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Calculation of the out-of-plane dynamical correlation for CsNiF;
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We calculate the out-of-plane dynamical spin correlation function for the one-dimensional easy-plane fer-
romagnet CsNik at low temperatures using a diagrammatic expansion for the temperature-dependent Green
function. We compare our theoretical calculation for the spin wave linewidth with experimental data of
Kakurai, Steiner, and DornefS0163-182¢06)02842-]

In the past years the spin dynamics of one-dimensionahe expansion to the two-loop level, which involves compu-
(1D) magnetic systems have been studied extensively bottation of 46 different diagrams. The multiplicity of diagrams
theoretically and experimentally> The Hamiltonian and their greater complexity make it impractical to go be-

yond two loops.

H— _232 éi . §i+1+AZ (2, 1) We start by introducing the Villian's representation
' ' Sh=eln[S(S+1)— SE(SE+1)]2
with S=1, has been found to describe the easy-plane ferro-
magnet CsNik quite well. The values of the parameters for S, =[S(S+1)—SA(Si+1)]Y%!¢n, 2
this compound were obtained by Steiner, Dorner, and ) . ) )
Villain# from the low temperature classical spin wave disper\Where ¢ is the angular variable in they plane canonically
sion relation measured in neutron scattering experinentsConjugated toS;. Substitution of(2) into the Hamiltonian
This procedure yieldd=11.5 K andA=4.5 K. A quantum (1), expanding to second order ig;/yS(S+1) and
renormalization of the Hamiltonidr(1) however reduces  (én— ¢n+1), and Fourier transforming gives
to A (1—1/(2S)) which yieldsA=9.0 K. We have found
that using the valuA=9.0 K (bare parametgin our theo- H=Eo+Ho+Hs+t- -, ©)
retical calculation we could fit the experimental data for theyyhere E,= —2INSS+1) is the energy of the classical
spin wave peak position quite well. In zero field, the mostyrynd stateH. is the harmonic Hamiltonian given by
important excitation in this system is the spin-wave-like
propagating modes for wave vectaysarger than the inverse
correlation lengttk(T). Villain” using a self-consistent har- Hy=2JS(S+1) >, (1—cos) ¢qb—q
monic approximation predicted the existence of two charac- a
teristic linewidths, due to in-plan@P) and out-of-plan€OP)
spin fluctuations. The IP component of the dynamic structure +2J2 (1-cogy+d)SiS,, 4
factor S**(q,w)(a=Xx,y) has been quite well studied show- d
ing a well behaved structufeHowever the linewidth of the with d=A/2J, and
OP componen§?4q, w) displays an anomalous wave vector

dependence due to a singularity in the three spin wave den-, J 2 s S(S+1) 1
sity of states. This anomalous behavior was predicted by "4~ N o & q, "7 927 %" 420 6 [1-cos,
ReiteP using a classical zero-temperature spin wave theory,
and observed in CsNifby Kakurai, Steiner, and Dorrfeby — €O~ CO3— COY, + €0 + () +€0Kd; +(3)
means of inelastic polarized neutron scattering. i B

In this Brief Report we will calculate the in-plane dy- 09011 04)1bq; Pq,Pa,bq,~ [1~ COL,—COLy

namic structure factor for the quantum Hamiltonidn. We

will take the classical easy-plane ferromagnetic state as the
zeroth approximation, and expand in powers of the ampli- 1
tude of the out-of-plane fluctuatiod$S?)2)/[ S(S+1)], and + m[3—cos{q1+ g,)—cogq;+qs)

in-plane fluctuationg (¢, — ¢ns1)?). In a diagrammatic ex- S )

pansion of the perturbation series for semiclassical spin the

leading term is the classical system, one-loop graphs are of ~ —C0S01+04)]S; S} S, S, | - )
order #, two-loop graphs of ordefi?, and so ort® More

accurately, the graphs are of ordeS1A1/S?, etc., and fora Hamiltonian(4) can be diagonalized by using the canonical
semiclassical systemS is of order unity. We will carry out transformation

+coqq;+ Q4)]Sal¢q2¢q3534
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bq=aq(ag ta_q), Si=iBa(ag —a g), (6) 15

wherea,6, = 1/2, and

hwg=4J[S(S+1)(1—coxy)(1-cog+d)]*2  (9)
As we can see from(2) and (4 a measurement of k

B 1 1-cog+d|¥ ; 3 ‘
“a7l45(S+1) 1-coq | - ™ o~ N

We obtain tor ‘-' ';
Ho=2> fiwg(ag aq+1/2), (8) : ” P
q ! 1)
where osk .: .

S*(q,w) (a=x,y) does not reduce to the observation of
one single magnon of wave vectgy but involves the obser- P .
vation of all magnons with wave vectors between, roughly, Qg3 0 20 30 20
q—k and q+k, wherek is the inverse correlation length. 0 (meV)

On the contrary, a measurement $%(q,») does in fact

correspond to the observation of a single magnon with a _ _ . _
much smaller linewidth. In the model discussed here, at low FIG. _1' The out-of_-plan dynamical relaxation function |n_arb|-
temperatures, the linewidth of the out-of-plane componenrary_ ur/"ts_’gz adfur;ft'(?? ob for T=4.7 K andq/m = 0.2 (solid
$*4q,w) is produced by the decay of the magnon into other'ne)’ a/m=0.3 (dashed ling
magnons, by the scattering by other magnons, or, in math-

ematical terms, by the anharmonic termg4i. Since these A= i azz +522 +“’n(2¢5_25¢)
terms are functions of botkh and S* we use a matrix form () 959 153 2

for the temperature-dependent Green function

q

N 2 pp>sS 245> ¢S

D— D¢>¢ D«zss , (10 wg
s S8 and theX ,, are elements of a self-energy matrix. The cal-
where culation of = ,, follows the procedure given in Ref. 10 by
o “ « making the following replacemelitit— 7. The remaining
D el @, 7= 7) =(T{gg (D= 4(7)}), 1D task is the computation of the self-ener@igreducible con-

where u,a=¢ or S, lﬂZ:Sé,lﬁg': ¢q, and 0<7< g, with nected graphs which sum to give the function. We have
B=1/kgT. T in (11) means that the operators are arranged sélone this calculation up to the two loop level; this is the
that ris decreasing from left to right. The nonperturtibdre ~ €ntire second order expansion. Since the calculation is stan-

propagator Green function is dard we quote only our results for the dynamic relaxation
function S*4(q,w) which is related to the temperature-
. 2050 i(ioy) 1 dependent Green function By
D (q,iwy)=| . . ——, (12
(A1) —i(iwy) 2B2wg)(iwn)*—wj (12 i
where Szz(q,w)=—7|mDS§q,w+i5). (16)

We have calculate8?4q, w) for the compound CsNifas a
function of w using Eq.(16) and in Fig. 1 we show some

. . examples of our calculations. In Fig. 2 we show the peak
The temperature-dependent Green function for the mteracrk) P g b

. . X ; Josition (magnon dispersion relatipras a function of the
ing system obeys a matrix form of Dyson’s equation and cafy o e vectory at a temperaturd =4.2 K. The experimental

be written as data is from Ref. 5. As we said before we fitted the experi-
mental data by adjusting the anisotropy parameieto
20204+, —wp— > A=9.0 K, in agreement with previous estimatésFor the
D(q,i ;)= Ss éS peak position the second-order correctigwo-loop graphs
Q.lon)= ) plus the second-order contribution from one-loop graphs
w”_32¢ 2,3qwq+%5 adds, at most, 2% to the one-loop result, and this leads us to
believe that our calculation, by just going to the two-loop
1 level, is accurate. Of course the first-order correction leads to
Xerm—5—— (14 anull linewidth. In Fig.3 we show our theoretical prediction
[(fwn) — wg(1+A)], S i .
4 for the OP linewidthI’ at T=4.7 K compared with experi-
where mental results of Kakurai, Steiner, and Dorfieks pointed

B )
D(q,iwn)zfodTe”"“TD(q,T), wy,=2n7T. (13
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FIG. 2. Peak position as a function of the wave vector for FIG. 3. g-dependence of the OP linewidthat T=4.7 K. The
T=4.2 K. The solid line is our theoretical prediction. The filled solid line is our theoretical prediction. The filled circles are experi-
circles are experimental data from Ref. 9. mental data from Ref. 5.

lation to CsNiF;, and obtained the anomalous wave vector

out by Reitef the anomalous behavior in the OP linewidth is dependence in the spin wave linewidth, observed experimen-
due to a singularity in the three spin wave density of statesna"y by Kakurai, Steiner, and Dornér.

which are the major channels for the decay processes of the

OP spin wave. This work was partially supported by Conselho Nacional
In conclusion, we have calculated the OP dynamical spirde Desenvolvimento Cientifico e Technologi@razil), and

correlation function for the easy-plane one-dimensional ferCapacitaao e Aperfeioamento de Pessoal de Nivel Superior

romagnet, to the two-loop level. We have applied this calcu{Brazil).
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