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We calculate the out-of-plane dynamical spin correlation function for the one-dimensional easy-plane fer-
romagnet CsNiF3 at low temperatures using a diagrammatic expansion for the temperature-dependent Green
function. We compare our theoretical calculation for the spin wave linewidth with experimental data of
Kakurai, Steiner, and Dorner.@S0163-1829~96!02842-1#

In the past years the spin dynamics of one-dimensional
~1D! magnetic systems have been studied extensively both
theoretically and experimentally.1–3 The Hamiltonian

H522J(
i
SW i•SW i111A(

i
~Si

z!2, ~1!

with S51, has been found to describe the easy-plane ferro-
magnet CsNiF3 quite well. The values of the parameters for
this compound were obtained by Steiner, Dorner, and
Villain4 from the low temperature classical spin wave disper-
sion relation measured in neutron scattering experiments.5

This procedure yieldsJ511.5 K andA54.5 K. A quantum
renormalization of the Hamiltonian6 ~1! however reducesA
to A „121/(2S)… which yieldsA59.0 K. We have found
that using the valueA59.0 K ~bare parameter! in our theo-
retical calculation we could fit the experimental data for the
spin wave peak position quite well. In zero field, the most
important excitation in this system is the spin-wave-like
propagating modes for wave vectorsq larger than the inverse
correlation lengthk(T). Villain7 using a self-consistent har-
monic approximation predicted the existence of two charac-
teristic linewidths, due to in-plane~IP! and out-of-plane~OP!
spin fluctuations. The IP component of the dynamic structure
factorSaa(q,v)(a5x,y) has been quite well studied show-
ing a well behaved structure.8 However the linewidth of the
OP componentSzz(q,v) displays an anomalous wave vector
dependence due to a singularity in the three spin wave den-
sity of states. This anomalous behavior was predicted by
Reiter9 using a classical zero-temperature spin wave theory,
and observed in CsNiF3 by Kakurai, Steiner, and Dorner

8 by
means of inelastic polarized neutron scattering.

In this Brief Report we will calculate the in-plane dy-
namic structure factor for the quantum Hamiltonian~1!. We
will take the classical easy-plane ferromagnetic state as the
zeroth approximation, and expand in powers of the ampli-
tude of the out-of-plane fluctuations^(Sn

z)2&/@S(S11)#, and
in-plane fluctuationŝ(fn2fn11)

2&. In a diagrammatic ex-
pansion of the perturbation series for semiclassical spin the
leading term is the classical system, one-loop graphs are of
order \, two-loop graphs of order\2, and so on.10 More
accurately, the graphs are of order 1/S, 1/S2, etc., and for a
semiclassical system\S is of order unity. We will carry out

the expansion to the two-loop level, which involves compu-
tation of 46 different diagrams. The multiplicity of diagrams
and their greater complexity make it impractical to go be-
yond two loops.

We start by introducing the Villian’s representation7
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z~Sn
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wheref is the angular variable in thexy plane canonically
conjugated toSn

z . Substitution of~2! into the Hamiltonian
~1!, expanding to second order inSn

z/AS(S11) and
(fn2fn11), and Fourier transforming gives

H5E01H21H41•••, ~3!

where E0522JNS(S11) is the energy of the classical
ground state,H2 is the harmonic Hamiltonian given by
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Hamiltonian~4! can be diagonalized by using the canonical
transformation
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fq5aq~aq
11a2q!, Sq

z5 iba~aq
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whereaqbq 5 1/2, and

aq5S 1

4S~S11!

12cosq1d
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We obtain

H25(
q

\vq~aq
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where

\vq54J@S~S11!~12cosq!~12cosq1d!#1/2. ~9!

As we can see from~2! and ~4! a measurement of
Saa(q,v) (a5x,y) does not reduce to the observation of
one single magnon of wave vectorq, but involves the obser-
vation of all magnons with wave vectors between, roughly,
q2k and q1k, wherek is the inverse correlation length.1

On the contrary, a measurement ofSzz(q,v) does in fact
correspond to the observation of a single magnon with a
much smaller linewidth. In the model discussed here, at low
temperatures, the linewidth of the out-of-plane component
Szz(q,v) is produced by the decay of the magnon into other
magnons, by the scattering by other magnons, or, in math-
ematical terms, by the anharmonic terms in~4!. Since these
terms are functions of bothf andSz we use a matrix form
for the temperature-dependent Green function

D5FDff DfS
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b51/kBT. T in ~11! means that the operators are arranged so
thatt is decreasing from left to right. The nonperturbed~bare
propagator! Green function is
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The temperature-dependent Green function for the interact-
ing system obeys a matrix form of Dyson’s equation and can
be written as
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and the(ma are elements of a self-energy matrix. The cal-
culation of(ma follows the procedure given in Ref. 10 by
making the following replacement11 i t→t. The remaining
task is the computation of the self-energy~irreducible con-
nected! graphs which sum to give the( function. We have
done this calculation up to the two loop level; this is the
entire second order expansion. Since the calculation is stan-
dard we quote only our results for the dynamic relaxation
function Szz(q,v) which is related to the temperature-
dependent Green function by11

Szz~q,v!52
4p

v
ImDSS~q,v1 id!. ~16!

We have calculatedSzz(q,v) for the compound CsNiF3 as a
function of v using Eq.~16! and in Fig. 1 we show some
examples of our calculations. In Fig. 2 we show the peak
position ~magnon dispersion relation! as a function of the
wave vectorq at a temperatureT54.2 K. The experimental
data is from Ref. 5. As we said before we fitted the experi-
mental data by adjusting the anisotropy parameterA to
A59.0 K, in agreement with previous estimates.6,8 For the
peak position the second-order correction~two-loop graphs
plus the second-order contribution from one-loop graphs!
adds, at most, 2% to the one-loop result, and this leads us to
believe that our calculation, by just going to the two-loop
level, is accurate. Of course the first-order correction leads to
a null linewidth. In Fig.3 we show our theoretical prediction
for the OP linewidthG at T54.7 K compared with experi-
mental results of Kakurai, Steiner, and Dorner.8 As pointed

FIG. 1. The out-of-plan dynamical relaxation function in arbi-
trary units, as a function ofv for T54.7 K andq/p 5 0.2 ~solid
line!; q/p50.3 ~dashed line!.
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out by Reiter9 the anomalous behavior in the OP linewidth is
due to a singularity in the three spin wave density of states,
which are the major channels for the decay processes of the
OP spin wave.

In conclusion, we have calculated the OP dynamical spin
correlation function for the easy-plane one-dimensional fer-
romagnet, to the two-loop level. We have applied this calcu-

lation to CsNiF3, and obtained the anomalous wave vector
dependence in the spin wave linewidth, observed experimen-
tally by Kakurai, Steiner, and Dorner.8
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FIG. 2. Peak position as a function of the wave vector for
T54.2 K. The solid line is our theoretical prediction. The filled
circles are experimental data from Ref. 9.

FIG. 3. q-dependence of the OP linewidthG at T54.7 K. The
solid line is our theoretical prediction. The filled circles are experi-
mental data from Ref. 5.
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