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In an earlier work, interacting helium atoms confined insideK-L zeolite cages at low concentrations and low
temperatures were assumed to tunnel between equivalent sites located near the cage wall. The corresponding
Bose-Hubbard~for 4He! and Mott-Hubbard~for 3He! models yield heat capacities in reasonable agreement
with experiments except at very low temperatures. Here we study the effect of disorder by extending the model
by taking a random distribution of tunneling parameters, computing the energies and averaging the heat
capacity using different probability distributions. This approach to a quantitative evaluation of the effects of
disorder on the low-T heat-capacity yields results in much better agreement with experiment.
@S0163-1829~96!03941-0#

I. INTRODUCTION

Experiments have been performed to study the thermal
properties of helium atoms imbibed intoK-L zeolite at low
temperatures.1 The microporous medium ofK-L zeolite con-
sists of open cylindrical aluminum-silicate cages arranged
periodically and connected by smaller cylindrical tubes. The
potassium ions close to the cage wall, together with the sili-
cate framework, produce potentials which bind helium atoms
at sites located near the wall. These binding sites are ar-
ranged in a ring geometry inside the cage. In a typical heat-
capacity measurement, one determines the average number
^n& of helium atoms per zeolite cage and measures the heat
capacities of3He and4He as a function of temperatureT for
different values of̂ n&. When the number (n) of He atoms
per cage is less than a critical number, saync , the He atoms
remain mostly confined within a particular cage at low tem-
peratures with an extremely small probability of moving
from one cage to another.1,2 However, such atoms can tunnel
from one binding site to another on the ring sites inside a
particular cage and are said to exist in the ‘‘cage states.’’3

When n exceedsnc , or for sufficiently high temperatures
~even whenn,nc!, some of the He atoms can overcome the
barrier for intercage motion and move between cages. Such
states of motion are called the ‘‘channel states.’’2,3 The
present investigation is concerned with the heat capacity of
the He atoms occupying the cage states.

In our earlier work,3 we had argued that the excitation of
He system within the manifold of the ‘‘cage states’’~for
n,nc! can be described by Bose-Hubbard~for 4He! or Mott-
Hubbard~for 3He! model with binding sites localized on a
ring. Physically, the K1 ions located close to the cage walls
and the silicate network provide the potential in which the
He atoms are bound. But the K1 ions are not necessarily
situated symmetrically around the ring. As a matter of fact,
there are six equivalent sites available for the K1 ions and a
maximum of only four K1 ions are available per cage to
occupy these sites randomly. In addition there is disorder in
the silicate framework because some of the silicon ions are

randomly replaced by aluminum ions and K1 ions not lo-
cated near the cage wall are also randomly distributed inside
the silicate framework. This random distribution of the ions
can give rise to disorder in the physical parameters of the
Hubbard-type models describing the excitations of the He
system, namely the single-site binding energy, intersite tun-
neling matrix elements~also called hopping parameters!, etc.
Consequently the low-temperature heat capacity will be af-
fected by the disorder. In this paper, we extend the earlier
model3 by introducing the effects of disorder, treating the
hopping parameters as random variables and computing the
average heat capacity of the He system using different prob-
ability distributions.

The presence of disorder, as noted in the previous work,3

is expected to improve agreement of the computed results
with experiment. This is so because the system without dis-
order has low-lying energy levels which are discrete~due to
the small size! and separated from one another. Suppose the
lowest energy gap isD. Then, the heat capacity of the system
must exhibit a Schottky-type anomaly,4 leading to an expo-
nentially decreasing heat capacity at temperaturesT!D/kB .
In the present case, the discrete energy levels of the system
calculated in the earlier work3 lead toD/kB greater than 5 K.
Hence one gets vanishingly small heat capacity at tempera-
tures below 0.5 K. In the presence of disorder the low-lying
excitation spectrum is drastically modified and there is an
increase in the density of low-energy excitations arising pri-
marily from the region of smaller hopping parameters. This
results in an enhancement of the heat capacity at low tem-
peratures when a proper averaging over the various disorder
states is performed.

A model of disorder which was proposed to explain the
enhanced heat capacities seen in disordered solids at low
temperature is specially relevant to the present work. This
rather simple model by Kaplan, Mahanti, and Hartmann
~KMH !5 within the context of standard Hubbard model has
three characteristic parameters; single-site energy~e!, tunnel-
ing matrix element (t), and intrasite Coulomb interaction
(U). In the KMH model, the single-site energies~ei! are
assumed to be random,t50, U5const. For a continuous
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distribution of ei one obtains a heat capacity linear inT at
low T. In the context of Hubbard-type models, our present
model is anextensionof the KMH model taking into account
a finite but randomt, constantei , U5`, and a finite intersite
Coulomb interactionV. In the most general case, all the pa-
rameters of the Hamiltonian can be random.

Although mathematically our present model is an exten-
sion of the KMH model,5 physically it is much closer to the
one proposed by Anderson, Halperin, and Varma~AHV !6

and by Phillips.7 This model was proposed to explain the
observed low-temperature specific heat varying linearly with
T in a variety of insulating glasses. The essence of the model
is the hypothesis that in any glass system there should be a
certain number of atoms~or group of atoms! which can oc-
cupy one of several equivalent equilibrium positions. The
thermal excitation between the associated localized ‘‘tunnel-
ing levels’’ leads to a Schottky-type heat capacity with a
characteristic energyD. A statistical distributionP~D! with
finite P~D50! of these localized tunneling levels~LTL’s !,
also referred to as two-level systems, gives a linear heat ca-
pacity at lowT. Although this model describes the correct
physics of the observed large low-T heat capacity in insulat-
ing glasses, a microscopic picture of these LTL’s in disor-
dered systems is not easy to come by.8 Our model of helium
atoms trapped inside zeolitic cages with random tunneling
matrix elements indeed gives a microscopic picture of these
LTL’s.

It is in general quite difficult to compute thermodynamic
quantities by introducing disorder in the Hamiltonian and
then averaging over the disorder. The ring geometry with a
small number of sites in the present problem leads to some
simplifications, but even then, the computations are quite
involved. Therefore, only some calculations illustrating the
important trends at low temperatures are presented below.
Nevertheless, the numerical evaluation of the effect of disor-
der by introducing randomness and computation of the aver-
age heat capacities is an important feature of the present
work. It must be emphasized that the goal of the present
paper is to show the improvements in the computed low-
temperature specific heat by including disorder rather than
fitting the experimental results exactly.

The essential details of the model used in the previous
work3 are briefly described in the next section and the model
Hamiltonian is generalized in the presence of disorder in
Sec. III. Results for the computed heat capacities are pre-
sented in the last section followed by a brief discussion.

II. THE MODEL WITHOUT DISORDER

The Mott-Hubbard and Bose-Hubbard models developed
for 3He and4He, respectively, confined inside zeolite cages
have been described in detail in the previous publication.3

For reasons described earlier,3 we ignore the spin states of
3He and treat it as spinless fermions~SF!. 4He is of course a
boson (B). The system is described by (Nm ,n) wheren is
the number of He atoms and there areNm sites ~>n! on a
ring where the He atoms can sit. In the Hubbard model with
very strong intrasite repulsion~very strong repulsion when
two atoms occupy the same binding site!, U5`, and the
Hamiltonian~for bothB and SF! can be written as

HB~SF!52t(
i51

Nm

~ci
1ci111H.c.!1V(

i51

Nm

nini11 , ~1!

wheret is the hopping parameter~energy!, V is the attractive
energy between atoms occupying neighboring sites,ci(c i

1)
is particle destruction~creation! operator at the sitei , and
ni(5c i

1ci) is the number operator. In the case of bosons
(B), one uses the commutation rules forci and c i

1 while
anticommutation rules are imposed in the case of spinless
fermions~SF!. The single-site energies have been assumed to
be the same and define the zero of the energy scale. Com-
puting the energy spectrum for the Hamiltonian of Eq.~1!,
one can find the partition function and the heat capacity
C(n,T) for n<Nm , andn>nc atoms tunnelling on the ring
at temperatureT.

It is practically impossible to introduce exactly the same
numbern of He atoms in all the zeolite cages. In fact, the
sample is heated as the He atoms are introduced and then
quenched at a temperatureT0 which is of the order of 20 K
in the experiments of Katoet al.1 The heat-capacity mea-
surements are however done at a much lower temperature
denoted byT, in the range of 0–2 K. At the quenching tem-
perature there is a fluctuation in the number of atoms from
one cage to another. Due to the lack of intercage thermal
equilibration at lower temperatures where the heat capacity is
measured, we assume that the distribution ofn is determined
by the quench temperatureT0. We define the distribution
function P(n,T0 ,m) for a cage to haven atoms at a tem-
peratureT0 and a given chemical potentialm. If the system is
heated and thenquenched at temperature T0, then the aver-
age number of particles per cage is

^n&5 (
n51

Nm

nP~n,T0 ,m!. ~2!

Thus,^n& is independent of the temperatureT at which the
heat capacity is measured. The heat capacity at temperature
T corresponding to the number distributionP(n,T0 ,m) is
given by

C~m,T!5 (
n51

Nm

C~n,T!P~n,T0 ,m!. ~3!

Eliminatingm ~which is just a parameter now! between Eqs.
~2! and ~3!, one obtainsC(^n&,T). Note that we have used
P(n,T0 ,m), not P(n,T,m), in calculating the heat capacity
at temperatureT. This takes into account the fact that the
number fluctuations from cage to cage and the average num-
ber of He atoms per cage is determined by the quench tem-
peratureT0. The above equations were used to obtain the
results given in the earlier work.3 Comparison with experi-
ment showed fair agreement at temperatures above 1 K. But
at low temperatures, the computed heat capacities were con-
siderably smaller than the experimental results. Also, the
computed heat capacity vanished aroundT50.25 K whereas
the experimental results were nonzero down to aboutT50.1
K. Since the computed results reflected the Schottky-type
anomaly, it was clear that important contributions at low
temperatures would come from the effects of disorder fol-
lowing the ideas of AHV.6
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III. THE MODEL WITH DISORDER

Disorder in the system can arise due to various reasons.
One reason could be the random occupation of K1 ion sites
by the ions. Distortions, imperfections, etc. would give rise
to additional disorder. In terms of the Hamiltonian, there can
be randomness in the single-site energies@which were as-
sumed to be zero in Eq.~1!#, tunneling parametert, and the
attractive potentialsV. For simplicity, we consider only the
disorder in the tunneling parameters in the present paper.
Then, the Hubbard Hamiltonian may be written as

HB~SF!52(
i51

Nm

ti~ci
1ci111H.c.!1V(

i51

Nm

nini11 , ~4!

where the tunneling parameters are random numbers which
may follow some distribution functionf (t i ,s), with s de-
fining some kind of ‘‘width’’ for the distribution. Note that
the number operatorni has eigenvalues of 0 or 1 in the case
of both bosons (B) and spinless fermions~SF! in the limit of
infinite intrasite repulsion~U5`!. The heat capacity for a
given set of$t i , i51, . . . ,8% can be obtained by

C~n,T,$t i%!5~^E2&2^E&2!/kBT
2. ~5!

In Eq. ~5!, the thermal averaginĝEp& is done with the help
of the exact partition function.

Next, one must perform the configurational averaging for
disorder. Letf (t i ,s) be the distribution function for the ran-
dom variablet i with s denoting its width. We have chosen
Gaussian distributions for the random tunneling parameters:
f (t i ,s)5sAp exp@2(t i2t0)

2/s2#. These distributions are
symmetric aroundt i5t0 . We have also used a uniform dis-
tribution in our calculations. The heat capacity for the ca-
nonical ensemble may be configurationally averaged over the
disorder as follows:

C~n,T!5E
2`

1`

•••E
2`

1`

C~n,T,t1•••t8!

3 f ~ t1 ,s!••• f ~ t8 ,s!dt1•••dt8 , ~6!

The integration is performed numerically by using Gaussian
quadrature. This gives the disordered averaged heat capacity
for a fixedvalue ofn, i.e., for a canonical ensemble.

To obtain the heat capacity as a function of^n& rather
than a fixedn, we need an appropriate grand canonical en-
semble distribution function for the disordered system. We
have to generalize the distribution functionP(n,T0 ,m), de-
fined in Sec. II, to the disordered case. Let this function be
P(n,T0 ,m,$t i%). One obtainŝ n& andC(m,T) as functions
of m after replacingP(n,T0 ,m) by P(n,T0 ,m,$t i%) in Eqs.

FIG. 1. Heat capacity vs temperature for different^n&, the av-
erage concentration of3He atoms, treated as spinless fermions. The
solid, broken, and dotted lines are the results of our calculations for
^n&56.7, 3.3, 1.7, respectively, and the corresponding experimental
results are shown as open circles, crosses, and diamonds.~a! is
without disorder and the parameter values aret5214 K, V5224
K. ~b! is with disorder, and the parameter values aret05217 K,
V5224 K, ands57 K.

FIG. 2. Heat capacity vs average helium atom concentration^n&
for fixed temperatures for3He ~treated as spinless fermions!. The
solid, broken, and dotted lines are the results of our calculations for
T50.6, 1.0, and 1.4 K, respectively, and the corresponding experi-
mental results are shown as open circles, crosses, and open dia-
monds.~a! corresponds to no disorder with parameter valuest5
214 K, V5224 K. ~b! includes disorder with parameter values
t05217 K, V5224 K, ands57 K.
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~2! and~3!, and integrating over the distribution functions for
t i ’s as in Eq. ~6! above. Eliminatingm between^n& and
C(m,T) givesC(^n&,T) for the disordered system. Although
straightforward, in principle, this is an extremely involved
procedure in practice. We have made a simplifying assump-
tion where we replace P(n,T0 ,m,$t i%) by
P(n,T0 ,m,$t i5t0 ,; i %) which corresponds to the distribu-
tion function for a system without disorder~mean ensemble!
and with all tunneling matrix elements equal tot0. We have
tested the adequacy of this approximation in a few cases and
find it to be reasonable. Physically this implies that the effect
of disorder on number fluctuation is much less compared to
that on the low-energy thermal excitations and hence the heat
capacity for fixedn.

IV. RESULTS AND DISCUSSIONS

Before presenting our results for the eight-site system ap-
propriate to the He atoms insideK-L zeolite let us discuss a
simpler system consisting of four sites and two spinless3He
atoms. This will help us elucidate the nature of the tunneling
states in this system. In the absence of tunneling~t50!, and
V5224 K as estimated in Ref. 3, the ground state is four-
fold degenerate corresponding to bound pairs with two He
atoms occupying the pairs of ring sites~1,2!, ~2,3!, ~3,4!, and
~4,1!. The excited state is twofold degenerate corresponding
to the unbound pairs~1,3! and ~2,4!. The energy splitting
between the ground and the excited state is 24 K, quite large.
The energy is measured in units of the Boltzmann constant
kB . In the presence of nonzerot, the ground-state degen-
eracy is lifted partially. The spectrum now consists of three
doublets which, fort527 K, have energies230.44,224,
and 16.4 K, respectively. The lowest energy gap reduces
dramatically from 24 to 6.44 K. One can physically think of
this splitting as resulting from tunneling of a bound pair from
one configuration to another. This lowest energy gap de-
pends ont in a nonlinear fashion. For example, the three
values of the gap corresponding tot527, 214, and220 K
are, respectively, 6.44, 18.46, and 29.76 K. Thus for a dis-

tribution of t, one expects to see smaller energy gaps and
hence an increased heat capacity at lowT.

Next we present the numerical results for the eight-site
system. Since in Ref. 3 we concentrated on the spinless
fermion model we will discuss in detail the effects of disor-
der for this system. Although we have carried out numerical
calculations with both uniform and Gaussian distributions it
suffices to discuss results for the latter case only because the
qualitative results are similar for both the distributions. We
kept the intersite attraction parameterV to be the same as in
the nondisordered case and varied the mean value of the
tunneling parametert0 and the width of the Gaussian distri-
bution s to get an optimal fit with experiment for different
values of ^n& and T. The parameter values for which we
present our results aret05217 K, V5224 K, ands57 K.
The ratio of the disorder parameter to the mean band width is
about 0.2 which looks quite reasonable. Figure 1 gives the
results of temperature dependence of the heat capacity for
specific values of̂n& without @Fig. 1~a!# and with@Fig. 1~b!#
disorder. As we can see, the effect of disorder is toenhance
the low-T heat capacity. Figure 2 gives the results of^n&
dependence of the heat capacity without@Fig. 2~a!# and with
@Fig. 2~b!# disorder. Agreement with experiment for values
of ^n& less than 6 is quite good but there is a large discrep-
ancy between our calculations and the experiment for^n&
larger than 6. We do not understand the reason for this rather
large discrepancy. In summary, the effect of including disor-
der clearly improves the agreement with experiment al-
though detailed quantitative agreement is still lacking. We
have carried out similar calculations for the Bose system and
also find dramatic improvement vis-a-vis experiment at very
low temperatures.
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