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We present a Monte Carlo investigation of a vortex line in superfluid4He in a cylindrical container. We
compute the excitation energy and the density profile for two different trial functions. The first is the standard
Onsager-Feynman form for an excited vortex state. This gives a singular velocity on the axis of the vortex and
a hollow core. In our second approach, a shadow wave function, is used to model the vortex state through the
auxiliary, or shadow variables. As a consequence, the vorticity is distributed over a finite region and the density
does not vanish at the vortex axis. This second wave function gives a substantially lower energy than the wave
function of the Onsager-Feynman form.@S0163-1829~96!06625-8#

I. INTRODUCTION

Since the first observations1,2 of quantized vortices in su-
perfluid helium four a large body of experimental and theo-
retical work has been carried out. Much of this work has
been recently reviewed in detail.3,4 The basic picture of a
quantized vortex has not changed over a period of 30 years.
An isolated vortex, for example a vortex line or ring, consists
of an extended irrotational flow field which can be accurately
described by classical inviscid equations of motion. This
flow field has as its source a core region where the vorticity
is concentrated. The simplest and most important manifesta-
tion of the quantization of the flow is that the circulation is
quantized in units ofh/m. Hereh is Planck’s constant andm
is the mass of the helium atom. Remarkably there is no evi-
dence for the existence of quantized vortices with more than
one unit of circulation. In spite of the large amount of ex-
perimental and theoretical work we still have no clear picture
of the structure of the core region of a quantum vortex.3,4

Two simple, but basic, questions need to be answered. First
how is the vorticity distributed in the core? Second how does
the density of the fluid vary in the core? The experimental
data on quantized rings have been analyzed using several
different classical models of the core.3–5 For all of these
models we find that the length scale associated with the core
is about 1 Å. This result tells us that if we are to make
progress in answering these two questions we will have to
construct a microscopic theory. There have been a number of
attempts6–12 to construct a theory of the structure of a three-
dimensional quantized vortex. However none of these deal
satisfactorily with the strong interparticle correlations which
exist on a length scale of a few angstroms. The purpose of
this paper is to present the first results of a theory which
deals directly with these correlations.

In this paper we will present two different calculations of

the core structure. Both are variational calculations based on
model excited states for a single quantum vortex. First we
will take as our model state the well-known
Onsager-Feynman9,10 state. We will evaluate the expectation
values by Monte Carlo integration; apart from statistical
sampling errors our results are exact for this model. As we
have pointed out, this state leads to a hollow core with a
singular source for the vorticity. Our numerical work allows
us to determine accurately the size of the core of the vortex.
We present this calculation both to clarify the structure of
this simple model and to develop our Monte Carlo tech-
niques for this problem.

Our second calculation is more ambitious and much more
difficult to carry out. It uses a model vortex state constructed
from a shadow wave function. These wave functions were
first introduced to provide an unbiased description of the
crystalline phase of helium four.13,14 They have been shown
to provide an accurate description of the homogeneous fluid
and solid phases,15 the excitation spectrum,16 and the fluid-
solid interface.17 The main advantage of this type of wave
function is that it provides great flexibility in modeling states
of liquid and solid helium. Shortly after the introduction of
shadow wave functions it was shown18 that a vortex state
could be constructed that had both nonzero density and dis-
tributed vorticity in the core region. We present a Monte
Carlo calculation of the energy and other properties of this
new vortex state. We find a lower energy as compared with
that of the Onsager-Feynman state. In addition we find a
nonzero density throughout the core region. For reasons
which we will shortly describe this Monte Carlo calculation
is very difficult to carry out with the desired accuracy. We
believe that we have overcome this difficulty by the applica-
tion of sufficient computing power. Our results are however
somewhat limited. In our discussion we will suggest alterna-
tive strategies which we hope will enable us to perform this
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kind of Monte Carlo calculation in a much more efficient
fashion.

Very recently the core structure of a vortex in two-
dimensional 4He has been investigated by Ortiz and
Ceperley.19 In addition to the Onsager-Feynman form for the
phase, they have allowed for backflow effects in the phase.
This is an alternative way to have delocalized vorticity. In
fact it is known18 that introducing a phase factor in the
shadow variables is a way to represent backflow effects in
the real variables.

II. MODEL WAVE FUNCTIONS

In this work we consider two model wave functions to
describe a vortex line in a system ofN helium atoms. The
first has the well-known Onsager-Feynman form,9,10 or a
form closely related to it as discussed in Sec. IV:

CF~R!5eif)
j51

N

f ~r j !C0~R!, ~1!

where C0 is the ground state for the system and
R[$r j u j51,...,N% wherer j are the coordinates of the atoms.
We use cylindrical coordinates~r,f,z! with the z axis along
the vortex line. The phase factorf5( j51

N f j depends on the
angular variablesfj of the particles and the functionf on
their radial distancerj from the vortex axis. The function
f ~r! controls the density as a function of the radial distance.
The wave functionCF describes a quantized vortex line with
circulation k5h/m, with localized vorticity on the vortex
axis and a purely tangential velocity fieldvf(r )5\/mr. Be-
cause of the divergence ofvf at the vortex axis, the function
f ~r! has to vanish asr→0. As a consequence the local den-
sity n~r! vanishes asf 2~r!. To implement our Monte Carlo
calculation we need to choose a functional form forf . Our
form is

f ~r!512e2~r/a!2, ~2!

wherea is a variational parameter. This particular functional
form gave the lowest vortex excitation energy in a previous
calculation which used approximate integral equations11 to
compute the energy. For the ground stateC0 we use a varia-
tional shadow wave function.13 This allows a direct compari-
son between results obtained with the functionCF and the
excited-state shadow wave function described below.

We compute the expectation value of the energy by stan-
dard Monte Carlo methods; and therefore we have to con-
sider a finite number of particles. A simple choice is to re-
strict theN particles to be inside a cylinder of radiusR and
heightL, with the vortex axis at the center of the cylinder.
On its lateral surface we assume rigid boundary condition,
i.e, C0 vanishes when a particle is on this surface. In thez
direction we impose periodic boundary conditions. In this
way, our system is uniform in the direction of the vortex axis
but it is inhomogeneous in the radial direction. There is an-
other way to set up the simulation of a line vortex. This is to
take a periodic array of line vortices with alternating signs.
Their velocity fields will therefore cancel at large distances
and the entire systems will be at rest. The fluid will be ho-
mogeneous except in the core regions. Such a system lends
itself to a finite simulation with periodic boundary condi-

tions. We plan to carry out this type of simulation and com-
pare the results with those of this paper.

The shadow wave function we use to describe this inho-
mogeneous system is

C0~R!5c~R!E K~R,S!cs~S!dS, ~3!

whereS[$sj u j51,...,N%. Heresj is a shadow coordinate and
dS5ds1ds2•••dsN . The functionsc andcs are both Jastrow
functions multiplied by one-body terms

c~R!5x~R!)
j, l

e2~1/2!u~r j l ! ~4a!

and

cs~S!5xs~S!)
j, l

e2us~sjl !, ~4b!

with x(R)5P j51
N tanhd~R22r j

2!, whered is a variational
parameter. We use the same form forxs(S), but a different
length parameterds . This form forx(R) guarantees thatC0
vanishes at the wall of the cylinder. Equation~4a! describes
the correlations of the particles and Eq.~4b! describes the
correlations of the shadow variables. The pseudopotentialsu
andus are of the McMillan form:

u~r j l !5S b

ur j2r l u
D 5 ~5a!

and

us~sjl !5S bs
usj2sl u

D 9, ~5b!

where b and bs are variational parameters. The factor
K(R,S) couples the particles and the shadows through a
product of Gaussians:

K~R,S!5)
j
e2Cur j2sj u

2
, ~6!

andC is a variational parameter. Our wave function for the
ground state of helium in a cylindrical container has five
variational parameters,b, bs , C, d, and ds . Without the
factorsx(R) andxs(S) in Eqs.~4a! and ~4b!, C0(R) of Eq.
~3! is the standard shadow wave function for homogeneous
liquid 4He.

As we discussed in the Introduction, we expect that the
vorticity associated with a line vortex is delocalized around
the axis with a related modification of the 1/r velocity field.
It has already been shown18 that this is accomplished if the
wave function of the vortex contains the phase factor ex-
pressed in terms of the shadow variables. Our second trial
function for the vortex state is constructed employing this
idea. It is given by the equation

CD~R!5c~R!E eiwK~R,S!cs~S!dS, ~7!

wherew(S)5( j51
N w j . The wj refer to the shadow coordi-

nates. The other factors inCD are the same as in the ground
stateC0.
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The qualitative properties of this wave function have been
described elsewhere.18 The wave functionCD(R) is an
eigenstate of the total angular momentum operator with ei-
genvalueN\. Hence it is a proper trial function for a vortex
state. This wave function does not contain the modulating
factors f (r) that are present inCF(R). In fact, such terms
are not needed because the velocity field is finite everywhere.
The velocity can be written in the form18

v~r !5
\

2m E ds
1

s

n~r ,s!

n~r !
uf . ~8!

In this equationn(r ) is the local density of particles and
n~r ,s! is the pair distribution function for a particle with co-
ordinater and one of its shadows with coordinates. The unit
vector in the tangential direction is denoted byuf . It is clear
from ~8! that the velocity field is smeared out over a distance
of the order of the range of the functionn(r ,s). This is
controlled by the kernelK; for a Gaussian the range is of
orderC21/2. The velocity fieldv~r ! vanishes linearly withr
whenr is close to the vortex axis. The physical interpretation
of the shadow wave function is that the shadow variables
represent the quantum delocalization hole, of sizeC21/2, for
each atom. This is also the minimum length over which any
singularity will be smeared out.

The absence inCD(R) of factors which modulate the
density on the vortex axis means, in the first place, that this
trial wave function has no variational parameters associated
with the vortex. All the variational parameters are deter-
mined through the ground-state calculation. In the second
place, the local density of particles is nonzero even at the
axis of the vortex. So this function describes a vortex with
delocalized vorticity and a core that is not hollow. This con-
trasts with the wave functionCF(R) that has localized vor-
ticity and a hollow core.

III. COMPUTATION OF THE GROUND-STATE ENERGY
AND DENSITY

We write the Hamiltonian of our system of helium atoms
in the form

H5(
j

~Tj1Vj !. ~9!

Tj is the kinetic energy of thej th atom andVj is the contri-
bution of the potential energy associated with this atom.
These quantities are given, respectively, by

Tj52
\2

2m
¹ r j
2 and Vj5

1

2 (
l ~Þ j !

v~ ur j2r l u!. ~10!

For the interparticle potentialv~r i j ! we use the two-body
HFDHE2 potential of Azizet al.20 Our calculations were
performed for a system of 200 particles in a cylindrical con-
tainer. The height of our simulation cell,z0511.35 Å, was
the minimum for which finite-size effects along thez direc-
tion can be easily neglected. It corresponds to the edge of a
cubical simulation cell of 32 atoms for bulk liquid helium.
The radiusR516.53 Å of the container was chosen so that
the density in its central region is close to the liquid-4He

equilibrium density. With the boundary conditions that the
wave function vanish on the cylindrical surface, the density
will vanish there.

The first step in the calculation is to determine the
ground-state energy. The expectation value ofH is computed
using configurations sampled with the Metropolis algorithm.
The energy was minimized for the following set of param-
eters:b51.13,bs51.20,C54.0,d50.06, andds50.09. Our
system is inhomogeneous so it is important to have local
probes of the properties of the system. We compute the local
densityn~r! as a function of the radial distancer. The aver-
age number of particlesN̄ 0~r! at a distance less or equal to
r from the container’s axis is then given by,

N̄ 0~r!5z0E
0

r

n~r8!d2r8. ~11!

In addition we estimate the following energy function:

Ē0~r!5K (
j51

N

u~r2r j !
~Tj1Vj !J~R,S!

J~R,S! L
0

. ~12!

The symbol̂ &0 denotes an average in the space$R,S,S8% of
particles and shadows taken with respect to configurations
sampled fromJ(R,S)J(R,S8)/Q0, where we have defined
J(R,S)5c(R)K(R,S)cs(S) as the product ofc(R) and the
integrand of Eq.~3!. S8 represents the second set of shadow
coordinates that come in when the wave function is squared.
Q0 is the normalization factor ofC0. The functionu(x) is
the step function:u(x)51 if x>0 and u(x)50 otherwise.
Ē0~r! represents the contribution to the local energy of those
particles whose distance is less or equal tor from the con-
tainer’s axis. ThusĒ0~r!/N̄ ~r! represents the energy per par-
ticle for such particles. Whenr is equal to the cylinder’s
radiusR, Ē0~R! is just the estimate of the total ground-state
energy.

In Figs. 1 and 2 we showN̄ ~r! andĒ0~r!. In both graphs
we clearly see the inhomogeneous nature of the system. The
oscillations are produced by the boundary conditions at the
cylindrical surface. However, when we plot the ratio

FIG. 1. The ground-state integrated densityN̄ 0~r!, Eq. ~11!, as
a function of radial distancer. The cyclinder has a radius of 16.5 Å.
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Ē0~r!/N̄ ~r!, Fig. 3, we see that these oscillations are largely
removed in the interior of the cylinder. Moreover, the aver-
age energy per particle up to 8 Å is 26.25 K, this is very
close to the energy per particle,26.24 K, obtained with this
shadow wave function for homogeneous liquid helium. This
is an important feature of our simulation. In the ground state
of our cylindrical container we have a reasonably homoge-
neous region in the interior of the cylinder, with an energy
per particle close to that of bulk helium.

For large values ofr, near the wall,Ē~r!/N̄ ~r! has a
sharp increase. Atr5R, the variational energy per particle
of the system includes the contributions given by the surface
of the fluid at the wall. In fact, we can estimate this surface
energyDE as@Ē0~R!2NE0#/2pRz0, whereE0 is the aver-
age value of the energy in the inner region. We findDE
50.32 K/Å2. As expected, this is larger than the liquid-
vacuum interface surface energy,21 which is about 0.27
K/Å2.

IV. RESULTS FOR THE VORTEX LINE

We now present our results for the system with a vortex
line. First consider the Onsager-Feynman shadow wave
function of Eq.~1!. The excitation energy is obtained as the
difference between the expectation values ofH determined
with the vortex wave functionCF and with the ground state
C0. All evidence is that the size of the vortex core is very
small, of order of a few Å. This fact makes the core contri-
bution to the vortex energy small compared to that of the
kinetic energy of the long-range potential flow. This last con-
tribution is just equal to that of a vortex in a classical incom-
pressible fluid. Thus it is important to consider not only the
total excitation energy of the system, but to separate out the
contribution coming from particles in the inner region of the
container. In a way similar to what we have done in the
previous section, we introduce the contribution to the vortex
excitation energy per unit length due to particles up to a
distancer from the vortex axis. For the Onsager-Feynman
form (F) it is given by

ĒF~r!5
1

z0
K (
j51

N

u~r2r j !F \

2m

1

r j
2 1

~Tj1Vj !F~R!J~R,S!

F~R!J~R,S! G L
F

2
1

z0
Ē0~r!. ~13!

The symbol̂ &F stands for an average taken with configura-
tions sampled from

F2~R!J~R,S!J~R,S8!/Q, ~14!

whereF(R)5P i51
N f (r i) andQ is the appropriate normal-

ization factor. Atr5R, the first term in Eq.~13! is the total
energy for the excited state per unit length of the vortex. The
first term in the inner brackets is the contribution to the ki-
netic energy due to the phase factor ofCF . The expression
between brackets in Eq.~13! can be derived by taking into

account the Hermitian properties ofH and the equivalence of
the two sets of shadow variables. Two independent runs, one
that samples configurations fromuCFu2 and the other from
uC0u

2, are needed to estimate the vortex excitation energy
ĒF~r!.

We have also performed the computation with a wave
function in which the shadow variables also have the same
modulating factorF(S) as the particles. In this case the av-
erage in Eq.~13! is taken with respect the weight

F2~R!F~S!J~R,S!F~S8!J~R,S8!/Q,

FIG. 2. The ground-state energyĒ0~r!, Eq. ~12! as a function of
radial distancer.

FIG. 3. The ratio of energy to integrated density for the ground
state,Ē0~r!/N̄ 0~r!, as a function of radial distancer.
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we also call this an Onsager-Feynman wave function because
the phase factor is identical to that of Eq.~1!. The only
difference is in the modulating real part of the wave function
which is not simply a product of one-body terms as in~1! but
higher-order terms are implicitly contained via integration
over the shadow variables. We have found that this wave
function in which the same Gaussian hole is present both in
the particle and in the shadow variables gives a slightly
lower energy. All the results we quote below for the
Onsager-Feynman vortex refer to this form, i.e., to the
weight ~14!.

As we already mentioned, the vortex functionCF depends
on an additional variational parametera, which is present in
the functionf ~r!, Eq. ~2!. The dependence of the excitation
energyĒF~r! ona is very similar for different values ofr. In
Fig. 4 we show results obtained atr54 Å. The minimum
excitation energy is fora50.8 Å. We present in Fig. 5 the
vortex excitation energy per unit length,ĒF~r!, as a function
of the radial distancer. The excitation energy varies from
about 1 K/Å forr53 Å to approximately 3 K/Å for the full
system. Figure 6 tells us that whenr53 Å the density profile
of the fluid is close to its unperturbed value. Classically, the
vortex energy has a logarithmic dependence onr. For a vor-
tex line with circulationk5h/m, this classical energy per
unit length is

ecl~r!5
p\2n

m S ln r

b
2d D , ~15!

wheren is the average number density of the fluid,b is the
radius of the vortex core, andd is a number of order unity
that depends on the model of the core. We find that our result
for the energy of the quantum vortex is well represented by a
similar functional form. A fit over the range 2–12 Å gives
the result

ĒF~r!50.83S ln r

0.8
10.73D K/Å, ~16!

wherer is in Å and we have used the valuea50.8 Å as a
length parameter in the logarithmic function. This function is
also shown in Fig. 5. Notice that the value of the constant
term in Eq.~15! is not uniquely determined but depends on
the choice of the length parameter in the logarithm. The
function ĒF~r! displays some slight oscillations in its varia-
tion with r. They are clearly related to the modulation of the
density profile shown in Fig. 1.

An earlier calculation of the energy11 for the Onsager-
Feynman wave function used the Percus-Yevick and HNC
approximate integral equations to evaluate the energy expec-
tation value. The calculations were performed at a radial dis-

FIG. 4. The energyĒF~r!, evaluated forr54 Å, as a function of
the variational parametera.

FIG. 5. The energy of a vortex per unit lengthĒ~r!. The con-
tinuous curve showsĒF~r!, Eq. ~13!. The dashed curve shows
ĒD~r!, Eq. ~17!. The dots show the energy given by Eq.~15!. The
open square is the value of the energy computed by Chesteret al.
~Ref. 11!.

FIG. 6. The ratio of average number of particles for the system
with a vortex to average number of particles for the system in the
ground state. The continuous curve shows the ratioN̄ F~r!/N̄ 0~r!,
the dashed curve showsN̄ D~r!/N̄ 0~r!. The dots show the profile
calculated by Chesteret al. ~Ref. 11!.
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tance equal to 6 Å and the energy was found to be 2.37 K/Å.
This result is shown in Fig. 5 and it is very close to the
energy 2.25 K/Å that we find at this radial distance. More
recently Dalfovo12 has computed the vortex energy on the
basis of density functional theory. He finds an energy 3 K/Å
for r517 Å, a value similar to but slightly above our result at
r5R516.53 Å.

The density profile computed using this trial function is
shown in Fig. 6. It shows clearly the vanishing density at the
axis and the fluctuations introduced by the presence of the
hole at the vortex core. Above approximately 9 Å this den-
sity profile agrees with that of the ground state. The density
reaches half the value at equilibrium atr50.9 Å; and has
two clear maxima due to the presence of the vortex. The
other maxima are due to the layering produced by the con-
tainer’s wall. In the previous computations11,12 a similar be-
havior was found close to the vortex core, but the oscillations
had a significantly smaller amplitude.

We now discuss our results for the shadow wave function
with delocalized vorticity;CD given by Eq.~7!. The simula-
tions with this function are much more difficult to perform
than those forCF . The vortex signature in the square of the
Onsager-Feynman wave functionuCFu2 is just due to the real
F(R) andF(S) factors. The phase factor only gives rise to
the centrifugal 1/r2 term in the energy expression. On the
contrary, withCD the phase factors do not cancel each other
and give rise to large fluctuations of the integrand when a
shadow is close to the vortex axis. In order to obtain reason-
able statistics for the energy as a function ofr we have
performed a run of 603106 Monte Carlo sweeps. This is a
factor 30 longer than the runs performed with the Onsager-
Feynman function.

The contribution to the vortex excitation energy due to
particles within a distancer from the vortex axis can now be
written in the form

ĒD~r!5
1

z0

^e2 i ~w2w8!( j51
N u~r2r j !@~Tj1Vj !J~R,S!/J~R,S!#&0

^e2 i ~w2w8!&0
2

1

z0
Ē~r! ~17!

where the meaning of the symbols are the same as in Eq.
~13!, w andw8, are the sum of the angular variables of the
shadowsS andS8, respectively. The symbol̂&0 stands for
the average with respect toC0. The denominator in Eq.~16!
is the normalization constant for the functionCD .

The behavior ofĒD~r! as a function ofr is similar to that
of the Onsager-Feynman wave function as can be seen from
Fig. 5. However, the energy is on the average about 0.6 K/Å
lower than that found for the Onsager-Feynman wave func-
tion. The difference is roughly constant for allr greater than
2 Å. This wave function, with delocalized vorticity, gives the
lowest excitation energy for a vortex line in liquid4He ob-
tained so far. This is remarkable because this wave function
has no additional variational parameters to describe the core
of the vortex. If we fitĒD~r! with the form given by Eq.~14!
we findd520.03 when we takeb50.8 Å. This choice ofb,
allows a direct comparison with the energy, Eq.~16!, of the
Onsager-Feynman wave function. Since, outside the core re-
gion, the contribution to the excitation energy is essentially
kinetic, and is the same for both wave functions, the core
energy contribution of the vortex with delocalized vorticity
must be smaller than that described by the Onsager-Feynman
function.

The density profile obtained usingCD is presented in Fig.
6. There is again a depletion of the density at the cylinder
axis. However, the density is now nonzero at the vortex axis.
The depletion of particles in the core region is significantly
reduced compared with the hollow core of the Onsager-
Feynman wave function. For instance the density reaches
half the equilibrium value atr50.6 Å, compared with 0.9 Å
in the other case. The average number of particles within a
distance of 1 Å from the vortex axis is 0.5 forCF compared
with 0.7 forCD ; a 30% increase. Examining the amplitude
of the first maximum of the density profile, Fig. 6, we see

that the amplitude obtained with the trial function with delo-
calized vorticity is significantly smaller than the one deter-
mined with the Onsager-Feynman wave function. This
means that the vortex described byCD represents a smaller
density perturbation of the homogeneous ground state and
this presumably is the origin of the lower excitation energy.

V. CONCLUSION

We have presented the first study of a vortex excitation in
superfluid4He in three dimensions using Monte Carlo simu-
lations. Our results for the Onsager-Feynman form of the
wave function confirm the results of Chesteret al.11 based on
an integral equation method. The vortex excitation energies
from these two computations are very similar. However one
should keep in mind the differences between the two calcu-
lations. In our simulation we have a finite cylindrical system
in the direction transverse to the vortex axis; the system is
inhomogeneous even in the ground state. In the earlier com-
putation the vortex line was in bulk liquid. Here we have to
assume an explicit, and therefore approximate, form for the
ground state; the present choice has been a shadow wave
function. The integral equation method requires only the
ground-state pair-correlation function, which was taken from
experiment. On the other hand, the integral equation intro-
duces additional approximations whereas the Monte Carlo
method gives exact results within statistical fluctuations for
an approximate trial wave function.

The singularity of the vorticity field derived from the
Onsager-Feynman wave function at the vortex axis is rather
artificial and it is gratifying that we find a significantly
smaller vortex excitation energy with a wave function that
has delocalized vorticity. Here, the representation of inter-
particle correlations via the shadow variables has a funda-
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mental role because the flow field is induced via these
shadow variables. In this way, the vortex singularity is
smeared out over the average distance between a particle and
its shadow, a distance of order 1 Å. Once again the present
calculation shows that the shadow representation is very use-
ful in introducing multiparticle correlations. The lowering of
the vortex excitation energy with the wave function with
delocalized vorticity comes from the region within a radius
of about 5 Å around the vortex axis, the region where the
local density differs appreciably from the ground state. This
lowering is quite significant because it amounts to about
30%. Outside this region the energy is essentially due to the
classical flow field and so there is no essential difference
between the two wave functions.

There is no other theoretical computation for a vortex
with delocalized vorticity in three-dimensional4He to com-
pare with our results. However, it is instructive to make
some comparisons with the results19 for 4He in two dimen-
sions~2D!. Both computations give a lowering of the vortex
energy when the vorticity is distributed rather than singular.
In our computation this lowering of the core energy seems to
be substantially larger than in the 2D case but this might be
due in part to the rather large statistical uncertainty of the
two computations. Both computations give a nonzero but
strongly reduced density in the core. The size of this core is
of the same order of magnitude, 1 Å, but it is somewhat
larger in the 2D case. We do not know if these differences
are due to the different dimensionality or to the different
form of the wave functions. In case of roton excitations it is
known16 that introducing the phase in the shadow variables
gives an excitation energy which is substantially lower than
that of a Feynman-Cohen explicit backflow computation.

Of particular significance in superfluid4He are vortex ring
excitations. This requires a much more complex form of the
wave function. However for large vortex rings we can pro-
ceed to use our results for a line vortex. As mentioned above,
the present calculation shows that the contribution to the
excitation energy of the quantum vortex is essentially equal
to the classical one for distances larger than about 5 Å from
the vortex axis. In a bulk liquid sample, let us consider a
vortex ring of radiusR with a toroidal region centered at the
circle of radiusR and with a radiusb0. It is around this
toroidal region that we consider the flow field. We can ap-
proximate the contribution to the excitation energy coming
from the region as 2pR«(b0), where«~b0! is the excitation
per unit length of a vortex line up to a distanceb0. This
quantity«~b0! is given by eitherĒD(b0) or ĒF(b0). For the
outer region of the toroid we approximate the excitation en-
ergy with that of a classical vortex ring of circular cross
section. This corresponds to the energy of a vortex ring of
radius R and a hollow core of size b0, i.e.,
E(R,b0)5~1/2!k2@ln(8R/b0)22# where the circulation has
the quantum valuek5h/m. The excitation energy of a vortex
ring with this approximation is

Ering~R!5
h2

2m
nRF ln 8R

b0
2a~b0!G , ~18!

wherea(b) is given by

a~b0!522
4pm

h2n
«~b0!. ~19!

If we take b055 Å and for «~b0! the energyED~5 Å!
51.53 K/Å, corresponding to the vortex with delocalized
vorticity, we geta~5 Å!50.16. If we useEF~5 Å!52.17
K/Å, corresponding to Onsager-Feynman case, we get
a~5 Å!520.61. Notice that as long as the dependence of
«~b0! onb0 is well represented by Eq.~14!, the energy of the
ring, Eq. ~18!, does not depend on the choice ofb0. The
lengthb0. The lengthb0 in Eq. ~18! should not be confused
with the core diameter or with the healing length, here it is
just the distance where we join the outer with the inner re-
gion.

There is no direct measurement of the core energy of a
vortex line in 4He, however we can get some information
about it from results obtain for vortex rings. The Rayfield
and Reif results2 have been interpreted by Glabertson and
Donnelly3 in terms of an energy of a vortex ring of radiusR0
that can be written in the form

Ering~R0!5
h2

2m
nR0 ln

8R0

l
~20!

with l55.98 Å at equilibrium density. Our approximate theo-
retical expression~18! for the energy can be written in the
form of Eq. ~20!. For the vortex with delocalized vorticity
the parameterl is thenl D55.87 Å, in very good agreement
with experiment. For the Onsager-Feynman form,l is the
l F52.72 Å. The close agreement between experiment and
theory when a vortex with delocalized vorticity is used is
very encouraging and supports the notion that the vortex core
has a complex structure. In order to check that the agreement
is not fortuitous it will be important to perform a similar
comparison at higher densities.

As a by-product of the present computation we get an
estimation of the surface energy of4He at a hard wall,DE
50.32 K/Å2.

Our study represents the first exploration of the core
structure of a three-dimensional vortex line in4He. This
study can be pursued usefully in different directions. We
have studied a wave function with delocalized vorticity
which has no variational parameters for the vortex. By intro-
ducing inCD a real one-body term, one could modulate the
density in the core region, both up or down compared with
what we have now, and see if this lowers the core energy. In
the second place, the smearing of the vortex singularity takes
place over a distance that is determined by the parameterC
in the Gaussian that couples particles to shadows. In the
present calculation the value ofC is left unchanged from its
optimum value in the ground state. A more flexible wave
function for the vortex might have aC that depends on the
distance of a particle from the vortex axis or on the value of
the local density.
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