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We present a quantum-mechanical calculation of finite-temperature elastic constants in silicon based on
tight-binding molecular dynamics. We investigate amorphous silicon as obtained from the melt, and the
evolution of elastic constants in silicon during ion implantation. The effect of post-implantation thermal
annealing is also presented and discussed.@S0163-1829~96!05438-0#

Among several other thermodynamical response func-
tions, elastic constants~EC’s! play a special role in semicon-
ductor materials science. They are, in fact, almost routinely
measured and used to characterize the mechanical and struc-
tural properties of semiconductors.1,2Moreover, the monitor-
ing of EC’s is a valuable tool to control the effects of mate-
rials processing. Therefore the accurate and efficient
calculation of EC’s is a basic issue to understand the behav-
ior of materials.

In this area two different theoretical approaches are cur-
rently used: ~i! static total-energy methods for a zero-
temperature calculation of elastic constants3–5 and ~ii !
molecular-dynamics~MD! simulations where EC’s are
evaluated at finite temperature~dynamic calculations!. 6 The
first approach can be straightforwardly followed within an
ab initio framework and provides a rather accurate predic-
tion of the elastic properties of the selected material. On the
other hand, the dynamic calculations allow for the evaluation
of both isothermal and adiabatic EC’s at any temperature.
The limitation of such methods is that the numerical conver-
gence of the fluctuation formulas6 needed to compute EC’s
is slow and quite long simulation times have to be used. So
far, this feature made the implementation of a numerical
computation of EC’s affordable only within classical MD
based on empirical potentials.7,8 The EC’s of both crystalline
(c-Si! and (a-Si! silicon have been in fact determined by
means of numerical simulations.9,10 Fully empirical classical
potential, however, have some important well-known limita-
tions due to their reduced transferability. In particular, they
can hardly concern defected materials where quantum-
mechanical phenomena~like those occurring, for instance,
during ion-beam implantation or radiation damage! affect the
chemical bonding.

In this work we present a theoretical investigation ad-
dressed to compute finite-temperature EC’s of a disordered
material on a quantum-mechanical basis. Our main goal is to
prove the feasibility of such a project and to provide a show-

case application to amorphous and defected silicon. In order
to overcome the limitations discussed above, we apply the
general theory for the calculation of elastic constants by
computer simulation11 to a quantum-mechanical scheme,
namely, the semiempirical tight-binding molecular dynamics
~TBMD!.

TBMD is an accurate and efficient quantum-mechanical
simulation method12 which has been successfully used to in-
vestigate the structural and electronic properties ofa-Si as
obtained both by quenching from the melt13 and by ion
implantation.14 Within the TBMD formulation the total po-
tential energyU of a system ofN atoms is given by

U52 (
n

~occupied!

^CnuĤTBuCn&1U rep~$xa%!, ~1!

where uCn& is the eigenfunction of the one-electron tight-
binding ~TB! HamiltonianĤTB corresponding to thenth ei-
genvalue andxa is the position vector of theath atom. The
first contribution represents the band structure energy calcu-
lated from a semiempirical orthogonal TB parametrization,
and the last term is the short-range repulsive energy.12 It is
clear from Eq.~1! that, because of the former contribution,
the interatomic forcesfa52]U/]xa are many body in na-
ture and, therefore, a suitable formulation for the calculation
of EC’s not limited to pairwise potentials is needed.

It is easy to prove that Eq.~1! can be cast in the form

U5(
a,b

w~xab!, ~2!

wherew(xab) is an effective potential~incorporating both
the band structure and the repulsive contributions! depending
on thedistance vectorxab5xa2xb of any atom pair in the
simulation box. TheCi jkl component of the isothermal elas-
tic tensor is defined as the derivative of the stress tensort i j
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with respect to the strain tensorekl . During a TBMD run
t i j is calculated as the ensemble averaget i j5^t i j & of the
microscopic stress tensor6

t i j5
1

V0
Ŝ~ i j !(

a
S 2xa,i

]U

]xa, j
1

1

ma
pa,i pa, j D , ~3!

wherema and pa are the mass and the momentum of the
ath atom, respectively, andV0 is the equilibrium volume.
Latin subscripts indicate Cartesian components. The action
of the operatorŜ( i j ) on a second-rank tensorai j is defined as
Ŝ( i j )ai j5(ai j1aji )/2. In the present case, the ensemble av-
eragê t i j & is measured during a canonical TBMD run where
the simulation box is fixed in shape~cubic cell! and its vol-
umeV0 is selected as to reproduce the experimental density
~here assumed as the zero-stress condition!.13,14

The strain derivative appearing in Eq.~3! is calculated
following Ref. 11 and the final expression forCi jkl is

Ci jkl5Ci jkl
~pot!1Ci jkl

~kin!1Ci jkl
~fluc! , ~4!

where the potential, kinetic, and fluctuation contributions are
given by

Ci jkl
~pot!5

1
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Ŝ~ i j !Ŝ~kl !(

a,b
K xab,ixab,k

]2w
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2d ikxab, j
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Ci jkl
~kin!5

4NKBT

V0
Ŝ~ i j !Ŝ~kl !d ikd j l , ~6!

Ci jkl
~fluc!52

V0

KBT
~^t i j tkl&2^t i j &^tkl&! ~7!

(KB is the Boltzmann constant!. Within the TBMD scheme
the most demanding step is the calculation of the
]w/]xab,i and ]2w/]xab,i]xab, j derivatives appearing in
Eqs.~6!–~8! which must be computed numerically.

In order to test the accuracy of the present method, we
have computed room-temperature EC’s ofa-Si as obtained
by quenching from the melt. We used the samea-Si sample
studied in Ref. 13, whose structural and electronic properties
were found to be in rather good agreement with both experi-
mental data and first-principles calculations. As for the vi-
brational spectrum, a rather good agreement with experimen-
tal data was found in the acoustic part~i.e., that portion
relevant to the elastic properties!, while a poorer agreement
~25% disagreement! was obtained for the optical phonons.15

The results are shown in Table I and have been obtained
after a simulation as long as 48 ps, preceded by 2 ps of
equilibration. We adopted a time step of 10215 s. Every
Ci j elastic constant~Voigt notation! has been computed as
the average of the three symmetry-equivalent components of
the elastic tensor. In Table I we also report the results from a
previous simulation based on the Stillinger-Weber~SW! po-
tential. The experimental constants have been deduced, ac-
cording to Ref. 16, from the measurement of the velocity of
the Rayleigh wave and from the experimental Young

TABLE I. Room-temperature elastic constants~units of GPa! of
c-Si anda-Si. TBMD results are obtained with a 64-atom simula-
tion box.

C11 C12 C44

c-Si Expt. from Ref. 6 166 64 79.6
a-Si Expt. from Refs. 15–17 156 58.4 48.8
a-Si Present work~TBMD! 149 46.9 55.4
a-Si SW from Ref. 8 152 86.2 32.9

FIG. 1. Temperature depen-
dence of EC’s~units of GPa! in
a-Si. Solid line,C11; dashed line,
C12; dash-dotted line,C44.
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modulus.17 We observe from Table I that the isotropy con-
dition C1122C445C12 is not well satisfied by our TBMD
results. This is certainly due to the small system size~just 64
atoms!. Despite that, the overall agreement of TBMD calcu-
lation with experimental data is quite good and much better
than previous SW results. This is even more remarkable in
view of the fact that no elastic properties have been inserted
in the fitting data-base used to set up the TBMD scheme.18

We also observe that all of theCi j ’s are significantly soft-
ened with respect to the crystalline case. In particular,C44 is
decreased by about 30% and, therefore, it could be used as a
parameter for monitoring the crystal-to-amorphous transition
occurring during ion implantation. A number of simulations
performed in the temperature range 150–1350 K has proved
that EC’s of a-Si are further decreased by heating the
sample. The results are shown in Fig. 1. The trend is, how-
ever, not monotonous. We attribute such a feature to the
metastability of the amorphous network. The Si structure un-
dergoes temperature-induced lattice rearrangements which,
in turn, affect the elastic properties of the sample. We prove
that in Fig. 2 where we report the time-averaged value of the
fluctuation term@Eq. ~7!# of the nine components of the elas-
tic tensor related toC11,C12, andC44 and the mean square
displacement~MSD! of Si atoms~bottom panel!, as mea-
sured during aT5600 K simulation. Lattice relaxations
~marked by the LR label! always correspond to discontinui-
ties in the time-averaged value of the elastic tensor compo-
nents. Even in this case, however, we observe a sizable de-
viation from the isotropy condition. In other words, thermal
annealing itself cannot remedy to the small simulation cell
size.

Having established the reliability and accuracy of our
computational scheme, we have studied the evolution of the
EC’s in bulk Si against the insertion of self-interstitial atoms.
Again, we made use of previously generated defected
samples~see Ref. 14!, where a full amorphization of the Si
lattice at the highest defect concentration~60 self-
interstitials!. TheT5 0 K limit of Eqs. ~5!–~7! ~Ref. 11! was
used to compute zero-temperature EC’s of implanted Si. The
general trend observed is that the defect-induced crystal-to-
amorphous transition drives a softening of the elastic con-
stants. Our findings are summarized in Table II where EC’s
of three different implanted samples are reported. We ob-
serve a qualitatively different behavior forC12,C44, and
C11. While C12 and C44 decrease monotonically with the
increasing number of defects, forC11 such a trend is inverted
when the concentration of self-interstitials is as large as that
needed to drive the amorphization transition. The results on
C12 andC44 are in qualitative agreement with indirect infor-
mation coming from Brillouin scattering measurements.19

This confirms our conclusion to considerC44 as the more
suitable parameter for monitoring the amorphization transi-
tion. It is worth noting that the isotropy condition is again
not well satisfied, despite the fact that a larger cell was used.
We attribute that to the peculiar way we have inserted
defects14, which unlikely provides an isotropic sample, and
to the relatively short annealing time, which surely is not
long enough to fully relax the implanted host.

Finally, we have investigated the effects of thermal an-
nealing on the elastic properties of implanted silicon. The
fully amorphized 276-atom sample has been annealed at

three different maximum temperatures: 450, 600, and 750 K
using the same heating/cooling rate.14 The EC’s have been
computed in theT50 K limit. Results are shown in Table III.
The annealing at the lower temperatures~450 K and 600 K!
leaves the elastic constants practically unchanged with a mi-
nor trend towards a further decrease with respect to the crys-
talline case. Conversely, we observe a reverse trend when
annealing up toT5750 K: Here all of the elastic constants
are increased. This result is related to the better struc-

FIG. 2. Convergence of the fluctuation term@see Eq.~7!# of the
isothermal elastic tensor fora-Si at T5600 K. Solid, dashed, and
dotted lines represent, respectively, the symmetry-equivalent com-
ponents corresponding to theC11, C12, andC44 elastic constants.
In the bottom panel the mean square displacement~MSQD! of Si
atoms is shown~units of Å2). Lattice relaxations~LR’s! are marked
by arrows.
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tural quality of the sample annealed at 750 K. As a matter of
fact, in Ref. 14 we computed the atomic coordination of the
annealed network and we found that the number of under-
coordinated or over-coordinated sites was reduced. In other
words, the partial recovering of the crystal order is followed
by an overall hardening of the structure.

In conclusion, we proved that TBMD simulations can be
successfully applied to investigate finite-temperature elastic
properties of defected and amorphous semicondutors. We
have monitored the evolution of EC’s towards an overall
softening during a crystal-to-amorphous transition as ob-
served either during ion implantation and during cooling
from the melt. In both cases, the parameter for the transition

can be identified in theC44 constant. These results enlarge
the range of quantum-mechanical computer simulations of
materials properties.

ACKNOWLEDGMENTS

We thank P. Ballone~Stuttgart!, G. Benedek~Milano!,
and P. Mutti ~Milano! for helpful discussions. One of us
~G.D.S.! acknowledges partial financial support by the Na-
tional Research Council~CNR! of Italy under Project ‘‘Pro-
getto Finalizzato Materiali Speciali per Tecnologie Avan-
zate.’’

1G. Grimvall, Thermophysical Properties of Materials~North-
Holland, Amsterdam, 1986!.

2A.B. Chen, A. Sher, and W.T. Yost, inSemiconductor and Semi-
metals, edited by R.K. Willardson and C. Beer~Academic, New
York, 1992!, Vol. 37.

3S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett.59, 1665
~1987!.

4O.H. Nielsen and R.M. Martini, Phys. Rev. B32, 3780~1985!.
5J.E. Osburn, M.J. Mehl, and B. M. Klein, Phys. Rev. B43, 1805

~1991!.
6J.R. Ray, Comput. Phys. Rep.8, 109 ~1988!.
7F.H. Stillinger and T.A. Weber, Phys. Rev. B31, 5262~1985!.
8J. Tersoff, Phys. Rev. B37, 6991~1988!.
9M.D. Kluge, J.R. Ray, and A. Rahman, J. Chem. Phys.85, 4028

~1986!.
10M.D. Kluge and J.R. Ray, Phys. Rev. B37, 4132~1988!.

11J.F. Lutsko, J. Appl. Phys.65, 2991~1989!.
12L. Colombo, inAnnual Review of Computational Physics, edited

by D. Stauffer~World Scientific, Singapore, 1996!, Vol. 4; C.Z.
Wang and K.M. Ho, Comput. Mater. Sci.2, 93 ~1994!.

13G. Servalli and L. Colombo, Europhys. Lett.22, 107 ~1993!.
14L. Colombo and D. Maric, Europhys. Lett.29, 623 ~1995!.
15G. Servalli and L. Colombo~unpublished!.
16J. Zuket al., J. Appl. Phys.73, 4951~1993!; X. Jianget al., ibid.

69, 3053~1991!.
17S.I. Tan, B.S. Berry, and B.L. Crowder, Appl. Phys. Lett.20, 88

~1972!.
18L. Goodwin, A.J. Skinner, and D.G. Pettifor, Europhys. Lett.9,

701 ~1989!
19B. Bhadra, J. Pearson, P. Okamoto, L. Rehn, and M. Grimsditch,

Phys. Rev. B38, 12 656~1988!.

TABLE III. Zero-temperature elastic constants~units of GPa! of
a-Si as function of the maximum temperature of the post-
implantation annealing~see Ref. 14!.

Annealing temperature C11 C12 C44

No annealing 172 76.6 67.1
450 K 174 76.6 66.3
600 K 172 74.8 65.5
750 K 179 81.5 68.1

TABLE II. Zero-temperature elastic constants~units of GPa! of
defected silicon. The defect concentrations of 9.3%, 13.9%, and
27.8% correspond, respectively, to 20, 30, and 60 self-interstitial
atoms randomly inserted into a 216-atom simulation box~see Ref.
14!.

Defect concentration C11 C12 C44

9.3% 168 88.3 77.8
13.9% 163 82.2 74.4
27.8% 172 76.6 67.1
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