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We show that the features of the scanning-tunneling-microscopy STM images of graphite can be understood
within a simple tight-binding model of the tip-surface system. Using Green’s-function techniques, we are able
to go beyond the usual Tersoff and Hamann formalism and include the effect of the bias voltage and tip-surface
coupling on the tunneling current. We show that the tunneling current is very sensitive to the different
crystallographic stacking arrangements of graphite, due to their influence on the local density of states both at
and near the Fermi level. In addition, we find that the relative corrugation of the STM image depends strongly
upon the nature of the tip-surface interaction. We conclude with a discussion of the extension of our formalism
to include surface defects and adsorbates.@S0163-1829~96!01539-1#

I. INTRODUCTION

The invention of the scanning tunneling microscope1 has
led to a wealth of exciting observations of surface electronic
structure. The case of graphite is no exception and, due to its
simple surface structure, provides a useful testing ground for
theoretical models. Most models of scanning-tunneling mi-
croscopy~STM! are based on that of Tersoff and Hamann,2,3

in which the tunneling current is found to be proportional to
the Fermi level surface density of states at the point probed
by the tip. The inequivalent local density of states~LDOS! of
the graphite surface sites leads to the resolution of only every
second atom under normal tunneling conditions. However,
the simple Tersoff and Hamann model explains neither the
decrease of resolution with increasing bias voltage in the
constant current tunneling mode, nor the decrease in resolu-
tion with decreasing tunneling current.4 In addition there
have been observations5,6~a!,6~b! of changes in the relative cor-
rugation of the image, which also cannot be explained within
the Tersoff and Hamann model.

Graphite consists of weakly bound hexagonal lattice lay-
ers. While 82% of naturally occurring graphite is of the Ber-
nal form (ABAB stacking!, 12% of graphite is of the rhom-
bohedral form (ABCABCstacking!.7 Frequently a synthetic
preparation highly oriented pyrolithic graphite~HOPG! is
used, in which the hexagonal carbon lattice layers, while
well ordered along thec axis, are randomly stacked with
respect to thea axis. STM of HOPG has revealed a large
variety of superlattice structures. While one source of such
images is the formation of more than one tip point,8 allowing
tunneling to multiple points on the tip, Moire` patterns9,10

have also been observed. We shall show that the LDOS close
to the Fermi level is particularly sensitive to the interlayer
stacking, affecting the tunneling current sufficiently for a
‘‘superlattice’’ structure to be superimposed upon the usual
graphite image. The amplitude of the Moire´ patterns ob-
served in constant current mode decreases with increasing

bias voltage,9 which we also find to be consistent with our
model.

In constant current mode the tip height is adjusted to
maintain a constant tunneling current as the surface is raster
scanned. However the observed tip-height corrugation is far
greater than that simply due to the distance dependence of
the electronic tip-surface matrix element.11 Because of the
proximity of the tip to the surface, the tip exerts a force on
the surface, causing it to deform. Since the tip-height corru-
gation is measured with respect to the back of the sample,
the elastic deformation of the surface amplifies the response
of the tip driver to the change in the tip-surface tunneling
matrix element. The observed Moire´ patterns have also been
attributed to the variation in tip-surface force resulting from
the variable interlayer stacking;12 however, we show that the
bias voltage dependence of the results is more consistent
with response to variation in local electronic structure.

As a point probe of real-space surface structure, STM
presents significant theoretical challenges, requiring knowl-
edge of the electronic structure of both the tip and surface as
well as the nature of the tip-surface interaction. The first
model by Tersoff and Hamann2 employed a first-order per-
turbation theory tunneling Hamiltonian approach, using the
Bardeen approximation for the tunneling matrix element. By
assuming an asymptotically spherical tip and taking the limit
of small applied bias voltage, the tunneling current was re-
duced to the Fermi level LDOS of the surface at the point
probed by the tip. Subsequently, Tomaneket al.13 demon-
strated the need to go beyond the small bias limit to explain
the observed bias-dependent, asymmetric images of graphite.
The tunneling current can also be calculated nonperturba-
tively by numerically solving the Schro¨dinger equation and
hence obtaining the current density.14–17 However, studies
comparing the two approaches show good agreement up to
tip-surface separations of an Å.16 Doyen18 proved that the
current-density approach is in fact equivalent to the transfer
Hamiltonian method taken to all orders in the tip-surface
coupling. More sophisticated calculations also include the
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effect of the image charge on the effective tip-surface poten-
tial, which has been shown to further increase the magnitude
of the tunneling current.19,16 A nonequilibrium Green’s-
function approach was introduced by Sacks and Noguera,20

involving matching of the tip and sample surface Green’s-
functions to obtain the tip-sample propagator. Nevertheless
for the cases considered so far this approach reduces to con-
ventional Green’s function methods such as that in Ref. 21.

One of the most difficult aspects of STM is the problem
of reproducibility of tip and tip-surface interactions. The im-
portance of going beyond ans-like tip has been recognized
by many studies.22–25,5The STM tip is usually made of plati-
num or tungsten, allowing for the possibility of tunneling
from d-like and/orp-like states. Tekman and Ciraci26 pro-
posed that tip-induced surface states would account for the
large observed tip-height corrugations. However, using
Green’s-function techniques, Doyen, Drakova, and
Scheffler27 investigated such states for Al~111! and found
that, while the tip influenced the surface electronic structure,
the resultant electronic contribution to the tip-height corru-
gation in constant current mode was still only of order 0.1 Å
compared to the experimentally observed 0.8 Å.

In this work we study the STM of graphite using the
tight-binding Hamiltonian~TBH! method to describe the tip-
surface system. While more sophisticated electronic structure
calculations can provide greater overall accuracy, a TB ap-
proach has the advantage of allowing relatively simple elu-
cidation of the important contributions to the STM image. In
addition the TB Hamiltonian gives a good description of the
electronic structure of graphite near the Fermi level, pre-
cisely the regime probed by STM.28 By using a simple TB
model of the graphite-tip system, we are able to demonstrate
the extreme sensitivity of the STM image to the form of the
tip-surface interaction as well as the applied bias voltage.
Our results are an improvement upon previous TB
models,29-31which employ the small bias limit, and are there-
fore unable to account for bias voltage effects. Although we
have used a TB model, most appropriate for the region of
weak chemical interactions 2–8 Å from the surface, the
method can be readily generalized to more sophisticated TB-
like schemes such as complete neglect of differential overlap
~CNDO!.32 TB models are also well suited to Green’s-
function methods, and thus extension to the inclusion of de-
fects or adsorbates.33

II. MODEL

We describe the graphite-STM tip system within the tight-
binding Hamiltonian,

H5(
i

u i &e i^ i u2(
i j

u i &Vi j ^ j u, ~1!

where the basis$u l &% includes all sites in the tip-surface sys-
tem.Vi j are nonzero for nearest neighbors only, and repre-
sent the hopping energy between sitesi and j , ande i is the
on-site energy at sitei . In our model, the tip is a semi-
infinite, one-dimensional chain, and the surface a semi-
infinite slab of graphite.

A. Graphite

The electronic structure of graphite about the Fermi level
is well described by the TB model. Within the hexagonal
lattice layers the carbon atoms participate insp2-hybridized
s bonding, as well asp bonding between the 2pz orbitals.
The interlayer bonding is significantly weaker and less well
understood.34 In our model we obtain the graphite surface by
cleaving an infinite crystal into two semi-infinite crystals35

~see Appendix A!.
By calculating the lattice Green’s function for graphite,

we are able to obtain the DOS. The lattice Green’s-function
operator is defined in terms of the Hamiltonian as

G~E!5
1

EI2H
. ~2!

The DOS is then36

r~E!52
1

p
Im lim

e→01

Tr@G~E1 i e!#. ~3!

Because the interlayer bonding in graphite is comparatively
weak, the DOS is dominated by the features of the two-
dimensional hexagonal DOS.37 The most significant effect of
the interlayer bonding is to increase the value of the DOS at
the Fermi-level from zero to a small but finite value. The
exact nature of the Fermi level DOS in bulk graphite and at
the surface depends upon the crystallographic stacking, as
can be seen in Fig. 1. At the surface of Bernal graphite,
cleavage causes the formation of a virtual surface state ex-
actly at the midpoint of the bandwidth, which, being a zero
residue pole, contributes no weight to the DOS. It can be
ignored in calculating the tunnelling current as we consider
the contribution of states above the Fermi level.38

The hexagonal lattice can be viewed as two interpenetrat-
ing triangular lattices. While in a hexagonal layer every site
is equivalent, the asymmetric interlayer coupling in the Ber-

FIG. 1. Surface DOS for~i! simple hexagonal
~ii ! Bernal and~iii ! rhombohedral graphite.~En-
ergy is measured with respect to the Fermi level.!
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nal and rhombohedral cases causes the two sites to become
inequivalent. We follow convention and refer to the sites
with a nearest neighbor in the adjacent plane as theA site,
and the sites situated in the lattice hollows as theB sites. Due
to the electronic inequivalence of theA andB sites in Bernal
graphite, the LDOS differ about the Fermi level, with the
Fermi level LDOS at theA site being zero while that at the
B site is nonzero. In rhombohedral graphite, the bulkA and
B sites are equivalent; however, cleavage causes the surface
A andB sites to become inequivalent. In Fig. 2 it can be seen
that, although the Fermi-level LDOS’s are both zero, the two
LDOS’s differ slightly as the Fermi level is approached,
leading, as we shall find, to anAB asymmetry in the STM
image.

B. Tip

The tip is modeled as the final atom of a semi-infinite,
one-dimensional chain, for which the Green’s function is39

G~E!5
1

2W2 ~E6AE224W2!, ~4!

whereW is the hopping element between nearest neighbors
of the chain. The sign of the square root is determined in
order that in the limit that the imaginary part of the energy
becomes zero, the DOS is positive@see Eq.~3!#.

In Fig. 3 we illustrate our simplified representation of the
tip-surface interaction. We have calculated the tunneling cur-
rent for three extreme cases: tunneling with the tip directly
above theA surface site, tunneling with the tip directly above
the B surface site and tunneling with the tip directly above
the center of a hexagon, referred to as theH site. Electron
transfer between the tip and surface is restricted to hopping
V1 from the final tip atom to the nearest-neighbor surface site
directly below the tip, and hoppingV2 between the final tip
atom and the next-nearest-neighbor site. Although represent-
ing the tip-surface interaction in terms of a single atom of a
one-dimensional tip with a limited number of surface atoms
may seem unrealistic, we shall show that to first orderV1 and
V2 can be equivalently regarded as the sum of all the tip-
surface contributions, with contributions fromA andB sites
being separately distinguished.

C. Tunneling current

We divide the tip-surface Hamiltonian into three parts:
one part concerning the tip, the second the surface, and the
third the tip-surface interaction, i.e.,

H5Htip1Hsurf1Htip-surf. ~5!

Htip2surf is treated perturbatively. Within time-dependent per-
turbation theory, the transition rate between the unperturbed
states of the tipufa& and those of the surfaceufb& can then
be written~to all orders in the tip-surface interaction! as

Wab5
2p

\
z^fauTufb& z2d~Ea2Eb!, ~6!

where thed function ensures energy conservation and

T~E!5
1

EI2G0Htip-surf
Htip-surf. ~7!

G0 is the Green’s function of the unperturbed system
Hsurf1Htip .

Applying a bias voltage to the tip-surface interface then
causes a current to flow,

I5
2pe

\ (
ab

z^fauTufb& z2d~Ea2Eb!

3@ f ~Ea!2 f ~Eb1eVbias!#. ~8!

Introducing the identity

d~Eb2Ea!5E
2`

`

dEd~E2Ea!d~E2Eb!, ~9!

and taking the zero-temperature limit, the current becomes

I5
2pe

\ E
EF

EF1eVbias
dE(

ab
d~Ea2E!^fauTufb&

3^fbuTufa&d~Eb2E!, ~10!

which can be more neatly expressed as40

I5
2pe

\ E
EF

EF1eVbias
dETr@rtip~E!T†rsurf~E!T#, ~11!

wherertip(E) andrsurf(E) are the densities of states of the
noninteracting tip and surface respectively:

rtip~E!5(
a

d~E2Ea!, ~12!

rsurf~E!5(
b

d~E2Eb!. ~13!

We include hopping between the final tip site and the
surface site directly below the tipV1 as well as hopping
between the final tip site and the nearest neighbor to the tip
on the surfaceV2. As can be seen from Fig. 3, the number of
elements summed when calculating the trace is only four
with the tip at theA or B sites or six with the tip at theH
site. If hopping is allowed between a single tip site andn

FIG. 2. Resolution of DOS into contributions fromA and B
sites near the Fermi level for~i! Bernal and~ii ! rhombohedral
graphite.
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surface sites, the elements ofT linking the tip and the sample
have the form@see Appendix B, Eq.~B15!#

Ttip,n5
Vn

12Gtip,tip
0 (k,lVkVlGkl

0 , ~14!

wheren is a surface site from which hopping to the tip,Vn is
allowed and vice versa. The sum overk,l is over the surface
sites involved in tip-surface hopping. Taking the trace, the
current becomes

I5
2pe

\ E
EF

EF1eVbias
dE(

n

rnnr tip,tipVn
2

u12Gtip,tip
0 (k,lVkVlGkl

0 u2
.

~15!

Tip-induced localized states41 caused by the interaction be-
tween the surface and tip are manifested as poles or reso-
nances in the denominator of Eq.~15!42

To first order, the current reduces to

I5
2pe

\ E
EF

EF1eVbias
dE(

n
rnnr tip,tipVn

2 , ~16!

where the sum overn is over surface sites affected by the tip.
Hence the first-order contributions to the tunneling current
with the tip at theA, B, andH positions, respectively, be-
come

I A5
2pe

\ E
EF

EF1eVbias
dE@V1

2rA~E!13V2
2rB~E!#r tip~E!,

~17a!

I B5
2pe

\ E
EF

EF1eVbias
dE@V1

2rB~E!13V2
2rA~E!#r tip~E!,

~17b!

I H5
2pe

\ E
EF

EF1eVbias
dE@3V2

2rA~E!13V2
2rB~E!#r tip~E!.

~17c!

The above equations clearly show that ifV1
2.3V2

2, the cur-
rent with the tip above theA or B sites will be greater than
with the tip at theH position. BecauserB(E).rA(E) near
the Fermi level, the current maxima are observed with the tip
at theB site. Minima in the current image occur with the tip
above theH position.

For bias voltages smaller than 0.5 eV, the first-order result
is indistinguishable from the all orders form of the current,
so that the above equations are sufficient to understand the
properties of the electronic contribution to STM images.38

D. Tip-surface matrix element

When the tip is brought close to the surface, the surface
potentials of both the tip and surface are perturbed, and the
probability of an electron tunneling from the tip to the sur-
face or vice versa, becomes finite. Bardeen43 showed that, to
first order in perturbation theory, the matrix element between
two sides of a junction is simply the expectation value of the
current operator between the unperturbed wave functions at
the interface, i.e.,

Vab5
\2

2mESWdSW $fa
†¹fb2fb¹fa

†%. ~18!

This is valid if the wave functions both decay exponentially
into the vacuum, as is the case in non-contact-mode STM. In
our model we approximate the TB tip and surface wave
functions by Slater-likedz2 and 2pz orbitals, respectively,
which clearly decay exponentially with increasing tip-
surface separation. Details of these calculations are contained
in Appendix C.

III. RESULTS

A. Current imaging mode

We begin by calculating the properties of the tunneling
current for constant height operation of the STM. The pa-
rameters in the calculation are then the applied bias voltage
and the tip-surface hopping parametersV1 andV2. In Fig. 4
we show the dependence of the tunneling current upon the
parameterV1, which is clearly a function of the tip-surface
separation. The applied bias voltage is 0.04 V, and the cur-
rent is calculated for the tip at positionsA, B, andH. The
difference between the current that would be obtained from
simple hexagonal, Bernal, and rhombohedral forms of graph-
ite is also shown.

From the plots it can be seen that the current is, as would
be expected from Eq.~17!, quadratic in the tip-surface hop-
ping parameterV1. One can also see that the differing LDOS
contributions from theA andB sites result in different con-
tributions to the tunneling current. A fascinating difference
arises when comparing the case where the secondary hop-
ping contributionV2 is assumed to be 0.4V1 (V1

2.3V2
2) to

that whereV2 is 0.7V1 (V1
2,3V2

2). There is a reversal of the
maxima and minima between the two cases. The hollows in
the former case are the sites of minimum current, while in
the latter case the hollows are the sites of maximum current.
Hence the sensitivity of the image to the nature of the tip-
surface interaction, as has also been observed
experimentally.5

FIG. 3. Representation of the
tip-surface interaction with the tip
above ~a! A, ~b! B, and ~c! H
sites.
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This illustration of the sensitivity of the image to the tip-
surface interaction is not confined to the case of a point tip
interacting with the surface. To first order in the tip-sample
interaction,V1 can equally well represent the sum over the
average interaction ofall theA sites with the tip, andV2 the
sum over the average interaction ofall theB sites with the
tip. In this sense it is unimportant whether the tip is a large
cluster, a piece of graphite attached to the tip, or a a point
source. Such details will affect the magnitude but not the
existence of the relative differences in the tunneling current
considered here.

An important feature of Fig. 4 is the distinct difference
between the magnitudes of the tunneling current from the
different forms of graphite. Clearly, in the case of HOPG, the
varying interlayer interaction would result in the superposi-
tion of a large-scale Moire´ pattern upon the underlying
atomic scale current variation.

B. Constant current mode

In constant current mode the height of the STM tip is
adjusted so that the measured current remains constant. Mod-
eling this process requires knowledge of both the depen-
dence of the tip-surface hopping parameters upon the tip-

surface separation and the mechanical response of the
surface to the tip. In the following we shall ignore the me-
chanical response~which serves to amplify the change in tip
position required to give the necessary change in tip-surface
hopping element!, and assume that the tip-surface hopping
element has the form of Eq.~18!, derived by Bardeen.43

The current is plotted in Fig. 5 as a function of tip-surface
separation at the three tip positionsA, B, andH, for the three
crystallographic forms of graphite. Below the plots, theoreti-
cal STM scans are sketched for a current of 1 nA. Once
again, it can be seen that the contributions from the three
different forms of graphite are quite distinct. When the bias
voltage is increased from 0.02 V to 0.5 V, an important
change is observed. The larger number of states contributing
to the tunneling current leads to an increase in the average
tip-surface separation in order to maintain a tunneling cur-
rent of 1 nA, and hence to a smaller difference between the
tip-surface matrix elements at theA, B, andH sites, decreas-
ing the image corrugation.

Interestingly, at large bias voltages, the results from the
different crystallographic forms remain quite distinct, al-
though the absolute separation has decreased. This is consis-
tent with the results of Rong and Kuiper,9 who performed

FIG. 4. Current imaging mode
of operation of STM:~a! Current
as a function of the tip-surface
hopping element V1. for ~i!
V250.4V1 and ~ii ! V250.7V1 .
~b! Sketch of variation in current
for a scan acrossXY on the graph-
ite surface for cases~i! and~ii !. ~c!
Scan direction across the graphite
surface.
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constant current~5 nA! scans of the surface of HOPG graph-
ite at 0.072 and 0.535 V. They observed a large tip-height
corrugation with period 66 Å imposed upon the ordinary
atomic scale tip-height corrugation. At a bias voltage of
0.072 V, the large scale tip-height corrugation is 1.8 Å, while
the atomic scale tip-height corrugation is 0.6 Å. Increasing
the bias voltage to 0.535 V, the atomic scale tip-height cor-
rugation was reduced to 0.4 Å, and the ‘‘superlattice’’ tip-
height corrugation to 0.9 Å. That the order of magnitude of
the effect is consistent with our results is further indication
that the mechanical interaction of tip and the surface serves
as a gross amplifier of the response to variations in electronic
structure.

IV. EXTENSION TO MORE COMPLEX SYSTEMS

The Green’s-function formulation of the tunneling current
can readily be extended to more complex surfaces containing
defects or adsorbates. Defects or adsorbates at the surface
affect the tunneling current in two ways. Both the surface
LDOS and tip-surface matrix elements are altered and play a
crucial role in interpreting the image.44 However, given the
effect of the absorbate or defect upon the original surface

Hamiltonian, the new surface LDOS can be explicitly con-
structed in terms of the old, simplifying the task of calculat-
ing the tunneling current.

In calculating the Green’s function of this surface, the
adsorbate or defect is treated as a perturbation to the ideal
surface. Dyson’s equation then allows the Green’s function
of the system to be completely determined in terms of the old
Hamiltonian for the system without defect or adsorbate and
the perturbation. Here we give the example of an adatom
adsorbed onto theB site of the graphite surface. The ideal
surface is perturbed by the on-site energy of the adatomea
and the hopping termsWi ,a from the adatomua& to the sur-
face:

H5H1ua&ea^au2(
i

u i &Wi ,a^au1H.c. ~19!

The sum over$ i % is over the atoms interacting with the ada-
tom. The adatom terms constitute a perturbationV to the
original Hamiltonian so that

H5H1V ~20!

FIG. 5. Constant current mode
of operation of STM:~a! Current
as a function of the tip-surface
separation for~i! Vbias50.02V and
~ii ! Vbias50.50V. ~b! Sketch of
variation in tip-height for a scan
acrossXY on the graphite surface
for cases~i! and~ii ! at a current of
1 nA. ~c! Scan direction across the
graphite surface.
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Using Dyson’s equation in matrix form, the Green’s func-
tion and hence the tunneling current@see Eq.~11!# can be
obtained for the system:

Gmn5Gmn1~GVG!mn. ~21!

Let 0 label the missing or perturbed site and 1, 2, and 3
its nearest neighbors. Dyson’s equation becomes

Gmn5Gmn2@eaGm01ga~Gm11Gm21Gm3!#G0n
2gaGm0~G1n1G2n1G3n!, ~22!

whereW015W025W035ga . Clearly G0n , G1n , G2n , and
G3n can be solved for self-consistently:

FG0n

G1n

G2n

G3n

G5F 11eaG001ga~G011G021G03! gaG00 gaG00 gaG00

eaG101ga~G111G121G13! 11gaG10 gaG10 gaG10

eaG201ga~G211G221G23! gaG20 11gaG20 gaG20

eaG301ga~G311G321G33! gaG30 gaG30 11gaG30

GF G0nG1nG2n
G3n

G . ~23!

Having solved forG0n , G1n , G2n , and G3n , they can be
substituted back into Eq.~22!, and the Green’s function of
the perturbed system determined.

The Green’s function for a system with a perturbation to
anA site can be determined in an analogous manner, except
now the severing of the interlayer bond must be included,
leading to a system of five simultaneous equations.38

V. CONCLUSION

A TB model of the STM of graphite using Green’s-
function techniques is able to qualitatively describe the ex-
perimentally observed features of STM images of graphite.
The advantages of this formalism are, first, that the features
of the tip-surface interaction are included in a simple and
intuitive way; second, that the effect of the bias voltage upon
the tunneling current is readily determined; and third, that
the effect of the interlayer coupling upon the surface DOS is
taken into account. Because we have used Green’s-function
techniques, our model can be extended to graphite surfaces
containing defects or adsorbates. The utility of our method
lies in the existence of well-defined TB parameter sets45 and
the popularity of graphite as a substrate for adsorbate studies.

We find that in the case of graphite, the nature of features
such as maxima and minima in the STM image are strongly
dependent on the tip-surface interaction. In addition, the
rapid increase of the DOS away from the Fermi level leads to
a high sensitivity of the tunneling current to the nature of the
interlayer coupling. We show that this extreme sensitivity
suffices to explain Moire´ patterns observed at the surface of
graphite and is consistent with the experimentally observed
bias voltage dependence of the image.

The limitation of TB methods lies in the semiempirical
description of the electronic structure of the tip-surface sys-
tem. For complex geometries, methods such as the recursion
technique may be required to obtain the surface Green’s
function. We plan now to extend the Green’s function ap-
proach outlined above to general TB-like methods, such as
CNDO,32 where we can take advantage of self-consistent
electronic structure calculations in calculating the tunneling
current. In addition, through the incorporation of molecular
dynamics,46 we hope to study the dynamic interaction of the

tip and the surface and to model the effect of tip-induced
surface deformation on the image. Such methods are neces-
sary in order to adequately model the effects of surface re-
construction and dangling bonds.47
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APPENDIX A: CALCULATION OF BULK AND
SURFACE GREEN’S FUNCTIONS IN GRAPHITE

The bulk Green’s functions for graphite are obtained by
determining the expectation value of the Green’s-function
operator~assuming a nearest-neighbor TB HamiltonianH),

G05
1

EI2H
. ~A1!

In graphite, the bulk three-dimensional Green’s functions
are found to be integrals over complete elliptic integrals of
the first kind.37 The surface Green’s functions are obtained in
terms of the Green’s functions for bulk graphite by exploit-
ing Dyson’s equation.35 A perturbation is applied to the bulk
crystal Hamiltonian by removing the hopping term between
two layers, creating two surfaces. The Green’s function for
the divided system can then be obtained in terms of the
Green’s function for the uncleaved crystal and the perturba-
tion according to Dyson’s equation38

G5G01G0VG. ~A2!

Although this appears to involve inversion of anN3N ma-
trix equation, becauseV only spans the space of cleaved
bonds, the system of equations to be solved reduces to the
size of the spanned space. The exact expressions for the sur-
face Green’s function for ideally cleaved simple hexagonal,
Bernal and rhombohedral graphite may be found in Ref. 38.

APPENDIX B: TIP-SURFACE MATRIX ELEMENTS

The Hamiltonian of the noninteracting tip-sample system,
in block diagonal form, is
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H05FHsample 0

0 Htip
G , ~B1!

whereHsampleis ann3n matrix consisting of all the sites in
the sample, andHtip is anm3m matrix consisting of all the
sites in the tip.

In our model, hopping is allowed between the end tip site,
t, and l surface sites. The Hamiltonian becomes

H5FHsample V

V† Htip
G , ~B2!

whereV is am3n matrix, but with the only nonzero ele-
ments$Vl% being between the final tip atom andl surface
sites. Dyson’s equation gives the Green’s function for the
whole system in terms of the unperturbed Green’s function
operator

G5G01G0TG0, ~B3!

where

T5
V

12G0V
. ~B4!

Rearranging Eq.~B4! gives

T~12G0V!5V. ~B5!

The nonzero matrix elements ofG0V are

~G0V!pq5H (
m

VmGpm
0 , q5t

VqGpt
0 , qP$ l %

~B6!

Therefore Eq.~B5! becomes

Vj5(
i
Tti@d i j2~G0V! i j #. ~B7!

If j is the tip sitet, thenVtt50, so that

05Ttt2(
i
Tti~G

0V! i t ~B8!

5Ttt2(
ik

TtiVkGik
0 , ~B9!

where the sum is over alli ,kP$ l %. If jP$ l %, then Eq.~B7!
becomes

Vj5Tt j2TttVjGtt
0 . ~B10!

Substituting Eq.~B10! into Eq. ~B9!, we obtain

05Ttt2(
ik

~Vi1ViTttGtt
0 !VkGik

0 , ~B11!

(
ik

ViVkGik
0 5TttS 12(

ik
ViVkGtt

0Gik
0 D , ~B12!

Ttt5
( ikViVkGik

0

12Gtt
0( ikViVkGik

0 . ~B13!

Putting Eq.~B13! into Eq. ~B10!,

Ttm5Vm2VmGtt
0 S ( ikViVkGik

0

12Gtt
0(ViVkGik

0 D ~B14!

5
Vm

12Gtt
0( ikViVkGik

0 . ~B15!

Looking now at the elements ofT between surface sitesm
andn, Eq. ~B7! becomes

05(
i
Tmi@d in2~GV! in!] ~B16!

5Tmn2(
i
TmiVnGit

0 . ~B17!

From Eq.~B6!, this reduces to

05Tmn2TmtVnGtt
0 . ~B18!

Hence the elements ofT between surface sitesm andn are

Tmn5
VnVmGtt

0

12Gtt
0( ikViVkGik

0 . ~B19!

APPENDIX C: TIP-SURFACE HOPPING PARAMETER

In our calculation of the STM tunneling current, we rep-
resent the nearest- and next-nearest-neighbor tip-sample hop-
ping terms by the parametersV1 and V2, respectively. In
order to estimate the approximate dependence of these pa-
rameters upon the tip-surface separation, we have performed
the following calculation.

The TB tip-surface hopping parameters are defined by

V5^csurfuHuc tip&, ~C1!

where$c i% are eigenstates of the TBH, the set of Wannier
states centered about the lattice sites. However, to calculate
V, we approximate the Wannier states by atomiclike states
$f i% which are eigenstates of an atomiclike Hamiltonian, so
that

V5E dtf* ~rWsurf!DU~rW !f~rW tip!, ~C2!

whereDU(rW) is the difference between the atomic potential
and the true tip-surface potential. Bardeen43 showed that Eq.
~46! to first order inDU(rW) is equivalent to

V5E
SW
dSW •$f* ~rWsurf!¹f~rW tip!2f~rW tip!¹f* ~rWsurf!%. ~C3!

The integration surface is chosen to be the infinitex-y plane
halfway between the tip and the surface. We approximate the
Wannier states in graphite by the atomiclike 2pz wave func-
tions localized about each lattice site. Here we present results
for the tip modeled by 3dz2 hydrogenlike wave functions.
Reference 38 also contains tip-height corrugation results for
a 1s-like and 2pz-like tips, which show the same overall
trends, though with smaller magnitude. In atomic units, the
respective wave functions are
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fsurf5
z5/2

Ap
zse

2zr s, ~C4!

f tip,d5
a7/2

3A2p
~3zt

22r t
2!e2ar t, ~C5!

wherer s is the position vector of the surface wave function,
and r t is the position vector of the tip wave function.z and
a correspond toZg/n, whereg is a parameter accounting
for the screening of the nucleus by the inner electrons,Z is
the atomic number, andn is the principal quantum number.
The corresponding hopping parameters are calculated from

Vdtip513.6 eV
a7/2z5/2

p
E dS e2z r̄ s2a r̄td2F742

a r̄ t

4
2

z r̄ t
2

4r̄ s

2
r̄ t
2

d2
2
3ad2

16r̄ t
2
3zd 2

16r̄ s
, ~C6!

wherer̄ s( r̄ t) is r s(r t) evaluated at the surface~tip!, andd is
the tip-surface separation. UsingMATHEMATICA , we calcu-
latedVdtip as a function of the tip-surface separation assum-
ing a5z51.5. These values are representative of those of
the free carbon atom value ofz51.6,48 and a51.3 for a
tungsten tip.49
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