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Herein we study the effects on Anderson localization of correlations in the energy distribution of the sites of
a tight-binding Hamiltonian. The lattice correlations are introduced by means of classical maps generating
anomalous diffusion, that have recently been found to account for the correlated disorder of ‘‘biological’’
lattices. We show that the enhancement of localization length takes place on a much wider band of energies
than in the case of the random-dimer model if the random walk on the site energies of the tight-binding
Hamiltonian is determined by the joint action of short- and long-range correlations.@S0163-1829~96!08641-9#

It has been over a quarter century since Anderson1 intro-
duced the concept of localization to describe the spatial prop-
erties of an electron wave function on a lattice having ran-
dom potentials in space. In the last few years the attention of
many researchers has focused on the breakdown of this lo-
calization caused by the presence of correlations in the ran-
dom distribution of the Hamiltonian matrix elements. The
standard model is the tight-binding Hamiltonian and the cor-
relations are assumed either between diagonal and off-
diagonal matrix elements2 or among the diagonal ones only,
as in the case of the random-dimer model~RDM! of Dunlap,
Wu, and Philips.3 Heinrichs4 studied three simple types of
correlated, continuously distributed site energies: a random-
dimer model, a random-trimer model, and a random
monomer-dimer model, and he found ‘‘antilocalization’’4 as
well as localization and delocalization.

Further light has been recently shed on the correlation-
induced delocalization of the RDM by Izrailev, Kottos, and
Tsironis5 who established a correspondence between the
RDM and a classical Hamiltonian map, thereby establishing
analytically the existence of transparent states for two values
of the energy.

A different approach to introducing the site correlations
has been followed by other authors.6,7 Crisantiet al.7 use a
master equation method~MEM! and assume that the site
energy is a dichotomous variable with the valuesW and
2W. Further, they assume that the probability for the nearest
neighbor of a given site to keep the same energy as the given
site is e, with e<1, whereas the probability of getting an
energy with the opposite value of the given site is 12e. This
is proven to result in a correlation function for the fluctua-

tions of the site energies to decay exponentially with the
correlation length:L(e)5(2 lnu2e21u)21.

More recently, there has been some interest in quasiperi-
odic lattices, e.g., the Fibonacci lattice8 and the Thue-Morse
lattice.9 In this paper we introduce site correlations by means
of a different kind of lattice model, which we conjecture
might have some relevance for DNA-protein interaction.10 It
has recently been assessed by Allegriniet al.11 that the long-
range correlation in DNA sequences can be satisfactorily ac-
counted for by adopting as a generator of the sequence a
deterministic map recently developed by Leibovitch and
Tóth12 for different purposes. The Leibovitch and To´th map
~LTM ! results in anomalous diffusion and produces the same
kind of long-range correlations as the Geisel-Nierwetberg-
Zacherl map13 ~GNZM! used earlier by Tre´fan et al.14 to
study the deterministic approach to anomalous diffusion.
However the LTM affords the advantage of supplementing
the GNZM long-range properties with a short-range correla-
tion reminiscent of that of the RDM.

The purpose of this paper is to demonstrate the different
roles that short- and long-range correlations have on the pro-
cess of enhancement of the localization lengthl. The argu-
ments are based on the numerical calculations of the
Lyapunov exponents, to determinel as a function of the
energy, in the same form as that recently adopted by
Davids.15 We shall compare the effects produced by the
LTM and GNZM to a conventional random lattice, uncorre-
lated at both short and long ranges, which we shall refer to as
a fully random lattice~FRL!, as well as to the RDM and the
MEM.

To begin, let us write the tight-binding Hamiltonian as
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where for simplicity we assume the condition of nearest-
neighbor interactions and constant couplingV. As far as the
distribution of the site energiesjm is concerned, we assume
it to be generated by the deterministic maps presented below.

The explicit form of the GNZM is given by

yi115 f ~yi !, ~2!

where

f ~y!55
y1ayz for 0<y<d,

y1ayz21 for d,y,1/2,

y112a~12y!z for 1/2<y,12d,

y2a~12y!z for 12d<y<1,

~3!

and d is defined implicitly by means ofd1adz51 and
a52z . The fluctuating variablejm takes the values1W or
2W, whereW defines the noise intensity, and is determined
by

j i5W~@2yi #21!, ~4!

where@•••# denotes the integer value.
The explicit form of the LTM, on the other hand, is given

by

f ~y!5H y1ayz for 0<y<d,

12d2y

122d
for d,y,12d,

y2a~12y!z for 12d<y<1,

~5!

wherea5(122d)12z. The fluctuating variablejm is defined
as in Eq.~4!.

Notice that these maps have been used for a deterministic
approach to diffusion,13,14 which impliesjm is a fluctuating
function of time. In this case both the mappings produce a
diffusive behavior with an increase of the second moment
proportional tot42m wherez[m/(m21). In the forthcom-
ing we shall consider the case withz52→m52, i.e., a su-
perdiffusive case.

In this paper the variable time is replaced by a variable
position, denoting the site of the Hamiltonian chain Eq.~1!.
Thus the time correlations of the fluctuations of the ‘‘veloc-
ity’’ jm here become space correlations among distinct sites.
The waiting time distribution in one of the two states,1W
or 2W, becomes the length distribution of lattice clus-
ters of adjacent sites with the same energy. The main
difference between the GNZM and the LTM is that in
the latter alternating sequences•••W, 2W, W••• or
•••2W,W,2W•••, of any length, are rigorously forbidden,
while in the former they are possible. Of course, these alter-
nating sequences are admitted also by the MEM. In the lan-
guage of the deterministic approach to anomalous diffusion,
the LTM is characterized by the property that the waiting
time in one of the two states must be greater than 1, whereas
both the GNZM and the MEM would admit a
waiting time of 1. With the LTM the minimum waiting
time in one of the states is equal to 2, namely that corre-

sponding to the RDM. Sequences of the type•••W,
W,2W,2W,W,W••• of the same type as those produced by
the RDM, are possible together with sequences of the type
•••W,W,2W,2W,2W,W,W••• and others with still larger
waiting times in one of the two states. It is evident therefore
that in spite of the fact that both the GNZM and the LTM
maps result in the same long-range correlations and in the
same anomalous diffusion, as described in Refs. 11 and 14, a
striking common property, the LTM can be regarded as a
generalization of the RDM, whereas the GNZM is rather a
generalization of the FRL. The MEM shares a property with
both the FRL and GNZM, namely the possibility of produc-
ing the alternating sequences•••W,2W,W or 2W,W,
2W••• . However, the MEM results in a finite correlation
length, and produces an infinite correlation length only in the
limiting case of ordered lattices, whereas both the GNZM
and the LTM result always in sequences with an infinite
correlation length.

As mentioned earlier, to establish the localization length
of the states as a function of energy we adopt the method of
detection of the Lyapunov coefficients in the same form as
that of the recent paper by Davids15. We build up lattices
with 500 000 sites, thereby implying that in the case of the
LTM and GNZM we make these maps run for an equal num-
ber of time steps. Of course, also the random number gen-
erators behind the FRL and the MEM are made to run for the
same number of sites. The results are illustrated in Fig. 1.
Note that in all the figures the horizontal dotted line denotes
the sample size, thereby making it possible to establish visu-
ally when a state with a finite but very large correlation can
be considered as being virtually equivalent to a delocalized
state.

From Fig. 1~b! we see that the RDM is characterized by
two sharp peaks centered around the two infinitely extended
states, whose existence was established with analytical argu-
ments by Izrailev, Kottos and Tsironis.5 However, as the
spectrum departs from the peaks it tends to recover the
behavior corresponding to the FRL. Notice that the RDM
curve predicts localization lengths which on the shoulders
are smaller than those predicted by the FRL, a property remi-
niscent of that discovered by Crisantiet al.7 ~we shall come
back to this aspect later on in this paper!. In conclusion, the
RDM short-range correlation results in two infinitely ex-
tended states surrounded by a region of states with extremely
large but finite values ofl. As earlier noted, states with a
finite value ofl larger than the size of the sample, as far as
the conduction properties are concerned are indistinguishable
from delocalized states. However, from Fig. 1~b! we see that
the band of states withl larger than the sample size, and
thus virtually infinite, is relatively sharp. We see from Fig.
1~c! that also the GNZM produces values ofl larger than
those of the FRL. Furthermore, the band of states with in-
creased localization length is significantly broader than that
produced by the RDM. We notice, however, that the largest
values ofl are still much shorter than the sample size.

Figure 1~d! is devoted to comparing the FRL with the
MEM. It has to be pointed out that ate51/2 the MEM is
equivalent to the FRL. Correlations are created by making
e depart from this value while keeping it within the interval
@0,1#. However, the nature of the correlations produced by
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the regione,1/2 is different from that produced by the re-
gion e.1/2. The limiting case of infinite correlation lengths
in the former region ise50: it corresponds to infinitely ex-
tended alternating sequences and results in a localized state
at E50. In the latter region, on the contrary, the limiting
case of infinitely extended correlations ise51, which corre-
sponds to the regular lattice. In accordance with the observa-
tions made by Crisantiet al.7, we find that in the former case
@see the casee50.2 of Fig. 1~d!# a sort of hole is created at
E50. In the latter case@see the casee50.8 of Fig. 1~d!# the
MEM results in a curve for the localization length as a func-
tion of the energy reminiscent of that of the GNZM of Fig.
1~c!. We notice also that in the region corresponding to the
shoulders of the FRL curve, as mentioned earlier in this note,
the MEM produces values ofl smaller rather than larger
than those of the FRL.

The most interesting result of this note is given by Fig.
1~a!, illustrating the predictions of the LTM. We see that the

LTM establishes states with values ofl which are orders of
magnitude larger than those produced by the FRL. Even re-
markable is the fact that this significant enhancement applies
to a band of states much broader than that produced
by the RDM. We think that the enhancement ofl is
triggered by the short-range correlations, namely by the
fact that, as pointed out earlier, the map of Eq.~5!
rigorously forbids the birth of the alternating sequences:
•••W,2W,W,2W,W,2W••• . On the other hand, the long-
range correlation of the LTM, a property that the LTM
shares with the GNZM, gives the band of virtually transpar-
ent states the same broad structure as that appearing in Fig.
1~c!.

We notice that both the LTM and the GNZM are charac-
terized, for our choicem52, by an infinite ‘‘correlation
time.’’ This means that all the statistical observations made
on a truncated chain imply large fluctuations ofl, and con-
sequently of the Lyapunov coefficient. In the case of the

FIG. 1. The localization length
l as a function of the energyE. In
all the four figures we show for
comparison with the different
cases studied the result of the FRL
prediction.~a! the upper curve de-
notes the prediction of the LTM;
~b! the upper curve denotes the
prediction of the RDM;~c! the up-
per curve denotes the prediction of
the GNZM; ~d! the predictions of
the MEM. Note that the curve
e50.5 coincides with the predic-
tions of the FRL.
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LTM @Fig. 1~a!# these fluctuations are much stronger than in
the case of the GNZM@Fig. 1~c!# because the enhancement
of the localization length provoked by the lack of alternating
sequences make them comparable to the finite size of the
sample. Thus the large fluctuations exceeding the size of the
sample in Fig. 1~a! are probably a numerical artifact pro-
voked by the limited statistics available: in the energy region
where the enhancement ofl is very large a reliable conver-
gence of the Lyapunov coefficients to the correct value is not
even allowed by a sample with 500 000 sites. However, we
trust the indication afforded by the numerical calculation,
that the values ofl are comparable to the size of the sample.

We stress that we have made numerical checks to assess
the effects of abolishing the alternating sequences. In fact the
two mappings, Eqs.~3! and ~5!, produce two realizations of
the j i sequences which mainly differ on the short-range
scale, while both sequences have the same long-range
power-law correlation. This can be quantified studying the
the mean ‘‘laminar region’’L, namely the mean length of
site sequences carrying the same value~either 1W or
2W). Note that the valueL is determined by the map pa-
rameters of Eqs.~3! and ~5! ~Refs. 11–14! or, in ourm52
case, fixed by the finite length of the sample used. The nu-
merical calculations are made with the LTM resulting in a
value for L much larger than that yielded by the GNZM
thereby giving the impresssion that the localization length
enhancement might be essentially provoked by the increase
of this parameter. However, this is not the case. This is
proved by changing the parameterd in such a way as to get
values ofL as small as to that corresponding to the GNZM
case illustrated in Fig. 1~c!, and still forbidding the birth of
alternating sequences. We have proved that changingL of
about one order of magnitude does not modify the LTM
prediction: the upper curve of Fig. 1~a! remains esssentially
unchanged in the scale of this figure. This shows that the
enhancement of about one order of magnitude obtained by
replacing the GNZM of Fig. 1~c! with the LTM of Fig. 1~a!
is mainly due to the fact that the LTM is incompatible with
the presence of alternating sequences.

In conclusion, on the basis of our numerical results we are
now in a position to establish that the long-range correlations
produce a significant increase ofl over a broadband of en-

ergy values. The MEM in the region ofe leading to the birth
of alternating sequences seems to be an exception to this
rule. However, by adopting the language of the deterministic
approach to diffusion14 we remark that a process favoring the
birth of alternating sequences would lead to subdiffusion
rather than superdiffusion, if any deviation from standard
diffusion could be detected. This means an anomalous diffu-
sion slower than Brownian diffusion, rather than faster. We
restrict our attention to the case of anomalous diffusion co-
responding to processes faster than ordinary Brownian mo-
tion. We notice also that the long-range correlation of the
MEM for e50.8 produce a result similar to that of the cor-
relations with infinite correlation length of the GNZM. Thus,
we are led to establish this empirical rule: if the correlation
function of j does not have any oscillation leading to nega-
tive values, and its decay is so slow as to lead to either a very
large or an infinite correlation length, a broad band of eigen-
states with an enhanced value ofl is produced. However,
this long-range correlation effect by itself would not be so
efficient in creating states with exceptionally large values of
l. States with very large values ofl actually are created by
short-range properties similar to those of the RDM, where
the minimum ‘‘waiting time’’ is 2. The short-range correla-
tion mechanism, excluding totally the possibility of alternat-
ing sequences of any length, brings into existence bands of
states with values ofl comparable to the sample size. Then
the long-range correlations have the further and significant
effect of broadening these bands.

This interesting property is made especially transparent
by comparing Fig. 1~b!, corresponding to the prediction of
the RDM, with Fig. 1~a!, illustrating the effects produced by
the LTM and the main result of this paper. We see that the
RDM, as widely discussed in the earlier work of other
groups,2,3,5 produces a sharp band of states with values of
l comparable to the sample size, and consequently physi-
cally indistinguishable from the states with infinite localiza-
tion length. The LTM makes this band of states significantly
broader.
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