PHYSICAL REVIEW B VOLUME 54, NUMBER 17 1 NOVEMBER 1996-I

Effect of tunneling disorder on the low-temperature heat capacities
of ®He and “He in zeolite channels
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In an earlier work, interacting helium atoms confined in${dé& zeolite cages at low concentrations and low
temperatures were assumed to tunnel between equivalent sites located near the cage wall. The corresponding
Bose-Hubbardfor “He) and Mott-Hubbardfor He) models yield heat capacities in reasonable agreement
with experiments except at very low temperatures. Here we study the effect of disorder by extending the model
by taking a random distribution of tunneling parameters, computing the energies and averaging the heat
capacity using different probability distributions. This approach to a quantitative evaluation of the effects of
disorder on the lowF heat-capacity yields results in much better agreement with experiment.
[S0163-182696)03941-7

[. INTRODUCTION randomly replaced by aluminum ions and Kons not lo-
cated near the cage wall are also randomly distributed inside
Experiments have been performed to study the thermahe silicate framework. This random distribution of the ions
properties of helium atoms imbibed inko-L zeolite at low can give rise to disorder in the physical parameters of the
temperature$.The microporous medium d¢€-L zeolite con- Hubbard-type models describing the excitations of the He
sists of open cylindrical aluminum-silicate cages arrangedystem, namely the single-site binding energy, intersite tun-
periodically and connected by smaller cylindrical tubes. Theheling matrix elementgalso called hopping parametgrstc.
potassium ions close to the cage wall, together with the siliconsequently the low-temperature heat capacity will be af-

cate framework, produce potentials which bind helium atomd€ctéd by the disorder. In this paper, we extend the earlier
at sites located near the wall. These binding sites are ar- odef by introducing the effects of disorder, treating the

ranged in a ring geometry inside the cage. In a typical hea —nga'lng Eg;?@:tzr;tasoﬁﬁgoﬁg \éagf‘e%eis?gd gi(f)fg%l:]ttm%gg_e
capacity measurement, one determines the average number. . ge heat capacity Y 9 P
apility distributions.

(m of.thehur?Hatom}E'er Zeo“;e catl_ge arfu;i measutre; ]Ehe he(.a\ The presence of disorder, as noted in the previous Work,
capacities ofrie and He as a function ot temperatutietor ¢ expected to improve agreement of the computed results
different values ofn). When the numberr() of He atoms iy experiment. This is so because the system without dis-
per cage is less than a critical number, sy the He atoms  ,rqer has low-lying energy levels which are discrétae to
remain mostly confined within a particular cage at low tem-he small sizpand separated from one another. Suppose the
peratures with an extremely small probability of moving |gwest energy gap id. Then, the heat capacity of the system
from one cage to anothéf However, such atoms can tunnel must exhibit a Schottky-type anomdlyfeading to an expo-
from one binding site to another on the ring sites inside aentially decreasing heat capacity at temperatilirea /K .
particular cage and are said to exist in the “cage stat®s.” In the present case, the discrete energy levels of the system
When n exceedsn,, or for sufficiently high temperatures calculated in the earlier wotkead toA/kg greater than 5 K.
(even whem<n.), some of the He atoms can overcome theHence one gets vanishingly small heat capacity at tempera-
barrier for intercage motion and move between cages. Sudres below 0.5 K. In the presence of disorder the low-lying
states of motion are called the “channel stateés>’The excitation spectrum is drastically modified and there is an
present investigation is concerned with the heat capacity dhcrease in the density of low-energy excitations arising pri-
the He atoms occupying the cage states. marily from the region of smaller hopping parameters. This
In our earlier worlk® we had argued that the excitation of results in an enhancement of the heat capacity at low tem-
He system within the manifold of the “cage stategfor  peratures when a proper averaging over the various disorder
n<n,) can be described by Bose-Hubbéfor “He) or Mott-  states is performed.
Hubbard (for *He) model with binding sites localized on a A model of disorder which was proposed to explain the
ring. Physically, the K ions located close to the cage walls enhanced heat capacities seen in disordered solids at low
and the silicate network provide the potential in which thetemperature is specially relevant to the present work. This
He atoms are bound. But the Kions are not necessarily rather simple model by Kaplan, Mahanti, and Hartmann
situated symmetrically around the ring. As a matter of fact,(KMH)® within the context of standard Hubbard model has
there are six equivalent sites available for thé iins and a  three characteristic parameters; single-site enégyunnel-
maximum of only four K ions are available per cage to ing matrix element t), and intrasite Coulomb interaction
occupy these sites randomly. In addition there is disorder ifU). In the KMH model, the single-site energi€g) are
the silicate framework because some of the silicon ions arassumed to be randon=0, U=const. For a continuous
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distribution of ¢ one obtains a heat capacity linearTnat Npm Nm
low T. In the context of Hubbard-type models, our present Hgsp= —tE (chciq1+ H.c.)+V2 nniy., (1
model is arextensiorof the KMH model taking into account =1 =1

a finite buF random, constantg , U=, and a finite intersite |, 1.0 ot is the hopping parametéenergy, V is the attractive
Coulomb mteractlorv_. In '.the most general case, all the pa- energy between atoms occupying neighboring sites, ")
rameters of the Hamiltonian can be random. is particle destructior(creation operator at the sité, and
Although mathematically our present model is an exteny.(=c;"c;) is the number operator. In the case of bosons
sion of the KMH modeP, physically it is much closer to the (B), one uses the commutation rules fgrand c;” while
one proposed by Anderson, Halperin, and VarA&iV)®  anticommutation rules are imposed in the case of spinless
and by Phillips’ This model was proposed to explain the fermions(SP. The single-site energies have been assumed to
observed low-temperature specific heat varying linearly withbe the same and define the zero of the energy scale. Com-
T in a variety of insulating glasses. The essence of the modgluting the energy spectrum for the Hamiltonian of EL),
is the hypothesis that in any glass system there should beane can find the partition function and the heat capacity
certain number of atom@r group of atomgwhich can oc- C(n,T) for n=<N,,, andn=n, atoms tunnelling on the ring
cupy one of several equivalent equilibrium positions. Theat temperaturd’.
thermal excitation between the associated localized “tunnel- It is practically impossible to introduce exactly the same
ing levels” leads to a Schottky-type heat capacity with anumbern of He atoms in all the zeolite cages. In fact, the
characteristic energp. A statistical distributionP(A) with ~ sample is heated as the He atoms are introduced and then
finite P(A=0) of these localized tunneling level&TL's),  quenched at a temperatufg which is of the order of 20 K
also referred to as two-level systems, gives a linear heat cdd the experiments of Katet al* The heat-capacity mea-
pacity at lowT. Although this model describes the correct surements are however done at a much lower temperature
physics of the observed large Ioivheat capacity in insulat- denoted byT, in the range of 0—2 K. At the quenching tem-
ing glasses, a microscopic picture of these LTL's in disor-perature there is a fluctuation in the number of atoms from
dered systems is not easy to come’lur model of helium ©0ne cage to another. Due to the lack of intercage thermal
atoms trapped inside zeolitic cages with random tunnelingquilibration at lower temperatures where the heat capacity is
matrix elements indeed gives a microscopic picture of thes@easured, we assume that the distribution & determined
LTL’s. by the quench temperaturg,. We define the distribution
It is in general quite difficult to compute thermodynamic function P(n, Ty, ) for a cage to haven atoms at a tem-
quantities by introducing disorder in the Hamiltonian andperatureTy and a given chemical potential If the system is
then averaging over the disorder. The ring geometry with d1¢ated and thequenched at temperature, Tthen the aver-
small number of sites in the present problem leads to somage number of particles per cage is
simplifications, but even then, the computations are quite
involved. Therefore, only some calculations illustrating the m
important trends at low temperatures are presented below. (n)y= Z nP(Nn,To,u). 2
Nevertheless, the numerical evaluation of the effect of disor- =t

der by introducing randomness and computation of the avefrhys (n) is independent of the temperattifeat which the
age heat capacities is an important feature of the presepleat capacity is measured. The heat capacity at temperature

paper is to show the improvements in the computed lowgiven by

temperature specific heat by including disorder rather than

N

fitting the experimental results exactly. Npp
The essential details of the model used in the previous C(p,T)=2, C(n,T)P(n, Ty, u). 3
work?® are briefly described in the next section and the model n=1

Hamiltonian is generalized in the presence of disorder in. o
Sec. lIl. Results for the computed heat capacities are pre=liminating u (which is just a parameter ngwetween Egs.

sented in the last section followed by a brief discussion. (2) and(3), one obtainsC((n),T). Note that we have used
P(n,Ty,u), not P(n,T,w), in calculating the heat capacity

at temperaturel. This takes into account the fact that the
number fluctuations from cage to cage and the average num-
ber of He atoms per cage is determined by the quench tem-
The Mott-Hubbard and Bose-Hubbard models developegeratureT,. The above equations were used to obtain the
for *He and*He, respectively, confined inside zeolite cagesresults given in the earlier workComparison with experi-
have been described in detail in the previous publication.ment showed fair agreement at temperatures above 1 K. But
For reasons described earlfewe ignore the spin states of at low temperatures, the computed heat capacities were con-
®He and treat it as spinless fermiof®F). “He is of course a siderably smaller than the experimental results. Also, the
boson B). The system is described biN{,,n) wheren is  computed heat capacity vanished arodie0.25 K whereas
the number of He atoms and there &g sites(=n) on a  the experimental results were nonzero down to afcu0.1
ring where the He atoms can sit. In the Hubbard model withK. Since the computed results reflected the Schottky-type
very strong intrasite repulsiofvery strong repulsion when anomaly, it was clear that important contributions at low
two atoms occupy the same binding site)=«, and the temperatures would come from the effects of disorder fol-
Hamiltonian(for both B and SH can be written as lowing the ideas of AH\2

Il. THE MODEL WITHOUT DISORDER
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FIG. 1. Heat capacity vs temperature for differén}, the av- ) _ _
erage concentration GHe atoms, treated as spinless fermions. The ~ FIG. 2. Heat capacity vs average helium atom concentrgtipn
solid, broken, and dotted lines are the results of our calculations fofor fixed temperatures fofHe (treated as spinless fermionghe
(ny=6.7, 3.3, 1.7, respectively, and the corresponding experimenta3olid, broken, and dotted lines are the results of our calculations for
results are shown as open circles, crosses, and diaméads  T=0.6, 1.0, and 1.4 K, respectively, and the corresponding experi-
without disorder and the parameter values tare-14 K, V=—24 mental results are shown as open circles, crosses, and open dia-
K. (b) is with disorder, and the parameter values gre—17 K, monds.(a) corresponds to no disorder with parameter valtres
V=-24K, ando=7 K. —14 K, V=-24 K. (b) includes disorder with parameter values

to=—17 K, V=-24 K, ando=7 K.

IIl. THE MODEL WITH DISORDER In Eq. (5), the thermal averagingeP) is done with the help

of the exact partition function.

Disorder in the system can arise due to various reasons. Next, one must perform the configurational averaging for
One reason could be the random occupation ofiéh sites  disorder. Letf(t; o) be the distribution function for the ran-
by the ions. Distortions, imperfections, etc. would give risedom variablet; with o denoting its width. We have chosen
to additional disorder. In terms of the Hamiltonian, there canGaussian distributions for the random tunneling parameters:
be randomness in the single-site enerdishich were as-  f(t; ,0)=o7 exd —(t;—t,)%/0?]. These distributions are
sumed to be zero in Eq1)], tunneling parameter, and the ~ symmetric around; =t,. We have also used a uniform dis-
attractive potentiald/. For simplicity, we consider only the tribution in our calculations. The heat capacity for the ca-
disorder in the tunneling parameters in the present papeRonical ensemble may be configurationally averaged over the
Then, the Hubbard Hamiltonian may be written as disorder as follows:

+ + o
Nm Nm C(n,T):J' “'f C(n,T,tl"‘tg)
HB(SF):_E ti(CrCi+1+H-C-)+VE NiNiz1, (4
=1 =1 X f(ty,0) - f(tg,o)dt; - -dtg, (6)

where the tunneling parameters are random numbers whic-RS;3 dlrnz;teugrrean'l(')r?isls ?Virgotrr:gegis%n;ggagze% u(fénﬁegf‘gssfgt
may follow some distribution functiof(t; .o), with o de- ?or a fixedvalue ogfjn i.e., for a canonical engemble Pasty
fining some kind of “Wldth”'fOI’ the distribution. Note that To obtain the heat éépacity as a function (of rather

the number operatar; has_ elgenvalu_es of 0_or 1 n th_e Ca5€ than a fixedn, we need an appropriate grand canonical en-
.Of .b(.)th .‘3050’?5@ and _splnless fermionSH in the I_|m|t of semble distribution function for the disordered system. We
mﬁmte Intrasite repulsior(U ==). The heat capacity for a have to generalize the distribution functi®{n, Ty, ), de-
given set ofit;, i=1,....8 can be obtained by fined in Sec. Il, to the disordered case. Let this function be
P(n, Ty, {t;}). One obtaingn) and C(u,T) as functions
C(n, TitH=(E?—(E)?)/kgT?. (5)  of u after replacingP(n, Ty, 1) by P(n, Ty, u,{t;}) in Egs.
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(2) and(3), and integrating over the distribution functions for tribution of t, one expects to see smaller energy gaps and
ti’s as in Eq.(6) above. Eliminatingu between(n) and hence an increased heat capacity at Ibw

C(u,T) givesC({n),T) for the disordered system. Although  Next we present the numerical results for the eight-site
straightforward, in principle, this is an extremely involved system. Since in Ref. 3 we concentrated on the spinless
procedure in practice. We have made a simplifying assumpfermion model we will discuss in detail the effects of disor-
tion where  we replace P(n,Tg,u.{ti}) by  der for this system. Although we have carried out numerical
P(n,To,u.{ti=to,Vi}) which corresponds to the distribu- calculations with both uniform and Gaussian distributions it
tion function for a system without disordémean ensemble  suffices to discuss results for the latter case only because the
and with all tunneling matrix elements equaltto We have qualitative results are similar for both the distributions. We
tested the adequacy of this approximation in a few cases arkept the intersite attraction parametéto be the same as in
find it to be reasonable. Physically this implies that the effecthe nondisordered case and varied the mean value of the
of disorder on number fluctuation is much less compared téunneling parametetr; and the width of the Gaussian distri-
that on the low-energy thermal excitations and hence the hedution o to get an optimal fit with experiment for different

capacity for fixedn. values of(n) and T. The parameter values for which we
present our results atg=—17 K, V=-24 K, ando=7 K.
IV. RESULTS AND DISCUSSIONS The ratio of the disorder parameter to the mean band width is

) ) ] about 0.2 which looks quite reasonable. Figure 1 gives the

Before presenting our results for the eight-site system apresyits of temperature dependence of the heat capacity for
propriate to the He atoms inside-L _zeollte let us dl_scuss a specific values ofn) without [Fig. 1(a)] and with[Fig. 1(b)]
simpler system consisting of four sites and two spinfé#s gisorder. As we can see, the effect of disorder isbance
atoms. This will help us elucidate the nature of the tunnelingne |ow-T heat capacity. Figure 2 gives the results(af
states in this system. In t_he absence of tunne(tre)), gnd dependence of the heat capacity withfFig. 2(@] and with
V=-24 K as estimated in Ref. 3, the ground state is four{rig. 2(b)] disorder. Agreement with experiment for values
fold degenerate corresponding to bound pairs with two He (n) less than 6 is quite good but there is a large discrep-
atoms occupying the pairs of ring sitels2), (2,3), (3,4, and  ancy between our calculations and the experiment( for
(4,1). The excited state is twofold degenerate correspondingyrger than 6. We do not understand the reason for this rather
to the unbound pair¢l,3) and (2,4). The energy splitting |arge discrepancy. In summary, the effect of including disor-
between the ground and the excited state is 24 K, quite larg@jer clearly improves the agreement with experiment al-
The energy is measured in units of the Boltzmann constarthough detailed quantitative agreement is still lacking. We
kg. In the presence of nonzeto the ground-state degen- nhaye carried out similar calculations for the Bose system and

eracy is lifted partially. The spectrum now consists of threey|sg find dramatic improvement vis-a-vis experiment at very
doublets which, fot=-7 K, have energies-30.44, -24,  |ow temperatures.

and +6.4 K, respectively. The lowest energy gap reduces

dramatically from 24 to 6.44 K. One can physically think of

this spllttl_ng as_resultmg from tunn_elmg of a bound pair from ACKNOWLEDGMENTS
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