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Using semiempirical atomic potentials, we consider the mechanical and geometrical origins of pressure-
induced instability for open-packed structures~bcc, sc, and diamondlike! in the framework of a classical static
(T50) lattice. The destabilizing role of central repulsive forces has been shown for molecular, ionic, and
covalent compounds. Two types of elastic instability connected with the symmetry of nearest atomic environ-
ment and with the internal strain in an elementary cell have been revealed. The modified valence force field
model is applied for calculating the high-pressure lattice dynamics of diamond and zinc-blende semiconduc-
tors. The force field model is based on the Morse form of pair potential and distance scaling of the second-
order constants. It is shown that the absolute instability of diamond structure is caused by phonon softening on
the boundary of the Brillouin zone, and under compression a thermally frozen diamondlike lattice may trans-
form to a disordered state both from crystallographic and kinetic reasons. The geometrical criterion for soft
modes under hydrostatic compression~relative atomic displacements are perpendicular to the bonds! is also
discussed.@S0163-1829~96!04037-4#

I. INTRODUCTION

Solid-state amorphization~SSA!, which may be caused by
different driving forces, such as ion implantation, high-
energy particle irradiation, chemical diffusion, mechanical
alloying, etc., is a very promising phenomenon for the phys-
ics of disordered condensed matter.1 High-pressure SSA
~Ref. 2! is a special case, when a homogeneous crystal spon-
taneously transforms to a disordered solid, and it has a great
technological potential for production of bulk amorphous
materials. The different pressure-induced amorphization
transformations, observed under compression@H2O, SiO2,
etc. ~Refs. 3 and 4!#, decompression@H2O, Si, Ge, GaAs,
etc. ~Refs. 5–7!#, or upon heating@GaSb, SiO2, etc.~Refs. 2
and 8!#, have two common basic features—a deep metasta-
bility of the initial crystal before the onset of disordering and
a similarity between the short-range order structures~SROS!
of the amorphous phase obtained and the crystalline modifi-
cation, which is stable at the amorphization conditions.

A number of experimental observations—heat release
during amorphization and small activation energy,2,8 clearly
distinguish the high-pressure SSA from a conventional
order-disorder transition, like melting. Amorphous phases
produced using the high-pressure SSA method also display
anomalous anisotropy of physical properties,9,10 which are
not observable in conventional glasses prepared by ordinary
methods~glass forming, quenching from the melt, evapora-
tion, etc.!. This anisotropy can be interpreted in the frame-
work of the ‘‘memory’’ effects of the initial crystal orienta-
tion before the SSA.10,11 The lamellar structure of the
disordered SiO2 phase in the SSA intermediate stages12 and
the recent report on antiferromagnetism in the amorphous
substance produced by the SSA~Ref. 13! may well be con-
sidered as still another manifestation of anisotropy effects
during the SSA.

The theoretical interpretation of the SSA proceeds from
the idea of Mishimaet al.3 about the SSA as a cold melting
process. The parallels between thermodynamic melting and

heterogeneous formation of an amorphous phase and, on the
other hand, between ‘‘mechanical’’ melting~instability on
spinodal! and homogeneous amorphization were recognized
later.14 In recent years lattice instability as a mechanism trig-
gering amorphization became the most popular approach.
The molecular-dynamics calculations for ice,a-quartz, and
berlinite15–17 have shown the direct relation between amor-
phization and significant softening of elastic constants. The
formulation of generalized elastic stability criteria18,19 de-
rived from stress-strain relations allows us to predict quanti-
tatively the symmetry and the onset of mechanical lattice
instability. The molecular-dynamics simulation has directly
confirmed the validity of these criteria.18,19 In the case of
a-quartz, theab initio pseudopotential calculation has given
vanishing of a stiffness elastic eigenconstant in the pressure
range, where the disordering collapse had been observed
experimentally.20,21 The lattice instability approach gives a
qualitative understanding of anisotropy effects during the
SSA assuming a direct connection between the symmetry of
the soft mode and real atomic movements.

For a number of SSA techniques the 30–60 % softening
of elastic constants before the onset of amorphization has
been confirmed experimentally.22 An experimental study of
the crystal elastic behavior before amorphization appears to
have been realized on ice,23 where the;12% decrease of the
polycrystalline shear modulus was observed. Thus, there is
both experimental and theoretical evidence for a relation be-
tween the high-pressure SSA, elastic lattice softening, and
instability.

There has been significant progress in the understanding
of SSA driving forces, but the development of a general
theory on the high-pressure SSA is far from being complete.
The effect of pressure and temperature on the SSA process as
well as the relation between the symmetry of an unstable
mode and the type of transformation are only at the begin-
ning of their recognition. Although the generalized stability
criteria for a homogeneous lattice under compression had
been formulated,18,19 the detailed criteria taking into consid-
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eration a lattice geometry and an atomic forces potential as
an input, which may allow us to predict instability or amor-
phization, are practically absent except for the calculations
for certain particular substances.

In the current paper we consider a special case of open-
packed lattices under compression. We imply here that the
structure is open packed, when it may be packed to a denser
phase~with the same distances to nearest neighbors! under
pressure. Our consideration is restricted by the condition
Z<8, but, in the case of metals, it is doubtful that bcc crys-
tals (z58) are open packed. In Sec. II we shall apply the
generalized stability criteria to simple cubic and bcc struc-
tures. This consideration will allow us to clear up the desta-
bilizing role of the central repulsive forces closely connected
with the symmetry and geometry of the structure. The quali-
tative conclusions will be supported by the numerical analy-
sis of alkali halides using empirical potentials.

In Sec. III we shall examine the elastic and vibration sta-
bility of the diamondlike structure in the case of tetrahedral
semiconductors. This case is of great interest because the
SSA transformation has been recently discovered in zinc
blende BAs.24 The molecular-dynamics simulation of tetra-
hedral covalent alloy SiC has also displayed a crystal-to-
amorphous transition, caused by the elastic instability under
compression.25 We shall modify the conventional valence
force field model by taking into account:~i! the anharmonic
character of central overlap forces under pressure;~ii ! the
contribution of electronic density increase under compres-
sion into third-order force constants; and~iii ! flattening of
the transverse-acoustic branch at the Brillouin-zone bound-
ary. The chosen potential will be tested by the calculation of
Grüneisen constants and pressure derivatives of stiffness
elastic constants. The minimum critical pressure from differ-
ent stability criteria will be found corresponding to the
TA(X) phonon mode for a number of tetrahedral semicon-
ductors.

In Sec. IV we shall discuss the relations between the sym-
metry of instability and the solid-state transition actually ob-
served. In the case of a diamondlike structure the suggestion
about the possibility of solid-state amorphization in general
case under compression will be advanced proceeding from
crystallographic considerations. The analysis of geometrical
relations for different soft modes will give a new insight into
the nature of unstable modes in compressed open-packed lat-
tices. Finally, we shall briefly repeat in Sec. V the basic
qualitative results supported by quantitative calculations in
Secs. II and III.

II. INSTABILITY OF SIMPLE CUBIC AND
BCC LATTICES UNDER COMPRESSION

For givenP,T conditions the equilibrium atomic configu-
ration in a crystal,X5X(P,T), corresponds to the minimum
of Gibbs free energyG5U2TS1PV. For a crystal in the
metastable state this minimum is evidently local. In a classi-
cal static (T50) lattice the internal energyU may be con-
sidered as a potential function,U5U(X). Introduction of a
potential function for describing atomic interaction is natu-
ral, if we want to clarify the role of lattice geometry and
atomic forces in lattice instability. Previously, empirical
atomic potentials had been successfully applied for describ-

ing elastic and vibration properties of molecular, ionic, and
covalent crystals at normal conditions, when pressure may
not be taken into account.~For example, see Refs. 26 and
27.! The zero-temperature restriction in the framework of a
classical lattice allows us to eliminate from consideration
atomic oscillations and to use the harmonic approx-
imation26,28 for lattice dynamics.

The generalized elastic stability criteria for a cubic crystal
under hydrostatic pressure have been proposed by Wang
et al.18,19 proceeding from the consideration of a stiffness
coefficient tensor.30,29 These criteria may be written in a
form similar to the ordinary stability criteria of Born26 for
zero pressure:

c11* 12c12* .0, c11* 2c12* .0, c44* .0, ~2.1!

where elastic stiffness, or stress-strain, coefficients29 may be
expressed in terms of the Gibbs free energyG and the La-
grangian strain tensoruab5 1

2(eab1eba1(gegaegb), by the
equation:

cabgl* 5
1

V

]2G

]uab]ugl
, ~2.2!

hereV is the volume of crystal, indices designatex, y, or z
axes, andcabgl* [ci j* in Voigt’s notation31 ( i , j51, . . . ,6).
Under uniaxial tension the cubic symmetry of the stiffness
coefficient tensor breaks down and the criteria~2.1! become
not valid.18

At first, we have applied the criteria~2.1! to the simplest
case of a lattice with central interatomic forces. The change
of potential energy in a lattice under deformation have been
calculated by Born,26 the corresponding equation being sim-
plified for simple cubic and bcc structures, where there is one
atom per elementary cell, and the internal strain in the cell is
absent. Taking into account the expressions for elastic stiff-
ness coefficients from Refs. 18 and 19 one can obtain tetrag-
onal and rhombohedral shear eigenconstants for a stiffness
coefficient tensor:

1

2
~c11* 2c12* !5

1

v(i @c r2
9 ~r x

42r x
2r y

2!# r i2P, ~2.3a!

c44* 5
2

v (
i

@c r2
9 r x

2r y
2# r i2P, ~2.3b!

wherev is the volume of an elementary cell,r i is a relative
vector of the Brave lattice, andc r2

9 denotes the second de-
rivative of pair potential as a function of r 2,
c r2

9 5]2c(r 2)/](r 2)2. Equations~2.3a! and ~2.3b!, being a
particular case of the general equations,29 may be derived
from the thermodynamic Gibbs free-energy consideration.32

The first terms in the right-hand part of Eqs.~2.3a! and
~2.3b! are connected with the Born strain energy, whereas
the term2P appears to be due to macroscopic second-order
variation of a crystal volume. The condition of crystal equi-
librium ]G/]uab50 gives in this case

P5
1

v(i @c r2
8 r x

2# r i . ~2.4!
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Before numerical application of Eqs.~2.3! and ~2.4!, one
should note, that sc and bcc structures with central forces are
usually unstable in contrast to the close-packed fcc lattice.26

According to Eqs.~2.1!, ~2.3!, and ~2.4!, these structures
remain unstable under positive pressure because there is no
positive contribution from the first shell toc44 in the sc and
to (1/2)(c112c12) in bcc structures, whereas the first-shell
contribution to the pressure is always positive. Such situation
appears to be due to the multipliers (r x

42r x
2r y

2) and r x
2r y

2 in
the first terms of the right-hand part of Eqs.~2.3!, i.e., due to
the symmetry of sc and bcc lattices. The total contribution of
next coordination spheres to the shear constants usually cor-
responds to the attraction part of interatomic potential and is
negative.

To analyze the relative role of different shells we should
briefly consider the elastic characteristics of virtual sc and
bcc lattices with the Lennard-Jones interatomic potential
c(r )54e@(s/r )122(s/r )6# successfully describing rare-gas
solids ~fcc structure!.27 Calculation of the stiffness elastic
constant and pressure dependenceP(d) becomes trivial, ac-
cording to Eqs.~2.3! and~2.4!, if the interaction is restricted
by a sphere with radiusR . The role of atoms outside of this
sphere can be estimated from the approximation of continu-
ous atomic distribution with densityn51/v. In this model
the summing up in Eq.~2.3! is replaced by the integration for
r>R. For the potentialw(r )5A/r n the contribution of ex-
ternal shells isDc115Dc33'2/v*R

`dr*r 2dVw r2
9 (r sinu)4,

where w r2
9 5(n12)nA/(4r n14), dV5dfdu sinu and

(r ,f,u) are ordinary polar coordinates. The simple calcula-
tion gives

Dc11* 5Dc115
2

5

pn~n12!A

~n22!v2Rn23 . ~2.5!

Similarly,

Dc12* 5Dc44* 5
2

15

pn~n12!A

~n22!v2Rn23 . ~2.6!

The correction for pressure from Eq.~2.4! has the same or-
der:

DP5
2

3

pnA

~n22!v2Rn23 . ~2.7!

Equations~2.5!–~2.7! are valid for strong enough potentials
(n.3). For the Lennard-Jones interaction these corrections
decrease very rapidly withR. We used for the calculation
R550a (a is the lattice constant!. The results of calculation
for the virtual Lennard-Jones solids are shown in Figs. 1 and
2. One can conclude, that the relative contribution from ex-
ternal atoms~all shells except for the first one! to the shear
constants drops with pressure. In the case of bcc structure we
should take into account the two nearest neighbors~Fig. 2!.
The reason is a relatively small value of the radii ratio be-
tween the second and first shells,r 2 /r 152/A3'1.155. The
c44* (P) dependence for sc structure asymptotically approxi-
mates ~in logarithmic scale! the dependencec44* (P)52P
existing for the model with nearest-neighbors interaction.32

Similar behavior is observed for the positive constants in
Fig. 1 and Fig. 2. It is necessary to emphasize, that the men-

tioned trends take place for logarithmic coordinates only and
in a certain physically reasonable pressure interval. For lin-
ear scales the asymptotic relations are usually absent, but
relative divergence decreases. The main reason for the trends
mentioned above is the strong dependence of nearest-
neighbor repulsion forces;d12 (d is the nearest-neighbor
distance,d5r 1). The equilibrium distanced0 (P50) is usu-
ally very close to the minimum position of pair interaction
function c(r ) but somewhat smaller. At the same time, the
second and third coordination spheres are, as a rule, in the
vicinity of the bend point ofc(r 2) and, thus, they give minor
central contributions into the elastic constants~except for
bcc!. More distant atoms give a small negative contribution
(c r2

9 ,0) into the shear constants and pressure.
In real crystals the repulsion potentialsc(r );1/r n have

usually a strong distance dependence,n;8–12. More accu-
rate quantum-mechanic calculations and approximation of
the experimental data have shown, that the Born-Mayer
functionc(r )5Bexp(2r/r) is more adequate for description
of the interatomic overlap forces.26,33 Within the relatively
narrow distance interval around the equilibrium distanced
the Born-Mayer potential may be approximated using the
dependenceA* /r n* with n*52rc8/c5d/r. The value of
r varies within the interval 0.2–0.4 Å,26,33 whereas
d;2–4 Å, i.e.,n*;10.

The value of pressure increase at compression can be es-
timated @Eq. 2.4# from the asymptotic relationP;1/dn13,
where indexn characterizes the repulsion potential;1/r n,
and we take into accountv;d3. Thus, the negative contri-

FIG. 1. Pressure dependence of (1/2)(c112c12) constant~A!
and c44 constant with inverse sign~B! for a simple cubic virtual
structure of the Lennard-Jones particles with nearest neighbors
~short dashed lines!, with two ~dashed!, and with three~dashed and
dotted! nearest-neighbor interactions. Solid lines correspond to the
long-range interaction. Parameters of the potential (e53.131023

eV ands52.74 Å! are taken for Ne.
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butions from the thermodynamic termPDV into elastic stiff-
ness eigenconstants also strongly depend on the interatomic
distance (;1/dn13) @Eq. 2.3#. In close-packed lattices the
nearest-neighbor repulsion plays a stabilizing role
@c r2

9 (d2).0 andc r2;1/dn149 ], and the shear stiffness con-
stants increase with pressure. Different forces are responsible
for stability of real open-packed crystals with different kinds
of bonding: the Madelung energy, or ion-ion interaction, in
ionic substances (u;1/d); the bond-bending forces in cova-
lent crystals (u;1/d2); and the electron-ion Coulomb inter-

action (u;1/d) and exchange potential (u;1/d) in
metals.27 The positive contributions to shear eigenconstants
from the energy terms mentioned above have a relatively
weak dependence on the interatomic distance,;1/d4 or
;1/d5. Thus, the elastic instability of sc~caused byc44* ) and
bcc @caused by (1/2)(c11* 2c12* )# lattices or their binary ana-
logs (B1 andB2 structures! is inevitable under compression.
~This conclusion is questionable in the case of bcc metals,
where the quantum electronic effects are at work.!

An example of alkali halides allows us to illustrate quan-
titatively the competition between the destabilizing repulsive
forces and the Madelung contribution. The rocksalt structure
(B1) has a two-atomic elementary cell. During uniform de-
formation the internal displacement of atoms in the cell is
zero, u(1)2u(2)[0. So, the static rocksalt structure is
equivalent to a simple cubic one in the case of uniform de-
formation. But the Madelung energy2ae2/d appears to be
due to the long-range ion-ion interaction. We have tested the
two empirical models from Ref. 26~Chap. 1!, that take into
account the Madelung energy and the nearest-neighbor or the
two-nearest-neighbor repulsion in the Born-Mayer form. For
analysis of the stability criteria only the knowledge ofc44* is
of interest because the tetragonal shear stiffness constant
1/2(c11* 2c12* ) increases with pressure. The calculation details
and numerical results for certain alkali halides are presented
in Appendix A and in Table I.

We can conclude, that a relatively simple calculation pre-
dicts thec44* instability and semiquantitatively describes the
trends in high-pressure elastic behavior. It should be empha-
sized that the empirical potentials used here had been devel-
oped only for evaluation of the bulk modulus, interatomic
distance, and cohesive energy, but they seem to describe cor-
rectly the main dynamic factors as well. From Table I one
can see, that the estimated values ofPinst are usually higher
than the pressures of phase transformations, which indicates
the necessity for using more accurate potentials and, besides,
for studying the low-temperature transformations in alkali
halides under pressure. Similar calculation for ionic bcc crys-
tals clearly show (1/2)(c11* 2c12* ) instability.

FIG. 2. Pressure dependence of (1/2)(c112c12) constant with
inverse sign~A! andc44 constant~B! for bcc virtual structure of the
Lennard-Jones particles. The parameters of potential and notation
are the same as in Fig. 1.

TABLE I. c44* elastic stiffness constant and its pressure derivative for alkali halides calculated from the
first ~M1! and the second~M2! models~Appendix A! in comparison with the experimental data. Instability
pressures are evaluated for the conditionc44* 50.

Model 1 c44* ~GPa! ]c44* /]P Pinst ~GPa!
Compound r ~Å!a la (10216 J! Expt.b M1c M2 Expt.b M1 M2 M1 M2 Ptr

d ~GPa!

NaF 0.288 1.11 28.2 28.1 35.2 0.21 -0.21 0.62 50 330 27
NaCl 0.328 1.47 12.7 12.9 16.4 0.37 -0.27 0.47 21.6 241 29
NaBr 0.333 1.94 10.15 10.2 13.6 0.42 -0.31 0.53 16.6 104 29
KCl 0.324 3.63 6.3 8.19 8.95 -0.41 -0.38 -0.03 12.7 24.7 1.95
KBr 0.334 3.93 6.42 6.85 7.42 -0.30 -0.39 -0.06 10.5 20.2 1.75
KI 0.349 4.60 5.08 5.20 5.80 -0.23 -0.41 -0.04 7.86 18.0 1.75
RbCl 0.338 3.46 4.75 6.93 7.14 -0.60 -0.38 -0.13 10.7 6.8 0.52
RbBr 0.350 3.51 3.84 5.88 5.90 -0.56 -0.38 -0.19 9.1 12.8 0.42
RbI 0.352 5.80 2.79 4.47 4.60 -0.49 -0.43 -0.22 6.7 9.96 0.36

aReference 26.
bReference 34.
cSee also Ref. 27.
dReference 35.
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Summarizing, in this section we have found from the gen-
eralized elastic stability criteria,18 that thec44* instability of
the sc and the (1/2)(c11* 2c12* ) instability of bcc structures
under compression result from the symmetry of lattice struc-
ture and are due to the strong nearest-neighbor repulsion.
This conclusion will be supported by analysis of a diamond-
like structure in the next section. But, in this case, features of
the pressure-induced instability will be found.

III. LATTICE INSTABILITY OF TETRAHEDRAL
SEMICONDUCTORS

A. Potential function

The stability of a diamondlike lattice (Z54) is the se-
quence of noncentral forces that can be described in a first
approximation by a three-body potential. The potential en-
ergy in this case may be presented as

U~X!5(
i

w1~ i !1(
i, j

w2~ i , j !1 (
i, j,k

w3~ i , j ,k!,

~3.1!

wherei , j , andk correspond to numbers of atoms. The sim-
plest valence force field model36 takes into account the bond-
stretching krDr i j

2 /2 and bond-bendingkuDu i jk
2 /2 energies

(Dr i j andDu i jk are deviations of bond length and interbond
angle, respectively, from their equilibrium values!.

Recently a series of different potentials has been devel-
oped to describe various physical properties of silicon and its
non-diamond modifications and clusters.37 But the analytical
application of these potentials is practically impossible, and
the appropriate choosing of their parameters for a wide range
of IV-IV and III-V compounds is a very difficult task. For
this reason we used a separable form of Eq.~3.1! with pair
w2 and tripletw3 terms restricted by the nearest-neighbor
interaction cutoff. Using a function of the Born-Mayer type
is more adequate for description of the central overlap forces
under high pressure. The Morse function is suitable for de-
scription of pair interaction

w2~ i , j ![c~r !5A1exp~2r /r!2A2exp~2r /2r!,
~3.2!

wherer[r i j . The general form of the three-body potential
in the framework of the valence force field has been consid-
ered by Musgrave and Pople,38 or, in a simplified version, by
Martin39. The force constants in these potentials are fixed,
that is not suitable for high-pressure applications. The indi-
cated problem may be resolved by means of the constants
depending on the interatomic distance. We used the universal
Harrison’sd22 dependence27 describing matrix elements be-
tween the overlapped states of hybridized electrons. We have
preferred the simplest ‘‘bond-bending’’ form of a three-body
potential:

w3~ i , j ,k!5
1

2
Cu0

d0
2

d2
Du i jk

2 , ~3.3!

where pairi2 j and pair j2k ( iÞk) are the nearest neigh-
bors andDu i jk is the deviation of the angle betweeni j and
jk bonds from its equilibrium value.@Further we will use the
distance-depending parameterCu5Cu0(d0 /d)

2.# There are

two reasons for such simplification. This potential is ad-
equate for considering small strains in the diamond structure,
if distortions of the tetrahedral SRO’S are not strong. An-
other reason is that the potential including pair and triple
terms, according to Eqs.~3.2! and ~3.3!, describes the two
main dynamic factors under compression—the central over-
lap forces and shear rigidity. The use of several force param-
eters allows us to correct the numerical results, but the con-
tributions of these noncentral second-order terms have the
same nature and should have approximately the samed22

dependence as the bond-bending constant and, thus, they
cannot significantly change the stability conditions.

The expressions obtained below may be easily adapted for
the general case, taking into account the results of Martin39

and Solbrig40 for zero-pressure condition. We did not con-
sider the Madelung energy for III-V compounds associated
with a certain ionicity. This contribution is relatively small
and has the weak distance dependence (;d). The corre-
sponding correction of our results for zinc-blende semicon-
ductors may be performed using the calculation of Ref. 39.
One can note that a partial ionicity reduces the stability of a
diamond structure, which may be approximated by the de-
crease of a bond-bending force constant.

The constantCu0[Cu(0) has been chosen to approxi-
mate the (1/2)(c112c12) modulus. The parameters of the
Morse potential have been derived from the lattice constant,
bulk modulus, and its pressure derivative.~See Appendix B 1
and Table II.! We have used for the input data the isoentropic
modulus measured near room temperature because this value
differs from the zero-temperature evaluation by less than
5%.41 We have also executed calculations with the general-
ized Morse potential having the attraction radiusr2Þ2r
@Eq. ~3.2!#, which allows us to approximate cohesive energy.
In this case, the numerical results were the same to an accu-
racy of about 1%.

Unfortunately, we cannot use the values ofCu0 describing
a simple shift (e,2e,0) for the analysis of the Brillouin-zone
boundary ~BZB! phonons. According to Harrison,27 the
evaluation ofCu0 based on the frequencies of BZB modes
gives values 2–3 fold less, which corresponds to a flattening
of TA branches near the BZB. This discrepancy is associated
with long-range electron correlation effects27 and may be
described in the framework of the Weber bond charges
model.42 In the valence force field model of Solbrig40 this
difference is mainly defined by the second-order constant
corresponding to the two angles between three subsequent
planar bonds in the plane@1,1̄,0# or equivalent~coplanar
angle-angle interaction!. ~See also Ref. 43.! We use another
approach introducing a bond-bending constantCu(k) de-
pending onk-wave vector and approximating room-pressure
data. One should note, that the bond-stretching constantskr
evaluated from elastic properties and from frequencies of the
BZB phonons are very close27 and, therefore, we have used
the same pair potential in both cases.

B. Elastic instability

In the framework of the potential described by Eqs.~3.1!-
~3.3! the stiffness elastic constants defining the shear stability
of a diamond structure are written in the following form~see
Appendix B 2!:
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1

2
~c11* 2c12* !5

3A3Cu

4d3
1

A3c r2
8 ~d2!

2d
, ~3.4a!

c44* 5
A3
d Fc r2

8 ~c r2
9 r 21Cu/2r

2!13Cuc r2
9

3c r2
8 12c r2

9 r 214Cu /r
2 G

r25d2

1
A3c r2

8 ~d2!

2d
,

~3.4b!

where c is the pair potential and as usualc r2
8 (d2)

5c r8(d)/2d, etc. The equilibrium condition for a diamond
structure is given by the equation~Appendix B 2!:

P52
A3c r2

8 ~d2!

2d
. ~3.5!

To test the potential we have calculated pressure deriva-
tives of the stiffness elastic constants andc44* modulus. The
data obtained are compared with the experiment in Table II
for certain IV-IV and III-V compounds. It is evident that the
constantsc11 andc12 are approximated exactly in the frame-
work of the current potential. It is shown that our model
appropriately describes the main trends in the elastic proper-
ties of tetrahedral semiconductors. Nevertheless, the values
of c44* which fit into Harrison’s calculation in the framework
of the room-pressure valence force field model,27 and the
pressure derivatives ofc44* and (1/2)(c11* 2c12* ) are somewhat
underestimated. The current numerical calculations may be
improved using a stronger distance dependence for the bond-
bending constantCu(d). On the other hand,Cu is propor-
tional to the degree of covalency,27 which decreases under
pressure due to a dehybridization of the valence states. A
proper function may be chosen in the form
Cu(d)5Cu0(d0 /d)

n(ac(d)/ac0), where the functionac(d)
approximates the degree of covalency. Higher values forn
(n;3–4! allow us to get better numerical results at room
pressure. More general approach is to take into account other

second-order terms,38,40 second-neighbor interaction,36 and
the Coulomb energy for binary compounds,39 but this is out-
side the scope of the present paper.

The evaluated instability pressuresPinst, corresponding to
the shear stability criteria from Eq.~2.1!, are presented in
Table III. The (1/2)(c11* 2c12* ) instability has the same geo-
metrical origin as the shear instability of bcc structure. Near-
est neighbors in diamond together with points inverted
around the central atom correspond to the first coordination
sphere of the bcc structure. The tetragonal shear deformation
does not lead to the internal strain in a cell. On the contrary,
c44* instability appears to be due to the internal strain. This is
another type of instability. According to Eq.~3.4b!, the posi-
tive contribution of central repulsion@;c r2

9 (d2)# to c44*
asymptotically disappears during compression, whereas this
term is totally absent in the case of the (1/2)(c11* 2c12* ) con-
stant. In both cases, the central repulsive forces play a domi-
nant role in the vanishing of shear stiffness eigenconstants,
which is in accordance with the conclusion of the previous
section.

It is interesting to compare our results with the recent
application of generalized stability criteria to the Tersoff po-
tential in silicon.45 In the last work the critical pressures for
tetragonal and rhombohedral instability at zero temperature
are equal to 105 and 114 GPa, respectively. Our predictions
for Si ~Table III! are very close to these values, but the order
of critical pressures is reverse. Such a difference seems to be
due to the uncertainty in choosing an adequate atomic poten-
tial. Extrapolation of the experimental ultrasonic data for Si
gives the critical pressures 40 and 78 GPa forc44* and
(1/2)(c11* 2c12* ) instabilities, respectively.

32

C. Vibration instability

The elastic stability criteria are insufficient for consider-
ation of the pressure-induced lattice collapse. The whole

TABLE II. The input experimental data, parameters of the Morse potential, the bond-bending force constant, and certain calculated
elastic properties for IV-IV and III-V compounds. The corresponding experimental data are presented in parentheses for comparison~Ref.
41!.

Properties C Si Ge GaP GaAs GaSb InP InSb

a5dA3/4 ~Å! 3.567 5.431 5.658 5.451 5.653 6.096 5.869 6.479
B ~GPa! 442 97.3 75.0 88.8 75.4 56.35 71.0 45.7
BP8 4.05 4.24 4.41 4.79 4.49 4.75 4.59 4.90
(1/2)(C112c12) ~GPa! 475.6 50.9 40.1 39.3 32.5 24.0 22.3 15.15

r ~Å! 0.2531 0.3629 0.3592 0.3113 0.3519 0.3520 0.3539 0.3597
A1 ~eV! 1690 1701 1881 3444 2113 2885 2570 3509
A2 ~eV! 160.1 133.3 124.3 155.6 128.9 135.7 141.8 142.05
Cu0(e,2e,0) ~eV! 8.43 3.19 2.84 2.49 2.295 2.13 1.76 1.61

c44* ~GPa! 490 69.9 54.7 56.8 47.3 35.1 35.1 23.6
~577! ~79.6! ~66.8! ~70.5! ~59.4! ~43.2! ~46.0! ~30.0!

dc11* /dP 5.11 4.07 4.27 4.44 4.12 4.36 3.96 4.30
~6.0! ~4.33! ~5.03! ~4.77! ~4.63! ~4.96! ~4.17! ~4.75!

dc12* /dP 3.52 4.33 4.48 4.96 4.68 4.94 4.91 5.20
~3.1! ~4.19! ~4.31! ~4.79! ~4.42! ~4.64! ~4.80! ~4.97!

dc44* /dP 1.87 0.42 0.51 0.23 0.13 0.15 -0.36 -0.24
~3.0! ~0.80! ~1.41! ~0.92! ~1.10! ~1.01! ~0.36! ~0.53!
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phonon spectrum of a crystal and vibration eigenmodes
should be taken into account in the general case.

The softening of TA modes on the BZB under pressure
and negative values of the Gru¨neisen constants for these
modes are well known for tetrahedral semiconductors both
from experiments46 andab initio calculations47. In Ref. 47 it
was shown that the role of noncentral stabilizing forces di-
minishes under compression because the system becomes
more metallic. Our model allows us to obtain direct expres-
sions for the phonon frequencies in high-symmetry points.
~See Appendix B 3.! The numerical calculation indicates that
the BZB phonon modes, except transverse-acoustic phonons,
stiffen under pressure. This is in accordance with the experi-
mental signs of the Gru¨neisen constants~Table IV!. In the
case of ordinary IV group semiconductors (M15M25M )
the equations for frequencies of the TA(X) and TA(L)
modes are simplified:

vTA
2 ~X!52vTA

2 ~L !5
1

M S 12Cu

d2
18c r2

8 ~d2! D . ~3.6!

Equation ~3.6! has the same structure as Eq.~3.4a! for
(1/2)(c11* 2c12* ), which demonstrates the competition be-
tween the stabilizing noncentral term and the pair repulsive
interaction.@c r2

8 (d2) is negative atP.0 and proportional to
pressure.#

In most cases, the numerical calculation gives good re-
sults for the phonon frequencies and certain Gru¨neisen con-
stants~Table IV!. When Cu(e,2e,0) is used,;10–20 %
overestimation is observed forG-optic phonons.~These data
are not important for the stability study and are not presented
here.! Thus, the presented simplified calculation correctly
takes into account the main dynamic factors determining the
vibration properties. The frequency of the LA(L) mode de-
pends only on the central potential, and the evaluated data
for vTA(L) are excellent. The negative Gru¨neisen constants
for TA(X) phonons are;1.5 times overestimated in their
magnitudes. Therefore, the instability pressures estimated for
the conditionvTA(X)50 in Table III should be increased by
approximately one and a half.~One should note that the
valuevTA

2 approximately linearly decreases with pressure.!

The use ofd2n scaling for the bond-bending potential in
Eq. ~3.3! gives better results for the Gru¨neisen constants of
TA modes~Table IV!, if n approximatesd2n scaling of the
distance dependenceCu0(d0), corresponding to various
compounds. In this case the positive Gru¨neisen constant of
the TA(X) mode for carbon becomes predictable. The devel-
opment of a more accurate high-pressure valence force po-
tential based, for example, on the room- pressure potential of
Kane,43 is a prospect for a future study.

From Table III it is clear that the pressure-induced col-
lapse of a thermally frozen diamond structure should be
driven by the TA(X) mode, which is supported by the evalu-
ation of the TA(G2X) branch under high pressure.~See
Appendix B 4 and Fig. 3.! The TA(X) instability appears,
when the elastic softening, connected withc44* for G2X
branch, is practically absent. Comparison with the
experiment46 indicates the necessity to scale the pressures in
Fig. 3 by a factorgcalc/gexp as mentioned above. Neverthe-
less, the character of the high-pressure behavior of the TA
(G2X) branch remains the same. Thus, the BZB phonon
instability occurs at pressure;1.5–2 times higher than the
pressure of the equilibrium transition and;2–4 times less
than the pressure of elastic instability.

It is interesting to evaluate the instability pressure for
zinc-blende BAs because disordering of this compound has
been observed under compression even at room
temperature.24 Unfortunately, we have no experimental data
for the phonon frequencies and elastic constants in BAs. To
approximate theCu0(X) and Cu0(L) model constants we
have used thed2n fitting of Cu0(d0) distance dependence for
other semiconductors~Table IV!. The calculated instability
pressure for BAs~Table III! is two times less than the amor-
phization pressurePam5125 GPa~Ref. 24! and so, seems to
be underestimated. In any case, this is the satisfactory corre-
spondence, if we take into account the rough character of the
approximation forCu0 and systematic underestimation of
Pinst in our calculation.

IV. DISCUSSION

A. Symmetry of instability and solid-state amorphization

Whereas the stability criteria allow us to predict the onset
of structural collapse, the rules determining the final struc-

TABLE III. The pressures of absolute instabilityPinst for some IV-IV and III-V compounds, correspond-
ing to different conditions, the recalculated pressuresPinst* for d2n scaling of Cu0 @n(X)'4.29 and
n(L)'3.66#, and the pressures of phase transition at room temperature~Ref. 35!.

Pinst ~GPa! Pinst* ~GPa!
(c11* 2c12* 50) (c44* 50) (nTA(X)50) (nTA(L)50) (nTA(X)50) (nTA(L)50) Ptr ~GPa!

Si 108 105 23 28 27 32 12
Ge 84 82 15 20 18 23 9.5
GaP 71 70 19 28 23 34 21.5
GaAs 60 58 15 19 17 22 16.6a

GaSb 43 42 9.2 12.5 10.5 14 7.5
InP 35 34.6 10.6 14 12 16 8–9.7
InSb 24 23.6 4.3 7.0 4.7 7.6 2.6
BAsb 230 221 61 75 87 100 125c

aReference 44.
bThe constantsCu0(X) andCu0(L) are evaluated from the intercompoundCu0(d0) dependences.
cReference 24.
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ture of a solid after a transition are not well understood. Most
alkali-halides transit under pressure to theB2 structure.35

The B1→B2 transformation corresponds to rhombohedral
deformation, i.e., it should be driven by thec44* softening.48

Ionic solids in a CsCl phase (B2) transform to a tetragonal
phase under high pressure, and this transition is driven by the
(1/2)(c11* 2c12* ) softening.49 Correspondence between the
symmetry of a soft mode~Sec. II! and the type of a phase
transition observed appears to be not an accidental circum-
stance. The recent molecular-dynamics calculation18 has
given the close agreement between the predicted and ob-
served symmetry characteristics of the first instability. At the
thermodynamic extremity~high temperatures! any phase
transition comes to an equilibrium state. At low temperatures
a transformation in a solid, triggered by instability, follows
the paths with minimal energy barriers and may have the
finish in nonequilibrium metastable states, including disor-
dered. Theb-tin Si II and Ge II phases may serve as a
striking experimental example illustrating the driving role of
temperature for nonequilibrium transformations.6 During
relatively fast decompression, when temperature decreases,
the high-pressure modifications undergo a number of transi-
tions: Si II→ Si I, Si II → Si III ~BC-8!, and Si II→ a-Si
in silicon and Ge II→ Ge I, Ge II→ Ge III ~ST-12!, Ge II
→ Ge IV ~BC-8!, and Ge II→ a-Ge in germanium.

When the symmetry of instability is in close crystallo-
graphic relation with the transition to a thermodynamically
equilibrium state, a martensitic crystal-crystal transition may
be expected under instability conditions. For example, the

FIG. 3. Evolution of the transverse-acoustic branch for@1,0,0#
direction under high pressure. Comparison of the calculation with
the experiment indicates the necessity of pressure scaling by factor
;1.5.

TABLE IV. The bond-bending constants forX andL point with experimental input frequencies, calculatedX- andL-mode frequencies,
and Grüneisen constants for IV-IV and III-V compounds. The experimental data~Refs. 41! are also presented in parentheses or follow
behind the slash, if known. The parametersgTA* (X) and gTA* (L) correspond to the recalculation withd2n scaling of Cu0 using
n(X)'4.29 andn(L)'3.66, that have been obtained from fitting of theCu0(d0) dependence for various compounds.

Properties C Si Ge GaP GaAs GaSb InP InSb

nTA
(exp)(X) ~THz! 24.2 4.49 2.38 3.13 2.36 1.70 2.05 1.12

nTA
(exp)(L) ~THz! 16.9 3.43 1.87 2.58 1.86 1.37 1.65 0.98
Cu0(X) ~eV! 5.73 1.069 0.842 0.945 0.819 0.658 0.686 0.396
Cu0(L) ~eV! 5.59 1.248 1.039 1.277 1.018 0.852 0.881 0.607

nLA(X) ~THz! 38.2 11.8 6.5 7.11 6.4 4.5 5.0 4.04
~35.5! ~12.3! ~7.14! ~7.46! ~6.80! ~4.99! ~5.8! ~4.30!

nLO(X) ~THz! 38.2 11.8 6.5 10.7 6.6 5.9 9.7 4.16
~35.5! ~12.3! ~7.14! ~10.65! ~7.22! ~6.36! ~9.70! ~4.75!

nTO(X) ~THz! 41.0 15.3 8.5 11.9 8.6 6.9 10.4 5.56
~32.0! ~13.9! ~8.17! ~11.0! ~7.56! ~6.35! ~9.95! ~5.38!

nLA(L) ~THz! 34.8 10.0 5.5 6.8 5.5 4.1 4.7 3.33
~30.2! ~11.35! ~6.63! ~6.45! ~6.26! ~4.61! ~5.00! ~3.81!

nLO(L) ~THz! 37.8 13.2 7.34 11.0 7.38 6.19 9.87 4.81
~37.5! ~12.6! ~7.27! ~10.64! ~7.15! ~6.15! ~9.50! ~4.82!

nTO(L) ~THz! 46.4 15.9 8.9 12.4 8.9 7.2 10.7 5.7
~36.2! ~14.68! ~8.55! ~11.24! ~7.84! ~6.48! ~10.2! ~5.31!

gTA(X), calc/exp 0.0/0.4 -2.2/-1.4 -2.5/-1.53 -2.3/-0.72 -2.6/-1.62 -3.1 -3.3/-2.1 -5.5
gTA* (X) 0.37 -1.8 -2.1 -1.9 -2.2 -2.7 -2.9 -5.0
gLA,LO(X), calc/exp 0.82 1.06/0.9 1.1 1.2/1.0 1.2 1.3 1.2 1.4
gTO(X), calc/exp 1.4/2.0 1.5/1.5 1.6 1.7/1.3 1.7/1.73 1.8 1.6/1.4 1.9
gTA(X), calc/exp 0.0 -1.8/-1.3 -1.9/-0.4 -1.5/-0.8 -2.0/-1.7 -2.2 -2.5/-2.0 -3.3
gTA* (L) 0.24 -1.5 -1.6 -1.2 -1.7 -2.0 -2.2 -3.0
gLA(L), calc/exp 0.5 0.45/0.9 0.5/0.5 0.9 0.5 0.7 0.85 0.6
gLO(L), calc/exp 1.5/1.3 1.6/0.9 1.7/1.2 1.6 1.7 1.7 1.5 1.9
gTO(L), calc/exp 1.2/1.4 1.35/1.3 1.4/0.9 1.56/1.5 1.5/1.48 1.6 1.47/1.4~2! 1.7
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B1→B2 transition is martensitic and usually has a narrow
hysteresis. For KCl this hysteresis is small down to helium
temperatures.50 A lot of metals have martensitic fcc↔bcc
transitions at low temperatures,35 which are caused by the
shear elastic softening. This indicates, that the correspon-
dence between elastic instability and amorphization is not
evident and trivial. Indeed, a vanishing of an elastic eigen-
constant is associated with the phonon softening in a long-
wave limit k→0. In this case, coherent oscillations for
k→0 should lead to a martensitic crystal grain-crystal grain
transformation in a large region, i.e., to an activationless
crystal-crystal transition instead of amorphization.

The symmetry origin of the SSA may be clarified from
the results of the previous section. A diamondlike crystal
with atoms dislaced in the TA(X) mode has to be treated as
an orthorhombic structure~point groupmm).51 The usual
high-pressure phases of tetrahedral semiconductors have
b-tin or NaCl-like structures. The exception is gallium ar-
senic transforming the orthorhombic high-pressure phase
GaAs~II ! with the space groupPmm2.44 We cannot rule out
the possibility, that the GaAs~II ! phase may be obtained by
the ‘‘martensitic’’ TA(X) softening. Theb-tin structure cor-
responds to the tetragonal (e,e,22e) deformation of a dia-
mond lattice. The corresponding transition has to be driven
by the (1/2)(c11* 2c12* ) instability, which is supported by the
recent molecular-dynamics calculation for silicon with the
Tersoff potential.45 The NaCl structure may be obtained by
the relative shift of the fcc sublattice in the@1,1,1# direction,
which is connected with the softening ofG-optic phonons.
From the numerial analysis of different stability criteria we
can suppose, that the SSA of some IV-IV and III-V semicon-
ductors ~probably except for GaAs! may be actually ob-
served under compression, if a crystal is thermally frozen,
because the mode triggering instability@TA(X)# does not
coincide with the path to a high-pressure phase. At low tem-
peratures the existence of an activation barrier against homo-
geneous deformation45 prevents the ordinary first-order
crystal-crystal transition.

There are additional crystallographic arguments. The TA
(X) phonons in diamond structure have six independent
modes with the nonequivalent symmetry of perturbed states
of a lattice, which may destroy the coherent scenario of a
structural transition. At the same time the TA(L) instability
occurs at very close pressures and must significantly affect
the real kinetics of a structural collapse. The atomic size
effect in the pressure-induced amorphization of a binary co-
valent lattice25 seems also to be very important.

The volume drop in tetrahedral semiconductors during the
transition is about 15–22 %.35 This experimental fact sup-
ports the supposition about the possibility of a low-
temperature SSA in diamondlike crystals. Great stresses,
s;GDV/V, arising during the transition prevent a structur-
ally coherent crystallite-crystallite transformation in an ex-
tensive region. Futher studies are needed to clear up this
problem.

B. Geometrical origins of soft modes

The softening of elastic and phonon modes is well known
in the literature for the instabilities, considered in the present
paper. Our calculations shows that the ‘‘mechanical’’ origin

connected with the strong nearest-neighbor overlap lies in
the base of absolute instabilities driven by these modes. The
mechanical nature of lattice softening under pressurizing is
in close relation with ‘‘the effect of a compressed spring.’’ If
a spring is compressed by a forceF @Fig. 4~A!# a transverse
displacement of its end leads to the second-order length
change,DL'Dy2/L, whereas the transverse force appearing
is linear with respect to the displacementFT'FDy/L. In the
more general case of a two-body system~of a bond! with the
central interactionc(r ) @Fig. 4~B!# the change of pair poten-
tial energy may be written up to the second-order term in a
convenient form using the Taylor series forc as a function
of r 2:

Dc5c r2
8 ~2DLL1DL

21DT
2!12c r2

9 DL
2L2, ~4.1!

whereL is the bond length;DL andDT are the longitudinal
and transverse components of relative displacement, respec-
tively. When a bond is compressed, i.e.,c r2

8 ,0, and
DL[0 the change of energyDc5c r2

8 DT
2 is always negative.

In a crystalline lattice this effect tends to destabilize the sys-
tem.

The appearance of termsc r2
8 in Eqs.~3.4! and~3.6! is due

to this ‘‘mechanical’’ effect. The account of the termc r2
8 ,

which is proportional or asymptotically proportional to pres-
sure, distinguishes our calculation from the preceding ana-
lytical valence force field studies. The stronger distance de-
pendence of repulsive central forces between the nearest
neighbors arises due to the overlap of core electrons. The
quantum-mechanical origin of the central character of the
overlap forces is closely connected with the central symme-
try of core states. The role of competition between the short-
range covalent and central repulsive interactions in the
chemical trends of structural properties has been recently
recognized for sp solids through the total-energy-
minimization calculation.52 Here we can see the role of this
competition in the dynamic properties.

It is easy to see that the relative displacements of nearest
neighbors are perpendicular to the bonds for elastic soft
modes and lead only to the second-order changes in the bond
length. For thec44 softening in diamond structure this state-

FIG. 4. The transverse displacement of the one end of com-
pressed spring~A! or bond~B! leads to the linear-dependent trans-
verse force in respect to the displacement (Dy or DT) and only to a
second-order length change.
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ment is ‘‘asymptotically’’ valid. The unstable phonon modes
on the BZB have atomic displacements perpendicular to the
bonds too~see Fig. 5!.

Thus, the application of elastic and vibration stability cri-
teria to open-packed lattices under hydrostatic compression
allows us to derive geometrical criteria for soft modes. The
appearance of thec44 instability in a diamond structure is
associated with the internal strain in an elementary cell.
Clearly, the more complex is the structure of a crystal, the
greater number of instability criteria, which may be satisfied,
should exist. The principal distinction of expansion atT50
is the possible bulk decohesive instability.18,32 Under com-
pression the bulk instability, corresponding to the finite vol-
ume discontinuity, seems to be possible only as a conse-
quence of shear instability.

The problem of lattice instability on decompression of
high-pressure phases6,2 requires a special study. In this case,
noncentral forces may give a negative contribution to shear
eigenconstants, and usually the high-pressure modifications
are metals. The role of temperature is extremely important
for the experimental observation in this case because at
T50 the absolute instability pressures are often extrapolated
to negative values@Si II, Ge II,6 and GaSb II~Ref. 2!#.

As to the role of temperature in the lattice instability, the
importance of anharmonic effects at positive temperatures53

should be noted. For a quantum system at zero temperature
the lattice becomes unstable, if the zero-point energy per
atom is comparable with the energy of a bond.54 Some re-
sults clearing the problem may be found in Refs. 18, 25, and
32.

V. CONCLUSION

In the present paper we have considered the lattice insta-
bility as a driving force of the high-pressure SSA that allows
us to restrict the analysis within the limits of a classical static
lattice (T50). The use of semiempirical potentials for mo-
lecular, ionic, and covalent crystals have allowed us to show,
that the lattice instability on compression of a quantum sys-
tem, such as a solid, may be understood in the framework of
simple mechanical and geometrical concepts. We have
shown that the pair repulsive interaction of nearest neighbors
plays the central role in the problem of instability of a com-
pressed open-packed crystal. The common feature of all in-
stability types considered here@(1/2)(c11* 2c12* ) in the bcc

structure; c44* in NaCl; (1/2)(c11* 2c12* ), c44* TA(X), and
TA(L) in the diamond structure# is the competition between
the destabilizing nearest-neighbor repulsion and the weaker
stabilizing noncentral covalent or Madelung forces. The rela-
tive displacements of nearest neighbors in the soft modes are
perpendicular or asymptotically perpendicular to the bonds,
which gives a geometrical criterion for soft eigenmodes in
complex structures. The structures with more than one atom
per elementary cell may have soft modes connected with the
internal strains in an elementary cell, which have been illus-
trated on the diamondlike structure. Our modeling gives a
powerful method for analyzing the high-pressure lattice dy-
namics using the room-pressure potentials previously devel-
oped. New prospects for the dynamic analysis of complex
structures are opened by combining the tight-binding
approximation52 with the mechanical approach presented
here.

The calculations of high-pressure lattice dynamics for dia-
mond and zinc-blende semiconductors has been based on
generalization of the usual valence force field model. The
basic feature of our approach is introduction of the general
form ~in particular, of the Morse type! of pair potential, tak-
ing into account the anharmonic nature of overlap forces,
and distance scaling of the second-order force parameters.
We have preferred the simplest bond-bending form of a
three-body potential that allowed us to carry out the analyti-
cal calculation and obtain the reasonable quantitative results.
The multiparameter fitting has been replaced by thek-vector
dependence of a bond-bending constant. This allowed us to
calculate the evolution of a phonon spectrum under high
pressure using the experimental room-pressure data as the
input. According to our calculation, the absolute instability
of tetrahedral semiconductors should be governed by the TA
(X) phonon softening. The supposition about the possibility
of the SSA in pressurized tetrahedral semiconductors3 is sup-
ported by crystallographic and kinetic arguments.
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APPENDIX A: ELASTIC PROPERTIES OF
ALKALI HALIDES UNDER HIGH PRESSURE

The potential energy for the first model~nearest-neighbor
repulsion! is written per pair of atoms as26

u~d!52
ae2

d
1Zl12expS 2

d

r D . ~A1!

The constantsr andl12 are given in Table I, the Madelung
constanta for the rocksalt structure is approximately equal
to 1.748, andZ56. In the second model26 the Born-Mayer
function,

wAB~r !5bABbexpS r A1r B2r

r D ,
describes the short-range repulsion between first-nearest
neighbors and second-nearest neighbors (A andB indicate1

FIG. 5. The atomic displacements in TA(X) mode with wave
vectork5(0,0,2p/a) and@1,1,0# polarization. The dotted lines cor-
respond to the@1,1̄,0# direction.
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or 2 ion!. In this case parametersr50.3333 Å and
b510219 J are universal for all I-VII compounds;
b1151.25, b1251.0, andb2250.75. The constantr A
and r B represent ionic radii ~for Na1 r150.94 Å,
K1-1.235 Å, and Rb1-1.37 Å; for F2 r251.05 Å,
Cl2-1.435 Å, Br2-1.56 Å, and I2-1.75 Å!.

It is obvious that the first model is a particular case of
model 2 ~in this caseb115b2250, i.e., w11[0 and
w22[0). For this reason, we present the common expres-
sions for both models. The pressure dependence versus dis-
tance may be determined as a volume derivative of energy:

P~d!52
ae2

6d4
2

1

d2F]w12

]r
~d!1A2S ]w11

]r
~A2d!

1
]w22

]r
~A2d! D G , ~A2!

where

]wAB

]r
~r !5

~2bABb!

r
expS r A1r B2r

r D .
The contribution of the Coulomb ion-ion interaction toc44
has been calculated by Kellermann:55 Dc44

i i 5a44e
2/d4,

wherea44'0.348 for the NaCl structure. Using Eq.~2.3b!
for the short-range repulsive interaction we obtain

c44* 5a44

e2

d4
14dS ]2w11

]~r 2!2
~2d2!1

]2w22

]~r 2!2
~2d2! D2P~d!,

~A3!

where

]2wAB

]~r 2!2
~r !5

bABb

4rr 3 S 11
r

r DexpS r A1r B2r

r D .
Some elastic properties calculated according to Eqs.~A2!
and ~A3!, as well as instability pressures (c44* 50) are com-
pared in Table I with the experimental data. One should note,
that the ultrasonic measurements under high pressure cited in
Ref. 34 give isoentropic effective elastic constants which are
very close to stiffness constants in solids.

It is well known27 that the first model gives good evalua-
tion for the room-pressure rhombohedral shear constant
c445c44* (0)5a44e

2/d4. Nevertheless, the second model is
more adequate for prediction of]c44* /]P(0) for the Na-VII
set, since these salts have a small ratio of ionic radii
r1 /r2 and the second-neighbor interaction is of great impor-
tance. The first model gives better predictions for the K-VII
and Rb-VII sets.

APPENDIX B: ELASTIC AND DYNAMIC PROPERTIES
OF THE DIAMOND STRUCTURE

UNDER HIGH PRESSURE

The presented calculation are carried out for the potential
Eqs.~3.1!–~3.3! from Sec. III (w1[0).

1. Parameters of the Morse potential

In the framework of current potential the bulk modulus
and its pressure derivative depend only on the central forces
(T50):

B5@A3/12d2!@dc9~d!22c8~d!#, ~B1!

B8~P!5
2d2c-~d!13dc9~d!24c8~d!

3@dc9~d!22c8~d!#
, ~B2!

where c8, c9, and c98 are ordinary distance derivatives.
Using the equilibrium condition for lattice constant
(a054d0 /A3) at zero pressure,c8(d0)50, we can easily
find from Eqs.~B1! and ~B2! and from the definitive Eq.
~3.2! the expressions for parameters of the Morse potential
based on lattice characteristics:

r5
d0

2~B0821!
, A158A3B0d0r

2exp~d0 /r!,

A2516A3B0d0r
2exp~d0/2r!. ~B3!

2. Elastic constants

The full elastic Gibbs free energy of the uniformly de-
formed diamond structure may be presented in terms of the
deformation tensorui ( i51, . . . ,6) and theinternal strain
~or relative displacement! Du5u(2)2u(1) as follows:

DG

V
5D(

i51

3

ui1
Q

2
uDuu21R~Duxu41Duyu51Duzu6!

1
1

2(i , j ci j8 uiuj , ~B4!

where

D5A3c r2
8 ~d2!/2d1P~d!,

Q5
3A3
2d3 S c r2

8 ~d2!1
2

3
c r2

9 ~d2!d21
4

3

Cu

d2 D ,
R52@c r2

9 ~d2!2Cu /d
4#. ~B5!

The effective stiffness constantsci j8 have a cubic symmetry
and correspond to a deformation without the internal strain:

c118 5A3@c r2
9 ~d2!d/31Cu /d

3#2P~d!,

c128 5A3@c r2
9 ~d2!d/32Cu/2d

3#1P~d!,

c448 5A3@c r2
9 ~d2!d/31Cu/6d

3#2P~d!. ~B6!

The linear term in Eq.~B4! should be zero at equilibrium,
D50, which leads to Eq.~3.5!. The internal strain must be
eliminated from Eq.~B4! by minimization of the deforma-
tion energy. Deformationu1Þ0, oru2Þ0, oru3Þ0, or their
combination does not lead to the appearance of internal
strain. Thus,c11* 5c118 andc12* 5c128 and consequently we ob-
tain Eq.~3.4a!. Under deformation such asu4Þ0 the internal
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strain appears,Du5(2R/Q)(u4 ,u5 ,u6). So, c44* 5c448
2R2/4Q and thence we obtain Eq.~3.4b!.

3. Frequences ofG, X, and L phonons

The phonon frequencies in the high-symmetry point may
be obtained by the direct dynamic matrix calculation. For
G-optic phonons:

vLTO
2 ~G!58

M11M2

M1M2
S c r2

8 ~d2!1
2

3
c r2

9 ~d2!d21
4Cu

3d2 D .
~B7!

The LA(X) and LO(X) modes are independent:

vLA,LO
2 ~X!5

8

M1,2
S c r2

8 ~d2!1
2

3
c r2

9 ~d2!d21
5Cu

3d2 D .
~B8!

The other frequencies of the sixX and L modes can be
obtaned from quadratic equations and expressed in the fol-
lowing form:

vO,A
2 5

1

2M1M2
@F~M11M2!

6A4M1M2H
21F2~M12M2!

2#, ~B9!

where the corresponding force coefficients for transverse~T!
and longitudinal~L! modes are

FT~X!58c r2
8 ~d2!1~16/3!c r2

9 ~d2!d2120Cu/3d
2,

HT~X!5~16/3!@c r2
9 ~d2!d22Cu /d

2#, ~B10!

FL~L !58c r2
8 ~d2!1~16/3!c r2

9 ~d2!d2132Cu/3d
2,

HL~L !54c r2
8 ~d2!2~8/3!c r2

9 ~d2!d2132Cu/3d
2,

~B11!

FT~L !58c r2
8 ~d2!1~16/3!c r2

9 ~d2!d2126Cu/3d
2,

HT~L !54c r2
8 ~d2!1~16/3!c r2

9 ~d2!d218Cu/3d
2.

~B12!

For IV group semiconductors Eq.~B9! is simplified,
vO,A
2 5(1/M )(F6H). In particular, we obtain Eq.~3.6!.

4. TA„G2X… branch under high pressure

The dynamic matrix calculation gives TO and TA
branches for the@1,0,0# direction @wave vectork5(k,0,0)]
in the following form:

vTO,TA
2 5~1/M !~F16AF2

21F3
2!, ~B13!

where

F158c r2
8 ~d2!1

16

3
c r2

9 ~d2!d21F263 12cosS ka2 D GCu

d2
,

F25cos~ka/4!S 8c r2
8 ~d2!1

16

3
c r2

9 ~d2!d21
32Cu

3d2 D ,

F35sin~ka/4!S 163 c r2
9 ~d2!d22

16Cu

3d2 D . ~B14!

The experimental room-pressure data for the TA(G2X)
branch may be used to determine theCu0(k) dependence. In
this casec r2

8 (d0
2)50. Having evaluated the experimental

data for Si,56 we obtain the evolution of the TA(X) branch
under pressure~Fig. 3!. Note, that the approach applied here
for the approximation ofCu0(k) gives different limits of
Cu0 in the G point for different directions of a reciprocal
lattice.
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