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It is shown that the interaction of the intrinsic spin of two-dimensional electrons with the magnetic field
significantly changes the tunneling probability of electrons through magnetic barriers and the conductance of
devices having such barriers with respect to the case where this interaction is neglected. It is also shown that
certain structures having these magnetic barriers possess the ability to distinguish the two possible spin states
of the electrons.@S0163-1829~96!04442-6#

The electronic-transport properties of semiconductor het-
erostructures in the presence of inhomogeneous magnetic
fields on the nanometer scale have been recently studied.
Such magnetic fields have been experimentally created by
the fabrication of magnetic dots1 and lithographic patterning
of ferromagnetic materials2 and type-II superconductors3 on
conventional semiconductor heterostructures. Theoretically,
the motion of an electron in various types of magnetic fields
have been studied.4

New tunneling structures consisting of magnetic barriers
for two-dimensional electron gas~2DEG! have been pro-
posed theoretically5 where the form of the equivalent poten-
tial for the 2DEG depends on the wave vector of the incident
electron. The tunneling probability and the conductance of a
resonant tunneling device consisting of such magnetic barri-
ers exhibits pronounced resonances with the electronic en-
ergy. However, in these works, the effect of the intrinsic spin
of the electron on the effective potential was not considered.

The aim of this paper is to highlight the effect of the
interaction of the intrinsic electronic spin with the magnetic
field. It is shown that the tunneling probability and the con-
ductance are altered due to this interaction and that certain
structures having these magnetic barriers possess the ability
to distinguish the two possible spin states of an electron.

For the analysis, we consider a 2DEG in thexy plane with
a magnetic field in thez direction. We take a simple
d-function magnetic field of the formB5Bz(x) ẑ with
Bz(x)5B0l@d(x1d/2)2d(x2d/2)#, whereB0l gives the
strength of the magnetic field andd is the separation between
the two d functions. This form of the magnetic field is an
approximation to the field that can be realized with ferro-
magnetic stripes5 and is useful because it permits the calcu-
lation of the transmission probability in closed form.

A 2DEG in thexy plane with a magnetic field pointing in
the z direction is described by the Hamiltonian
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wherem* is the effective mass of the electron,p is the
momentum of the electron,g* is the effectiveg factor of the
electron in a real 2DEG realized using semiconductors,
s511/21 for up/down spin electrons, andA(x) is the
magnetic vector potential given, in the Landau gauge, by
A(x)5B0l ŷ for 2d/2,x,d/2 and zero otherwise. We in-
troduce dimensionless units for the simplicity in expressing
the results. For that we need the cyclotron frequency
vc5eB0 /m* and the magnetic lengthl B5A\/eB0. The rel-
evant quantities are expressed in dimensionless units:~1! the
magnetic field B(x)→B0B(x), ~2! the vector potential
A(x)→B0l BA(x), ~3! the coordinatex→ l Bx, and~4! the en-
ergyE→\vcE.

The two-dimensional Schro¨dinger equation
HC(x,y)5EC(x,y) with H given by Eq.~1! in the dimen-
sionless units has solutions of the formC(x,y)
5eiqyc(x), whereE is the total energy of the electron and
q is the electron wave vector in they direction. The wave
function c(x) satisfies the one-dimensional Schro¨dinger
equation with an effective potentialV(x)5@A(x)
1q#2/21g*sBz(x)/2. The last term in the effective poten-
tial is zero everywhere except atx56d/2. It only introduces
a discontinuity in the first derivative of the wave function at
those coordinates. The transmission probability,T(E,q), is
evaluated by the standard procedure outlined in quantum me-
chanics texts and is given by

T~E,q!
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wherek15A2E2q2,k25Au2E2(q1l* )2u and l*5g* l/
2. ForE,q2/2,T(E,q)50. We plot the transmission prob-
ability as a function of the energy of the electron in Fig. 1 for
electrons withq52 andg*50.44 ~the value in GaAs! for
the barrier withl514 andd52. It is clear that the transmis-
sion probability is significantly altered for all values of en-
ergy with the introduction of theS•B interaction. For most
values of energy, the transmission probability is lowered by
theS•B interaction.

The conductance (G) of a tunneling structure can be com-
puted in the ballistic regime as the average electron flow
over half the Fermi surface6 and is given by

G5G0E
2p/2

p/2

T~EF ,A2EFsinf!cosf df, ~3!

whereEF is the Fermi energy andf is the angle between the
direction of the incident electron and thex direction.
G05e2mvFl /\

2, wherevF is the Fermi velocity andl is the
length of the structure in they direction. The conductance
versus Fermi energy plot for electrons withq52 and
g*50.44 for the structure discussed in the previous para-
graph is shown in Fig. 2. The conductance is normalized
with respect toG0. The conductance is found to be less for

FIG. 1. Energy dependence of the transmission probability of an
electron with q52 and g*50.44 through the magnetic barrier
structure withl514 andd52.

FIG. 2. Fermi energy dependence of the conductance (G/G0) of
a device using the magnetic barrier structure withl514 and
d52.

FIG. 3. Energy dependence of the transmission probability of an
electron (g*50.44) through the magnetic barrier structure with
l514 andd50.5 for ~a! q50,(b)q52, and~c! q522.

FIG. 4. Fermi energy dependence of the conductance (G/G0) of
a device using the magnetic barrier structure withl514 and
d50.5.
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both up-spin and down-spin electrons for the case with spin-
magnetic-field interaction than the case without the interac-
tion. This is expected since the transmission probability of
electrons through the barrier is lowered in the presence of the
S•B interaction. It is also interesting to note that the elec-
trons exhibit larger oscillations in conductance.

We now study structures with closely spaced ferromag-
netic stripes ~thin barrier!. We take d50.5, l514 and
g*50.44 for the analysis. The transmission probability for
down-spin electrons is found to be much larger than that of
the up-spin electrons for small electronic energies as de-
picted in Fig. 3 for different values ofq. This difference in
the transmission probability shows up in theG2EF charac-
teristic as shown in Fig. 4. ForEF,3, the conductance of
the down-spin electrons is more than 10 times larger than
that of the up-spin ones. Thus, this structure exhibits spin-

filtering properties for low Fermi energies and filters out
down-spin electrons. It is also found that asd increases, the
ratio of the conductance of the down-spin electrons to that of
the up-spin electrons decreases and thus, the structure loses
its spin-filtering property. For a 2DEG in GaAs,l B5575 Å
and \vc50.34 meV forB050.2 T. Thus, the spin filter
could be realized for structures withd<300 Å and
EF'1.2 meV.

In conclusion, we have shown that the presence of the
interaction of the intrinsic spin of the electron with a mag-
netic field significantly changes the transmission probability
of two-dimensional electrons through magnetic barriers and
the conductance of devices consisting of such barriers. We
have also exhibited the spin-filtering properties of such struc-
tures with thin barriers, i.e., closely placed ferromagnetic
stripes.
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