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The classical Kolmogorov-Johnson-Mehl-Avrami~KJMA! equation for nucleation and growth transforma-
tions, which assumes random nucleation and cessation of growth where grains impinge, was originally derived
by accounting for the ‘‘extended volume’’ that is obtained when overlap of the growing grains is~mathemati-
cally! permitted. Motivated by experimental and computational results that call into question the validity of this
equation and by recent theoretical concerns about the appropriate content of the extended volume, a derivation
of the KJMA equation is presented that does not rely on the concept of the ‘‘extended volume.’’
@S0163-1829~96!09042-X#

Solid-state transformations occur by nucleation and sub-
sequent growth of second-phase particles in a volume or at
an interface.1 The reaction kinetics may be interface con-
trolled as in the case of recrystallization in plastically de-
formed metals and crystallization in metallic glasses, or dif-
fusion limited as in the case of second-phase precipitation.
For either type of kinetics, researchers typically analyze the
transformation according to the theory of nucleation and
growth processes developed independently by Kolmogorov,2

Johnson and Mehl,3 and Avrami4 ~KJMA! nearly sixty years
ago.

This theory requires that the nucleation sites be randomly
distributed over the~infinite! volume V ~or interface! and
that growth cease where two second-phase particles impinge.
The transformed volumeVtr obeys the relation

dVtr5@12~Vtr/V!#dVex, ~1!

where the ‘‘extended volume’’Vex is the volume of all the
particles if they grew unimpeded~see Fig. 1!. Integrating this
expression and normalizing to unit volume produces the fa-
miliar KJMA equation for the transformed volume fraction
f ,

f512exp~2 f ex!, ~2!

where f ex5Vex/V.

The particle growth mechanism is implicit inVex and so
can be determined, in principle, from the slope of the line
produced by plotting experimental values of log@2ln~12f !#
against log(t), wheret is time. For example, in the case of
instantaneous nucleation of spherical particles with number
densityN and constant growth rateG, as may occur for an
interface-controlled reaction,f ex5~4/3!pN(Gt)3. The expo-
nent of t, and thus the slope of the line, is 3. Cahn5 and
Christian1 have showed that other exponents are expected

FIG. 1. In this two-dimensional representation, three particles
~or grains! have grown together. Growth ceases where the particles
impinge, here indicated by the heavy lines. The particle overlap that
would occur in the absence of impingement is shown as well; this
contributes to the ‘‘extended volume’’ that appears in the KJMA
equation.
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under other conditions such as continuous nucleation, growth
in less than three dimensions, and heterogeneous nucleation
on planar or linear defects.

In practice, many experiments show a deviation from the
expected linear dependence on log(t), which can generally
be ascribed to experimental conditions. As evidence of this,
Rollett et al.6 obtained the expected exponent of 3 from a
computer simulation of instantaneously-nucleated recrystal-
lization of uniformly deformed metal, and much smaller,
time-varying exponents—in agreement with experiments—
for corresponding simulations of nonuniformly deformed
metal. Even so, the experimental deviations have called into
question the correction for the ‘‘extended volume’’ given by
Eq. ~1!; indeed, a motivation of the work by Rollettet al.
was to test this ‘‘basic assumption.’’6 Price7 has also simu-
lated recrystallization kinetics under the conditions of instan-
taneous nucleation and linear growth, but concludes instead
that ‘‘the KJMA extended-volume relation overcorrects for
impingement.’’

For continuous nucleation of second-phase particles,
which can occur only in the untransformed volume, Johnson
and Mehl3 and Avrami4 derive an expression forVex which
includes ‘‘phantom’’ particles that nucleate in the already-
transformed volume. These ‘‘phantom’’ particles are in fact
simply a mathematical artifice that is integral to the original
derivation of Eq.~2!. Nonetheless, their appearance inVex is
a source of confusion. Recently, Erukhimovitch and Baram,8

believing that these ‘‘phantom’’ particles actually contribute
to the transformed volume as given by Eq.~2! @so that Eq.
~2! overestimates the transformed volume fraction#, have ar-
gued that they should not be included inVex, and have de-
rived an integral equation forf from Eq. ~1! that appears to
provide a much better description of the amorphous-to-
crystalline transformation in particular metal alloys.

A derivation of a nucleation and growth equation that
imposes the KJMA conditions of random nucleation and
growth cessation upon impingement but does not rely on the
concepts of ‘‘extended volume’’ and ‘‘phantom nuclei’’ is
thus useful. The straightforward derivation presented here,
which in the end verifies the KJMA equation, considers the
time-dependentuntransformedvolume and so avoids the is-
sues of particle impingement/overlap and ‘‘phantom’’ nucle-
ation altogether. The common criticism~e.g., Ref. 8!, that the
KJMA equation for continuous nucleation permits nucleation
in the already-transformed region, is shown to be false.

In what follows, nucleation is assumed to occur in three
dimensions, and particle growth is isotropic; the extensions
to lesser dimensions and to different grain morphologies~by
use of a geometric shape parameter! are then evident.

For a random distribution of point particles of number
densityN, let w(r )dr denote the probability that the closest
particle to the~arbitrary! origin resides a distance betweenr
and r1dr away. This probability is equal to the probability
that no particles reside within the sphere of radiusr , multi-
plied by the probability that a particle does reside within the
spherical shell specified by the radiir andr1dr. Thusw(r )
must satisfy the relation9

w~r !5F12E
0

r

w~r 8!dr8G4pr 2N. ~3!

Taking the derivative of each side with respect tor and
integrating produces the distribution function

w~r !54pr 2N exp~24pNr3/3!. ~4!

Now consider that the point particles are nuclei, and that
at time t each growing particle has attained~ignoring im-
pingement and not specifying a growth mechanism! a radius
R(t). Then the probabilityx(t) that the origin is contained
within a particle is equal to the probability that a particle
resides within a distanceR(t) from the origin,

x~ t !5E
0

R~ t !
w~r !dr. ~5!

Because the location of the origin is arbitrary,x(t) corre-
sponds to the transformed volume fractionf (t). Performing
the integration in Eq.~5! gives theuntransformedvolume
fraction

12 f ~ t !5E
R~ t !

`

w~r !dr5exp$2 4
3pN@R~ t !#3%, ~6!

in agreement with the KJMA equation~2! for instantaneous
~site-saturated! nucleation.@This derivation of Eq.~6! is due
to Markworth.10#

To determine the untransformed volume fraction follow-
ing consecutive instantaneous nucleation events, let
12f i(t2t i) denote the untransformed volume fraction at
time t due to particle nucleation at an earlier timet i . In the
case of two consecutive nucleation events at timest1 andt2,
respectively, the untransformed fraction of the total volume
at time t is

12 f ~ t !5@12 f 1~ t2t1!#@12 f 2~ t2t2!#, ~7!

since [12 f 1(t2t1)]V is the volume at timet that is left
untransformed by the particles nucleated at timet1, and, of
that, @12f 2(t2t2)# is the volume fraction which is untrans-
formed by the particles nucleated at timet2. Then for n
consecutive instantaneous nucleation events, the untrans-
formed volume fraction is

12 f ~ t !5)
i51

n

@12 f i~ t2t i !#

5expH 2 4
3p(

i51

n

Ni@Ri~ t2t i !#
3J , ~8!

whereNi is the number density of particles nucleated at time
t i andRi(t2t i) is the radius at timet of those particles due
to unimpeded growth over the time periodt2t i . Equation
~8! thus accommodates multiple nucleation events~due to
temperature changes,11 for example!, each generating a new
collection of particles with different number density and dif-
ferent growth kinetics.

By converting the summation in Eq.~8! into an integral
and the particle number densityN into the nucleation rateṄ,
the untransformed volume fraction at timet due tocontinu-
ousnucleation is found to be

12 f ~ t !5expH 2 4
3pE

0

t

Ṅ~t!@R~ t2t!#3dtJ . ~9!
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As in Eq. ~8!, the nuclei density and growth kinetics are
permitted to vary with time.12,13

Equation ~9! is precisely the KJMA equation~2!. This
derivation, which considers only theuntransformedvolume,
thus effectively verifies the KJMA treatment3,4 of the ‘‘ex-
tended volume’’ and shows that it allows particle or grain
nucleation only in the untransformed region.

The number densityr(t) of particles~or grains! is of ex-
perimental interest as well, and may further distinguish be-
tween microstructures resulting from single and multiple in-
stantaneous nucleation events and continuous nucleation. In
the case of multiple nucleation events, there areN1V par-
ticles after the first instantaneous nucleation event at timet1;
an additionalN2[12 f (t2)]V particles after the second in-
stantaneous nucleation event at timet2; an additional
N3[12 f (t3)]V particles after the third instantaneous nucle-
ation event at timet3; and so on. Thus the number density of
particles aftern consecutive nucleation events is

r~ t !5(
i51

n

Ni@12 f ~ t i !#. ~10!

In the case of continuous nucleation, the particle number
density becomes

r~ t !5E
0

t

Ṅ~t!@12 f ~t!#dt. ~11!

The average particle size is then given byf (t)/r(t).
The interfacial areaS(t) between the transformed and un-

transformed regions following instantaneous~site-saturated!
nucleation is found by substitutingS dRfor dV andSex dR
for dVex in Eq. ~1!, whereSex is the total surface area of the
particles or grains comprisingVex. Then the area

S~ t !5@12 f ~ t !#Sex~ t !, ~12!

and attains its maximum value 2 (2pN)1/3 V exp~22/3!
whenR5(2pN)21/3, which occurs at the inflection point of
the sigmoidal functionf (t).

The volume- and surface-reducing effects of particle im-
pingement are evident in the expressions above; for example,
the second term in Eq.~12! clearly accounts for the reduction
of interfacial area as growing particles or grains coalesce. A
more direct measure of the extent of impingement is given
by the fractionx8(t) of particles that have impinged as of the
time t. For instantaneous nucleation, this is simply the prob-
ability that another nucleus resides within a distance 2R(t)
of a given nucleus,10

x8~ t !5E
0

2R~ t !
w~r !dr512exp$2 4

3pN@2R~ t !#3%.

~13!

This sigmoidal function increases much more rapidly@inflec-
tion point atR5 1

2 (2pN)21/3# than f (t), indicating the nearly
immediate onset of impingement. Interestingly, the fractional
quantitiesf andx8 at their respective inflection points, where
their rate of increase is maximal, both equal 12exp~22/3!
50.48658. @Note that„dx8(t)/dt…dt is the fraction of par-
ticles that impinge during the time intervalt to t1dt. For an
instantaneously-nucleated population of particles,
„dx8(t)/dt…dt5„dx8(R)/dR…dR, so that „dx8(R)/dR… is

seen to be the size distribution function for the population
where growth of a particle stops completely upon impinge-
ment with another. The various moments of the distribution
are easily calculated usingdx8(R)/dR obtained from Eq.
~13!. The transformed volume fraction comprised of these
‘‘touching’’ spheres is 1/8; the surface area, per unit volume,
of the spheres isG~ 53! ~ 9

16pN!1/351.091 41N1/3; and the av-
erage radius of the spheres isG~43! ~ 323 pN!21/350.276 98
N21/3.#

The transformation kinetics of a volume are reflected as
well in the area transformed of any arbitrary plane through
the volume and in the length of interfacial boundary and
number of particles or grains intercepted by the plane. This
areal data is generally easier to obtain experimentally than
volumetric data. Because any slice through the volume can
be made arbitrarily thin, the transformed area fractionf A(t)
equalsf (t) ~the subscriptA signifies areal quantities!. Simi-
larly, the lengthLA(t) of interfacial boundary intercepted by
the plane, per unit area of the plane, equalsS(t)/V. Thus

LA~ t !5@12 f ~ t !#4pN@R~ t !#2 ~14!

following instantaneous nucleation. The areal number den-
sity rA(t) of particles or grains is given by Eq.~11! when the
function Ṅ is replaced by the areal nucleation rateṄA . For
example, a population of instantaneously nucleated particles
of number densityN and constant growth rateG will provide
a continuous nucleation rateṄA52NG at the plane.

It should be emphasized that nonrandom nucleation, such
as clustered nucleation or nucleation on a regular lattice, can-
not be accommodated by this formulation of nucleation and
growth kinetics. Clustering of nuclei can be simulated by
partitioning the total volume into subvolumes, where each
subvolume has a different nuclei density and transforms ac-
cording to the equations above at early times; however, in-
teractions between adjacent subvolumes at later times cannot
be similarly treated. The difficult issue of clustering has in-
spired various phenomenological equations forf (t) utilizing
the concept of ‘‘extended volume,’’ that have little physical
basis.14

The degree to which an experimentally-observed particle
or grain distribution is random can be qualitatively ascer-
tained, for the case of instantaneous~site-saturated! nucle-
ation, by recognizing that the functionw(r ) @Eq. ~4!# gives
the distribution of nearest-neighbor distances for a random
population.9 Thus the ‘‘average distance’’D between nearest
neighbors of a random distribution of particles or grains is

D5E
0

`

rw~r !dr5G~ 4
3 !~ 4

3pN!21/350.553 96N21/3.

~15!

A more ordered arrangement of nuclei will produce a larger
value forD ~D>N21/3 for cubic arrays!, while clustering of
nuclei will produce a smaller value.

The classical KJMA equation is recovered from this deri-
vation which has required only that nucleation occur ran-
domly throughout a volume. By considering only theun-
transformedvolume, impingement or overlap of the growing
particles or grains may be ignored. The particle growth func-
tion R(t), by expressing the growth mechanism, assumes a
central role in this formulation of transformation kinetics.
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For systems for which the assumption of random nucleation
is well founded, poor fits of experimental data to Eq.~6! with
linear growth may reflect more complex nucleation and
growth kinetics that can be better described by Eqs.~8! or ~9!
and nonlinearR(t) functions.
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