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It is shown that the problem of calculating spin-spin correlation functions, in the dimer resonating-valence-
bond states, on a possibly diluted two-dimensional square lattice, can be formulated in terms of a transfer
matrix. The transfer matrix is used for exact numerical calculations of spin-spin correlation functions on
ladders up to four units wide.@S0163-1829~96!07241-4#

In the last few years, the class of resonating valence bond
~RVB! states has drawn much attention in connection to the
long-lasting pursuit of the antiferromagnetic two-
dimensional~2D! Heisenberg model ground state.1,2 Espe-
cially important is the case of spin half, which is considered
to be relevant to high-Tc superconductors. In this context,
simulations had been performed to estimate the spin-spin
correlation functions in these states,3 and particularly the ex-
pectation values of the spin half Heisenberg Hamiltonian
were calculated for variational considerations. In the two
legged ladder lattice the short-range RVB states, which are in
the focus of this article, were found to have low energies.4

Despite this interest these simulations had not been backed
by exact results. This article provides a way to extract such
results, in the case of the 2D dimer RVB states on a~possi-
bly! diluted lattice, by means of reducing the problem of
calculating the spin-spin correlation functions, to the consid-
erably simpler problem of treating a transfer matrix defined
on a 1D lattice.

On a general lattice the class of RVB states is defined by3

uC&5(
$P%

)
~ i,j !PP

U~ i,j !~↑ i↓ j2↑ j↓ i!, ~1!

where $P% are all the possible divisions of the lattice into
pairs of sites (i,j ), in which any site is a member of one and
only one pair, andU( i,j ) is nonnegative. For the short-range
RVB statesU( i,j ) has a cutoff. We will restrictuC& to be a
dimer RVB state on a square lattice; hence the function
U( i,j ) is given by

U~ i,j !5H x if i2 j5 x̂,

y if i2 j5 ŷ,

0 otherwise,

~2!

where x̂ and ŷ are unit vectors. In this case we can replace
$P% by the dimer coverings of the lattice, denoted by$D%.

The spin-spin correlation function in the dimer RVB
states is defined by the expectation value3,5

Sij5
^CuSi•SjuC&

^CuC&
, ~3!

wherei and j are two sites on the lattice. Two quantities are
evaluated for the calculation of this expectation value. The
norm

D5^CuC&5 (
$DL ,DR%

2Nlynyxnx5yMK (
$DL ,DR%

2Nlhnx,

~4!

whereDL andDR are any two dimer coverings of the lattice
which are placed on each other,$DL ,DR% is the ensemble of
all the loop configurations which are given by overlaps of
dimer coverings, this ensemble on a - 232 lattice is depicted
in Fig. 1; nx and ny are the numbers of horizontally and
vertically placed dimers, respectively~with nx1ny5N,
whereN is the number of sites in the lattice!, Nl is the
number of loops in this overlap, andh5x/y. And

Cij56 4
3 ^CuSi•SjuC&5yMK (

$DL ,DR% ij

2Nlhnx, ~5!

where the sign is1 when the two sites are on the same
sublattice and2 otherwise, and$DL ,DR% ij is the ensemble
of all the loop configurations in which the sitesi andj are on
the same loopl ij ~this loop is particular to each of the loop
configurations!. See Fig. 1 for further explanation.

As an introduction, let us recall the construction of the
transfer matrix, formulated to solve the dimer problem,6 that
is, to calculate the partition function

Z5(
$D%

ynyxnx. ~6!

In anM row by K column square lattice the transfer matrix
V is an operator defined in a 2K-dimensional Hilbert space of
the Ising states ofK spins half placed in the sites of aK site
row, each in a site. In a certain dimer configuration, each row
in the lattice is represented by an Ising state. This Ising state
denotes thevertical dimers which are placed on the bonds
between this row and the row above it. An up spin in a site
signifies the presence of a vertical dimer on the bond be-
tween this site and the site above it~an up dimer!, while a
down spin signifies the absence of an up dimer on this bond.
We will use the Fock representation where the spins are rep-
resented by bosons~or fermions! of spin half and
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us1 , . . . ,sK&[)
i

K

~ci ,si
† u0& i), ~7!

wheresi5↑ or↓.
Given an up-dimers configuration of a certain row, start-

ing with the first row,V will generate all the permitted
dimers configurations of the next row, each marked by its up
dimers.V is composed of two operators:

V5V2V1 .

The first is

V15)
i51

K

s i
x , ~8!

where

s i
x5s i

11s i
2 , s i

1[ci↑
† ci↓ , s i

2[ci↓
† ci↑ .

This operator reverses all the spins for the next row. After
this operation a vertical or horizontal dimer can be placed on
any up-spin site. A vertical dimer is placed by leaving the
spin up in the site, and a horizontal dimer, between any two
adjacent up-spin sitesi and (i11), is placed by the operator
s i

2s i11
2 . The operator which placesm horizontal dimers in

arbitrary locations along the row is

1

m! S (i51

K

s i
2s i11

2 D m.
An arbitrary number of horizontal dimers, each accompanied
by the weighth, is placed by the operator

V25expS h(
i51

K

s i
2s i11

2 D , ~9!

where in the case of periodic boundary conditions~which are
henceforth assumed! sK11

2 [s1
2 . Hence we get@note that in

Eq. ~6! nx1ny5MK/2#

Z5yMK/2TrVM. ~10!

Let us now consider the square of Eq.~6!:

Z25 (
$DL ,DR%

ynyxnx. ~11!

This is just summing over loop configurations in which each
site is connected by dimers of two flavors,L andR, which
are independent of each other. To formulate a transfer ma-
trix, we denote each of the flavored dimers in any site, by a
flavored spin. These spins are propagating along the columns
by the operator

V̄5VLVR ,

whereVL andVR are defined in a Hilbert space which is the
tensor product of aL andR Ising spaces, andVL (VR) ef-
fects only theL (R) spins in each of the product states.

After the prepatatory examples above we are ready to
tackle the transfer matrix represantation of Eq.~4!, with the
additional term of 2Nl for each loop configuration. Imagine
that there are two colors of dimers, red (r ) and green (g). A
dimer from each of the colors is distinguished by an addi-
tional flavor indexaP$L,R%. We will define the ensemble
$Q% to include all the possible colored-dimer configurations
in which each site in the lattice is connected with two
dimers, of identical colors, marked by a distinct flavor index.
In $Q% there are exactly 2Nl different configurations for any
loop configuration in Eq.~11!, since each of the loops in this
overlap can appear in two forms, all red or all green, and we
can write

D5yMK(
$Q%

hnx. ~12!

We denote the colored dimers in each site by colored
spins. Accordingly we expand further our Hilbert space to be
the 8K-dimensional space of a row ofK sites; on each site
i two spin-half bosons, of the flavorsL andR, both labeled
by thesamecolor indexciP$r ,g%. Each of the states in this
space is specified by

FIG. 1. The four possible loop configurations, made by overlaps of dimers coverings, on a 232 lattice. The dimer configurations from
theL side are placed on the dimer configurations from theR side. In the sum of Eq.~5!, for the two sites marked byi and j , the first~from
left to right! three loop configurations have to be included.
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us~1,L ! ,s~1,R! ,c1 ; . . . ;s~K,L ! ,s~K,R! ,cK&

[)
i

K

~ci,ci ,L,s~ i ,L !

† ci,ci ,R,s~ i ,R!

† u0& i). ~13!

Flipping spins must now include the two color options,
and so

Ṽ15)
i51

K

~s i ,r ,L
x s i ,r ,R

x 1s i ,g,L
x s i ,g,R

x !, ~14!

where, for example,

s i ,r ,R
x [s i ,r ,R

1 1s i ,r ,R
2 [ci,r,R,↑

† ci,r,R,↓1ci,r,R,↓
† ci,r,R ,↑.

Horizontal dimers are placed by lowering spins of the same
flavor and color by four operators of the form

Ṽ2
c,a5expS h(

i51

K

s i ,c,a
2 s i11,c,a

2 D , ~15!

wherea5L,R andc5r ,g, and now

Ṽ25 )
a5L,R,
c5r ,g.

Ṽ2
c,a , ~16!

But this is not all. The operator defined in Eq.~14! pre-
serves the color of a column, hence imposing the monocolor
propagation of a loop with a vertical dimer. But if a site is
not connected by a vertical dimer from ‘‘below,’’ its pair of
dimers should be of either colors, as there are two color
opetions for the loop passing through this site. Since the
absence of vertical dimers is denoted by two down spins, the
additional color-flipping options are provided by the operator

Ṽ05)
i51

K

~11ci,r,L ,↓
† ci,r,R,↓

† ci,g,L,↓ci,g,R,↓

1ci,g,L,↓
† ci,g,R,↓

† ci,r,L, ↓ci,r,R,↓!. ~17!

Combining Eq.~14!, ~16!, and~17!, the transfer operator is

Ṽ5Ṽ2Ṽ1Ṽ0 ~18!

and

D5yMKTrṼM. ~19!

On narrow lattices, such as the two-legged ladder, it is pos-
sible to extend this treatment to longer range, like the first-
and second-, or the first- and third-nearest neighbors, RVB
states.7 These extensions, although straightforward, require a
more complicated transfer matrix, which is usually larger in
its dimension~for a given lattice width!.

The transfer matrix formulation will be concluded in add-
ing that a disconnected site~a static hole! i can be placed by
positioning the operator

Ṽi
d5

1

y
s i,r ,L

2 s i,r ,R
2 ~20!

to the left ofṼ1, when propagating intoi’s row. This opera-
tor colors the disconnected site red. A class of variational
states, which include annealed holes, that obey Fermi statis-
tics, will be treated elsewhere, using a similar technique.

In order to calculateCij defined in Eq.~5!, we will calcu-
late the quantityYij , defined by

Yij5yMK(
$Y% ij

2Nlhnx, ~21!

where$Y% ij is the ensemble of all the loop configurations in
which the sitesi and j are not on the same loop. Some of
these configurations are easily counted by fixing the two
pairs of dimers, placed on the two sites, to be of distinct
colors, or by calculating the color-color correlation function

Y ij
r ,g5yMKTr~Ṽ~M2p!nj ,a

r Ṽpni,a
g !, ~22!

where the two sites arep rows apart, and

ni,a
c 5ni,a,↑

c 1ni,a,↓
c

~the flavor indexa is arbitrary!. In Eq. ~22! we calculate the
contributions toYij from configurations in whichl i is a
green loop andl j is a red loop. Each of the other configu-
rations in whichl iÞl j ~that is, loop configurations whichdo
not contribute toY ij

r ,g but must be counted inYij ) has its

TABLE I. Results of the one-lattice-unit spin-spin correlation
functions, energies, and correlation lengths, for the isotropic dimer
RVB state on nondiluted ladders of the width two, three, and four
lattice units. The results in the second row are for the absolute
values of the one-lattice-unit correlations:~1! in the vertical case
along one of the side legs of the ladders,~2! in the vertical case
along the middle leg of a 3340 ladder, and~3! in the horizontal
case. The results in the third row are for the expactation values of
the isotropic Heisenberg Hamiltonian for each of the lattices. The
expactation values are in units of J/site. The results in the fourth
row are for the correlation lengths along the~4! side legs of the
ladders, and~5! middle leg of a 3340 ladder. The results for the
correlation lengths are according to the values of the correlation
function in distances of five and six lattice units along the lattice.

Width 2 3 4

~1! 0.286139 0.328752 0.246393
~2! 0.277263
~3! 0.539779 0.344843 0.395096

uEu 0.556029 0.656432 0.641489

~4! 0.696652a 0.735272b 0.723966
~5! 0.780763

aThis result, for the correlation length on the two-legged ladder,
disagrees with the result in Ref. 4.
bIn the case of a three-unit-width lattice, the correlation function is
slightly wavy; hence a slightly different result may apear, if the
correlation length is to be calculeted by the values of the correla-
tion function in different distances.
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duplicate in one and only one of the configurations which do
contribute toY ij

r ,g since the two loops may appear in either
colors. Because there are four colors possibilities for the two
loops, we conclude that

Yij54Y ij
r ,g . ~23!

Finally, since the sum for the norm in Eq.~4! contains all
the loop configurations, those in which the two sites are on
the same loop and those in which they are not, we get

Cij5D2Yij . ~24!

The spin-spin correlation functions were numericaly cal-
culated, in the isotropic dimer RVB state (y5h51), on
nondiluted ladders of the sizes 2,3, and 4340, with vertical

~along the ladder legs! periodic boundary conditions, and
horizontal periodic boundary conditions in the case of a
4340 lattice. The results are summarized in Table I.

In conclusion, using the transfer matrix method it was
shown that it is possible to reduce the complexity of calcu-
lating spin-spin correlation functions in dimer RVB states on
possibly diluted 2D lattices to the complexity of a 1D quan-
tum many-body problem. This simplification permitted exact
calculation of correlation functions on narrow lattices. We
suggest that these kinds of calculations are possible when
longer-range RVB states are considered.
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