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Pressure-induced lattice instability and solid-state amorphization
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Using semiempirical atomic potentials, we consider the mechanical and geometrical origins of pressure-
induced instability for open-packed structufesc, sc, and diamondliken the framework of a classical static
(T=0) lattice. The destabilizing role of central repulsive forces has been shown for molecular, ionic, and
covalent compounds. Two types of elastic instability connected with the symmetry of nearest atomic environ-
ment and with the internal strain in an elementary cell have been revealed. The modified valence force field
model is applied for calculating the high-pressure lattice dynamics of diamond and zinc-blende semiconduc-
tors. The force field model is based on the Morse form of pair potential and distance scaling of the second-
order constants. It is shown that the absolute instability of diamond structure is caused by phonon softening on
the boundary of the Brillouin zone, and under compression a thermally frozen diamondlike lattice may trans-
form to a disordered state both from crystallographic and kinetic reasons. The geometrical criterion for soft
modes under hydrostatic compressioelative atomic displacements are perpendicular to the Hdadaso
discussed[S0163-182806)04037-4

I. INTRODUCTION heterogeneous formation of an amorphous phase and, on the
other hand, between “mechanical” meltingnstability on
Solid-state amorphizatiof8SA), which may be caused by spinoda] and homogeneous amorphization were recognized
different driving forces, such as ion implantation, high- later}*In recent years lattice instability as a mechanism trig-
energy particle irradiation, chemical diffusion, mechanicalgering amorphization became the most popular approach.
alloying, etc., is a very promising phenomenon for the phys-The molecular-dynamics calculations for ice;quartz, and
ics of disordered condensed matteHigh-pressure SSA berlinite'>~*” have shown the direct relation between amor-
(Ref. 2 is a special case, when a homogeneous crystal sporphization and significant softening of elastic constants. The
taneously transforms to a disordered solid, and it has a greérmulation of generalized elastic stability critefla® de-
technological potential for production of bulk amorphousrived from stress-strain relations allows us to predict quanti-
materials. The different pressure-induced amorphizationatively the symmetry and the onset of mechanical lattice
transformations, observed under compresgidnO, SiO,, instability. The molecular-dynamics simulation has directly
etc. (Refs. 3 and ¥, decompressiofiH,O, Si, Ge, GaAs, confirmed the validity of these critert&!® In the case of
etc. (Refs. 5-7], or upon heatingGaSh, SiQ, etc.(Refs. 2  a-quartz, theab initio pseudopotential calculation has given
and 8], have two common basic features—a deep metastaranishing of a stiffness elastic eigenconstant in the pressure
bility of the initial crystal before the onset of disordering and range, where the disordering collapse had been observed
a similarity between the short-range order structd880S  experimentally?’?! The lattice instability approach gives a
of the amorphous phase obtained and the crystalline modifgualitative understanding of anisotropy effects during the

cation, which is stable at the amorphization conditions. SSA assuming a direct connection between the symmetry of
A number of experimental observations—heat releas¢he soft mode and real atomic movements.
during amorphization and small activation enefdylearly For a number of SSA techniques the 30—60 % softening

distinguish the high-pressure SSA from a conventionabf elastic constants before the onset of amorphization has
order-disorder transition, like melting. Amorphous phaseseen confirmed experimentafy.An experimental study of
produced using the high-pressure SSA method also displane crystal elastic behavior before amorphization appears to
anomalous anisotropy of physical propertié8 which are  have been realized on iéwhere the~12% decrease of the
not observable in conventional glasses prepared by ordinagolycrystalline shear modulus was observed. Thus, there is
methods(glass forming, quenching from the melt, evapora-both experimental and theoretical evidence for a relation be-
tion, etc). This anisotropy can be interpreted in the frame-tween the high-pressure SSA, elastic lattice softening, and
work of the “memory” effects of the initial crystal orienta- instability.
tion before the SSA%!! The lamellar structure of the There has been significant progress in the understanding
disordered SiQ phase in the SSA intermediate stafemd  of SSA driving forces, but the development of a general
the recent report on antiferromagnetism in the amorphoutheory on the high-pressure SSA is far from being complete.
substance produced by the S8Ref. 13 may well be con- The effect of pressure and temperature on the SSA process as
sidered as still another manifestation of anisotropy effectsvell as the relation between the symmetry of an unstable
during the SSA. mode and the type of transformation are only at the begin-
The theoretical interpretation of the SSA proceeds frorming of their recognition. Although the generalized stability
the idea of Mishimaet al2® about the SSA as a cold melting criteria for a homogeneous lattice under compression had
process. The parallels between thermodynamic melting andeen formulated®'®the detailed criteria taking into consid-
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eration a lattice geometry and an atomic forces potential agg elastic and vibration properties of molecular, ionic, and
an input, which may allow us to predict instability or amor- covalent crystals at normal conditions, when pressure may
phization, are practically absent except for the calculationsot be taken into accountFor example, see Refs. 26 and
for certain particular substances. 27.) The zero-temperature restriction in the framework of a
In the current paper we consider a special case of operclassical lattice allows us to eliminate from consideration
packed lattices under compression. We imply here that thatomic oscillations and to use the harmonic approx-
structure is open packed, when it may be packed to a dens@natior?®28for lattice dynamics.
phase(with the same distances to nearest neighbaorsler The generalized elastic stability criteria for a cubic crystal
pressure. Our consideration is restricted by the conditiounder hydrostatic pressure have been proposed by Wang
Z<8, but, in the case of metals, it is doubtful that bcc crys-et al1®1° proceeding from the consideration of a stiffness
tals (z=8) are open packed. In Sec. Il we shall apply thecoefficient tensof>?° These criteria may be written in a
generalized stability criteria to simple cubic and bcc strucform similar to the ordinary stability criteria of Bofhfor
tures. This consideration will allow us to clear up the destazero pressure:
bilizing role of the central repulsive forces closely connected

with the symmetry and geometry of the structure. The quali- ci+2¢i,>0, ci;—ci,>0, cj,>0, (2.7
tative conclusions will be supported by the numerical analy- o ) w
sis of alkali halides using empirical potentials. where elastic stiffness, or stress-strain, coefficiéntsay be

In Sec. Ill we shall examine the elastic and vibration sta-€xpressed in terms of the Gibbs free ene@ynd the La-
bility of the diamondlike structure in the case of tetrahedraldrangian strain tensar, s = 3(€,5+ €ga+ = €5a€,5), by the
semiconductors. This case is of great interest because tiggluation:

SSA transformation has been recently discovered in zinc 5
blende BAS** The molecular-dynamics simulation of tetra- o 1 96
hedral covalent alloy SiC has also displayed a crystal-to- By ypdU,,
amorphous transition, caused by the elastic instability under . o )
compressioR® We shall modify the conventional valence hereV is the volume of crystal, indices designatey, or z
force field model by taking into accour(f) the anharmonic ~axes, andc,.,=c¥ in Voigt's notatior* (i,j=1,...,6).
character of central overlap forces under press(irg;the Under uniaxial tension the cubic symmetry of the stiffness
contribution of electronic density increase under comprescoefficient tensor breaks down and the crité@al) become
sion into third-order force constants; afid) flattening of ~ not valid™®

the transverse-acoustic branch at the Brillouin-zone bound- At first, we have applied the criteri@.1) to the simplest

ary. The chosen potential will be tested by the calculation ofase of a lattice with central interatomic forces. The change
Grineisen constants and pressure derivatives of stiffnesgf potential energy in a lattice under deformation have been
elastic constants. The minimum critical pressure from differ-calculated by Bor? the corresponding equation being sim-
ent stability criteria will be found corresponding to the plified for simple cubic and bcce structures, where there is one
TA(X) phonon mode for a number of tetrahedral semicon-atom per elementary cell, and the internal strain in the cell is
ductors. absent. Taking into account the expressions for elastic stiff-

In Sec. IV we shall discuss the relations between the symness coefficients from Refs. 18 and 19 one can obtain tetrag-
metry of instability and the solid-state transition actually ob-onal and rhombohedral shear eigenconstants for a stiffness
served. In the case of a diamondlike structure the suggestidgpefficient tensor:
about the possibility of solid-state amorphization in general L L
case under compression will be advanced proceeding from 5 kL "4 22
crystallographic Eonsiderations. The analysig of geomgetrical E(Cll_ 012)_52 ['/’rZ(rx_rxry)]fi_ P, (233
relations for different soft modes will give a new insight into
the nature of unstable modes in compressed open-packed lat-

(2.2

2
tices. Finally, we shall briefly repeat in Sec. V the basic Cha=— 2 [¥farirll, —P, (2.3b
qualitative results supported by quantitative calculations in v
Secs. Il and Il

wherev is the volume of an elementary cell, is a relative

vector of the Brave lattice, anaﬂ'z denotes the second de-
IIl. INSTABILITY OF SIMPLE CUBIC AND rivative of pair potential as a function ofr2
BCC LATTICES UNDER COMPRESSION ¥l2=d*P(r?)/9(r?)2. Equations(2.3a and (2.3b), being a
u- particular case of the general equatidhsnay be derived
from the thermodynamic Gibbs free-energy consideratfon.
The first terms in the right-hand part of Eq®.39 and
(2.3b are connected with the Born strain energy, whereas
the term— P appears to be due to macroscopic second-order
variation of a crystal volume. The condition of crystal equi-
librium 9G/du,=0 gives in this case

For givenP, T conditions the equilibrium atomic config
ration in a crystalX=X(P,T), corresponds to the minimum
of Gibbs free energyc=U—TS+ PV. For a crystal in the
metastable state this minimum is evidently local. In a classi
cal static T=0) lattice the internal energy may be con-
sidered as a potential functiobl,=U(X). Introduction of a
potential function for describing atomic interaction is natu-
ral, if we want to clarify the role of lattice geometry and
atomic forces in lattice instability. Previously, empirical pP= EE [4/'or2] (2.4)
atomic potentials had been successfully applied for describ- vt HTrE A '
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Before numerical application of Eq&2.3) and(2.4), one 100 errrm—rrrry e
should note, that sc and bcc structures with central forces are F
usually unstable in contrast to the close-packed fcc latfice.
According to Egs.(2.1), (2.3, and (2.4), these structures
remain unstable under positive pressure because there is no
positive contribution from the first shell t©,, in the sc and
to (1/2)(c11—Cqo) in bee structures, whereas the first-shell
contribution to the pressure is always positive. Such situation
appears to be due to the multipliens;-rZr?) andrr? in 1
the first terms of the right-hand part of E¢2.3), i.e., due to B A‘ ]
the symmetry of sc and bcc lattices. The total contribution of 0001 001 01 1 10
next coordination spheres to the shear constants usually cor- —
responds to the attraction part of interatomic potential and is 10 simple E
negative. i ]

To analyze the relative role of different shells we should
briefly consider the elastic characteristics of virtual sc and
bcc lattices with the Lennard-Jones interatomic potential
y(r)=4€[(alr)¥?— (a/r)®] successfully describing rare-gas F
solids (fcc structurg.?’ Calculation of the stiffness elastic 0.01 - ]
constant and pressure dependeR¢d) becomes trivial, ac- : B
cording to Eqs(2.3) and(2.4), if the interaction is restricted 0.001 [
by a sphere with radiuR . The role of atoms outside of this 70001001 01 1 10
sphere can be estimated from the approximation of continu- P (GPa)
ous atomic distribution with densitg=1/v. In this model
the summing up in Eq2.3) is replaced by the integration for  FiG. 1. Pressure dependence of (1(3)¢c;,) constant(A)
r=R. For the potentialp(r)=A/r" the contribution of ex- andc,, constant with inverse sigtB) for a simple cubic virtual
ternal shells isAcyy=Aczz~2h [Rdr[r2dQ e (r sing)?,  structure of the Lennard-Jones particles with nearest neighbors

where <p"2= (n+2)nA/(4r“+4) dQ=d¢dd sind  and (short dashed lingswith two (dasheg, and with threg/dashed and
r L

. . : dotted nearest-neighbor interactions. Solid lines correspond to the
(r,¢,0) are ordinary polar coordinates. The simple calcula long-range interaction. Parameters of the potentiat3.1x 103

10}

(1/2)(c, j-¢,,) (GPa)

1

0.1 i . -

- ¢4y (GPa)

tion gives eV ando=2.74 A) are taken for Ne.
* _ _E mn(n+2)A tioned trends take place for logarithmic coordinates only and
Aci;=Acy= =3 2.5 | . ; . .
5 (n=2)v°R in a certain physically reasonable pressure interval. For lin-
Similarl ear scales the asymptotic relations are usually absent, but
arly, relative divergence decreases. The main reason for the trends
2 an(n+2)A mentioned above is the strong dependence of nearest-
Ac*=Act, = — 2.6 neighbor repulsion forces-d*? (d is the nearest-neighbor
12 44 15 ) 2Rn 3 ( ) . . . .
(n=2)v distanced=r). The equilibrium distancd, (P=0) is usu-

The correction for pressure from E€2.4) has the same or- ally very close to the minimum position of pair interaction

der: function ¢(r) but somewhat smaller. At the same time, the
second and third coordination spheres are, as a rule, in the
2 A vicinity of the bend point of/(r?) and, thus, they give minor
AP= §W' (2.7 central contributions into the elastic constaésxcept for

bco. More distant atoms give a small negative contribution

Equations(2.5—(2.7) are valid for strong enough potentials (#;2<0) into the shear constants and pressure.

(n>3). For the Lennard-Jones interaction these corrections In real crystals the repulsion potentialgr)~1/r" have
decrease very rapidly witR. We used for the calculation usually a strong distance dependente,8—12. More accu-
R=50a (a is the lattice constajtThe results of calculation rate quantum-mechanic calculations and approximation of
for the virtual Lennard-Jones solids are shown in Figs. 1 anthe experimental data have shown, that the Born-Mayer
2. One can conclude, that the relative contribution from exfunction ¢(r) =Bexp(-r/p) is more adequate for description
ternal atomgall shells except for the first oh¢o the shear of the interatomic overlap forcé§32 Within the relatively
constants drops with pressure. In the case of bcc structure werrow distance interval around the equilibrium distadce
should take into account the two nearest neighlfbig. 2).  the Born-Mayer potential may be approximated using the
The reason is a relatively small value of the radii ratio be'dependencé\*/r“* with n* = —ry’'/=d/p. The value of
tween the second and first shelts/r;=2/\3~1.155. The , varies within the interval 0.2-0.4 %*° whereas
ci4(P) dependence for sc structure asymptotically approxid~2—-4 A, i.e.,n* ~10.

mates(in logarithmic scalg the dependencej,(P)=—P The value of pressure increase at compression can be es-
existing for the model with nearest-neighbors interactfon. timated[Eq. 2.4 from the asymptotic relatiof®~ 1/d"*3,
Similar behavior is observed for the positive constants invhere indexn characterizes the repulsion potentiafl/r",

Fig. 1 and Fig. 2. It is necessary to emphasize, that the merand we take into account~d3. Thus, the negative contri-



54 PRESSURE-INDUCED LATTICE INSTABILITY AND ... 12 039

action (U~1/d) and exchange potentialu¢1/d) in
metals?’ The positive contributions to shear eigenconstants
from the energy terms mentioned above have a relatively
weak dependence on the interatomic distaned/d* or
3 B 3 ~1/d®. Thus, the elastic instability of gcaused byc},) and
01 fpoimoe” ] bcc[caused by (1/2){},—c7,)] lattices or their binary ana-
E logs (B1 andB2 structuresis inevitable under compression.
ootk 1 (This conclusion is questionable in the case of bcc metals,
A where the quantum electronic effects are at work.
0.001 Dvoumvnt vt vsvi ] An example of alkali halides allows us to illustrate quan-
0001001 01 1 10 titatively the competition between the destabilizing repulsive
forces and the Madelung contribution. The rocksalt structure
(B1) has a two-atomic elementary cell. During uniform de-
formation the internal displacement of atoms in the cell is
zero, u(1)—u(2)=0. So, the static rocksalt structure is
equivalent to a simple cubic one in the case of uniform de-
formation. But the Madelung energy ae?/d appears to be
due to the long-range ion-ion interaction. We have tested the
two empirical models from Ref. 2@Chap. 1}, that take into
- 3 account the Madelung energy and the nearest-neighbor or the
Lovnd sl s avud s tound 2] two-nearest-neighbor repulsion in the Born-Mayer form. For
o001 00l 0L 110 analysis of the stability criteria only the knowledgedjj, is
P (GPa) of interest because the tetragonal shear stiffness constant
1/2(c3;— ¢}, increases with pressure. The calculation details
FIG. 2. Pressure dependence of (1£3)(c;,) constant with  and numerical results for certain alkali halides are presented
inverse sign(A) andc,, constantB) for bce virtual structure of the  in Appendix A and in Table I.
Lennard-Jones particles. The parameters of potential and notation \We can conclude, that a relatively simple calculation pre-
are the same as in Fig. 1. dicts thec, instability and semiquantitatively describes the
trends in high-pressure elastic behavior. It should be empha-
butions from the thermodynamic tef\V into elastic stiff-  sjzed that the empirical potentials used here had been devel-
ness eigenconstants also strongly depend on the interatomiged only for evaluation of the bulk modulus, interatomic
distance (-1/d"*3) [Eq. 2.3. In close-packed lattices the distance, and cohesive energy, but they seem to describe cor-
nearest-neighbor repulsion plays a stabilizing rolerectly the main dynamic factors as well. From Table | one
[472(d®)>0 and /2_,,4n+4], and the shear stiffness con- can see, that the estimated valuesPgf, are usually higher
stants increase with pressure. Different forces are responsibiban the pressures of phase transformations, which indicates
for stability of real open-packed crystals with different kinds the necessity for using more accurate potentials and, besides,
of bonding: the Madelung energy, or ion-ion interaction, infor studying the low-temperature transformations in alkali
ionic substancesu~ 1/d); the bond-bending forces in cova- halides under pressure. Similar calculation for ionic bcc crys-
lent crystals (1~ 1/d?); and the electron-ion Coulomb inter- tals clearly show (1/2){};—c%,) instability.

(-1/2)(c, j-¢,) (GPa)

100 ¢

¢4y (GPa)

TABLE I. c}, elastic stiffness constant and its pressure derivative for alkali halides calculated from the
first (M1) and the second@12) models(Appendix A in comparison with the experimental data. Instability
pressures are evaluated for the conditip=0.

Model 1 ¢k, (GPa ack P Pinst (GPA

Compound p (A)2 A\2(1071J) Expt® M1® M2 Expt® M1 M2 M1 M2 P, (GPa
NaF 0.288 1.11 282 281 352 021 -021 062 50 330 27
NaCl 0.328 1.47 127 129 164 037 -0.27 047 216 241 29
NaBr 0.333 1.94 10.15 102 136 042 -0.31 053 16.6* 10 29

KClI 0.324 3.63 6.3 819 895 -041 -0.38 -0.03 127 247  1.95
KBr 0.334 3.93 6.42 6.85 7.42 -0.30 -0.39 -0.06 105 202 175
KI 0.349 4.60 508 520 580 -0.23 -0.41 -0.04 7.86 180  1.75
RbClI 0.338 3.46 475 693 7.14 -060 -0.38 -0.13 10.7 6.8 0.52
RbBr 0.350 3.51 384 588 590 -056 -0.38 -0.19 9.1 12.8  0.42
Rbl 0.352 5.80 279 447 460 -049 -043 -022 6.7 996  0.36

8Reference 26.
bReference 34.
‘See also Ref. 27.
dreference 35.
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Summarizing, in this section we have found from the gentwo reasons for such simplification. This potential is ad-
eralized elastic stability criteri&, that thec, instability of  equate for considering small strains in the diamond structure,
the sc and the (1/2§f,—c},) instability of bcc structures if distortions of the tetrahedral SRO’S are not strong. An-
under compression result from the symmetry of lattice strucOther reason is that the potential including pair and triple
ture and are due to the strong nearest-neighbor repulsioferms, according to Eq¢3.2) and (3.3), describes the two

This conclusion will be supported by analysis of a diamond-main dynamic factors under compression—the central over-
like structure in the next section. But, in this case, features ofgp forces and shear rigidity. The use of several force param-

the pressure-induced instability will be found. eters allows us to correct the numerical results, but the con-
tributions of these noncentral second-order terms have the
IIl. LATTICE INSTABILITY OF TETRAHEDRAL same nature and should have approximately the sante
SEMICONDUCTORS dependencg_as the bond-bending _cpnstant_gnd, thus, they
cannot significantly change the stability conditions.
A. Potential function The expressions obtained below may be easily adapted for

The stability of a diamondlike latticeZ=4) is the se- the general case, taking into account the results of M&rtin

. 0 o e .
quence of noncentral forces that can be described in a fir@nd Solbrig” for zero-pressure condition. We did not con-
approximation by a three-body potential. The potential enSider the Madelung energy for [1l-V compounds associated
ergy in this case may be presented as with a certain ionicity. This contribution is relatively small

and has the weak distance dependencal). The corre-
sponding correction of our results for zinc-blende semicon-
UX)=2 o1(D)+ 2 @ai )+ X @a(i k), ductors may be performed using the calculation of Ref. 39.
' = ik 3.1) One can note that a partial ionicity reduces the stability of a
’ diamond structure, which may be approximated by the de-
wherei, j, andk correspond to numbers of atoms. The sim-crease of a bond-bending force constant.
plest valence force field mod&itakes into account the bond-  The constaniC,,=C,(0) has been chosen to approxi-
stretching k,Arﬁ-/Z and bond-bending<0A0i2jk/2 energies mate the (1/2)¢;,—cq,5) modulus. The parameters of the
(Arj; andA 6;, are deviations of bond length and interbond Morse potential have been derived from the lattice constant,
angle, respectively, from their equilibrium valyes bulk modulus, and its pressure derivatit®ee Appendix B 1
Recently a series of different potentials has been develand Table 1) We have used for the input data the isoentropic
oped to describe various physical properties of silicon and itsnodulus measured near room temperature because this value
non-diamond modifications and clustéf$ut the analytical differs from the zero-temperature evaluation by less than
application of these potentials is practically impossible, and%:*! We have also executed calculations with the general-
the appropriate choosing of their parameters for a wide rangized Morse potential having the attraction radips# 2p
of IV-IV and IlI-V compounds is a very difficult task. For [Eq.(3.2)], which allows us to approximate cohesive energy.
this reason we used a separable form of 8g1) with pair  In this case, the numerical results were the same to an accu-
¢, and triplet o5 terms restricted by the nearest-neighborracy of about 1%.
interaction cutoff. Using a function of the Born-Mayer type  Unfortunately, we cannot use the valueshf describing
is more adequate for description of the central overlap forcea simple shift €, — €,0) for the analysis of the Brillouin-zone
under high pressure. The Morse function is suitable for deboundary (BZB) phonons. According to Harrisdf, the

scription of pair interaction evaluation ofC,, based on the frequencies of BZB modes
o gives values 2-3 fold less, which corresponds to a flattening
@a2(1,))=(r)=Aexp(—r/p) — Aexp(—1/2p), of TA branches near the BZB. This discrepancy is associated

(3.2 with long-range electron correlation effettsand may be
wherer=r;;. The general form of the three-body potential desan)Zed in the framework of the Weber bond charges
in the framework of the valence force field has been considMdel”” In the valence force field model of Solbffgthis
ered by Musgrave and Popt&or, in a simplified version, by difference is mainly defined by the second-order constant
Martin®®, The force constants in these potentials are fixedcorresponding to the two angles between three subsequent
that is not suitable for high-pressure applications. The indi{lanar bonds in the plangl,10] or equivalent(coplanar
cated problem may be resolved by means of the constanflgle-angle interaction(See also Ref. 4BWe use another
depending on the interatomic distance. We used the universaPproach introducing a bond-bending constén(k) de-
Harrison’sd ~2 dependendd describing matrix elements be- Pending ork-wave vector and approximating room-pressure
tween the overlapped states of hybridized electrons. We haata. One should note, that the bond-stretching conskants

preferred the simplest “bond-bending” form of a three-body €valuated from elastic properties and from frequencies of the
potential: BZB phonons are very clodeand, therefore, we have used

the same pair potential in both cases.
2

- 1 d0 2
<P3(I,J,k)=§Coogz A by, (3.3 . .
B. Elastic instability

where pairi —j and pairj—k (i #k) are the nearest neigh- In the framework of the potential described by E(@1)-

bors andA ¢;, is the deviation of the angle betwegnand  (3.3) the stiffness elastic constants defining the shear stability
jk bonds from its equilibrium valu¢Further we will use the of a diamond structure are written in the following fofsee
distance-depending parame®@p=C,y(d,/d)?.] There are Appendix B 2:
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TABLE II. The input experimental data, parameters of the Morse potential, the bond-bending force constant, and certain calculated
elastic properties for IV-IV and IlI-V compounds. The corresponding experimental data are presented in parentheses for coRgfarison
41).

Properties C Si Ge GaP GaAs GaSh InP InSb
a=d\3/4 (R) 3.567 5.431 5.658 5.451 5.653 6.096 5.869 6.479
B (GPa 442 97.3 75.0 88.8 75.4 56.35 71.0 457
Bp 4.05 4.24 4.41 4.79 4.49 4.75 4.59 4.90
(1/2)(Cq;—c1p) (GP3 475.6 50.9 40.1 39.3 325 24.0 22.3 15.15
p (A 0.2531 0.3629 0.3592 0.3113 0.3519 0.3520 0.3539 0.3597
A; (eV) 1690 1701 1881 3444 2113 2885 2570 3509
A, (eV) 160.1 133.3 124.3 155.6 128.9 135.7 141.8 142.05
Coo(e,— €,0) (V) 8.43 3.19 2.84 2.49 2.295 2.13 1.76 1.61
¢y, (GPa 490 69.9 54.7 56.8 47.3 35.1 35.1 23.6
(577 (79.6 (66.8 (70.5 (59.9 (43.2 (46.0 (30.0
dc’l‘l/d P 511 4.07 4.27 4.44 4,12 4.36 3.96 4.30
(6.0 (4.33 (5.03 4.77 (4.63 (4.96 (4.17 (4.79
dci/dP 3.52 4.33 4.48 4.96 4.68 4.94 491 5.20
3.1 (4.19 (4.31 (4.79 (4.42 (4.69 (4.80 (4.97
dc;,/dP 1.87 0.42 0.51 0.23 0.13 0.15 -0.36 -0.24

(3.0 (0.80 (1.4) (0.92 (1.10 (1.0 (0.39 (0.53

3J3C, 3ya(d?) second-order terns;*® second-neighbor interacticfi,and
(3.49  the Coulomb energy for binary compouniisyut this is out-
side the scope of the present paper.
y o " , The evaluated instability pressures,;, corresponding to
o* _‘/_§ Yral ¢r2r2+00/2r2)+309¢1r2 n \/§¢rz(d2) the shear stability criteria from Eq2.1), are presented in
Mod | 3yt 2ylr?+ac, it |, 2d ' Table Ill. The (1/2)¢%,—c%,) instability has the same geo-
e (3.4p  Mmetrical origin as the shear instability of bce structure. Near-
est neighbors in diamond together with points inverted
where ¢ is the pair potential and as usuak>(d?)  around the central atom correspond to the first coordination
=y, (d)/2d, etc. The equilibrium condition for a diamond sphere of the bcc structure. The tetragonal shear deformation
structure is given by the equati¢gAppendix B 2: does not lead to the internal strain in a cell. On the contrary,
Do cx, instability appears to be due to the internal strain. This is
\/§¢r2(d ) another type of instability. According to E.4b), the posi-
2d tive contribution of central repulsiofi~ g >(d?)] to c},
, . asymptotically disappears during compression, whereas this
. To test the.potentlal we have calculated pressure derivas , is totally absent in the case of the (L&) c*,) con-
tives of the stiffness elastic constants arjd modulus. The  giant |n hoth cases, the central repulsive forces play a domi-
data obtained are compared with the experiment in Table lhant role in the vanishing of shear stifiness eigenconstants,
for certain IV-IV and IlI-V compounds. Itis evident that the \yhich is in accordance with the conclusion of the previous
constantgy; andc,, are approximated exactly in the frame- gaction.
work of the current potential. It is shown that our model | js interesting to compare our results with the recent
appropriately describes the main trends in the elastic propegpication of generalized stability criteria to the Tersoff po-
ties of tetrahedral semiconductors. Nevertheless, the valuggngia| in silicon® In the last work the critical pressures for
of ¢z, which fit into Harrison’s calculation in the framework tetragonal and rhombohedral instability at zero temperature
of the room-pressure valence force field madesnd the  are equal to 105 and 114 GPa, respectively. Our predictions
pressure derivatives af;, and (1/2) €7,—c1,) are somewhat for Sj (Table I1l) are very close to these values, but the order
underestimated. The current numerical calculations may bef critical pressures is reverse. Such a difference seems to be
improved using a stronger distance dependence for the bondue to the uncertainty in choosing an adequate atomic poten-
bending constanC,(d). On the other handC, is propor- tial. Extrapolation of the experimental ultrasonic data for Si
tional to the degree of covalenéywhich decreases under gives the critical pressures 40 and 78 GPa &j; and
pressure due to a dehybridization of the valence states. £4/2) (c*,—c¥,) instabilities, respectivel§?
proper function may be chosen in the form
Cy(d)=Cyo(do/d)"(ac(d)/ acg), Where the functionx(d)
approximates the degree of covalency. Higher valuesfor
(n~3-4) allow us to get better numerical results at room The elastic stability criteria are insufficient for consider-
pressure. More general approach is to take into account othation of the pressure-induced lattice collapse. The whole

E(C?Lcl_ CE’LCZ): 4d° + 2d )

(3.5

C. Vibration instability
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TABLE Ill. The pressures of absolute instabiliBy,; for some V-1V and IlI-V compounds, correspond-
ing to different conditions, the recalculated pressuRss, for d™" scaling of Cy4 [n(X)~4.29 and
n(L)~3.66], and the pressures of phase transition at room temperdteafe 35.

Pin'st (GPE) PiTwst (Gpa

(c1i—¢1=0) (c5=0) (v1a=0) (¥1ay=0) (Y1a=0) (v1ay=0) Py (GPa
Si 108 105 23 28 27 32 12
Ge 84 82 15 20 18 23 9.5
GaP 71 70 19 28 23 34 21.5
GaAs 60 58 15 19 17 22 166
GaSb 43 42 9.2 12.5 10.5 14 7.5
InP 35 34.6 10.6 14 12 16 8-9.7
InSb 24 23.6 4.3 7.0 4.7 7.6 2.6
BASP 230 221 61 75 87 100 195

3Reference 44.
®The constant€ »o(X) andCy(L) are evaluated from the intercompou@q,(d,) dependences.
‘Reference 24.

phonon spectrum of a crystal and vibration eigenmodes The use ofd™" scaling for the bond-bending potential in
should be taken into account in the general case. Eq. (3.3 gives better results for the Graisen constants of
The softening of TA modes on the BZB under pressureT A modes(Table V), if n approximatesi™" scaling of the
and negative values of the Greisen constants for these distance dependenc€,o(d,), corresponding to various
modes are well known for tetrahedral semiconductors botifompounds. In this case the positive Geisen constant of
from experiment® andab initio calculationd’. In Ref. 47 it  the TA(X) mode for carbon becomes predictable. The devel-
was shown that the role of noncentral stabilizing forces di-opment of a more accurate high-pressure valence force po-
minishes under compression because the system beconi&§tial based, for example, on the room- pressure potential of
more metallic. Our model allows us to obtain direct expresKane,” is a prospect for a future study. _
sions for the phonon frequencies in high-symmetry points From Table Il it is clear tha}t the pressure-induced col-
(See Appendix B 3.The numerical calculation indicates that 12PSe of a thermally frozen diamond structure should be

the BZB phonon modes, except transverse-acoustic phonon@riven by the TAK) mode, which is supported by the evalu-

stiffen under pressure. This is in accordance with the experi"-’lﬁon of the TA{~X) branch under high pressurésee

. e Appendix B 4 and Fig. 3.The TA(X) instability appears,
mental signs of the Gneisen constantéTable V). In the ) . . N
case of ordinary IV group semiconductor! (=M ,=M) when the elastic softening, connected wil, for I'—X

: . branch, is practically absent. Comparison with the
the equations fqr_ frgquenues of the DA( and TA() experimerft® indicates the necessity to scale the pressures in
modes are simplified:

Fig. 3 by a factoryc,c/ vexp @s mentioned above. Neverthe-
less, the character of the high-pressure behavior of the TA
2 a2 I PPN '’ (I'=X) branch remains the same. Thus, the BZB phonon
wTa(X)=207a(L) = M (12d2 +8¢2(d )>' (3.6 instability occurs at pressure 1.5—-2 times higher than the
pressure of the equilibrium transition ane2—4 times less
Equation (3.6) has the same structure as E@.4a for  than the pressure of elastic instability.
(1/2)(c*,—c%,), which demonstrates the competition be- It i interesting to evaluate the instability pressure for
tween the stabilizing noncentral term and the pair repulsivéinc-blende BAs because disordering of this compound has

. . PPN . . een observed under compression even at room
g‘rt;gs:gn‘[ Yr2(d7) is negative aP>0 and proportional to temperaturé? Unfortunately, we have no experimental data

) , ) for the phonon frequencies and elastic constants in BAs. To
In most cases, the numerl_cal calculatlo_n" gives good réapproximate theC,o(X) and C,o(L) model constants we
sults for the phonon frequencies and. certain ri@isen coon- have used thd " fitting of C,0(d,) distance dependence for
stants(Table IV). When Cy(¢,—¢€,0) is used,~10-20%  giher semiconductoréTable 1V). The calculated instability
overestimation is observed féFoptic phonons(These data ressure for BA¢Table I1l) is two times less than the amor-
are not important for the stability study and are not prese”teﬁhization pressur®,, =125 GPaRef. 24 and so, seems to
. . . am . ]

here) Thus, the presented simplified calculation correctlype nderestimated. In any case, this is the satisfactory corre-
takes into account the main dynamic factors determining th%pondence, if we take into account the rough character of the

vibration properties. The frequency of the LA(mode de-  5nnroximation forC,, and systematic underestimation of
pends only on the central potential, and the evaluated datg.

T inst IN our calculation.
for wya(L) are excellent. The negative Greisen constants
for TA(X) phonons are~1.5 times overestimated in their IV. DISCUSSION
magnitudes. Therefore, the instability pressures estimated for ) - ) o
the conditionw,(X) =0 in Table Il should be increased by A. Symmetry of instability and solid-state amorphization
approximately one and a halfOne should note that the  Whereas the stability criteria allow us to predict the onset
value w%A approximately linearly decreases with pressure. of structural collapse, the rules determining the final struc-
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TABLE IV. The bond-bending constants farandL point with experimental input frequencies, calcula¥edandL-mode frequencies,
and Gruneisen constants for IV-IV and 1lI-V compounds. The experimental datfs. 4] are also presented in parentheses or follow
behind the slash, if known. The parametey$,(X) and y,(L) correspond to the recalculation witth™" scaling of C,, using
n(X)~4.29 andn(L)~ 3.66, that have been obtained from fitting of Bg,(d,) dependence for various compounds.

Properties C Si Ge GaP GaAs GaSh InP InSb
V(T‘i\Xp)(X) (TH2) 24.2 4.49 2.38 3.13 2.36 1.70 2.05 1.12
& (L) (TH2) 16.9 3.43 1.87 2.58 1.86 1.37 1.65 0.98
Cyo(X) (eV) 5.73 1.069 0.842 0.945 0.819 0.658 0.686 0.396
Cyo(L) (eV) 5.59 1.248 1.039 1.277 1.018 0.852 0.881 0.607
i a(X) (TH2) 38.2 11.8 6.5 7.11 6.4 45 5.0 4.04
(35.5 (12.3 (7.14 (7.46 (6.80 (4.99 (5.9 (4.30
vo(X) (TH2) 38.2 11.8 6.5 10.7 6.6 5.9 9.7 4.16
(35.5 (12.3 (7.14 (10.69 (7.22 (6.36 (9.70 (4.795
v1o(X) (TH2) 41.0 15.3 8.5 11.9 8.6 6.9 10.4 5.56
(32.0 (13.9 (8.17 (11.0 (7.5 (6.35 (9.95 (5.38
via(L) (TH2) 34.8 10.0 5.5 6.8 5.5 41 4.7 3.33
(30.2 (11.35 (6.63 (6.45 (6.26 (4.61 (5.00 (3.8D
v o(L) (TH2) 37.8 13.2 7.34 11.0 7.38 6.19 9.87 4.81
(37.5 (12.9 (7.27 (10.64 (7.15 (6.15 (9.50 (4.82
v1o(L) (TH2) 46.4 15.9 8.9 12.4 8.9 7.2 10.7 5.7
(36.2 (14.68 (8.55 (11.29 (7.89 (6.48 (10.2 (5.3)
y1a(X), calclexp 0.0/0.4 -2.2/-1.4 -2.5/-1.53 -2.3/-0.72 -2.6/-1.62 3.1 -3.3-2.1 5.5
YEa(X) 0.37 -1.8 2.1 -1.9 2.2 2.7 2.9 -5.0
YiaLo(X), calc/exp 0.82 1.06/0.9 11 1.2/1.0 1.2 1.3 1.2 1.4
y10(X), calclexp 1.4/2.0 15/1.5 1.6 1.71.3 1.7/1.73 1.8 1.6/1.4 1.9
y7a(X), calclexp 0.0 -1.8/-1.3 -1.9/-0.4 -1.5/-0.8 -2.0/-1.7 2.2 -2.5/-2.0 -3.3
Yia(L) 0.24 -1.5 -1.6 -1.2 1.7 2.0 2.2 -3.0
va(L), calclexp 0.5 0.45/0.9 0.5/0.5 0.9 0.5 0.7 0.85 0.6
Yo(L), calc/exp 1.5/1.3 1.6/0.9 1.7/1.2 1.6 1.7 1.7 1.5 1.9
¥1o(L), calc/exp 1.2/1.4 1.35/1.3 1.4/0.9 1.56/1.5 1.5/1.48 1.6 1.42n.4 1.7

ture of a solid after a transition are not well understood. Mostonic solids in a CsCl phaseB@) transform to a tetragonal
alkali-halides transit under pressure to tB& structure®
The B1—B2 transformation corresponds to rhombohedral(l/z)(c*l*l— cy) softening?® Correspondence between the
deformation, i.e., it should be driven by tkg, softening?®

phase under high pressure, and this transition is driven by the

symmetry of a soft mod¢Sec. 1) and the type of a phase
transition observed appears to be not an accidental circum-
stance. The recent molecular-dynamics calculdfionas

5 r A X given the close agreement between the predicted and ob-
| Si P=0 served symmetry characteristics of the first instability. At the
4 LTA[1,0,01 3.6 GPa thermodynamic extremityhigh temperaturgsany phase
6.6 GPa transition comes to an equilibrium state. At low temperatures
_[ 111 6pa a transformation in a solid, triggered by instability, follows
E 3F . the paths with minimal energy barriers and may have the
"; 1165 Gpa finish in nonequilibrium metastable states, including disor-
& 2F i dered. Theg-tin Si Il and Ge Il phases may serve as a
119.5 GPa striking experimental example illustrating the driving role of
1k 151 GPa temp_erature for nonequili.brium transformatidhDuring
relatively fast decompression, when temperature decreases,
L 2% (I}Pa . 1226 Gpa the high-pressure modifications undergo a number of transi-

ka2n

0 " 1 L
00 02 04 06 08 1.0

FIG. 3. Evolution of the transverse-acoustic branch[faf,0]

tions: Sill — Sil, Sill — Silll (BC-8), and Si Il — a-Si
in silicon and Ge ll— Ge |, Ge Il— Ge Ill (ST-12, Ge Il
— Ge IV (BC-8), and Ge Il— a-Ge in germanium.

When the symmetry of instability is in close crystallo-

direction under high pressure. Comparison of the calculation wittgraphic relation with the transition to a thermodynamically
the experiment indicates the necessity of pressure scaling by fact@quilibrium state, a martensitic crystal-crystal transition may
~1.5. be expected under instability conditions. For example, the
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B1—B2 transition is martensitic and usually has a narrow

hysteresis. For KCI this hysteresis is small down to helium A) g(f)fT
temperature2’ A lot of metals have martensitic feebcc e

transitions at low temperaturédSwhich are caused by the F o
shear elastic softening. This indicates, that the correspon- _.é_AVAVAVAVAVAVAVAVAV_Z.._

dence between elastic instability and amorphization is not
evident and trivial. Indeed, a vanishing of an elastic eigen-

constant is associated with the phonon softening in a long- B) g
wave limit k—0. In this case, coherent oscillations for Iy
k—0 should lead to a martensitic crystal grain-crystal grain 1 % AT
transformation in a large region, i.e., to an activationless Py L P
crystal-crystal transition instead of amorphization.

The symmetry origin of the SSA may be clarified from L2=(L+A, ) +0y7

the results of the previous section. A diamondlike crystal

with atoms dislaced in the TA() mode has to be treated as  FIG. 4. The transverse displacement of the one end of com-
an orthorhombic structurépoint group mm).%* The usual Pressed springA) or bond(B) leads to the linear-dependent trans-
high-pressure phases of tetrahedral semiconductors haVerse force in respect to the displacemehy (or Ay) and only to a
B-tin or NaCl-like structures. The exception is gallium ar- Second-order length change.

senic transforming the orthorhombic high-pressure phase

GaAqIl) with the space groupmn2 * We cannot rule out connected with the strong nearest-neighbor overlap lies in
the possibility, that the GaAK) phase may be obtained by the base of absolute instabilities driven by these modes. The
the “martensitic” TA(X) softening. Thes-tin structure cor- Mechanical nature of lattice softening under pressurizing is
responds to the tetragonad, €, — 2¢) deformation of a dia- in close relation with “the effect of a compressed spring.” If
mond lattice. The corresponding transition has to be driver® Spring is compressed by a forEe[Fig. 4A)] a transverse

by the (1/2)€%,— c%,) instability, which is supported by the displacement 0; its end leads to the second-order Ier_lgth
recent molecular-dynamics calculation for silicon with thechangeAL~Ay</L, whereas the transverse force appearing
Tersoff potentiaf® The NaCl structure may be obtained by IS linear with respect to the displacemént~FAy/L. In the

the relative shift of the fcc sublattice in thi&,1,1] direction, =~ More general case of a two-body systeha bond with the
which is connected with the softening Btoptic phonons. ~ central interaction)(r) [Fig. 4B)] the change of pair poten-
From the numerial analysis of different stability criteria we tial energy may be written up to the second-order term in a
can suppose, that the SSA of some IV-1V and 1lI-V semicon-convenient form using the Taylor series fgras a function
ductors (probably except for GaAsmay be actually ob- ©Of r®:

served under compression, if a crystal is thermally frozen,

because the mode triggering instabilftfA(X)] does not Ay= ‘/fr’z(ZALL+AE+A$)+2¢;,2AEL21 (4.2)
coincide with the path to a high-pressure phase. At low tem-

peratures the existe_nce of an activation barrier against homQyherel is the bond lengthA, and A are the longitudinal
geneous deformatlélﬁ prevents the ordinary first-order 4nq transverse components of relative displacement, respec-
crystal-crystal transition. tively. When a bond is compressed, i.e//,r’2<0, and

There are additional crystallographic arguments. The TA =~ a2 ,
(X) phonons in diamond structure have six independent't=0 the change of energyy=y,.A7 is always negative.

modes with the nonequivalent symmetry of perturbed statel @ crystalline lattice this effect tends to destabilize the sys-
of a lattice, which may destroy the coherent scenario of gem.
structural transition. At the same time the TA(instability The appearance of tergg. in Egs.(3.4) and(3.6) is due
occurs at very close pressures and must significantly affec¢b this “mechanical” effect. The account of the term'z,
the real kinetics of a structural collapse. The atomic sizevhich is proportional or asymptotically proportional to pres-
effect in the pressure-induced amorphization of a binary cosure, distinguishes our calculation from the preceding ana-
valent latticé” seems also to be very important. Iytical valence force field studies. The stronger distance de-

The volume drop in tetrahedral semiconductors during theyendence of repulsive central forces between the nearest
transition is about 15-22 9. This experimental fact sup- neighbors arises due to the overlap of core electrons. The
ports the supposition about the possibility of a low- quantum-mechanical origin of the central character of the
temperature SSA in diamondlike crystals. Great stressegverlap forces is closely connected with the central symme-
o~GAV/V, arising during the transition prevent a structur- try of core states. The role of competition between the short-
ally coherent crystallite-crystallite transformation in an ex-range covalent and central repulsive interactions in the
tensive region. Futher studies are needed to clear up thishemical trends of structural properties has been recently
problem. recognized for sp solids through the total-energy-
minimization calculatior? Here we can see the role of this
competition in the dynamic properties.

It is easy to see that the relative displacements of nearest

The softening of elastic and phonon modes is well knowmeighbors are perpendicular to the bonds for elastic soft
in the literature for the instabilities, considered in the presentnodes and lead only to the second-order changes in the bond
paper. Our calculations shows that the “mechanical” originlength. For thec,, softening in diamond structure this state-

B. Geometrical origins of soft modes
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structure; ¢, in NaCl; (1/2)c3,—c3,), cis TA(X), and
TA(L) in the diamond structuttés the competition between
the destabilizing nearest-neighbor repulsion and the weaker
stabilizing noncentral covalent or Madelung forces. The rela-
tive displacements of nearest neighbors in the soft modes are
perpendicular or asymptotically perpendicular to the bonds,
which gives a geometrical criterion for soft eigenmodes in
complex structures. The structures with more than one atom
per elementary cell may have soft modes connected with the
internal strains in an elementary cell, which have been illus-
trated on the diamondlike structure. Our modeling gives a
powerful method for analyzing the high-pressure lattice dy-
FIG. 5. The atomic displacements in TR mode with wave ~namics using the room-pressure potentials previously devel-
vectork=(0,0,27/a) and[1,1,0] polarization. The dotted lines cor- oped. New prospects for the dynamic analysis of complex
respond to thg1,1,0] direction. structures are opened by combining the tight-binding
approximation® with the mechanical approach presented

ment is “asymptotically” valid. The unstable phonon modes here. . . _ . .
on the BZB have atomic displacements perpendicular to the The calculations of high-pressure lattice dynamics for dia-
bonds too(see Fig. 5. mond and zinc-blende semiconductors has been based on

Thus, the application of elastic and vibration stability cri- 9eneralization of the usual valence force field model. The
teria to open-packed lattices under hydrostatic compressiop@sic feature of our approach is introduction of the general
allows us to derive geometrical criteria for soft modes. Theform (in particular, of the Morse typeof pair potential, tak-
appearance of the,, instability in a diamond structure is INg into account the anharmonic nature of overlap forces,
associated with the internal strain in an elementary celland distance scaling of the second-order force parameters.
Clearly, the more complex is the structure of a crystal, the/Ve have preferred the simplest bond-bending form of a
greater number of instability criteria, which may be satisfied three-body potential that allowed us to carry out the analyti-
should exist. The principal distinction of expansionTat 0 cal calcu!atlon and optgln the reasonable quantitative results.
is the possible bulk decohesive instabiff?? Under com- The multiparameter fitting ha_s been replaced .by|¢h£ector
pression the bulk instability, corresponding to the finite vol-dependence of a bond-bending constant. This allowed us to
ume discontinuity, seems to be possible only as a conséalculate the evolution of a phonon spectrum under high
quence of shear instability. pressure using the experlmentgl room-pressure _data as the

The problem of lattice instability on decompression ofinput. According tg our calculation, the absolute instability
high-pressure phasé&requires a special study. In this case, of tetrahedral semlponductors shoqlq be governed by thg TA
noncentral forces may give a negative contribution to sheatX) Phonon softening. The supposition about the possibility
eigenconstants, and usually the high-pressure modificatior® the SSA in pressurized tetrahedral semicondutisrsup-
are metals. The role of temperature is extremely importanPorted by crystallographic and kinetic arguments.
for the experimental observation in this case because at
T=0 the absolute instability pressures are often extrapolated ACKNOWLEDGMENTS
to negative valuefSi Il, Ge 11,° and GaSb I(Ref. 2)].

As to the role of temperature in the lattice instability, the _ . . )
importance of anharmonic effects at positive temperattires Sc!ence Foundat!o(Grant No. MTK 300 and the Russian
should be noted. For a quantum system at zero temperatu?éClence Foundatio(Grant No. 95-02-03677
the lattice becomes unstable, if the zero-point energy per
atom is comparable with the energy of a bfdome re- APPENDIX A: ELASTIC PROPERTIES OF
sults clearing the problem may be found in Refs. 18, 25, and ALKALI HALIDES UNDER HIGH PRESSURE
32.
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The potential energy for the first modglearest-neighbor
repulsion is written per pair of atoms &%
V. CONCLUSION

ae® d
In the present paper we have considered the lattice insta- u(d)=— o +Z)\+ex;{ - —). (A2)
bility as a driving force of the high-pressure SSA that allows p

us to restrict the analysis within the limits of a classical staticThe constantp and\ . _ are given in Table I, the Madelung
lattice (T=0). The use of semiempirical potentials for mo- constant for the rocksalt structure is approximately equal

lecular, ionic, and covalent crystals have allowed us to showg 1.748, andz=6. In the second mod& the Born-Mayer
that the lattice instability on compression of a quantum sysfynction,

tem, such as a solid, may be understood in the framework of

simple mechanical and geometrical concepts. We have ra+rg—r

shown that the pair repulsive interaction of nearest neighbors QDAB(r):IBABbeXF{ —)

plays the central role in the problem of instability of a com- P

pressed open-packed crystal. The common feature of all irdescribes the short-range repulsion between first-nearest
stability types considered hefg1/2)(ci;—c},) in the bcc  neighbors and second-nearest neighbéraifdB indicate+
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or — ion). In this case parameterp=0.3333 A and 1. Parameters of the Morse potential
b=10"' J are universal for all I-VIl compounds;
B++=125 8,_=1.0, andB__=0.75. The constant 4
and rg represent ionic radii(for Na" r,=0.94 A,
K*-1.235 A, and RB-1.37 A; for F r_=1.05 A,
Cl™-1.435 A, Br-1.56 A, and 1-1.75 A). B=[/3/12d)[dy/"(d)— 24’ (d)], (B1)
It is obvious that the first model is a particular case of
model 2 (in this caseB, . =B__=0, i.e., ¢,,.=0 and —d?y"(d)+3dy"(d)— 4y’ (d)
¢__=0). For this reason, we present the common expres- B'(P)= 3[dy"(d)—2¢'(d)] )
sions for both models. The pressure dependence versus dis-
tance may be determined as a volume derivative of energywhere ', ", and ¢’ are ordinary distance derivatives.
Using the equilibrium condition for lattice constant

In the framework of current potential the bulk modulus
and its pressure derivative depend only on the central forces
(T=0):

(B2)

ae® 1[dp,_ e (ap=4d,/3) at zero pressura)’(dy)=0, we can easily
P(d)=—=7— 32 (d)++2 (v/2d) find from Egs.(B1) and (B2) and from the definitive Eq.
6d* d or ar : .
(3.2) the expressions for parameters of the Morse potential
o__ based on lattice characteristics:
+——(V2d) ||, (A2)
pe— B0 A 8 3Bydeplexpdo/p)
where 2(Bp-1)" 7 oo o
A,=16\3B,dopZexp(dy/2p). (B3)

IPaB (—Bagb) ratrg—r
(r)= ex .
or p p

The contribution of the Coulomb ion-ion interaction ¢g,
has been calculated by Kellermamh:Acy,= a,e?/d?,
where a44~0.348 for the NaCl structure. Using E(R.3b
for the short-range repulsive interaction we obtain

2. Elastic constants

The full elastic Gibbs free energy of the uniformly de-
formed diamond structure may be presented in terms of the
deformation tensou; (i=1,...,6) and thdanternal strain
(or relative displacemenfAu=u(2)—u(1) as follows:

3

€2 P2 Po_ AG Qi
CZ4: a44m+4d(&(_f2%}(2d2)+%272_(2d2)) —P(d), v —Dizl u;+ > |AU| +R(AUXU4+AUyU5+AUZU6)
(A3) L
+ EE cliuy;, (B4)
where i
where

Ponp Bagb r ratrg—r
= +— AB )
&(rz)z(r) 4pr‘3 1 p ex p

Some elastic properties calculated according to E4R) _ 3V3( o 2, 5, 4G
and (A3), as well as instability pressures}(=0) are com- Q= 24d3 Yra(d) + §¢r2(d yd*+ 3 d?)’
pared in Table | with the experimental data. One should note,
that the ultrasonic measurements under high pressure cited in
Ref. 34 give isoentropic effective elastic constants which are
very close to stiffness constants in solids. The effective stiffness constantg have a cubic symmetry

It is well knowr?’ that the first model gives good evalua- and correspond to a deformation without the internal strain:
tion for the room-pressure rhombohedral shear constant
Caa=Ci/(0)= aye?/d*. Nevertheless, the second model is
more adequate for prediction ¢t},/dP(0) for the Na-VII
set, since these salts have a small ratio of ionic radii
r . /r _ and the second-neighbor interaction is of great impor-
tance. The first model gives better predictions for the K-VII
and Rb-VII sets.

D=1/3y/2(d?/2d+P(d),

R=2[¢2(d?) —C,/d*]. (B5)

c1=\3[¥2(d?)d/3+C,/d]—P(d),
C1o=\3[¥/2(d?)d/3— C,/2d°]+ P(d),

Cha= V3L Y/2(d?)d/3+ C,/6d%] — P(d). (B6)

The linear term in Eq(B4) should be zero at equilibrium,
D=0, which leads to Eq(3.5). The internal strain must be
eliminated from Eq.{B4) by minimization of the deforma-
tion energy. Deformation,# 0, oru,#0, oruz#0, or their
combination does not lead to the appearance of internal
The presented calculation are carried out for the potentiastrain. Thusci,=c;, andci,=cj, and consequently we ob-
Egs.(3.1)—(3.3) from Sec. lll (¢;=0). tain Eq.(3.43. Under deformation such as # 0 the internal

APPENDIX B: ELASTIC AND DYNAMIC PROPERTIES
OF THE DIAMOND STRUCTURE
UNDER HIGH PRESSURE
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strain appears,Au=(—R/Q)(u4,Us,Ug). SO, Cs=Cyy Ho)=44,2(d?) + (16/3) 2(d?)d?+ 8C ,/3d?.
—R?/4Q and thence we obtain E¢3.4D). (B12)

3. Frequences of’, X, and L phonons For IV group semiconductors Eq(B9) is simplified,

The phonon frequencies in the high-symmetry point maywé’A=(1/M)(Fi H). In particular, we obtain EJq.3.6).
be obtained by the direct dynamic matrix calculation. For
I"-optic phonons: _
4. TA(T'—X) branch under high pressure

Mut Mz 2 4Cy The dynamic matrix calculation gives TO and TA
—MZ<¢r2(d2)+§l/f,z(d2)d2+ : ynami X ulation giv

My 3d? branches for th¢1,0,0] direction[wave vectork=(k,0,0)]
(B7)  in the following form:

wiro(T)=8

The LA(X) and LO(X) modes are independent:

2 10(X) = | () 2 ()8 Toma= (UM)(F1= JF7+Fy), (B13)
wiaL0(X)= M1, 2 3 U2 342
(B8)  where

The other frequencies of the siXx and L modes can be
obtaned from quadratic equations and expressed in the fol-

lowing form: F,=8y/5(d?)+ 1_63¢"2(d2)d2+ §5+2005<k_a -
r 37 3 2)|d?’
) 1
‘”o,A:—ZMlMZ[F(Ml"‘Mz)

16 32C,
Fzzcos(ka/4)( Bu2(d?) + o Yoo+ ) ,

+JAMM,H2+ F2(M;—M,)?], (B9) 3d?

where the corresponding force coefficients for transvéfse
and longitudinallL) modes are

. (16 " 2 2 16C0)
Fo=sin(ka/d)| < y{a(d?)d*~ . (B19

Froo=81/2(d2) + (16/3 y/5(d?)d?+ 20C ,/3d2, 3d?
Hrx)= (16/3)[ ;2(d?)d*~C,/d?], (B10)  The experimental room-pressure data for the TTA(X)
branch may be used to determine thg(k) dependence. In
FL)=8¢2(d%) + (16/3)y>(d?)d? + 32C /3d?, this casey/»(d3)=0. Having evaluated the experimental
data for SP°® we obtain the evolution of the TA{) branch
Hi ) =44,2(d?) — (8/3)2(d*)d?*+32C ,/3d?, under pressuréFig. 3). Note, that the approach applied here

(B11)  for the approximation ofC (k) gives different limits of
Cyo in the I' point for different directions of a reciprocal

FrL)=84,2(d%) +(16/3 ¢(d?)d*+ 26C /3d?, lattice.
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