3) is independent of the actual
values ofy; in Eq. (8). These values are, in fact, arbitrary,
except for the condition of linear independence of the set of
n equations. The transformati@B) can be abbreviated as

whereF(H) is the structure factor for the diffraction vector
H. Beingn>d, p(r) is not in principle lattice periodic. How-
ever, a related “superspace density function” can be define
as

ps(el,az,...,an):é F(H)exp(zmz1 hiei), (3)

A X
_ o : _ 0=AX=A( ) €)
which is periodic in itsn variables. The relation between X
both functions is simply with X=(X1,X2,X3, X1 -+ Xin—3) 0=(6,...,0,),
X=(Xq1,X5,X3), X;= (X ,....X|n—3), and
p(r):ps(klr'kzr’,knr) (4) ( 1:72 3) | ( 1 In 3)
Hence the physical density is given by a three-dimensional Q11 @12 Q@13 Y1 Yin-3
“cut” of the n-dimensional superspace density. All the in- A=| wrr e e e e . (10
formation about the structure is in the functipg( 64, ....0,). anl Q2 @3 Yni 0 Ynn-3

Once the basigk;} has been chosen, the indexatid) is
unique, and, therefore, by definition, there is a one-to-on
relation between both functions, i.e., the functignis fully
determined by the physical densjiyand vice versa. In prin-
ciple, there is no need for a geometrical picture of the al
stract superspace density(6,...,6,). The embedding of
the real space structure within the superspace density,
fined in Eq.(3), is independent of any geometrical meaning
we may associate to the variableg,,..., in an . S
n—dimen)s/ional “superspace.” These vag(lelblegsn are, in factthe coqrdmate@i , the mfatf'XA in Eq. (9) represents a trans-
adimensional and do not hava priori a geometrical formation to a new basige;} so that

meaning'® They can be interpreted as the phases of the

n
modulation waves associated with the wave vector basis A A .
ki .10’11 Si_jzl Ajiej , 1=1,...n. (]_]_)

he first three columns of the matrik are fixed once we

ave chosen thig;} basis in physical space and thevectors
{k;} to index the diffraction pattern, while the remainifiy
b_—3) columns are arbitrary, except for the condition that the

determinant oA should be nonzero. Therefomrgn—3) pa-
gkameters can be, in principle, arbitrarily chosen when defin-
Ing the internal space.

If we call {&} the basis in superspace corresponding to
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The first three vectorge ;,&,,85} generate the parallel space and the structure factor of the real space structure is equal to

representing the real space as explained above, and the réisé structure factor of the superspace density:

(n—3) {¢;} (i=4,...n) generate the complementary internal

space. It should be noted that no scalar product, and therefore

no metric, has been yet introduced in the superspace. It is

important to stress that for practical purposes as, for instance, . .

the calculation of the structure factors, atomic positions inith G,.(H) being the scattering form factors of the corre-

real space, etc., the specific metric attributed to the supePOnding atomic surfaces:

space is irrelevant: All these quantities can be obtained from

expressions like Eqg3), (4), and(5), and no particular su- GM(H):f do p’(0)exp(2mih- 0), (16)

perspace metric is needed. However, for the sake of con-

creteness, it is convenient to develop a simple graphical picyhere h- ¢ representsS ™_;h, 6, (h,,.....h,)=h being the

ture of the superspace density and its relation with the actughdices used in the indexatior(l). In practice, the

structure in real space. For this purpose, a metric is being-coordinate system is not used for the calculation of the

usually introduced for the vectofs,&,&5} equivalent, ex-  form factorsG ,(H). According to the superspace formalism,

cept for a scale factor, to the one of tfeg.a,.a3} vectors in g cut of the atomic surfaces along the parallel subspace must

physical space: consist of a peak of atomic density centered at some point in
o parallel space. Therefore, in general, the atomic surfaces can
ei-gj=cg-a, (i,j=1,23, (12 Dbe expressed by functions of the form

F(H)=> G,(H)exp2mih-0,), (15)
"

wherec is an arbitrary constant. For completeness, and in- pg(g):pﬂ(x_uu(xl)), xeS,,
troducing no essential restriction, the rest of basis veetgrs (17)
i=4,...n, vectors are normally considered to be mutually pM(b)ZO X &S
orthogonal and also perpendicular to the first three: S ' "
where, according to Eq9), (x,x,)=A"16, p,(r) is the real
i=1,...n, and j=4,..n. (13) space density associated to the atom represented by the
atomic surface, and ,(x,) is the position of the center of the

In the following, we will assume this condition for the Peak density, which depends on the valuexpfS, is the
working basis which decomposes the superspace in their palomain in internal space occupied by the atomic surface.
allel space-internal space components. This is the usual asysing Eq.(17), the integral(16) transformed into the coor-
sumption in most of the works on the subject. Thus, thedinate system(x,x,) leads to the expression which can be
actual metric of the superspace is then defined by E3.  used in practice:
and (13) and the matrixA, the partial arbitrariness of the 1
matrix A _allowing dif_ferent equivaler_lt_metri_cs in the super- G,(H)= ot fu(H)J dx,exp{2mi[hy-x +h-u,(x) 1},
space. Different choices of the coefficientsin A represent Al S,
alternative geometrical images of the superspace density, i.e., (18
alternativeembeddingsA unique choice for the superspace where|A| is the absolute value of the determinantfofand
embedding can only result from some additional require- AT

. . o ) .~ (h,h)=A"h.
ments which are not essential within the formalism. For in-
2tanr<(:ae, .‘;?] (::;Cltjr?se; kéebl:);/_vé t:e ;etz_(glrj]|re(rjneerltr_gfna ?Lrgp:g'te%re, be one where the functiong,(x) in Eqg. (17) are as
-Xpressi gebraic equations describing gs'imple as possible, and this can depend, in principle, on the
tional symmetry properties of the system can be used for thITS :

. . L " . form of the atomic surfaces.

purpose and sometimes is a sufficient condition for reaching,
in practice, a unique embedding choice.

One could rightly argue that the introduction of a metric
in the superspace is a step not essential in the superspace o .
description and can be avoided. As stressed above, the The symmetry of a quasiperiodic structure can be defined
n-dimensional geometrical picture of the superspace densit§S the set of rotationdproper and Improperoperat_or§ in
is irrelevant, and indeed, all experimental quantities can béeal spac, such that the structure factor in H@) satisfies,
expressed in terms of the superspace density as a uniqﬂér any H;
well-defined scalar function of variables. But, in this case, ~ A a
the freedom on the choice of the transformation mavizan F(RH)=F(H)exp —2mih-t), (19)

be interpreted as an ambiguity on the definition of the i”ter_'vvhereﬁ'f representE "_;hit, , with (... t,)=t, a set ofn

nal subspace. Indeed, from a structural viewpoint, the matrix, ,nhers which depend on the operati@nand the index-
A defines the coordinate system, under which the superspacgn pasis used. The set of elemefR§} form a group, the
density is to be described. According to the formalism, theg, o416 superspace group, that describes the symmetry of
superspace density within the unit cell can be considered asige sirycture. Expressida9) implies that the diffraction dia-
set of atomic surfaces centered at different points, gram should have the point group symmetry corresponding
to the set of rotation$R} in the superspace group, the ob-
9)= Eo—0 14 served extinction rules being related to the nonprimitive
ps(0) 2;; Pl w (149 “translations” t of some elements.

8i'8j:5ij,

The logical choice of the transformatig¥ should, there-

Ill. ROTATIONAL SYMMETRY



12118 LUIS ELCORO AND J. MANUEL PEREZ-MATO 54

The symmetry relation19) is difficult to visualize in  sented above in a unified context to four different examples
physical space; it means that the rotatiRrtransforms the of quasiperiodic structures, including the particular cases
structurep(r) in a new atomic configuration that is physically considered:®
indistinguishable from the original orfe? But it has a

simple interpretation for the superspace density if an integer A. Incommensurate modulated structure
nXxn matrix R is defined with its coefficients; being given with one modulation vector
by the transformation of the indexation basis vect&rs

As a first example, let us consider an incommensurate
modulated structure with a single modulation vector along
n the z axis. Three vectorgk,, k,, andks) index the main
ﬁkiz 2 rjkj, ri: integers;i=1,..n. (20) reflections and are the reciprocal vectors of those that define
= the unit cell of the average structure. A fourth vector, say,

. ) k,=aks, is necessary to index the remaining reflections of
From Eqs(3), (19), and(20), it is straightforward to dem- e giffraction pattern, i.e., the satellite reflections. Following
onstrate that the superspace density defined in(8csatis-  he prescription of the previous sections, we choose as basis

fies of the reciprocal space the first three vectors:
ps(RO+1)=pg(0), (21) ar=k;, i=123. 23)

in WhICh R is the point in superspace with coordinates The matrixA in Eq. (9) can then be written as

throughR:

X {_1ri;6; . Hence the set of operatiofR|t} form a n-dim
space group describing the symmetry of the superspace den- 100 »n
sity in the basige;}. [0 1 0 v
From its definition, it can be easily seen that the parallel A= 0 0 1 w3’ (24
subspace is invariant for any superspace transformdion 0 0 a 7y,

included in the superspace group. Hence, in general, the
form of the rotational symmetry elemerfisin the basigs;}  Where still the coefficients of the last column are to be cho-

is sen. Ask; andk, are collinear, according to Eq20), the
form of thenxXn R matrices corresponding to the structure
e R Ry superspace group are necessarily of the form
A RAz(0 R ) (22

! e fp 0 O
whereR is the 3X3 matrix associatein the{a} basig with - rog o, 0 0
the corresponding three-dimensional rotation in physical R= 0 0 rg O (29
space. 0 0 0 ry

In general, the internal subspace is not invariant for the
rotational symmetry elements. The set of integer matriges With r33=r,,=*1; i.e., the subspaces generatectppnde,
is a representation of a point group and this representation i§ave the same transformaﬂon properties, bemg both invari-
in general, reduciblé! The ¥ can be chosen so thRj, =0 ant. The invariance of the subspace generateg;liy forced
while bothR andR, in Eq. (22) become orthogonal trans- (and, hence, that of the second subspagethe existence of
formations in parallel and internal subspaces, respectivelyd single rationally independent modulation wave vector in
The internal subspace becomes also invariant for the highhe structure. Any rotatioiR satisfying Eq.(19) and trans-
dimensional rotational transformations. This is very conveformingks into a linear combination containirig and/ork,
nient to simplify the algebra: The symmetry relationsWwould also imply the existence of a second rationally inde-
among the atomic surfaces and their consequences in exprédendent modulation wave vectBK,.
sions like Eq.(15) are especially simple. This is the usual _ From the general forni25) of the matricesR in the basis
choice and in the case of icosahedral and polygonal quasid&;}, the requirement on the transformatiarto keepR in a
rystals is enough for fixing the embedding, except for trivial block-diagonal form, with the internal subspace invariant, is

degrees of freedor(scale, eto. not enough to fix the fourth column in EQR4). y; and v,
must be zero, buy; and vy, can take any value with the only

requirement thaty,—ay;#0. As by definition the vectors
{&;} are orthogonal, an arbitrary choice @f,y,) implies in
general thagé; and e, have an oblique relative orientation.
The possibility of making different superspace embed-The usual choice® is (y;=0, y,=1), so thaté, and, coin-
dings of the same quasiperiodic structure was pointed outide, ande; - &,=—a. The first three vectorge;} define the
previously for two specific cases: the Fibonacci chaind  average unit cell in parallel space, while the fourth one rep-
incommensurate composite structufesut as seen above, resents the phase of the modulation. A typical example under
this ambiguity is general for all quasiperiodic systems, in-this embedding corresponding to a structure with a unit cell
cluding incommensurate materials and quasicrystals. Ther@ontaining only one atom and a sinusoidal modulation is
is, in many cases, a type of embedding which is simpler andhown in Fig. 1a) within the plane X3,x,1). The modulation
the obvious choice, but we do not know of any physicalis described by one “atomic surface” repeated in superspace
reason which privileges this choice from any other possibleaccording to the lattice periodicity given by the cell vectors
one. In this section, we apply the general arguments pre2; ande,. The coordinates, in Eq. (5) of the atomic posi-

IV. EXAMPLES OF ALTERNATIVE SUPERSPACE
EMBEDDINGS OF QUASIPERIODIC STRUCTURES
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This expression can be then transformed to any particular
X;i ,X1; System, once the matri& has been chosen. For in-
stance, for the choice given by E@®7), it becomes

L2

£

LV2

Vi

X3=X9+ ax,+ f sif2m(1+ a?)x,]. (29)

In order to have simple block-diagonal forms for the four-
dimensionalR matrices, we have restricteg and y, to be
zero. However, in principle, a more general matrix could be
chosen. In such case, the function that describes the atomic
surfaces would mix the coordinates and x, with x5 and

X;1. Obviously, such choice would complicate unnecessarily
the description, i.e., the expression for the atomic surfaces,
but in principle is also mathematically valid.

Vi

Y]

Vi

\%2

Vi

A

E

N\

B. Incommensurate composite structure

We consider now a composite structure consisting of two
periodic monatomic substructures with two common periods,

AN § while the third one along a common direction is mutually
& incommensurate. Also, in this case, the superspace is fourth
S & dimensional and the atoms are represented by one-

dimensional functions. The usual description of this type of
structures is similar to the one of an incommensurate modu-
lated structure. The reflections due to the average reciprocal
lattice of one of the substructures are taken as the “main”

. reflections and the rest as “satellites.” The choice of super-

(b) space embedding is given by the same ma#ixas in the
modulated case:
FIG. 1. Section, parallel to the direction of the modulation and

the internal subspace, of the superspace embedding of an incom-

mensurate structure with one atom per unit ogl. Usual embed-

ding. (b) Alternative embedding described by HG7). A=

, (30

o o0 o
NN We)
R B OO
O OO

tions are the intersections of the atomic surfaces with the
planex,;;=0. The curve describing the atomic surface asso-
ciated to cell “zero” is given by a sinusoidal function with « being the factor relating the incommensurate cell pa-
rameters of both subsystemsa} )= aa3 ). In Fig. 2a) an
example of this type of structures is depicted under this stan-
dard choice of embedding. The picture represents the plane
containing the direction of the parallel space in which both
superstructures have incommensurate periodicities and the

Xg=X9+f sin(27x,7). (26)

Instead of this embedding, we could choose infinitely
many others, for example, the one given by the following

matrix A: ; M . : >
internal directionx,;. The physical structure is again given
10 0 O by the sectiornx;;=0. Obviously, one should consider that
the two independent sets of one-dimensional atomic surfaces
01 0 O g " U . :
A= 00 1 -a (27 have different positions along the directions not included in
00 L the figure so that the atoms gt =0 are never too close. In
o

general, each subsystem is modulated with the periodicity of

This choice means a square lattice for the superspace densitf€ other one. For simplicity, the two modulations have been
i.e.,|&;|=|&,] andé,-&,=0, while theg, vector is no longer taken in the figure sinusoidal, so that the atomic surfaces at
parallel tog,. The result is shown in Fig. (). The modu- the “zero” cell associated to the two subsystems are given
lated structure given by the sectiap, =0 is the same as in DY the functions

Fig. 1(a), but the superspace density is rather different. The

two superspace densities can be considered to be related by a X(Sl): fDsin(27x,,),

deformation that keeps undeformed the section associated to (31)

the parallel space. The atomic “surface” cannot be de-
X|l 2’7TX|1
a 1

scribed in this embedding by EQ6). Taking into account x(32)= _ ——f(z)sin<
(44

Egs. (8) and (26), the equation describing the form of the
atomic surface in thé@-coordinate system is

0 ) for subsystems 1 and 2, respectively. Note that the atomic
O3=Xz+f si2m(6,— abs)]. (28)  surfaces repeat according to the lattice periodicity:
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Yamamotd® the roles of the two subsystems can be inter-
changed. In our notation, this corresponds to the choice of
the matrixA in the form

10 00
01 00

A=lo 0 11 (34
00 a0

Note that this inversion of the roles of the two subsystems
does not require to change the reference reciprocal basis vec-
tors in Eq.(6), which are still the reciprocal cell vectors of
subsystem 1. As in the previous example, in order to express
the atomic surface€32) in this alternative embedding, it is
convenient to express them in the invariant form given by
the variabless, :

O3=ng+fYsif2m7(6,— af;+nza)] for subsystem 1,
(35

04
for subsystem 2,

n
—= —4—f<2)sin(2
o

(04—a6’3—n4)>
gt 73 T
o o

which with the use of the matrig@4) can be put in the form
adequate for the new embedding:

x§Y=ng—x; 1~ fVsif2ma(x1—ng)],

(36)

Ny .
X =—+fPsin
o

2

Ny
X1+ —
1t

FIG. 2. Section, parallel to the direction of the modulation andlt iS easy to check that the atomic positions along the &xis
the internal subspace, of the superspace embedding of a composR&e again given by Eq33), so that the “real” structure is
structure with two subsystemsa) Usual embedding with sub- the same as the one represented in Fig).2The internal
system 1 privileged(b) Alternative embedding with square unit coordinatex,,, however, represents now a translation of the

cell. subsystem 1 in the reference frame of subsystem 2.
Between these two embeddings, an infinite set of equiva-
xgl)(ng)zn3+f(1>sir[27r(x|l+ nza)], lent ones can be used. For instance, one can introduce a
(32) square lattice for the superspace lattice as in Fig), 2vhich
XD (n,)= — Xi1—Ng (i 27(X)1— n4)> corresponds to a choice of the matfxas
57(Ng)= i ———|,
@ 1 0 0 O
wheren; andn, are integers. The atomic positions along the 01 0 O
directionz are then given by the values of the functiq8®) A=l o 0 1 —al" (37)
x5 (ng)=ng+fBsin2mnza), with the atomic functions becoming more complex:
(33
2 _E (2)ei 2’7Tn4 X<31):n3+CYX|l+f(l)sin{ZW[(1+ az)X|1+n3a]},
X5 (Ng)=—+f'“sin .
a ) (38
ng X _ (I+a%)x;—n

Thus, if we take into account thaa"| is being used as X(32):Z4_ %—f@)sm 21 + .
length unit and that in these units)|=1/a, Egs.(33) de-
scribe a configuration where atoms 1 are quasiperiodic, with _ o
period |a"|, plus a sinusoidal modulation with wavelength C. Fibonacci chain
|ag2)|, while atoms 2 are quasiperiodic with perikagz)l plus The Fibonacci chain is a one-dimensional quasiperiodic
a sinusoidal modulation of Waveleng|tbgl)|. structure. Two types of elementary cells are arranged in a

The embedding described in Fig(a privileges sub- quasiperiodic form along the space. The ratio of the lengths
system 1, in the sense that it is taken as a reference for thef the two segments is the “golden meamy=(\5—1)/2
second one; i.e., a translation along the internal coordinate=1/7. If the two segments ara; and a,, the diffraction
X1 (the famous phason degree of freedorepresents a pattern of that structure can be indexed by means of two
translation of the subsystem 2 with respect to the subsystewne-dimensional “vectors’k;=1/a; andk,=1/a,, so that
1, which is kept at rest. Obviously, as stressed byk,= ¢k;. The superspace is then two dimensional, and if we
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take as real space bases in E§.and(6) the parametera,
andaj =k, respectively, then the general form of the matrix
Ais

A=

1 71)
b v

As the only possible “rotational” operations in one dimen-
sion are reduced to the identity and the inversion, the re-
quirement that the symmetry elemen®2) have a block-
diagonal form does not restrict the possible values ofythe
parameters in Eq39). The usual superspace embedding of
the Fibonacci chain introduces a square lattifgg|=|e,|

ande, -&,=0). This corresponds to the choigg=—¢ and
v,=1. The atomic surfaces are parallel to the internal spacéa)
and are the projection on this subspace of the unit cell. In the
6-coordinate system, the atomic surface at the origin is the
segment joining the points

B
1+¢*" 1+¢°

(39

¢ 1
1+¢%" 1+ ¢°

and ( — ) (40

As an alternative embedding to E(R9), we can consider,

for instance, the typical one for an incommensurate modu-
lated structure:

A=

10)
¢ 1)

The segment that defines the atomic surface in thel®
f-coordinate system is still described by its two extreme

points given by Eq.40), but the meaning of the internal = ) _ _
type description with double-valued functions as atomic surfaces.

space is changed, as shown in Fig)3The atomic surfaces ) Incommensurate description with single-valued functions as
are no longer parallel to the internal space, and the unit ceéﬁomic surfaces P g

takes the typical form of the one used for an incommensurate
modulated structure. The atomic surfaces are rather charac-
teristic, since the modulation functions are two valued withinregular icosahedron. If we take an orthonormal bsfs;,
some intervals of the internal coordinate, but this is no obihe a;; parameters in Eq6) can be chosen in the following
stacle for interpreting the structure as modulated. In factyay:
there are experimental structures which have been worked
out as incommensurately modulated, where this type of two-
valued modulation functions have been observed. (11,190,019 = ( 0,0, —),

However, we can even find a matéxwhich produces an V2
embedding typical of a modulated structure with single- (43
valued modulation functions: : .

2@ 2 2@ 1 )

2
i1:Qi2,&j3)=| —— COS—(/—, —=SiIN—, ——
(ctin iz i) (m 5°'J10 5 10

(41)

FIG. 3. Embedding of a Fibonacci chain(@ incommensurate-

1 1

¢ —1

With this choice, the superspace structure becomes that of for i=2,...,6.

Fig. 3(b). The unit cell of the superspace lattice in this figure

can be changed te;=é&, ande,=e;—&,. This would cor-  The usual requirement of a block-diagonal form for the sym-

respond to an alternative choice of the indexing vedt(l)rie mgtry _rotat_ional operatoréR.,\,I =0 in .Eq. (22)] strongly re-

Eq. (1): ki=k;+k, and kj=k,. With this unit cell, the _strlcts in this case Fhe p.ossmle chmcgs for the ma@mﬁ'he. '

superspace picture of the structure depicted in Fig) 8an mte.rnal' subspace is umquely determined, and the remaining
arbitrariness on the coefficienjg corresponds to the trivial

be fully identified with a modulated structure, with the _ . o .
modulation of the atomic positions having a sawtooth form.€€dom on the choice of the coordinate system within this
This fact was already pointed out by Janséen. !nternal subspace. If_we want a co_ordlnate system in the
internal subspace which makes tRe in Eq. (22) to be or-
thogonal, with the orientation of the symmetry elements in
internal subspace being given by expressions analogous to
The diffraction pattern of an icosahedral structure can behose in parallel spacgor the basisa; used, the choice of

indexed by means of six vectors pointing to six vertices of ahe coefficientsy,; is reduced to

. (42)

D. Icosahedral quasicrystal
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1 '
(711:712#13):(0,0, E)’ I |\
(44) \ \\
2s A7i 2s 47i | \ &

/

P
S

i1»VYi2 vi3) = _—COS—,_—Sin—, 2
(71 Yi2 73) ( \/R) 5 \/ﬂ) 5
. \\
——| fori=2,...,6,
m) b
| | /1
(a)

T3/

where only a single scale factar remains arbitrary. The
metric implicit on this choice is such that the moduli of all
vectors{g;} are equal, but their relative orientation, being in L ’ 7 27
general oblique, depends on the scale fastoThe usual 00 0
(standardl embedding considers=1, which makes the vec- { 0 4’%
tors{&} mutually orthogonal, i.e., an orthonormal basis. Al- 4
though an hypercubic unit cell in superspace may be estheti-
cally appealing, it is fully irrelevant and does not introduce £
any further simplification of the algebra. In fact, it is concep- / “"" Wr‘~"
tually misleading, and can be seen, for instance, in the cus- 0%%%
tom of measuring in A the distances in the internal subspace, £
when in fact this space is adimensional. /

/

Let us consider, now, an imaginary monatomic icosahe-
dral quasicrystal with a single atomic surface per unit cell

9
-
X
]

centered at the cell origin, perpendicular to the parallel sub-,
space and with its boundaries in the internal subspace of th®
standard embedding given by the projection of the six- _ ISP
dimensional unit cell onto this subspace. The form of a. F/G- 4 (8 Planar section parallel tov;=€,—€; and

single atomic surface is then a rhombic triacontahedfon. V2~ 4~ €6 of the imaginary icosahedral structure described in the
Figure 4a) represents a section of the corresponding super<t I" the usual, hypercubic, descriptiai) The same section of
space density within the standatdypercubi¢ embedding. (&) in an incommensurate-type embedding.

This section contains the vectogs—e; ande,— &g, and it

includes one direction in parallel space and another one of Y11 Y12 Y13 1 1 0
internal spacehorizontal and vertical axes, respectively, in Vo1 Y22 V23 -1 1 1
the figurg. The sections of the triacontahedra are linear seg- -1 1 -1
. . Y31 Y32 V33|
ments parallel to the internal space forming a structure analo- =l -1 -1 1 (45
. ) . - Yar  Ya2 Y43
gous to that of the Fibonacci chain. The exact squarelike 1 1 0
lattice in Fig. 4a) is an artifact of the standard hypercubic Y51 Y2 Vs 1 -1 -1

embedding, with no special meaning. As stressed above, the Ye1 Y62 7Ve3
scale of the internal subspace is arbitrary and independent of
the one used for the parallel subspace. In a more gener&igure 4b) depicts the same section of Figa® but in this
embedding, but standard in the sense of maintaining thalternative embedding that describes the system as a modu-
block-diagonal form of the rotational operations, the lengthlated structure. The atomic surfaces remain flat, but they are
of the “sticks” in the pattern can be made to have any valuenot parallel to the newly defined interngberpendicular
with the unit cell sections becoming an oblique parallelo-space, and can now be viewed as forming a specific modu-
gram. Only relative volumes and relative lengths in internallation functionu(x;4,X15,X13) With sawtooth sections. Under
space have any physical meaning. This rather trivial scaléhis embedding, there are three periodic directions
arbitrariness within the superspace embedding in icosahedray—e;+€,— €5 [vertical direction in Fig. )],
quasicrystals, already pointed out in previous literafliseat €, —€,—€;—6,— 85— &5, and &;+e,+e;—&,+es—&;,
odds with the persistent custom of giving to the atomic surwhich have no component in parallel subspace, so that their
faces of experimental quasicrystals “Angstrom-like” sizes reciprocal ones lie in the parallel-reciprocal subspace. In this
in internal spacé’~1° description, these three reciprocal vectors can be viewed as
We can make more radical changes in the embeddinthe basis for indexing the set of “main” reflections, the rest
chosen, but in this case at the cost of having to use nondbeing “satellites.” Obviously, icosahedral symmetry opera-
agonal block matrices for the rotational operators. For extions will relate “satellite” and “main” reflections, as the
ample, as in the Fibonacci chain, we can find a ma#ftix corresponding 6-dim matrices have not a block diagonal
which produces an embedding typical of a modulated strucform, but, in principle, the description is perfectly valid, and
ture, at least in three directions: only requires a scarcely more complex algebraic treatment of
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the rotational symmetry, when describing the symmetry rebe in practice considered under its own embedding. In the

lations among the atomic surfaces. case of the Fibonacci chain, the embedding usual for modu-
lated structures yields a description of the atomic surfaces so
V. CONCLUSIONS simple as the usual “quasicrystalline” embedding. In this

o sense, the Fibonacci chain can be considered an incommen-
Some of the features of the superspace description of quayrate modulated structure with a specific type of modulation

siperiodic structures, of the so-called superspace embedding,nction.
can be arbitrarily chosen. The superspace density, as a scalarggm a physical viewpoint, the internal subspace is iden-
function of n variables, is uniquely defined, but its practical tified with the so-called phason degrees of freedom in the
description in terms of atomic surfaces requires a tra”Sforstructure, which correspond to modes that, although involv-
mation into a coordinate system that separates the so—call@ﬁg local rearrangements of the atoms, have null-energy cost.
parallel subspace, isomorphous to real space, and its compleme could then think that this physical property could be
mentary, the so-called internal subspace. Part of the transfofrsed for obtaining an absolute definition of the internal sub-
mation matrix defining this coordinate system is arbltrary.Space and, hence, of the superspace embedding. Indeed, in
The different embeddings materialized in different choiceshe case of incommensurately modulated structures, the stan-
for this matrix can be interpreted as different choices for theygrg embedding corresponds to choosing the ghaséthe
internal subspace. As the internal subspace is usually reprgyryctural modulation as the degrees of freedom correspond-
sented as being perpendicular to the parallel subspace, thigy to the internal subspace. As seen in the first example, a
different embeddings imply different metrics associated toyonstandard embedding in the incommensurately modulated
the superspace and, therefore, different geometrical represegyctures implies, in general, nonbounded displacements of
tations of the superspace density. Under this viewpoint, théne atomic positions when moving along the internal space,
superspace densities of two different embeddings are in géfe | an undesired translational component in the definition of
eral related by am-dimensional strain that keeps unde- the internal coordinate). However, the other examples dem-
formed the parallel subspace. _ onstrate that this criterion is not valid for a general case. Up
In practical terms, a choice of embedding represents & our knowledge, there is no absolute general criterion for
specific coordinate system to be used for the description Oforthogonalizing” the phason degrees of freedom with re-
the atomic surfaces forming the superspace density. Througghect to the translational modes. Contrary to previous state-
the examples discussed above, it is clear that the descriptiQents in the literaturd” phason modes, in general, shift the
of simple atomic surfaces can be rather complex in the origimass center of the system, both locally and globally. So this
nal “periodic” coordinates, while the standard embeddingsproperty cannot be used to distinguish the internal subspace.
for the different cases correspond to a transformation into ghe example of the Fibonacci chain demonstrates how two
coordinate system where, in general, the description of thgjfferent definitions of the phason mode can be equally valid.
corresponding atomic surfaces is particularly simple. Thusyy fact, the actual structure of the phason modes as dynami-
the more adequate embedding and, therefore, more adequai@ degrees of freedom and the weight of the translational
definition of the internal subspace depend in general on thg,gdes on them will depend on their coupling at finite wave-

form of the atomic surfaces. In the case of highly symmetriqengths and, therefore, cannot be determirsegriori by
quasicrystals, the rotational symmetry strongly restricts thgyyrely static arguments.

form of the atomic surfaces, and the simplest embedding is

then essentially determined by this symmetry. There are ACKNOWLEDGMENTS
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