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We present a Monte Carlo investigation of a vortex line in superfitie in a cylindrical container. We
compute the excitation energy and the density profile for two different trial functions. The first is the standard
Onsager-Feynman form for an excited vortex state. This gives a singular velocity on the axis of the vortex and
a hollow core. In our second approach, a shadow wave function, is used to model the vortex state through the
auxiliary, or shadow variables. As a consequence, the vorticity is distributed over a finite region and the density
does not vanish at the vortex axis. This second wave function gives a substantially lower energy than the wave
function of the Onsager-Feynman forfis0163-182606)06625-§

[. INTRODUCTION the core structure. Both are variational calculations based on
model excited states for a single quantum vortex. First we
Since the first observatiohdof quantized vortices in su- will take as our model state the well-known
perfluid helium four a large body of experimental and theo-Onsager-Feynmdari® state. We will evaluate the expectation
retical work has been carried out. Much of this work hasvalues by Monte Carlo integration; apart from statistical
been recently reviewed in detdif. The basic picture of a sampling errors our results are exact for this model. As we
guantized vortex has not changed over a period of 30 yeartlave pointed out, this state leads to a hollow core with a
An isolated vortex, for example a vortex line or ring, consistssingular source for the vorticity. Our numerical work allows
of an extended irrotational flow field which can be accuratelyus to determine accurately the size of the core of the vortex.
described by classical inviscid equations of motion. ThisWe present this calculation both to clarify the structure of
flow field has as its source a core region where the vorticitythis simple model and to develop our Monte Carlo tech-
is concentrated. The simplest and most important manifestariques for this problem.
tion of the quantization of the flow is that the circulation is  Our second calculation is more ambitious and much more
guantized in units of/m. Hereh is Planck’s constant ant  difficult to carry out. It uses a model vortex state constructed
is the mass of the helium atom. Remarkably there is no evifrom a shadow wave function. These wave functions were
dence for the existence of quantized vortices with more thafirst introduced to provide an unbiased description of the
one unit of circulation. In spite of the large amount of ex- crystalline phase of helium fod#:** They have been shown
perimental and theoretical work we still have no clear pictureto provide an accurate description of the homogeneous fluid
of the structure of the core region of a quantum vortéx. and solid phase’, the excitation spectruttf, and the fluid-
Two simple, but basic, questions need to be answered. Firsblid interface’’ The main advantage of this type of wave
how is the vorticity distributed in the core? Second how doedunction is that it provides great flexibility in modeling states
the density of the fluid vary in the core? The experimentalof liquid and solid helium. Shortly after the introduction of
data on quantized rings have been analyzed using seversihadow wave functions it was shotfirthat a vortex state
different classical models of the cote For all of these could be constructed that had both nonzero density and dis-
models we find that the length scale associated with the corgibuted vorticity in the core region. We present a Monte
is about 1 A. This result tells us that if we are to makeCarlo calculation of the energy and other properties of this
progress in answering these two questions we will have tmew vortex state. We find a lower energy as compared with
construct a microscopic theory. There have been a number dfiat of the Onsager-Feynman state. In addition we find a
attempt§~12to construct a theory of the structure of a three-nonzero density throughout the core region. For reasons
dimensional quantized vortex. However none of these deakhich we will shortly describe this Monte Carlo calculation
satisfactorily with the strong interparticle correlations whichis very difficult to carry out with the desired accuracy. We
exist on a length scale of a few angstroms. The purpose djelieve that we have overcome this difficulty by the applica-
this paper is to present the first results of a theory whichion of sufficient computing power. Our results are however
deals directly with these correlations. somewhat limited. In our discussion we will suggest alterna-
In this paper we will present two different calculations of tive strategies which we hope will enable us to perform this
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kind of Monte Carlo calculation in a much more efficient tions. We plan to carry out this type of simulation and com-
fashion. pare the results with those of this paper.

Very recently the core structure of a vortex in two- The shadow wave function we use to describe this inho-
dimensional “He has been investigated by Ortiz and mogeneous system is
Ceperley'® In addition to the Onsager-Feynman form for the
phase, they have allowed for backflow effects in the phase.
This is an alternative way to have delocalized vorticity. In

fact it is knowrt® that introducing a phase factor in the.whereSE{sj“:1,...,N}. Heres is a shadow coordinate and

shadow variables is a way to represent backflow effects in,._ )
the real variables. dS=ds,ds, --dsy . The functionsy and i are both Jastrow

functions multiplied by one-body terms

‘I’o(R)Il/f(R)f K(R,S)¢5(S)dS, ()

II. MODEL WAVE FUNCTIONS

PR =x(R)]] e~ 24w (42)
In this work we consider two model wave functions to i<l
describe a vortex line in a system Nf helium atoms. The and
first has the well-known Onsager-Feynman fottfi,or a
form closely related to it as discussed in Sec. IV:
. v(S) = xS e, (4b)
1<
‘PF(R):E'¢£[1 flp)Wo(R), (@ with x(R)=T1 !, tanhd(#2—r ?), whered is a variational

parameter. We use the same form fofS), but a different
where W, is the ground state for the system andlength parameted,. This form for x(R) guarantees thab,
R={r;|j=1,... N} wherer; are the coordinates of the atoms. vanishes at the wall of the cylinder. Equatiefe) describes
We use cylindrical coordinate,¢,z) with the z axis along  the correlations of the particles and Hgb) describes the
the vortex line. The phase factgr=3]_,¢; depends on the correlations of the shadow variables. The pseudopotentials
angular variablesp; of the particles and the functiohon  andug are of the McMillan form:
their radial distance; from the vortex axis. The function
f(p) controls the density as a function of the radial distance. b \°
The wave functionVr describes a quantized vortex line with u(rj)= Irj —r] (53
circulation k=h/m, with localized vorticity on the vortex
axis and a purely tangential velocity fielg,(r)=%/mp. Be- and
cause of the divergence of; at the vortex axis, the function
f(p) has to vanish ap—0. As a consequence the local den- Ug(s) =
sity n(p) vanishes as?(p). To implement our Monte Carlo !
calculation we need to choose a functional form folOur

bs \°
=i o

where b and by are variational parameters. The factor

form is K(R,S) couples the particles and the shadows through a
~(pla)2 product of Gaussians:
f(p)=1—e (W7, 2
wherea is a variational parameter. This particular functional K(RS)=]] e—C\rj—sjlz, (6)
j

form gave the lowest vortex excitation energy in a previous

calculation which used approximate integral equatibts ¢ s 4 variational parameter. Our wave function for the

compute the energy. For the ground stétewe use a varia- . - L . !
tionafl) shadow Wa\?gfunctioﬁ 'Iqhis aIIovI\:gB; direct compari- gro_un_d state of helium in a cylindrical conta!ner has five
: P variational parameterd;, b,, C, d, and ds. Without the

son between results obtained with the functip and the factors y(R) and x«(S) in Eqs.(4a and (4b), W4(R) of Eq
S . , .

excited-state shadow wave f_unctlon described below. (3) is the standard shadow wave function for homogeneous
We compute the expectation value of the energy by Stanﬁquid e

dard Monte Carlo methods; and therefore we have to con
sider a finite number of particles. A simple choice is to re-
strict theN particles to be inside a cylinder of radiw and

heightL, with the vortex axis at the center of the cylinder.

Qn Its Iate_ral surface we assume rigid poundary CondltlonWave function of the vortex contains the phase factor ex-
i.e, ¥y vanishes when a particle is on this surface. In zhe

o =G ) Lo I ._pressed in terms of the shadow variables. Our second trial
direction we impose periodic boundary conditions. In this

g ! X NSO “function for the vortex state is constructed employing this
way, our system is uniform in the direction of the vortex axiSiqaa It is given by the equation

but it is inhomogeneous in the radial direction. There is an-
other way to set up the simulation of a line vortex. This is to A
take a periodic array of line vortices with alternating signs. Wp(R)=¢( R)f e'’K(R,S)#5(S)dS, )
Their velocity fields will therefore cancel at large distances

and the entire systems will be at rest. The fluid will be ho-where <p(S)=EJN:1¢J- . The ¢ refer to the shadow coordi-
mogeneous except in the core regions. Such a system lendates. The other factors iy are the same as in the ground
itself to a finite simulation with periodic boundary condi- stateW.

" As we discussed in the Introduction, we expect that the
vorticity associated with a line vortex is delocalized around
the axis with a related modification of theplVelocity field.

It has already been showhthat this is accomplished if the



54 VORTEX LINE IN SUPERFLUID“He: A VARIATIONAL . .. 1207

The qualitative properties of this wave function have been 200 1T+ ——
described elsewheré. The wave functionW(R) is an
eigenstate of the total angular momentum operator with ei-
genvalueN#. Hence it is a proper trial function for a vortex
state. This wave function does not contain the modulating 150
factorsf(p) that are present iV (R). In fact, such terms
are not needed because the velocity field is finite everywhere.
The velocity can be written in the forfh

No(p)

100

h 1 ,
f n(r,s) ®

V(r)Z% dsEWud,.

In this equationn(r) is the local density of particles and 50

n(r,s) is the pair distribution function for a particle with co-
ordinater and one of its shadows with coordinat€eThe unit
vector in the tangential direction is denoteduy. It is clear 0 et I R I
from (8) that the velocity field is smeared out over a distance 0 5 10 15

of the order of the range of the functiam(r,s). This is p (&)

controlled by the kerneK; for a Gaussian the range is of
orderC~ Y2 The velocity fieldv(r) vanishes linearly withp
whenp is close to the vortex axis. The physical interpretation

of the shadow wave function is that the shadow variables .. . . . -
represent the quantum delocalization hole, of €7&”2 for equilibrium density. With the boundary conditions that the

each atom. This is also the minimum length over which am}/\/ave function vanish on the cylindrical surface, the density

singularity will be smeared out. will vanish there.

The absence in¥(R) of factors which modulate the The first step in the calculation is to determine the
b : :
density on the vortex axis means, in the first place, that thiground-state energy. The expectation valuéiaé computed

trial wave function has no variational parameters associate img conf|gurat|on§ §ampljecfi Wlttf:] tf;e”Me'tropollts a:!gonthm.
with the vortex. All the variational parameters are deter- € energy was minimized for the foflowing Set ot param-

mined through the ground-state calculation. In the secon§t€rS=1.13,b5=1.20,C=4.0,d=0.06, andd;=0.09. Our

place, the local density of particles is nonzero even at thgYStem is inhomogeneous so it is important to have local
axis of the vortex. So this function describes a vortex withprObes of the properties of the system. We compute the local

delocalized vorticity and a core that is not hollow. This Con_densnyn(p) as a function of the radial distange The aver-

trasts with the wave functioW -(R) that has localized vor- age number of pgrtu,:leg/ 9(’).) ata d|§tance less or equal to
ticity and a hollow core. p from the container’s axis is then given by,

\ITilllll\\lltll\l
|\|x|\|r||\>||‘||\x

)
o

FIG. 1. The ground-state integrated densﬂi%(p), Eqg.(11), as
a function of radial distancg. The cyclinder has a radius of 16.5 A.

— p
A" _ 2.1
lIl. COMPUTATION OF THE GROUND-STATE ENERGY v 0(p)_ZOJO n(p')dp’. (11)
AND DENSITY

. — . In addition we estimate the following energy function:
We write the Hamiltonian of our system of helium atoms

in the form . N T.+V)E(R,S
Zolp)=\ 2 6(p—p)) THVIERS) gy
j=1 E(R,S) 0
H=2> (T;+V)). 9) _
i The symbok ), denotes an average in the sp&BeS,S'} of
, o , . ) particles and shadows taken with respect to configurations
T; is the kinetic energy of thgth atom a_nd\/j is _the contri- sampled fromE(R,S)E(R,S')/Q,, where we have defined
bution of th('a.potentla! energy asspuated with this atom'E(R,S):lﬂ(R)K(R,S) (S) as the product of(R) and the
These quantities are given, respectively, by integrand of Eq(3). S’ represents the second set of shadow
. 1 coordinates that come in when the wave function is squared.
__ M o2 = o Qp is the normalization factor oy. The functioné(x) is
Ti="gm Vi, andVi=3 I(;j) vr=nb. 10 the step function:é(x)=1 if x=0 and #(x)=0 otherwise.
#o(p) represents the contribution to the local energy of those
For the interparticle potentiai(r;;) we use the two-body particles whose distance is less or equaptsom the con-
HFDHE2 potential of Azizet al?° Our calculations were tainer’s axis. Thug y(p)l./ (p) represents the energy per par-
performed for a system of 200 particles in a cylindrical con-ticle for such particles. Whep is equal to the cylinder’s
tainer. The height of our simulation celly=11.35 A, was radius.2, #y(%2) is just the estimate of the total ground-state
the minimum for which finite-size effects along thalirec-  energy. o o
tion can be easily neglected. It corresponds to the edge of a In Figs. 1 and 2 we show (p) and#y(p). In both graphs
cubical simulation cell of 32 atoms for bulk liquid helium. we clearly see the inhomogeneous nature of the system. The
The radius7%=16.53 A of the container was chosen so thatoscillations are produced by the boundary conditions at the
the density in its central region is close to the liglide  cylindrical surface. However, when we plot the ratio
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FIG. 2. The ground-state energi(p), Eq.(12) as a function of FIG. 3. The ratio of energy to integrated density for the ground
radial distancep. state,Zo(p)l./ o(p), as a function of radial distange

— — . o IV. RESULTS FOR THE VORTEX LINE
“olp) 1 (p), Fig. 3, we see that these oscillations are largely

removed in the interior of the cylinder. Moreover, the aver- We now present our results for the system with a vortex
age energy per particle up 8 A is —6.25 K, this is very line. First consider the Onsager-Feynman shadow wave

close to the energy per particle:6.24 K, obtained with this function of Eqg.(1). The excitation energy is obtained as the

shadow wave function for homogeneous liquid helium. Thisdifference between the expectation valuesHotietermined

is an important feature of our simulation. In the ground :~:tatevv'th the vortex wave functionVy and with the ground state

L . V,. All evidence is that the size of the vortex core is very
of our cylindrical container we have a reasonably homoge- . ;

o o . . small, of order of a few A. This fact makes the core contri-
neous region in the interior of the cylinder, with an energy

ticle cl to that of bulk hel bution to the vortex energy small compared to that of the
per particie close 1o fhat of bulk he IumL—, - kinetic energy of the long-range potential flow. This last con-
For large values op, near the wall,“(p)/./ (p) has a

. - L ~ tribution is just equal to that of a vortex in a classical incom-
sharp increase. A=, the variational energy per particle prassible fluid. Thus it is important to consider not only the

of the system includes the contributions given by the surfacgyia| excitation energy of the system, but to separate out the
of the fluid at the wall. In fact, we can estimate this surfacecontribution coming from particles in the inner region of the
energyAE as[Zy(2)—NEol2m7%z,, whereE, is the aver-  container. In a way similar to what we have done in the
age value of the energy in the inner region. We fihE  previous section, we introduce the contribution to the vortex
=0.32 KIA®. As expected, this is larger than the liquid- excitation energy per unit length due to particles up to a
vacuum interface surface energywhich is about 0.27 distancep from the vortex axis. For the Onsager-Feynman

KIAZ. form (F) it is given by
|
— 1< i 1 (T+V)F(RE(R,S) 1—

The symbok ) stands for an average taken with configura-account the Hermitian properties ldfand the equivalence of
tions sampled from the two sets of shadow variables. Two independent runs, one
that samples configurations frof’c|? and the other from
FARE(R,SE(R,S)/Q, (14 |, are needed to estimate the vortex excitation energy

_ - - Ze(p).
whereF(R)=II"_,f(p;) andQ is the appropriate normal- “F : .
ization factor. Atp=.72, the first term in Eq(13) is the total We have also performed the computation with a wave

. . function in which the shadow variables also have the same
energy for the excited state per unit length of the vortex. Th‘?nodulating factolF (S) as the particles. In this case the av-
first term in the inner brackets is the contribution to the ki

B in Eq(13) is tak ith t th ight
netic energy due to the phase factorf . The expression erage in Eq(13) is taken with respect the weig
between brackets in Eq13) can be derived by taking into FAR)F(S)E(R,S)F(S)E(R,S')/Q,



54 VORTEX LINE IN SUPERFLUID*He: A VARIATIONAL . .. 1209
3.5 T T T T T T T T T ; 4 T T T I T T T | T T T
3.0 _‘ __ 3 L —
~ I | 1 |
oi —_ L 4
£ | ] N ]
i i & g - —
g 25— — . I |
I i i O i
2 I 7 lw
EE ] : :
2.0 — — 1 —
15 ) ) ) | | \ | | ) | ! 1 0 SRTTIN R ST NSNS I RN
0 1 2 0 5 10 15 20

a A) p &

FIG. 5. The energy of a vortex per unit Iengﬁp). The con-
tinuous curve shows/r(p), Eq. (13). The dashed curve shows
“5(p), Eq. (17). The dots show the energy given by Efj5). The

we also call this an Onsager-Feynman wave function becau§(?£efn i(]})uare is the value of the energy computed by Chestr
er. .

the phase factor is identical to that of E@). The only
difference is in the modulating real part of the wave function
which is not simply a product of one-body terms aglipbut ~ wherep is in A and we have used the valae-0.8 A as a
higher-order terms are implicitly contained via integrationlength parameter in the logarithmic function. This function is
over the shadow variables. We have found that this wavé@lso shown in Fig. 5. Notice that the value of the constant
function in which the same Gaussian hole is present both iterm in Eq.(15) is not uniquely determined but depends on
the particle and in the shadow variables gives a slightlythe choice of the length parameter in the logarithm. The
lower energy. All the results we quote below for the function Z(p) displays some slight oscillations in its varia-
Onsager-Feynman vortex refer to this form, i.e., to thetion with p. They are clearly related to the modulation of the
weight (14). density profile shown in Fig. 1.

As we already mentioned, the vortex functidn depends An earlier calculation of the enerb]yfor the Onsager-
on an additional variational parametrwhich is present in  Feynman wave function used the Percus-Yevick and HNC
the functionf(p), Eq. (2). The dependence of the excitation approximate integral equations to evaluate the energy expec-
energyZg(p) ona is very similar for different values gf. In tation value. The calculations were performed at a radial dis-
Fig. 4 we show results obtained a4 A. The minimum
excitation energy is fon=0.8 A. We present in Fig. 5 the N
vortex excitation energy per unit lengtfiz(p), as a function L ! !
of the radial distance. The excitation energy varies from L
about 1 K/A forp=3 A to approximately 3 K/A for the full :
system. Figure 6 tells us that whpr3 A the density profile L
of the fluid is close to its unperturbed value. Classically, the 1.0 b—
vortex energy has a logarithmic dependenceoFor a vor-
tex line with circulationk=h/m, this classical energy per
unit length is

FIG. 4. The energy?’p(p), evaluated fop=4 A, as a function of
the variational parametex.

N(p) / N, (p)

€lp)=——(In5=9¢ (15 H

wh2n ( p ) 0.5 _,"‘
B ) |

wheren is the average number density of the flugljs the
radius of the vortex core, andis a number of order unity 0.0 Sl e s
that depends on the model of the core. We find that our result o 5 10 i5 20
for the energy of the quantum vortex is well represented by a - e A

similar functional form. A fit over the range 2—12 A gives

the result

FIG. 6. The ratio of average number of particles for the system
with a vortex to average number of particles for the system in the
ground state. The continuous curve shows the ratip(p)/./ o(p),
= p the dashed curve show$ (p)/./ o(p). The dots show the profile
Ze(p)=0.83 In —+0.73| K/A, 16 V& plp) T olp): P
“r(p) % 0.8 ) (16) calculated by Chesteat al. (Ref. 11).
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tance equald 6 A and the energy was found to be 2.37 K/A.  We now discuss our results for the shadow wave function
This result is shown in Fig. 5 and it is very close to thewith delocalized vorticity;'; given by Eq.(7). The simula-
energy 2.25 K/A that we find at this radial distance. Moretions with this function are much more difficult to perform
recently Dalfovd® has computed the vortex energy on thethan those fof¥’ . The vortex signature in the square of the
basis of density functional theory. He finds an energy 3 K/AOnsager_Feynman wave functibﬁFF is just due to the real
for p=17 A, a value similar to but slightly above our result at F(R) andF(S) factors. The phase factor only gives rise to
P:%:16-53{ A . . o ~ the centrifugal 14? term in the energy expression. On the
The density profile computed using this trial function is ¢ontrary, withW,, the phase factors do not cancel each other

shown in Fig. 6. It shows clearly the vanishing density at the, g give rise to large fluctuations of the integrand when a
axis and the fluctuations introduced by the presence of they,,yqy is close to the vortex axis. In order to obtain reason-

hole at the vortex core. Above approximatél A this den- able statistics for the energy as a function fwve have

sity profile agrees with that of the ground state. The denSi%erformed a run of 681C° Monte Carlo sweeps. This is a

reaches half the value at equilibrium @0.9 A; and has .
two clear maxima due to the presence of the vortex. Th actor 30 Ionge.r than the runs performed with the Onsager-
eynman function.

other maxima are due to the layering produced by the con- Th ibuti h o d
tainer's wall. In the previous computatidis?a similar be- e contribution to the vortex excitation energy due to

havior was found close to the vortex core, but the oscillation®articles within a distancg from the vortex axis can now be
had a significantly smaller amplitude. written in the form

— (e SN - p)[(T+V)E(RSIER STy 1 —
5D<p>=z—0< Sy >°—Z—Okf(p> a”
0

where the meaning of the symbols are the same as in Edhat the amplitude obtained with the trial function with delo-
(13, ¢ and ¢’, are the sum of the angular variables of thecalized vorticity is significantly smaller than the one deter-
shadowsS and S’, respectively. The symbd]), stands for mined with the Onsager-Feynman wave function. This
the average with respect #,. The denominator in Eq16) means that the vortex described Wy, represents a smaller
is the normalization constant for the functidr, . density perturbation of the homogeneous ground state and
The behavior of 5 (p) as a function op is similar to that ~ this presumably is the origin of the lower excitation energy.
of the Onsager-Feynman wave function as can be seen from
Fig. 5. However, the energy is on the average about 0.6 K/A
lower than that found for the Onsager-Feynman wave func-
tion. The difference is roughly constant for algreater than We have presented the first study of a vortex excitation in
2 A. This wave function, with delocalized vorticity, gives the superfluid*He in three dimensions using Monte Carlo simu-
lowest excitation energy for a vortex line in liqufife ob-  lations. Our results for the Onsager-Feynman form of the
tained so far. This is remarkable because this wave functiowave function confirm the results of Chesttral ! based on
has no additional variational parameters to describe the cor@n integral equation method. The vortex excitation energies
of the vortex. If we fit(p) with the form given by Eq(14)  from these two computations are very similar. However one
we find 5=—0.03 when we takg=0.8 A. This choice of, should keep in mind the differences between the two calcu-
allows a direct comparison with the energy, Et6), of the lations. In our simulation we have a finite cylindrical system
Onsager-Feynman wave function. Since, outside the core réa the direction transverse to the vortex axis; the system is
gion, the contribution to the excitation energy is essentialljinhomogeneous even in the ground state. In the earlier com-
kinetic, and is the same for both wave functions, the corgutation the vortex line was in bulk liquid. Here we have to
energy contribution of the vortex with delocalized vorticity assume an explicit, and therefore approximate, form for the
must be smaller than that described by the Onsager-Feynmamound state; the present choice has been a shadow wave
function. function. The integral equation method requires only the
The density profile obtained usingy, is presented in Fig. ground-state pair-correlation function, which was taken from
6. There is again a depletion of the density at the cylindeexperiment. On the other hand, the integral equation intro-
axis. However, the density is now nonzero at the vortex axisduces additional approximations whereas the Monte Carlo
The depletion of particles in the core region is significantlymethod gives exact results within statistical fluctuations for
reduced compared with the hollow core of the Onsageran approximate trial wave function.
Feynman wave function. For instance the density reaches The singularity of the vorticity field derived from the
half the equilibrium value ap=0.6 A, compared with 0.9 A Onsager-Feynman wave function at the vortex axis is rather
in the other case. The average number of particles within artificial and it is gratifying that we find a significantly
distance 61 A from the vortex axis is 0.5 foW: compared smaller vortex excitation energy with a wave function that
with 0.7 for ¥ ; a 30% increase. Examining the amplitude has delocalized vorticity. Here, the representation of inter-
of the first maximum of the density profile, Fig. 6, we seeparticle correlations via the shadow variables has a funda-

V. CONCLUSION
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mental role because the flow field is induced via these If we take by=5 A and for e(b,) the energyZ(5 A)
shadow variables. In this way, the vortex singularity is=1.53 K/A, corresponding to the vortex with delocalized
smeared out over the average distance between a particle avorticity, we get a(5 A)=0.16. If we useZ((5 A)=2.17
its shadow, a distance of order 1 A. Once again the presemt/A, corresponding to Onsager-Feynman case, we get
calculation shows that the shadow representation is very use«5 A)=—0.61. Notice that as long as the dependence of
ful in introducing multiparticle correlations. The lowering of e(bg) onbgis well represented by E14), the energy of the
the vortex excitation energy with the wave function with ring, Eq. (18), does not depend on the choice lnf. The
delocalized vorticity comes from the region within a radiuslengthb,. The lengthb, in Eq. (18) should not be confused
of abou 5 A around the vortex axis, the region where thewith the core diameter or with the healing length, here it is
local density differs appreciably from the ground state. Thigust the distance where we join the outer with the inner re-
lowering is quite significant because it amounts to abougion.
30%. Outside this region the energy is essentially due to the There is no direct measurement of the core energy of a
classical flow field and so there is no essential differencevortex line in “He, however we can get some information
between the two wave functions. about it from results obtain for vortex rings. The Rayfield
There is no other theoretical computation for a vortexand Reif results have been interpreted by Glabertson and
with delocalized vorticity in three-dimensiondHe to com-  Donnelly® in terms of an energy of a vortex ring of radiRg
pare with our results. However, it is instructive to makethat can be written in the form
some comparisons with the restiftsor “He in two dimen-
sions(2D). Both computations give a lowering of the vortex
energy when the vorticity is distributed rather than singular. h? 8Ry
In our computation this lowering of the core energy seems to Ering(Ro) = 2m Ry In T (20
be substantially larger than in the 2D case but this might be
due in part to the rather large statistical uncertainty of the
two computations. Both computations give a nonzero buvith 1=5.98 A at equilibrium density. Our approximate theo-
strongly reduced density in the core. The size of this core igetical expressiori18) for the energy can be written in the
of the same order of magnitude7 1 A, but it is Somewhalform of Eq (20) For the vortex with delocalized VOI’tiCity
larger in the 2D case. We do not know if these differenceghe parametet is thenlp=5.87 A, in very good agreement
are due to the different dimensionality or to the differentWith experiment. For the Onsager-Feynman fotms the
form of the wave functions. In case of roton excitations it islF=2-72 A. The close agreement between experiment and
known'® that introducing the phase in the shadow variablegheory when a vortex with delocalized vorticity is used is
gives an excitation energy which is substantially lower thanVery encouraging and supports the notion that the vortex core
that of a Feynman-Cohen explicit backflow computation. has a complex structure. In order to check that the agreement
Of particular significance in superfluftie are vortex ring 1S not fortuitous it will be important to perform a similar
excitations. This requires a much more complex form of thecomparison at higher densities. _
wave function. However for large vortex rings we can pro- As a by-product of the present computation we get an
ceed to use our results for a line vortex. As mentioned abovegstimation of the surface energy 4fie at a hard wallAE
the present calculation shows that the contribution to the=0-32 K/AZ.
excitation energy of the quantum vortex is essentially equal Our study represents the first exploration of the core
to the classical one for distances |arger than al&)& from structure of a three-dimensional vortex line 1h|e This
the vortex axis. In a bulk liquid sample, let us consider astudy can be pursued usefully in different directions. We
vortex ring of radiusR with a toroidal region centered at the have studied a wave function with delocalized vorticity
circle of radiusR and with a radiusby. It is around this Which has no variational parameters for the vortex. By intro-
toroidal region that we consider the flow field. We can ap-ducing in'Wy, a real one-body term, one could modulate the
proximate the contribution to the excitation energy comingdensity in the core region, both up or down compared with
from the region as 2Rs(b,), wheree(by) is the excitation ~What we have now, and see if this lowers the core energy. In
per unit length of a vortex line_up to a_distanbg. This  the second place, the smearing of the vortex singularity takes
quantity £(b) is given by eitherZ(b,) or “(by). For the place over a distance that is determined by the paran@:ter
outer region of the toroid we approximate the excitation enin the Gaussian that couples particles to shadows. In the
ergy with that of a classical vortex ring of circular cross Present calculation the value Gfis left unchanged from its
section. This corresponds to the energy of a vortex ring oPPtimum value in the ground state. A more flexible wave
radus R and a hollow core of sizeb,, i.e., function forthe vortex might have @ that depends on the
E(R,bo) =(1/2«7In(8R/by) —2] where the circulation has distance of a particle from the vortex axis or on the value of
the quantum valug=h/m. The excitation energy of a vortex the local density.
ring with this approximation is

2
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