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The dynamic response of magnetization under a rapidly varying applied field was analyzed using the
Landau-Lifshitz equation. The computed angular dependence of the lower bound of the dynamic switching
field is found to be less than the static limit and, moreover, it is asymmetric with respect to 45° deflection of
the applied field. Oscillatory switching occurs between the dynamic and static thresholds. The width of the
reversal bands depends on the damping rate and rise time of the field.@S0163-1829~96!05641-X#

The problem of magnetization reversal in single-domain
particles ~SDP’s! has been extensively studied for
decades.1–5This lasting interest originates partially from fun-
damental research and partially from information storage ap-
plications, in particular, due to the fact that the size of cur-
rent high-density recording media falls within the range of
SDP’s and, indeed, already approaches the quantum limit.6

The damping effect on SPD switching is thus of importance
to further increase the recording density in rigid disk drives
and to the improvement of high-frequency performance.7

Moreover, recent experiments8 suggest that switching over a
single energy barrier is not an adequate description of the
observed results and detailed theoretical analysis of the dy-
namical switching process in SDP’s is thus of considerable
significance.

Two methods are commonly adopted in studies of the
spin orientation in single-domain particles. One method ap-
plies a variational principle to Brown’s equation and the re-
versal modes, and their corresponding nucleation fields are
then identified from the linearized Brown’s equation as an
eigenvalue-eigenmode problem.3 An alternative approach is
to solve the phenomenological Landau-Lifshitz-Gilbert dy-
namic equation of motion with suitable damping terms4 cho-
sen in such a way that the magnetization magnitude is con-
served. It was believed that for an overdamped system two
methods give similar results while for an underdamped sys-
tem, even in the case of an isolated particle, the dynamic
reversal process has not been, because of its complexity,
studied in detail. For a slowly varying applied field, the static
and overdamped limits yield approximately the same results.
However, the state-of-the-art high-density recording places
the recording medium into high-speed switching environ-
ments and the system then usually does not have enough
time to relax to its equilibrium position.5 A previous dy-
namic analysis with a finite rise time and small damping rate
indicated that the static analysis usually overestimates the
switching field.5,7 The present paper concentrates on the sel-
dom discussed oscillatory switching occurring between the
dynamic and static thresholds. It will be shown later that the
width of the reversal band critically depends on the damping
rate and on the rise time of the steplike field.

The dynamical switching properties are studied here using
a model of uniform magnetization rotation with uniaxial
anisotropy.1 We consider a single-domain uniaxial particle
whose magnetizationMW reverses by coherent rotation. The
particle has energyE5KVsin2u2VMW •HW a , whereV is the
volume andK the anisotropy constant. The applied field
HW a deviates from the easy axis by an angleb, andu is the
angle spanned by the particle’s easy axis and its magnetiza-
tion vectorMW , uMW u5Ms by assumption, whereMs is the
saturation magnetization. The effective magnetic fieldHW eff is
written as

HW eff52
1

V

dE

dMW ~rW !
. ~1!

In equilibrium the magnetization is parallel to the effective
field HW eff and the net torqueMW (rW)3HW eff(rW) vanishes. If the
applied field either rotates or varies its magnitude, then the
magnetization vector will follow a dynamic evolution to a
new equilibrium. The dynamic equation usually employed is
the phenomenological Landau-Lifshitz dynamic equation

dMW ~rW !

dt
52gFMW ~rW !3HW eff1

a

uMsu
MW ~rW !3@MW ~rW !3HW eff#G ,

~2!

whereg is the gyromagnetic ratio anda is a damping con-
stant. The first term corresponds to the gyromagnetic elec-
tron spin motion and the second term represents the phenom-
enological contribution of the dissipative forces; its form
ensures conservation ofuMW (rW)u. Commonly used4 is the
mathematically equivalent Gilbert’s equation.

For a large applied field there exists only one energy
minimum. At moderate fields two equilibrium orientations
exist and the magnetization stays at the equilibrium which is
inherited from memory~hysteresis!. It was believed that at
zero temperature the magnetization cannot cross the energy
barrier to the alternate minimum and that it should stay along
its original orientation.4 For an isolated particle it was also
believed that neither the rate of decrease of the field nor the
damping ratea affects final equilibrium state.4 In an over-
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damped system or in a slowly varying applied field the mag-
netization is always in ‘‘quasiequilibrium’’ with external
forces and the relaxation behavior of magnetization is there-
fore correctly described by the overdamped limit, e.g., Ref.
4. In high-speed switching fields, on the other hand, or in an
underdamped system, the final equilibrium state is found to
depend on the dissipation rate and on the variation of the
energy configurations and recent studies of high-speed
switching show some interesting results which cannot be ex-
plained from the static models.5,8

We model a high-speed switching field by a stepwise
function; at constant angleb the applied field suddenly
switches from zero to2H0. In reality, of course, the rise
time t is finite but extremely short, e.g., on the order of 10 ns
for a head current rise time.7 Because the field and energy
configuration change so abruptly, the magnetization has no
time to respond and remains trapped in the old equilibrium
state which can, therefore, be taken as an initial condition
u i in the new energy configuration under2H0; at large
anglesb the initial energy corresponding tou i is usually
higher than that of the barrier atub . The magnetization vec-
tor precesses along theHW eff direction while energy is gradu-
ally dissipated. If the dissipation process is fast, then the
magnetization will always be trapped at the nearest local

minimum, as predicted by the the static theory. However, if

the system does not lose too much energy beforeMW ap-
proachesub , then the magnetization may overcome the bar-
rier and reach the other local minimum. In the case of very
slow dissipation the magnetization may even traverse the
barrier again and settle at the original local minimum or,
indeed, in the extreme case many barrier passages may take
place before the magnetization is trapped at one of the local
minimum. Our observation time is usually much longer than
the barrier traversal time and we only observe the final mag-
netization orientation: An odd number of barrier traversals is
observed as a magnetization reversal while for an even num-
ber the observer claims that magnetization did not switch.

Numerical solutions of Eq.~2!, expressed in Cartesian
coordinates so as to avoid numerical errors atu'0, were
found using the fourth-order Runge-Kutta method in double
precision; conservation of the magnitude of magnetization
was checked after each iteration. In these calculations the
magnetization was initially oriented along the easy axis di-
rection at zero field. The field strength was linearly changed
to 2H0 within the rise timet and the evolution of magne-
tization was then traced untilMW was found trapped at a local
minimum; in all cases the iteration step was gradually re-

FIG. 1. Final stationary orientation~solid lines! of magnetization vs the strength of the stepwise fieldH0 . The arrow marks the
Stoner-Wohlfarth limit for the switching fieldHk52K/Ms and rise timet50.1/gHk in all cases.~a! b545° anda 5 0.03. Magnetization
switches at a well-defined critical field.~b! b 5 60° anda 5 0.03. Some intervals ofH0 can switch the magnetization at a field lower than
the Stoner-Wohlfarth limit.~c! b560° anda50.01. The range of the switching field becomes oscillatory.~d! b589° anda50.01. The
oscillatory range of the switching field becomes more significant and uniform.

11 958 54BRIEF REPORTS



duced until the final result saturated. The calculation time
depends on the used parameters; however, it can be done at
the advanced PC within the reasonable waiting time.

In Fig. 1 we present the relationship betweenH0 and the
orientation of the magnetization at equilibrium,u f . For a
large damping constant and smallb the energy dissipates
fast and the magnetization can only switch at a critical field
@Fig. 1~a!#. When damping becomes weaker, however, then
the magnetization switches within several intervals ofH0
@Fig. 1~b!#. A lower damping rate shifts the lower bound of
the switching field to smaller values. The oscillatory switch-
ing behavior of the magnetization withH0 becomes more
significant, at largeb @Fig. 1~c!#. According to Fig. 1~d!,
further, the interval ofH0 becomes very short at largeb and
small damping. Obviously, if we define the switching field as
the lower bound ofH0 in Fig. 1, then the switching field
depends on both the energy loss rate and on the angle of
applied field. Angular dependence of the applied field
strengthH0 on applied field angle is shown in Fig. 2 for
reversal~unshaded! bands with different damping constants.
The present dynamic analysis shows that untilH0 reaches
the Stoner-Wohlfarth limit the final orientation of magneti-
zation alternates. The lower bound of the reversal band is
asymmetric with respect to the angleb545° and large de-
viations from the Stoner-Wohlfarth limit are observed at
large b. On increase of damping rate the dynamic lower
bound gradually approaches the static limit and the reversal
band gap increases. The width of band gap thus reflects the
amount of energy dissipated during the reversal processes.
We have also analyzed the influence of distribution of easy
axis orientations and for a noninteracting assembly we found
that the oscillatory switching behavior disappears at large
dispersions of the easy axes.

Due to the strong nonlinearity of the equations of motion,
the final orientation of the magnetization is very sensitive to
the initial state~see Fig. 3! andu i can be fluctuating due to
either interparticle interactions or to thermal agation. The
sensitivity to even small perturbations of the initial state in-
dicates that thermal fluctuations are apparently very impor-
tant for the dynamical evolution of magnetization. In the

FIG. 2. Angular dependence of the switching field for stepwise applied field. Initial angleu i is along the easy axis and unshaded areas
are the reversal regions. Dashed line is the Stoner-Wohlfarth limit. The rise timet50.1/gHk and damping constantsa are 0.01~a!, 0.05~b!,
0.1 ~c!, and 0.5~d!, respectively.

FIG. 3. Angular dependence of the dynamical threshold of the
switching fieldHs for selected initial deviations from the easy axis.
Positive value is away from the applied field direction~i.e., azi-
muthal anglef50) and negative value is close to the applied field
direction (f5p). Parameters used here areb55° ~solid line!,
10° ~short-dashed line!, 30° ~dotted line!, and 45° ~long-dashed
line!, anda50.05 andt50.1/gHk .
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presented calculations we set, for simplicity, initial condi-
tions with zero azimuthal angle. Its variation produces the
similar but more complicated results as the variation ofu i
shown in Fig. 3. We have also calculated the influence of the
rise timet on the structure of the reversal band and found it
to be of lesser influence on the oscillatory switching property
than the damping constanta. A large t increases the dy-
namical threshold and decreases the number of the reversal
bands.

In summary, we have analyzed the dynamical reversal
process of magnetization under high-speed switching fields
and we have shown that the static analysis is valid only in
the overdamped limit while the switching behavior under a
high-speed field can be very complicated indeed. The angu-
lar dependence of the lower bound of the dynamic switching
field is found to be not only asymmetric but also lower than
the Stoner-Wohlfarth limit and in the field interval between
the dynamical and static lower bounds the switching behav-
ior of magnetization is found to critically depend on the de-
tailed dynamics of the system. If the energy of the initial
state is high enough and damping rate is low, then oscillatory
phenomena become significant. On the simple example of

coherent rotation of magnetization we have demonstrated the
complexity of the switching properties which can experimen-
tally be verified5,8 only by full range explorations of the field
strengthH0. In the case of nonuniform rotation the topologi-
cal dimension of the global attractor for the Landau-Lifshitz
equations is large9 and dynamical analysis becomes very dif-
ficult even at zero temperature.10 A clear interpretation of
experimental data therefore requires a full dynamical analy-
sis based on sufficient information about the system.

We have also demonstrated the sensitivity of reversal
properties on the initial magnetization orientation and we
have shown that even small deviations can significantly af-
fect the whole reversal behavior, especially under the high-
speed switching field. This suggests that at finite tempera-
tures, where thermal agitation is of significance, even a full
dynamical analysis may possibly lead to spurious results un-
der high-speed switching fields. For high-density recording
media, therefore, a full dynamical analysis with thermal agi-
tations included is required.
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