Spontaneous behavior and magnetic field and pressure effects on La_{2/3}Ca_{1/3}MnO₃ perovskite

J. M. De Teresa, M. R. Ibarra, J. Blasco, J. García, C. Marquina, and P. A. Algarabel

Departamento de Física de la Materia Condensada and Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009, Zaragoza, Spain

Z. Arnold and K. Kamenev

Institute of Physics, Academy of Sciences of Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic

C. Ritter

Institut Laue-Langevin, Boîte Postale 156, 38042 Grenoble Cédex 9, France

R. von Helmolt Siemens AG, Research Laboratories, D-8520 Erlangen, Germany

(Received 15 January 1996)

The effects of magnetic field and pressure on the unusual spontaneous behavior of $La_{2/3}Ca_{1/3}MnO_3$ have been thoroughly investigated. Resistivity and volume thermal expansion, both under magnetic field and pressure, ac susceptibility under pressure, magnetostriction, magnetoresistance, and neutron diffraction measurements, have allowed us to determine the relevant underlying mechanisms in this system. Above T_c the neutron measurements reveal short-range ferromagnetic correlations and the anomalous volume thermal expansion indicates that local distortions are present. Both experiments support the formation of magnetic polarons above T_c . At T_c the compound undergoes a paramagnetic-ferromagnetic transition accompanied by an insulatormetal-like transition with anomalies in the electrical and volume properties. Above T_c the magnetic field and the pressure favor electrical conduction by enhancing the double-exchange interaction. Below T_c the metallic state is favored by the magnetic field and the pressure in a different way. [S0163-1829(96)04726-1]

I. INTRODUCTION

Given that $La_{2/3}Ca_{1/3}MnO_3$ (and related compounds) could be used as a magnetoresistive material, a careful and complete study of its magnetic, transport, and structural properties is warranted. We need to take into account the behavior under magnetic field and pressure to build a coherent picture of this system. Consequently, we have carried out measurements of resistivity and volume thermal expansion, both under magnetic field and pressure, ac susceptibility under pressure, magnetoresistance, magnetostriction, and neutron diffraction measurements. In Sec. II we describe the experimental techniques we have used, and in Sec. III we report the obtained results along with the theory which supports them.

The series $La_{1-x}Ca_xMnO_3$ was first studied by Jonker and Van Santen in the 1950s.¹ For $x \ge 0.15$ the compounds show a pseudocubic perovskitelike structure. In this structure, if we take the La(Ca) ions at the origin of the unit cell, the Mn ions occupy the corners of the cube and surrounding each Mn ion there are six O⁻² ions forming an octahedron. At and around x=1/3, the compounds order ferromagnetically. Zener² proposed the double-exchange (DE) interaction as the mechanism responsible for the alignment of the Mn magnetic moments. Substitution of a trivalent ion (La³⁺) by a divalent ion (Ca²⁺) causes coexistence of Mn³⁺ and Mn⁴⁺ ions in the appropriate ratio. The DE interaction consists of the transfer of the "extra" electron between neighboring Mn ions through the O²⁻ ions, which results in an effective ferromagnetic interaction due to the strong on-site Hund's coupling. The Mn spin alone accounts for the experimental saturation magnetization of $La_{2/3}Ca_{1/3}MnO_3$.^{1,3} The electrical conductivity of $La_{2/3}A_{1/3}MnO_3$ (*A*=Ca,Sr,Ba) compounds was found to be unusual:⁴ It behaves semiconductorlike above T_c and metalliclike below T_c .

The renewed interest in La_{2/3}Ca_{1/3}MnO₃ and related compounds arose after the discovery of giant magnetoresistance (GMR) at and around T_c .^{5–9} Recently, colossal magnetoresistance ratios have been observed in related compounds at low temperatures.^{10,11} The challenge is to achieve such colossal magnetoresistance ratios at room temperature. Meanwhile, interest in La_{2/3}Ca_{1/3}MnO₃ continues as it shows GMR ratios near room temperature.

It is widely accepted that the ferromagnetic transition in $La_{2/3}Ca_{1/3}MnO_3$ (and related compounds) is simultaneous with an insulator-metal transition.^{12,13} The mechanism which drives the transition is still uncertain. The DE interaction alone cannot account for the resistance curves.¹⁴ Some theoretical works^{15–18} have tried to explain the GMR ratios using different approaches. Experimentally, Hwang *et al.*¹² have shown important lattice effects in doped LaMnO₃ and Ibarra *et al.*¹⁹ have found strong lattice distortions and magneto-elastic coupling in Y-doped La_{2/3}Ca_{1/3}MnO₃, which was subsequently confirmed by spectroscopy experiments.²⁰

It is important to notice that the GMR ratios and the T_c values of La_{2/3}Ca_{1/3}MnO₃ (and related compounds) reported by different authors can differ remarkably depending on the author. Thin films and polycrystals usually have different T_c values and consequently different magnetoresistance values. T_c varies with oxygen content²¹ and Ca²⁺

1187

© 1996 The American Physical Society

concentration,¹ and the resistance depends on the grain size.²² Diffusion is also an important factor which depends on the heat treatment.²³ Nevertheless, the overall behavior is identical for all samples.

II. EXPERIMENTS

Two different polycrystalline samples were used for the experiments. One of the samples (called sample 1 hereafter) was used for all the experiments except for the neutron diffraction measurements. Sample 1 was produced at the Siemens Laboratory. It was prepared by repeated grinding and annealing from the metal carbonates and oxides. Then it was cold pressed and annealed in air at 1450 °C for 30 h (slow heating and cooling). The second sample was prepared at the University of Zaragoza (called sample 2 hereafter) and was used for the neutron diffraction measurements. This sample was tested to have similar bulk thermal, electrical, and magnetic properties as sample 1. Sample 2 was prepared using a gel precursor in order to obtain well-mixed reagents. Stochiometric amounts of La₂O₃, CaCO₃, and MnCO₃ with nominal purities higher than 99.9% were dissolved in concentrated nitric acid, resulting in a light solution. Afterwards, citric acid and ethylene glycol were added in a ratio of 4 g citric acid to 1 ml ethylene glycol and 1 g metal nitrates. The solution was heated and the excess nitric acid and water were boiled off, giving a yellow-brown gel. The gel was heated to give a brown powder. This precursor was calcined at 1173 K overnight. The remaining black powder was cold pressed to 4 kbar and sintered at 1273 K for 3 days with intermediate grindings. Finally, the pellet was sintered at 1573 K for 8 h, resulting in a hard black ceramic material. Energy dispersive x-ray (EDAX) analysis was performed over the two samples by using scanning electron microscopy. The obtained atomic ratio was La:Ca:Mn= $0.72:0.28:1 (\pm 0.01)$ for sample 1 and La:Ca:Mn= $0.68:0.32:1 (\pm 0.01)$ for sample 2. These results show a slight deviation from nominal composition for sample 1. Step-scanned x-ray diffraction patterns were carried out from 18° to 140° in 2Θ with a step of 0.02° . Full profile analysis was performed by using the Fullprof program. The La/Ca ratio was refined resulting the values La:Ca:Mn=0.74:0.26:1 (±0.02) for sample 1 and La:Ca:Mn= $0.66:0.34:1 (\pm 0.02)$ for sample 2, in good agreement with EDAX analysis. The room-temperature lattice parameters were found to be a=5.4831(4), b=5.4706(4), and c = 7.7283(6) for sample 1 and a = 5.4717(2), b = 5.4569(2), c = 5.4569(2), b = 5.4569(2), c = 5.4569(2), cand c = 7.7112(3) for sample 2. Sample 1 shows a higher unit cell volume due to the higher La/Ca ratio. The oxygen content was analyzed by redox titration. The resulting chemical formulas were $La_{0.72}Ca_{0.28}MnO_{2.96\pm0.02}$ for sample 1 and $La_{0.68}Ca_{0.32}MnO_{2.98\pm0.02}$ for sample 2.

Above room temperature the volume thermal expansion was measured with a "push rod" and differentialtransformer method. Below room temperature resistance (magnetoresistance) and volume thermal expansion under magnetic field were measured in a superconducting coil which produces steady magnetic fields up to 12 T. The resistance was measured with the four-point technique and the volume thermal expansion with the strain-gauge technique. Resistance and volume thermal expansion under pressure were measured with the same techniques, the pressure being

FIG. 1. Spontaneous resistivity (ρ) and volume thermal expansion ($\Delta V/V$) as a function of temperature. The inset shows the ac susceptibility (χ_{ac}) vs *T*.

produced by a CuBe cell which attains hydrostatic pressures up to 9 kbar. Pressure and temperature were measured in situ using a manganin pressure sensor and a Thermocoax thermocouple, respectively. The same cell was used for the ac susceptibility under pressure measurements. In our setup the sample formed the core of a microtransformer with four turns in both primary and secondary coils. Magnetostriction up to 14.2 T was measured in a pulsed-field device using the strain-gauge technique. The strain parallel (λ_{\parallel}) and perpendicular (λ_{\perp}) to the applied field was measured. Volume magnetostriction (ω) and anisotropic magnetostriction (λ_t) are straightforwardly calculated as $\omega = \lambda_{\parallel} + 2\lambda_{\perp}$ and $\lambda_t = \lambda_{\parallel} - \lambda_{\perp}$, respectively. The neutron diffraction experiments were performed using the D1B high-intensity powder diffractometer at the Institut Laue-Langevin (ILL), Grenoble, using a wavelength of 2.52 Å. D1B has a 400-element linear multidetector, covering an angular range of 80°. The powdered sample was placed in a standard ILL cryofurnace. Diffraction patterns were collected between $2\Theta = 2.5^{\circ}$ and 82.5° at temperatures ranging from 1.5 to 540 K.

III. RESULTS AND DISCUSSION

A. Spontaneous behavior

In Fig. 1 the spontaneous behavior of resistivity, thermal expansion, and ac susceptibility of the sample below room temperature is shown. At $T \approx 215$ K a ferromagnetic transition takes place and the ac susceptibility (see inset of Fig. 1) displays a sharp increase. $T_c \approx 215$ K for sample 1 is lower than other values found in polycrystals of similar composition (our sample 2 or those mentioned in Ref. 24). The different methods of preparation gave different Ca²⁺ concentrations (as explained in the previous section), which is at the origin of this discrepancy. The existence of long-range ferromagnetic order in this kind of compound was explained with the DE interaction.³ In La_{2/3}Ca_{1/3}MnO₃ the Mn⁴⁺ ions have three *d* electrons, with t_{2g} symmetry, which are localized at the Mn sites. Along with these t_{2g} electrons, the Mn³⁺ ions have a fourth electron, an e_g electron, which is not localized and can be transferred between adjacent Mn

FIG. 2. High-temperature volume thermal expansion $(\Delta V/V)$ and simulated phonon contribution $(\Delta V/V)_0$. The inset shows in detail the anomalous contribution over the phonon contribution.

ions through the path Mn-O-Mn. Because of the strong onsite Hund's coupling, at a Mn site the t_{2g} and e_g electrons have parallel spins. When the e_g electron moves from one Mn site to another Mn site, it keeps its spin direction and couples with the corresponding t_{2g} electrons. Then an effective ferromagnetic interaction between neighboring Mn spins arises. The DE interaction has to compete with the antiferromagnetic superexchange (AS) interaction, and consequently different magnetic structures or even the absence of longrange order can take place.^{3,24,25} In La_{2/3}Ca_{1/3}MnO₃ the DE interaction overcomes the AS interaction and long-range ferromagnetic order occurs.

Cooling down from room temperature, the resistivity increases tremendously down to T_c (see Fig. 1). The mechanism which produces such unusual increase is of great interest. Kusters et al.⁵ proposed conduction by magnetic polarons above T_c as in magnetic semiconductors. This assumption was supported by fits of resistivity curves above T_c with exponential laws, which can be a signal of conduction by thermal hopping.²⁶ This idea was widely accepted, but no clear evidence of the existence of magnetic polarons was given.²⁷ A magnetic polaron consists of an electron (or a wave packet of electrons¹⁸) which becomes localized, polar-izing the spins around it. Then a magnetic cluster forms. According to Coey et al.¹⁸ it is unlikely that these polarons can diffuse as a whole. Instead, individual electrons will hop between neighboring clusters. Ibarra et al.¹⁹ have given evidence for charge localization accompanied by lattice distortion above T_c in Y-doped La_{2/3}Ca_{1/3}MnO₃. In Fig. 2 we can see that the same effect takes place in pure La_{2/3}Ca_{1/3}MnO₃. Cooling down from high temperature, an extra contribution appears below T_p over the anharmonic phonon contribution in the volume thermal expansion. This extra contribution rapidly vanishes at T_c . This anomalous effect is thought to be caused by the gradual charge (the e_g electrons) localization below T_n , which causes lattice distortions. These seem to be dynamic Jahn-Teller-like distortions.²⁰ If an electron which becomes localized polarizes the spin of the neighbor ions, then a magnetic polaron would form. These magnetic clusters would give an extra contribution to the small-angle neutron scattering (SANS). For instance, magnetic clusters around T_c enhance the SANS, which is commonly known as

FIG. 3. (a) Neutron diffraction pattern at temperatures ranging from 185 to 461 K and at angles between $2\Theta = 2.5$ and 60° . (b) The SANS intensity in arbitrary units at $2\Theta = 2.5^{\circ}$ as a function of the reduced temperature T/T_c .

"critical scattering." ²⁸ The critical scattering of α -Fe is an archetypal example of this effect.²⁹ In Figs. 3(a) and 3(b) we can observe the SANS (2.5°) of La_{2/3}Ca_{1/3}MnO₃ in a wide range of temperatures. The result is intriguing. Unlike the α -Fe SANS pattern, the La_{2/3}Ca_{1/3}MnO₃ SANS scattering is not roughly symmetric around T_c and it exists far above T_c . This result seems to indicate that magnetic clusters (shortrange magnetic order) exist far above T_c in the paramagnetic region. Therefore the volume thermal expansion and the SANS results support the formation of magnetic polarons above T_c . A more detailed analysis of the SANS results in order to get information about the magnetic correlation length and, consequently, the cluster size was not successful because of the experimental limitation of the D1B instrument. A more in-depth study of this magnitude would require an instrument more appropriate for SANS measurements.

At T_c , when the long-range magnetic order sets in, a magnetic contribution appears on the nuclear peaks below T_c [see Fig. 3(a)] and simultaneously a sharp lattice contraction takes place ($\approx 0.1\%$) (see Figs. 1 and 2). Ibarra *et al.*¹⁹ have interpreted this result as the delocalization of the e_g electrons which had become localized in the paramagnetic regime. Then the extra contribution over the phonon one to the volume thermal expansion disappears (see Fig. 2). Below T_c the resistivity curve shows metallic behavior. It can be explained

FIG. 4. Resistivity (ρ) as a function of temperature at magnetic field values of 0, 1, and 12 T. The inset shows $\ln \rho$ vs $T^{-1/4}$ at temperatures above T_c .

as follows. The conduction takes place via the e_g electrons. According to de Gennes³⁰ the transfer of an e_g electron between two Mn ions is proportional to $\cos(\Theta_{ij}/2)$, where Θ_{ij} is the angle between the two ionic spins. As *T* is lowered, Θ_{ij} will decrease owing to the ferromagnetic alignment of the Mn spins and consequently ρ will decrease too.

B. Effect of magnetic field

The effect which triggered the interest of the scientific community in this kind of compound was the exihibition of GMR. We can observe in Fig. 4 the curves of ρ vs T under magnetic fields of 0, 1, and 12 T. The magnetic field reduces the localization process remarkably, and the insulator-metal transition becomes smoother, almost missing. In order to check if above T_c the resistivity can be fit to the Mott's law $\rho = \exp(T_0/T^{1/4})$, which corresponds to a model of variablerange hopping of electrons in a band of localized states in the absence of electron-electron interactions, we have plotted $\ln \rho$ vs $T^{-1/4}$ in the inset of Fig. 4. Under 0 and 1 T the curves display a linear form, which is in agreement with conduction by polarons.¹⁸ The way the magnetic field affects the transfer of electrons between neighboring Mn sites (or, equivalently, the delocalization of the e_g electrons) is easily understood if we take into account that such transfer can be expressed as $t_{\rm eff} = t_0 \cos(\Theta/2)$, where t_0 depends on geometric structural parameters (essentially the angle and length of the Mn-O bond) and Θ is the angle between neighboring Mn spins. The magnetic field will align the spins and Θ will decrease, $t_{\rm eff}$ being enhanced. As the electron is delocalized now, the polaron will not form.

The mechanism of conduction below T_c is a subject of interest as well. Schiffer *et al.*²⁴ analyzed the lowtemperature resistivity curves of La_{0.75}Ca_{0.25}MnO₃ and found for $T < 0.5T_c$ the empirical expression $\rho(T) = \rho_0 + \rho_1 T^{2.5}$. The term ρ_0 is the resistivity due to domain and grain boundaries and other temperature-independent scattering mechanisms [presumably defects (mainly chemical, nonstoichiometry, etc.)], and the $\rho_1 T^{2.5}$ term is an empirical fit to the data which represents a combination of electron-electron, electron-phonon, and electron-magnon scattering, all of

FIG. 5. Fits of the low-temperature resistivity to the expression $\rho(T) = \rho_0 + \rho_1 T^{2.5}$. The inset shows the contributions ρ_0 and $\rho_1 T^{2.5}$ to the resistivity as a function of temperature.

which are expected to be significant in this system.²⁴ We have tried to fit our low-temperature results with different exponents for the term $\rho_1 T^{\nu}$ and $\nu \approx 2.5$ was also found to give the best fit for all the magnetic fields. In Fig. 5 we show the fits to our experimental data, and in the inset of Fig. 5 we have plotted the contribution of the two terms ρ_0 and $\rho_1 T^{2.5}$ as a function of temperature. From there we can extract information of how the magnetic field affects the mechanism of conduction. A field of 1 T strongly affects the temperature-independent term ρ_0 , whereas it has less influence on the temperature-dependent term $\rho_1 T^{2.5}$. It is likely that the main mechanism responsible for the magnetoresistance at low temperatures and low fields is the influence of the magnetic field on the magnetic domains. As low magnetic fields increase the size of the magnetic domains, the scattering of the electrons due to domain boundaries decreases and the magnetization becomes larger.^{22,24} Fields greater than 1 T seem to affect both mechanisms (the temperature-dependent and the temperature-independent scattering) to a similar degree.

The anomalous spontaneous volume thermal expansion was linked to the local distortion caused by the localization of the e_g electrons. If this localization process is suppressed by applying a magnetic field, the anomalous volume thermal expansion should disappear. We can see this effect in Fig. 6. The curves of volume thermal expansion at 0, 1, 5, and 12 T are plotted vs *T*. The anomalous effect is reduced as the field is greater, and at 12 T the volume thermal expansion curve is the anharmonic phonon contribution. The inset of Fig. 6 shows the extra contribution over the phonon contribution $[\Delta V/V(H) - \Delta V/V(12T)]$ at H=0, 1, and 5 T.

In Fig. 7 the ρ vs H isotherms below T_c are shown. The inset shows the isotherms above T_c . The shape of the curves below and above T_c is completely different. This reflects the fact that two different mechanisms are responsible for the magnetoresistance above and below T_c . Above T_c the high resistivity comes from the electronic localization. At $T > T_c$ the effect of the magnetic field is to release the electrons which had become localized. The ρ vs T curves have a curvature which changes from negative to positive at a field (H_c) , which moves upwards with increasing temperatures.

FIG. 6. Volume thermal expansion $[\Delta V/V(H)]$ under magnetic field values of 0, 1, 5, and 12 T. The inset shows the differences between the 0, 1, and 5 T curves and the 12 T curve.

Below H_c the resistivity is rather flat, evolving rapidly above H_c toward a tendency to saturation. As localization and strain are correlated in this compound, magnetostriction effects are expected above T_c . In Fig. 8(a) the volume magnetostriction isotherms are shown. They are extremely similar to the magnetoresistance isotherms. It seems clear that above T_c the charge localization and the local distortion which take place at zero field are released by applying a magnetic field, causing large magnetoresistance and volume magnetostriction effects. Below T_c the magnetoresistance comes mainly (as we have shown) from the spin alignment of the Mn spins by applying a magnetic field. The ρ vs H curves have a positive curvature and a rapid change of resistance takes place at low fields. Consequently, GMR is more useful below T_c because it takes place at low fields. Below T_c the volume magnetostriction is expected to be negligible. In Fig. 8(b) we can see the temperature dependence of the volume magnetostriction and the anisotropic magnetostriction at the maximum field, 14.2 T. The volume magnetostriction is large above T_c due to the correlation between localization and striction. At T_c , when the localization process is quenched, the volume magnetostriction rapidly vanishes.

FIG. 7. Resistivity (ρ) vs magnetic field at temperatures below T_c . The inset shows the same curves above T_c .

FIG. 8. (a) Volume magnetostriction (ω) vs magnetic field at temperatures above T_c . (b) Volume magnetostriction (ω) and anisotropic magnetostriction (λ_t) as a function of temperature at H=14.2 T.

The anisotropic magnetostriction is that typical of a ferromagnetic compound: zero above T_c and small below T_c .

C. Effect of pressure

The effect of pressure on the properties of this compound is not obvious to predict. In Ref. 9 the authors suggest that the volume of the unit cell could be the important parameter to increase the resistivity. Hwang *et al.*¹² proposed a universal phase diagram, where T_c is diminished and the magnetoresistance is increased with increasing chemical pressure. From this phase diagram one could conclude that external pressure also should shift the insulator-metal transition toward lower T_c values and higher resistances. Measurements under pressure on La_{0.6}Y_{0.07}Ca_{0.33}MnO₃,³¹ La_{1-x}Ca_xMnO₃,³² and La_{1-x}Sr_xMnO₃ (Ref. 33) have shown that external pressure shifts the transition toward higher temperatures and decreases the resistivity at all temperatures.

In Fig. 9 we can see the resistivity results under pressures of 0, 5, and 7 kbar. From the maxima of the curves $dT_{\rm max}/dP = 2.2$ K/kbar. The resistivity decreases with pressure across the whole range of temperatures. In the inset of Fig. 9 we have plotted ln ρ vs $T^{-1/4}$ to check if conduction by magnetic polarons takes place under such pressures. The curves are linear, which suggests that up to 7.7 kbar the conduction is via magnetic polarons above T_c . How can one

FIG. 9. Resistivity (ρ) as a function of temperature under pressure values of 0, 5, and 7.7 kbar. The inset shows $\ln \rho$ vs $T^{-1/4}$ at temperatures above T_c .

explain this pressure dependence of T_c ? If T_c is increased by applying pressure, it is because the DE interaction, responsible for the ferromagnetism in this compound, is enhanced. The strength of the DE interaction is measured through the integral between neighboring Mn transfer sites. $t_{\rm eff} = t_0 \cos(\Theta/2)$. As t_0 depends on the length and angle of the Mn-O bond, it is expected to be strongly pressure dependent. It has recently been demonstrated by neutron crystallography under pressure^{34,35} that in the perovskite PrNiO₃ the main effect of external hydrostatic pressure is to reduce the cell volume, increasing the dense packing of the oxygen ions around the La/Ca ions. Consequently, the NiO₆ octahedra are less tilted because there is less empty space around the La/Ca ions to fill. The same effect is expected to take place in La_{2/3}Ca_{1/3}MnO₃. By applying external pressure the Mn-O-Mn angle should increase toward 180° and the Mn-O bond length should decrease.³⁶ All this should increase t_0 and consequently t_{eff} . The more effective transfer of the e_g electrons with pressure causes the resistivity to drop and T_c increase.

The low-temperature resistivity under pressure has also been fitted to the expression $\rho(T) = \rho_0 + \rho_1 T^{2.5}$. We show the fits in the inset of Fig. 10. In Fig. 10 we have plotted ρ_0 and ρ_1 vs P obtained from such fits. A linear relationship seems to exist up to 7.7 kbar. We can observe that the effect of the pressure differs from the effect of the field even though both of them diminish the resistivity. The pressure affects ρ_1 more than ρ_0 , whereas we have previously seen that the field affects ρ_0 mainly. From the dependence of ρ_0 and ρ_1 with pressure, we can deduce that the pressure mainly decreases the temperature-dependent mechanisms of scattering: electron-electron, electron-magnon, and electron-phonon scattering. The temperature-independent mechanisms of scattering are also affected. Two factors are expected to be important. As we are measuring a polycrystalline sample, with nonzero porosity, the pressure should affect the connections between the grains just mechanically. The size of the magnetic domains can also be increased with pressure.

In Fig. 11 we can see the ac susceptibility and the volume thermal expansion under pressure. From the ac susceptibility we obtain the slope of the dependence of the temperature of the insulator-metal transition with pressure: $dT_c/dP=2.2$ K/kbar. The values of T_c obtained in the ac susceptibility

FIG. 10. Values of ρ_0 and ρ_1 obtained from the fits of the lowtemperature resistivity to the expression $\rho(T) = \rho_0 + \rho_1 T^{2.5}$ as a function of pressure. The inset shows the fits of the low-temperature resistivity at 0, 5, and 7.7 kbar to the expression $\rho(T) = \rho_0 + \rho_1 T^{2.5}$.

measurements for all the pressures coincide with the maxima of the resistivity curves. The volume anomaly bound to the insulator-metal transition is shifted by pressure in the same way as the electrical and the magnetic anomaly. Moreover, the volume change at T_c is reduced with increasing pressure. This is a consequence of the incomplete charge localization above T_c when pressure is applied. Then there is less charge to be delocalized at T_c and the drop diminishes.

IV. CONCLUSIONS

Microscopic and macroscopic techniques have been used to probe the anomalous spontaneous behavior of $La_{2/3}Ca_{1/3}MnO_3$. The experiments have shown that below T_p and above T_c there is a gradual charge localization which brings about local volume distortions and ferromagnetic clusters (short-range magnetic order). This supports the theory of conduction by magnetic polarons above T_c . At T_c an insulator-metal-like transition takes place and a volume anomaly ($\approx 0.1\%$) appears. Above T_c the effect of the magnetic field and pressure is to increase the transfer integral of

FIG. 11. ac susceptibility (χ_{ac}) and volume thermal expansion ($\Delta V/V$) as a function of temperature at pressure values of 0, 5, and 7.7 kbar.

the e_g electrons between adjacent Mn ions, reducing the charge localization and favoring the metallic state. Consequently, the electrical and volume anomalies at T_c are strongly reduced. Below T_c two mechanisms are responsible for the resistivity: a temperature-independent scattering of the electrons (due to domain and grain boundaries, defects, etc.) and other temperature-dependent mechanisms (electron-electron, electron-phonon, and electron-magnon scattering). Low magnetic fields strongly reduce the scattering due to

- ¹G. H. Jonker and J. H. Van Santen, Physica **16**, 337 (1950); G. H. Jonker, *ibid.* **22**, 707 (1956).
- ²C. Zener, Phys. Rev. 81, 440 (1951); 82, 403 (1955).
- ³E. O. Wollan and W. C. Koehler, Phys. Rev. **100**, 545 (1955).
- ⁴J. H. Van Santen and G. H. Jonker, Physica **16**, 599 (1950).
- ⁵R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayes, Physica B **155**, 362 (1989).
- ⁶R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. **71**, 2331 (1993).
- ⁷Ken-ichi Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. **63**, 1990 (1993).
- ⁸M. McCormack, S. Jin, T. H. Tiefel, R. M. Flemi, and Julia M. Phillips, Appl. Phys. Lett. **64**, 3045 (1994).
- ⁹S. Jin, H. M. O'Bryan, T. H. Tiefel, M. McCormack, and W. W. Rhodes, Appl. Phys. Lett. **66**, 382 (1995).
- ¹⁰A. Maignan, Ch. Simon, V. Caignaert, and B. Raveau, Solid State Commun. 96, 623 (1995).
- ¹¹Guo-Qiang Gong, Chadwick Canedy, Gang Xiao, Jonhatan Z. Sun, Arunava Gupta, and William J. Gallagher, Appl. Phys. Lett. 67, 1783 (1995).
- ¹²H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. **75**, 914 (1995).
- ¹³A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B **51**, 14 103 (1995).
- ¹⁴A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. **74**, 5144 (1995).
- ¹⁵K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).
- ¹⁶N. Furukawa, J. Phys. Soc. Jpn. **64**, 2754 (1995).
- ¹⁷Fa-jian Shi, Meng Ding, and Tsung-han Lin, Solid State Commun. 96, 931 (1995).
- ¹⁸J. M. D. Coey, M. Viret, L. Ranno, and K. Ounadjela, Phys. Rev. Lett. **75**, 3910 (1995).
- ¹⁹M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. García, Phys. Rev. Lett. **75**, 3541 (1995).
- ²⁰T. A. Tyson, J. Mustre de Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, and Zang Jun (unpublished); P. Dai, Jiandi

domain boundaries giving rise to GMR at low fields. The pressure reduces more the temperature-dependent mechanisms.

ACKNOWLEDGMENTS

We acknowledge the financial support of the Spanish CICYT under Grants No. MAT-96-0826, No. MAT-96-0491, and No. APC-95-0123.

Zhang, H. A. Mook, S.-H. Liou, P. A. Dowben, and E. W. Plummer (unpublished).

- ²¹J. S. Ramachandran, S. M. Bhagat, J. L. Peng, and M. Rubistein, Solid State Commun. 96, 127 (1995).
- ²²H. L. Ju, J. Gopalakrishnan, J. L. Peng, Qi, G. C. Xiong, T. Venkatesan, and R. L. Greene, Phys. Rev. B **51**, 6143 (1995).
- ²³G. C. Xiong, Q. Li, H. L. Ju, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. **66**, 1689 (1995).
- ²⁴P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. **75**, 3336 (1995).
- ²⁵ J. Inoue and S. Maekawa, Phys. Rev. Lett. **74**, 3407 (1995); J. M. De Teresa, M. R. Ibarra, J. García, J. Blasco, C. Ritter, P. A. Algarabel, C. Marquina, and A. del Moral, Phys. Rev. Lett. **76**, 3392 (1996).
- ²⁶N. F. Mott, Adv. Phys. **21**, 785 (1972).
- 27 In Ref. 5 the authors report that in Nd_{0.5}Pb_{0.5}MnO₃ they have observed diffuse scattering above T_c , consistent with dynamic fluctuations in the magnetic structure. They say that such fluctuations can be produced by the hopping of magnetic polarons.
- ²⁸L. Van Hove, Phys. Rev. **95**, 249 (1954); **95**, 1374 (1954).
- ²⁹M. K. Wilkinson and C. G. Shull, Phys. Rev. 103, 516 (1956).
- ³⁰P.-G. de Gennes, Phys. Rev. **118**, 141 (1960).
- ³¹Z. Arnold, K. Kamenev, M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. García, Appl. Phys. Lett. **67**, 2875 (1995).
- ³²J. J. Neumeier, M. F. Hundley, J. D. Thompson, and R. H. Heffner, Phys. Rev. B **52**, R7006 (1995).
- ³³Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16 491 (1995).
- ³⁴P. Canfield, J. D. Thompson, S.-W. Cheong, and L. W. Rupp, Phys. Rev. B 47, 12 357 (1993).
- ³⁵ M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, and K. Gobrecht, Phys. Rev. B **52**, 9248 (1995).
- ³⁶H. Y. Hwang, T. T. M. Palstra, S-W. Cheong, and B. Batlogg, Phys. Rev. B **52**, 15 046 (1995).