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Electronic effects in scanning tunneling microscopy of graphite:
A Green’s-function calculation based on the tight-binding model
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We show that the features of the scanning-tunneling-microscopy STM images of graphite can be understood
within a simple tight-binding model of the tip-surface system. Using Green’s-function techniques, we are able
to go beyond the usual Tersoff and Hamann formalism and include the effect of the bias voltage and tip-surface
coupling on the tunneling current. We show that the tunneling current is very sensitive to the different
crystallographic stacking arrangements of graphite, due to their influence on the local density of states both at
and near the Fermi level. In addition, we find that the relative corrugation of the STM image depends strongly
upon the nature of the tip-surface interaction. We conclude with a discussion of the extension of our formalism
to include surface defects and adsorbaft€6163-18206)01539-1

I. INTRODUCTION bias voltag€, which we also find to be consistent with our
model.
The invention of the scanning tunneling microscbpas In constant current mode the tip height is adjusted to

led to a wealth of exciting observations of surface electronignaintain a constant tunneling current as the surface is raster
structure. The case of graphite is no exception and, due to igcanned. However the observed tip-height corrugation is far
simple surface structure, provides a useful testing ground fogreater than that simply due to the distance dependence of
theoretical models. Most models of scanning-tunneling mithe electronic tip-surface matrix elementBecause of the
croscopy(STM) are based on that of Tersoff and Hamarin, proximity of the tip to the surface, t_he tip exerts a force on
in which the tunneling current is found to be proportional to the surface, causing it to deform. Since the tip-height corru-

the Fermi level surface density of states at the point probet i[i(::‘?aissti?;;‘Sotrjrrr?gtigvritgfr(tar?gZ?Jtrffc;hgrr?;iicfli(egft:]ger ;:F';ngé
by the tip. The inequivalent local density of state®OS) of of the tip driver to the change in the tip-surface tunneling

the graphite surface sites leads to the resolu.tl.on of only Ve i atrix element. The observed Moipatterns have also been
second atom under normal tunneling conditions. However

the simple T # and H del lai ither th attributed to the variation in tip-surface force resulting from
€ simpie Tersott and Hamann model expiains Nelther NG, \/5iaple interlayer stacking;however, we show that the
decrease of resolution with increasing bias voltage in th

i ) bias voltage dependence of the results is more consistent
constant current tunneling mode, nor the decrease in resolyith response to variation in local electronic structure.

tion with decreasing tunn:}aling curre”mil_fl addition_there As a point probe of real-space surface structure, STM
have been obsgrvauo?%a)'.e(  of changes in the relative cor- presents significant theoretical challenges, requiring knowl-
rugation of the image, which also cannot be explained withinedge of the electronic structure of both the tip and surface as
the Tersoff and Hamann model. well as the nature of the tip-surface interaction. The first
Graphite consists of weakly bound hexagonal lattice lay-model by Tersoff and HamafAmemployed a first-order per-
ers. While 82% of naturally occurring graphite is of the Ber-turbation theory tunneling Hamiltonian approach, using the
nal form (ABAB stacking, 12% of graphite is of the rhom- Bardeen approximation for the tunneling matrix element. By
bohedral form ABCABCstacking.” Frequently a synthetic assuming an asymptotically spherical tip and taking the limit
preparation highly oriented pyrolithic graphittlOPG is  of small applied bias voltage, the tunneling current was re-
used, in which the hexagonal carbon lattice layers, whileduced to the Fermi level LDOS of the surface at the point
well ordered along the axis, are randomly stacked with probed by the tip. Subsequently, Tomanetkal ** demon-
respect to thea axis. STM of HOPG has revealed a large strated the need to go beyond the small bias limit to explain
variety of superlattice structures. While one source of suchhe observed bias-dependent, asymmetric images of graphite.
images is the formation of more than one tip pdiatlowing  The tunneling current can also be calculated nonperturba-
tunneling to multiple points on the tip, Moirpatterng'® tively by numerically solving the Schdinger equation and
have also been observed. We shall show that the LDOS clogeence obtaining the current densify!’ However, studies
to the Fermi level is particularly sensitive to the interlayercomparing the two approaches show good agreement up to
stacking, affecting the tunneling current sufficiently for atip-surface separations of an*A.Doyen'® proved that the
“superlattice” structure to be superimposed upon the usuaturrent-density approach is in fact equivalent to the transfer
graphite image. The amplitude of the Moipatterns ob- Hamiltonian method taken to all orders in the tip-surface
served in constant current mode decreases with increasimgupling. More sophisticated calculations also include the

0163-1829/96/54.6)/1177719)/$10.00 54 11777 © 1996 The American Physical Society



11778 B. A. McKINNON AND T. C. CHOY 54
0.25 T T T T ;
simple hexagonal Bernal rhombohedral
0.20 |- E E e
=
{ 0.15 | - - B
) FIG. 1. Surface DOS fofi) simple hexagonal
0 010+ 4 4 4 (i) Bernal and(iii) rhombohedral graphit¢En-
o . . .
a ergy is measured with respect to the Fermi level.
0.05 |- - B -
0.00 L

-9.0

0.0 9.0-9.0

Energy (eV)

0.0 9.0-9.0

Energy (eV)

0.0 9.0

Energy (eV)

effect of the image charge on the effective tip-surface poten-
tial, which has been shown to further increase the magnitude
of the tunneling curren'® A nonequilibrium Green’s-
function approach was introduced by Sacks and Nogtfera, where the basig|l)} includes all sites in the tip-surface sys-
involving matching of the tip and sample surface Green'stem. V;; are nonzero for nearest neighbors only, and repre-

functions to obtain the tip-sample propagator. Neverthelesgent the hopping energy between sitemnd j, ande; is the
for the cases considered so far this approach reduces to cogs_site energy at sité. In our model, the tip is a semi-

ventional Green’s function methods such as that in Ref. 21;
One of the most difficult aspects of STM is the problem
of reproducibility of tip and tip-surface interactions. The im-

portance of going beyond asilike tip has been recognized

by many studie$*~2**The STM tip is usually made of plati-

num or tungsten, allowing for the possibility of tunneling
from d-like and/orp-like states. Tekman and Cir&€ipro-

Green’s-function
Schefflef’

techniques,
investigated such states for (AlLl) and found

that, while the tip influenced the surface electronic structure
the resultant electronic contribution to the tip-height corru-
gation in constant current mode was still only of order 0.1 A

Doyen,

compared to the experimentally observed 0.8 A.

In this work we study the STM of graphite using the
tight-binding Hamiltonian TBH) method to describe the tip-

Drakova,

H:Ei |i>ei(i|—; li)Vigdil,

(D

infinite, one-dimensional chain, and the surface a semi-
infinite slab of graphite.

A. Graphite

The electronic structure of graphite about the Fermi level

Ana is well described by the TB model. Within the hexagonal
posed that tip-induced surface states would account for thgyttice layers the carbon atoms participatesipt-hybridized
large observed tip-height corrugations. However, using,; bonding, as well asr bonding between theg® orbitals.

surface system. While more sophisticated electronic structure
calculations can provide greater overall accuracy, a TB ap-
proach has the advantage of allowing relatively simple elu-
cidation of the important contributions to the STM image. INThe DOS is the#f
addition the TB Hamiltonian gives a good description of the

electronic structure of graphite near the Fermi level, pre-
cisely the regime probed by STR4.By using a simple TB

model of the graphite-tip system, we are able to demonstrate

the extreme sensitivity of the STM image to the form of the
tip-surface interaction as well as the applied bias voltag
results are an

Our

like schemes such as complete neglect of differential overlae
(CNDO).*> TB models are also well suited to Green's-
function methods, and thus extension to the inclusion of de

fects or adsorbates.

improvement upon previous TB
models2®3*which employ the small bias limit, and are there-
fore unable to account for bias voltage effects. Although w
have used a TB model, most appropriate for the region o
weak chemical interactions 2—8 A from the surface, th

method can be readily generalized to more sophisticated TB:an be seen in Fig. 1. At the surface of Bernal graphite,

leavage causes the formation of a virtual surface state ex-
actly at the midpoint of the bandwidth, which, being a zero
residue pole, contributes no weight to the DOS. It can be

p(E)=— %Im lim Tr[G(E+ie)].

andrhe interlayer bonding is significantly weaker and less well
understood” In our model we obtain the graphite surface by
cleaving an infinite crystal into two semi-infinite crystils
(see Appendix A

By calculating the lattice Green’s function for graphite,
we are able to obtain the DOS. The lattice Green’s-function
operator is defined in terms of the Hamiltonian as

1
G(E)= ——.

EI—H @

()

e—0"

Because the interlayer bonding in graphite is comparatively

€weak, the DOS is dominated by the features of the two-

dimensional hexagonal DO The most significant effect of

the interlayer bonding is to increase the value of the DOS at
he Fermi-level from zero to a small but finite value. The
xact nature of the Fermi level DOS in bulk graphite and at

Ghe surface depends upon the crystallographic stacking, as

ignored in calculating the tunnelling current as we consider
the contribution of states above the Fermi letfel.

Il. MODEL . . .
The hexagonal lattice can be viewed as two interpenetrat-

We describe the graphite-STM tip system within the tight-ing triangular lattices. While in a hexagonal layer every site
binding Hamiltonian, is equivalent, the asymmetric interlayer coupling in the Ber-
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C. Tunneling current

Bernal surface LDOS Rhombohedral surface LDOS
008 008 We divide the tip-surface Hamiltonian into three parts:
one part concerning the tip, the second the surface, and the
; third the tip-surface interaction, i.e.,
0.06 - 0.06
- —— Assite LDOS _ —— Assite LDOS
3 —— Bsite LDOS 3 — — Bisite LDOS H=Hyip+ Hsurrt Hiip-surt- (5)
; 0.04 ;; 0.04 . i . . i
§ g Htip,sgrf is treated perturbapyely. Within time-dependent per-
ool o turbation theory, the transition rate between the unperturbed
’ states of the tig¢,) and those of the surfade;) can then
., w be written(to all orders in the tip-surface interactioras
000 5 20 10 00 1o 20 30 0'00-3.0 20 10 01) 10 20 30
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2
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FIG. 2. Resolution of DOS into contributions frod and B
sites near the Fermi level fofi) Bernal and(ii) rhombohedral where thes function ensures energy conservation and
graphite.

T(E)= ()

nal and rhombohedral cases causes the two sites to become El —GOHtip_Suer“p'S“”'
inequivalent. We follow convention and refer to the sites
with a nearest neighbor in the adjacent plane asAttsite,
and the sites situated in the lattice hollows asBhstes. Due
to the electronic inequivalence of tlleandB sites in Bernal
graphite, the LDOS differ about the Fermi level, with the

Fermi level LDOS at theA site being zero while that at the

G® is the Green's function of the unperturbed system
Hsurf+Htjp- . ) .

Applying a bias voltage to the tip-surface interface then
causes a current to flow,

L . 2
B site is nonzero. In rhombohedral graphite, the bilkend | = ieE Kl Tl )P S(E,—Ep)
B sites are equivalent; however, cleavage causes the surface h B
A andB sites to become inequivalent. In Fig. 2 it can be seen X[f(E,)—F(E 5+ Vio ] )
o B ias/ 1+

that, although the Fermi-level LDOS’s are both zero, the two
LDOS'’s differ slightly as the Fermi level is approached, Introducing the identity
leading, as we shall find, to ahB asymmetry in the STM

image. S(Eg—Ey)= f:dEa(E—Ea)a(E—Eﬁ), )
B. Tip and taking the zero-temperature limit, the current becomes
on;-r(l:i?mtiepnjc,sioan;dcef:;dn al‘sc)rtr\:\’/ahifé%atlhzt%r?egl;\’z :uenr(r:]'ii-(i)r?giinsitel 27€ ('Ee " eVhias
! =T ). 9 AEENATIe)
G(E)=%Z(Ei JEZ=4W?), 4) X( gl Tl o) 5(Ep—E), (10

which can be more neatly expressed’as

whereW is the hopping element between nearest neighbors
of the chain. The sign of the square root is determined in | = @ EF+eVbian ETH t
. L ; - -7 Pip(E)T ' psur( E)T], (11)
order that in the limit that the imaginary part of the energy Er
becomes zero, the DOS is positifeee Eq.(3)]. .

In Fig. 3 we illustrate ourpsimpElﬁei;ad rgpgre)lentation of theWhe.rep“P(E.) an_d Psu E) are the dens_ltles.of states of the
tip-surface interaction. We have calculated the tunneling Curponlnteractlng tip and surface respectively:
rent for three extreme cases: tunneling with the tip directly
above theA surface site, tunneling with the tip directly above Pip(E)= > 8(E-E,), (12
the B surface site and tunneling with the tip directly above @
the center of a hexagon, referred to as khesite. Electron
transfer between the tip and surface is restricted to hopping _ _

V; from the final tip atom to the nearest-neighbor surface site Pourf E) % O(E~Ep). (13
directly below the tip, and hopping, between the final tip

atom and the next-nearest-neighbor site. Although represent- We include hopping between the final tip site and the
ing the tip-surface interaction in terms of a single atom of asurface site directly below the tip'; as well as hopping
one-dimensional tip with a limited number of surface atomsbetween the final tip site and the nearest neighbor to the tip
may seem unrealistic, we shall show that to first oMgand  on the surfac&/,. As can be seen from Fig. 3, the number of
V, can be equivalently regarded as the sum of all the tipelements summed when calculating the trace is only four
surface contributions, with contributions fromandB sites  with the tip at theA or B sites or six with the tip at théi
being separately distinguished. site. If hopping is allowed between a single tip site and
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surface sites, the elementsmfinking the tip and the sample

have the forn{see Appendix B, Eq(B15)]

2
SViViGy

Ttip,n (14)

1- thp tip

wheren is a surface site from which hopping to the tif, is
allowed and vice versa. The sum ov¥el is over the surface
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FIG. 3. Representation of the
tip-surface interaction with the tip
above (@) A, (b) B, and (c) H
sites.

D. Tip-surface matrix element

When the tip is brought close to the surface, the surface
potentials of both the tip and surface are perturbed, and the
probability of an electron tunneling from the tip to the sur-
face or vice versa, becomes finite. BardBeshowed that, to
first order in perturbation theory, the matrix element between
two sides of a junction is simply the expectation value of the
current operator between the unperturbed wave functions at

sites involved in tip-surface hopping. Taking the trace, thehe interface, i.e.,

current becomes

| ZWGJEFJreVbias

2 PnnPtip,tipvﬁ
h

dE .
Er 11— Gip ip=k, ViV Gl
(15

tip,tip

h?
Var=ge | 4861565 0,60 (9

This is valid if the wave functions both decay exponentially

Tip-induced localized stat&scaused by the interaction be- into the vacuum, as is the case in non-contact-mode STM. In
tween the surface and tip are manifested as poles or resour model we approximate the TB tip and surface wave

nances in the denominator of E4.5)*
To first order, the current reduces to

2me (Ep+ eVblas

I = 5 Ee 2 PnnPtip, tIan‘

(16)

where the sum oven is over surface sites affected by the tip.
Hence the first-order contributions to the tunneling current
with the tip at theA, B, andH positions, respectively, be-

come

2me

| a=
A % £

EFt+eVpias

dE[VEpa(E) +3V3ps(E) lpup(E),
(179

2me

|n=
B % Er

Er+eVhias

dE[Vipg(E)+3V3pa(E)1pip(E),
(170

2me

=
i e,

EF+eVhias

dE[3V3pA(E) +3V3p5(E)]piip(E).
(179

The above equations clearly show thaw/#>3V3, the cur-

rent with the tip above thé or B sites will be greater than

with the tip at theH position. Becauseg(E)>pa(E) near

functions by Slater-liked,2 and 2p, orbitals, respectively,
which clearly decay exponentially with increasing tip-
surface separation. Details of these calculations are contained
in Appendix C.

IIl. RESULTS
A. Current imaging mode

We begin by calculating the properties of the tunneling
current for constant height operation of the STM. The pa-
rameters in the calculation are then the applied bias voltage
and the tip-surface hopping parametgksandV,. In Fig. 4
we show the dependence of the tunneling current upon the
parametelV, which is clearly a function of the tip-surface
separation. The applied bias voltage is 0.04 V, and the cur-
rent is calculated for the tip at positiods B, andH. The
difference between the current that would be obtained from
simple hexagonal, Bernal, and rhombohedral forms of graph-
ite is also shown.

From the plots it can be seen that the current is, as would
be expected from Ed17), quadratic in the tip-surface hop-
ping paramete¥,. One can also see that the differing LDOS
contributions from theA andB sites result in different con-
tributions to the tunneling current. A fascinating difference
arises when comparing the case where the secondary hop-
ping contributionV, is assumed to be 04 (V2>3V3) to

the Fermi level, the current maxima are observed with the tigihat whereV, is 0.3V, (V2<3V3). There is a reversal of the
at theB site. Minima in the current image occur with the tip maxima and minima between the two cases. The hollows in

above theH position.

the former case are the sites of minimum current, while in

For bias voltages smaller than 0.5 eV, the first-order resulthe latter case the hollows are the sites of maximum current.
is indistinguishable from the all orders form of the current,Hence the sensitivity of the image to the nature of the tip-

so that the above equations are sufficient to understand ttsurface

properties of the electronic contribution to STM imag®s.

interaction, as has also been observed

experimentally’
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This illustration of the sensitivity of the image to the tip- surface separation and the mechanical response of the
surface interaction is not confined to the case of a point tigurface to the tip. In the following we shall ignore the me-
interacting with the surface. To first order in the tip-samplechanical respons@vhich serves to amplify the change in tip
interaction,V, can equally well represent the sum over theposition required to give the necessary change in tip-surface
average interaction dll the A sites with the tip, and/, the  hopping element and assume that the tip-surface hopping
sum over the average interaction af the B sites with the  element has the form of E18), derived by Bardeeft
tip. In this sense it is unimportant whether the tip is a large  The current is plotted in Fig. 5 as a function of tip-surface
cluster, a piece of graphite attached to the tipac point  separation at the three tip positiofisB, andH, for the three

source. Such details will affect the magnitude but not theystallographic forms of graphite. Below the plots, theoreti-
existence of the relative differences in the tunneling current| sTM scans are sketched for a current of 1 nA. Once

cor:udgred ?er(ta.f ¢ f Fia. 4 is the distinct diff again, it can be seen that the contributions from the three
N important feature of ™g. & 1S the dISinct ailierence yige o nt forms of graphite are quite distinct. When the bias
between the magnitudes of the tunneling current from the

different forms of graphite. Clearly, in the case of HOPG,theVOltage is increased from 0.02 V to 0.5 V, an important

varying interlayer interaction would result in the Superposi_change is observed. The larger number of states contributing

tion of a large-scale Moirgoattern upon the underlying E,O theftunnellng Cl:,"en,t Ieagls t? an |p(3[rgaset|n thel'average
atomic scale current variation. ip-surface separation in order to maintain a tunneling cur-

rent of 1 nA, and hence to a smaller difference between the
tip-surface matrix elements at tide B, andH sites, decreas-
ing the image corrugation.

In constant current mode the height of the STM tip is Interestingly, at large bias voltages, the results from the
adjusted so that the measured current remains constant. Modifferent crystallographic forms remain quite distinct, al-
eling this process requires knowledge of both the depenthough the absolute separation has decreased. This is consis-
dence of the tip-surface hopping parameters upon the tipient with the results of Rong and Kuipésyho performed

B. Constant current mode



11782 B. A. McKINNON AND T. C. CHOY 54

5a(i) Sa(ii)
-8.0
L =
= =
2 -8B a
e St
3 ez 3
G s
) ap
o -9 o
FIG. 5. Constant current mode
. ' : 1 of operation of STM:(a) Current
—10‘03.0 . ‘ ”y . '1°~°5‘0 51 52 53 54 55 as a function of the tip-surface
- separation fofi) Vpi,e= 0.02/ and
tip—surface distance (A) surface distance (&) (i) Vyias=0.50v. (b) Sketch of
variation in tip-height for a scan
5b(i) 5b(ii) acrossXY on the graphite surface
4.6 5.5 - for caseqi) and(ii) at a current of
- V'V VNV VN e CAAAIAAAATNSNTS AR ] AL (©) Scan direction across the
ot} 4.4 ot .
= ~ 54} graphite surface.
20 2 53t
O 40 0
T T OAANAANA A
& &
36|
5.1
scan along XY scan along XY
5¢
\ A
X Y

constant currents nA) scans of the surface of HOPG graph- Hamiltonian, the new surface LDOS can be explicitly con-
ite at 0.072 and 0.535 V. They observed a large tip-heighstructed in terms of the old, simplifying the task of calculat-
corrugation with period 66 A imposed upon the ordinarying the tunneling current.

atomic scale tip-height corrugation. At a bias voltage of In calculating the Green’s function of this surface, the
0.072 V, the large scale tip-height corrugation is 1.8 A, whileadsorbate or defect is treated as a perturbation to the ideal
the atomic scale tip-height corrugation is 0.6 A. Increasingsurface. Dyson’s equation then allows the Green’s function
the bias voltage to 0.535 V, the atomic scale tip-height corof the system to be completely determined in terms of the old
rugation was reduced to 0.4 A, and the “superlattice” tip- Hamiltonian for the system without defect or adsorbate and
height corrugation to 0.9 A. That the order of magnitude ofthe perturbation. Here we give the example of an adatom
the effect is consistent with our results is further indicationadsorbed onto th® site of the graphite surface. The ideal
that the mechanical interaction of tip and the surface servesurface is perturbed by the on-site energy of the adatgm
as a gross amplifier of the response to variations in electroniand the hopping term#/; , from the adatonja) to the sur-
structure. face:

IV. EXTENSION TO MORE COMPLEX SYSTEMS H= H+|a>6a(a| _2 |i>Wi’a<a| +H.c. (19)
1

The Green’s-function formulation of the tunneling current
can readily be extended to more complex surfaces containin o . . .
defects or adsorbates. Defects or adsorbates at the surfa Be sum oveti} is over the atoms interacting W'.th the ada-
affect the tunneling current in two ways. Both the surfacel©™: The adatom terms constitute a perturbatiorto the
LDOS and tip-surface matrix elements are altered and play 819inal Hamiltonian so that
crucial role in interpreting the imadé.However, given the
effect of the absorbate or defect upon the original surface H=H+V (20
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Using Dyson’s equation in matrix form, the Green’s func- Gmn=Gmn—[ €28 mo+ Ya(Gmi+ Gmz+ Gms) 1G0n
tion and hence the tunneling currgisee Eq.(11)] can be
obtained for the system: = ¥aGmo(G1nt Gont Gan), (22
Gmn=Gmnt (GVG) mn. (21

o . Where W01: W02: Wo3: Ya- Clearly gon y gln y gzn y and

its nearest neighbors. Dyson’s equation becomes

Gon 1+ €,Goot Yol Gor1t Goat Goa) Y«Goo ¥«Goo YGoo Gon

Gin B €,G10F 7a(G11+ G121+ G1a) 1+9v,G10 ¥aG10 YG10 G1n 23
Gon €,G20F Va(Go1+ Gopt Gyg) YaG20 1+ 7.G20  vaG20 Gon |’
Gan €,G30t 74(G31+ Gt Ggg) YaG30 ¥YG30 1+ 7¥,Gs0]| Gan

Having solved forGy,, Gin, Gon, and Gs,, they can be tip and the surface and to model the effect of tip-induced

substituted back into Eq22), and the Green’s function of surface deformation on the image. Such methods are neces-

the perturbed system determined. sary in order to adequately model the effects of surface re-
The Green’s function for a system with a perturbation toconstruction and dangling bonés.

anA site can be determined in an analogous manner, except

now the severing of the interlayer bond must be included, ACKNOWLEDGMENTS

leading to a system of five simultaneous equatins. ) )
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V. CONCLUSION

A TB model of the STM of graphite using Green'’s- SU';IT:ZE:I\IIEDC!XRQ:EE"ASL;:Srl:lﬁtTrlloo’\l\llgllzNBgll‘\;i I;A‘H'\:TDE
function techniques is able to qualitatively describe the ex-

perimentally observed features of STM images of graphite. The bulk Green’s functions for graphite are obtained by
The advantages of this formalism are, first, that the featuregetermining the expectation value of the Green’s-function

pf thg tip-surface interaction are included in a simple andoperator(assuming a nearest-neighbor TB Hamiltonkd)
intuitive way; second, that the effect of the bias voltage upon

the tunneling current is readily determined; and third, that o 1

the effect of the interlayer coupling upon the surface DOS is G “El-H" (A1)

taken into account. Because we have used Green’s-function

techniques, our model can be extended to graphite surfaces In graphite, the bulk three-dimensional Green’s functions

containing defects or adsorbates. The utility of our methocdare found to be integrals over complete elliptic integrals of

lies in the existence of well-defined TB parameter Saisd  the first kind>’ The surface Green’s functions are obtained in

the popularity of graphite as a substrate for adsorbate studieterms of the Green’s functions for bulk graphite by exploit-
We find that in the case of graphite, the nature of featuregng Dyson’s equatioR® A perturbation is applied to the bulk

such as maxima and minima in the STM image are stronglgrystal Hamiltonian by removing the hopping term between

dependent on the tip-surface interaction. In addition, thdéwo layers, creating two surfaces. The Green's function for

rapid increase of the DOS away from the Fermi level leads tdhe divided system can then be obtained in terms of the

a high sensitivity of the tunneling current to the nature of theGreen’s function for the uncleaved crystal and the perturba-

interlayer coupling. We show that this extreme sensitivitytion according to Dyson’s equatith

suffices to explain Moirgatterns observed at the surface of 0

graphite and is consistent with the experimentally observed G=G’+GNG. (A2)

bias voltage dependence of the image. ~Although this appears to involve inversion of A< N ma-
tem. For complex geometries, methods such as the recursi@fize of the spanned space. The exact expressions for the sur-
technique may be required to obtain the surface Green'gce Green’s function for ideally cleaved simple hexagonal,

function. We plan now to extend the Green’s function ap-Bernal and rhombohedral graphite may be found in Ref. 38.
proach outlined above to general TB-like methods, such as

CNDO2 where we can take advantage of self-consistent
electronic structure calculations in calculating the tunneling
current. In addition, through the incorporation of molecular The Hamiltonian of the noninteracting tip-sample system,
dynamics®® we hope to study the dynamic interaction of the in block diagonal form, is

APPENDIX B: TIP-SURFACE MATRIX ELEMENTS



11784 B. A. McKINNON AND T. C. CHOY 54

Hsample 0 }
HO= [ , (B1)
0 Hyp

whereHgampieiS @annxn matrix consisting of all the sites in
the sample, an#l;, is anmxm matrix consisting of all the

sites in the tip.

Putting Eq.(B13) into Eq. (B10),
SikViViGl

Tin=Vm—VaGH —=o=c o B14
tm m m tt(l_Gg2V|VkG|0k) ( )

Vi

In our model, hopping is allowed between the end tip site, = 1-GUS, VG (B1Y
I

t, andl surface sites. The Hamiltonian becomes

Looking now at the elements &f between surface sitan

Hsample V andn, Eq. (B7) becomes
\% Hiip
whereV is amxn matrix, but with the only nonzero ele- Oin Tmil 6in—(GV)in)] (B16)
ments{V,} being between the final tip atom ahdsurface
sites. Dyson’s equation gives the Green’s function for the o
whole system in terms of the unperturbed Green’s function =T 2 TmiVaG} - (B17)
operator !
From Eg.(B6), this reduces to
G=G%+GTG", (83) 986

where 0=Trn=TmVaGrr- (B18)

Vv Hence the elements df between surface sites andn are

T=16w B4 VAV

Rearranging Eq(B4) gives
T(1-G%)=V. (B5)

The nonzero matrix elements G°V are

> VGO, q=t

pm?

(GV)pg=q ™ (B6)

Vngt, ge{l}

Therefore Eq(B5) becomes
Vi=2 Tal 4= (GV);]. (B7)
If j is the tip sitet, thenV;=0, so that

0=Tu—2i Ta(GOV);; (B8)

:Ttt_% TtinGioka (B9)

where the sum is over allke{l}. If j e{l}, then Eq.(B7)
becomes

V=T~ TuV,G5. (B10)
Substituting Eq(B10) into Eq. (B9), we obtain

o=Tn—i§k‘, (Vi+ VTGOV, GY, (B11)

% ViV, GO =Ty 1—% ViV,GSGY |,  (B12)

=i ViViGh
Tw= — ~0 0 -
1-GyZi ViV Gk

(B13)

T = . B19
M 1- G Vi ViGiy (619

APPENDIX C: TIP-SURFACE HOPPING PARAMETER

In our calculation of the STM tunneling current, we rep-
resent the nearest- and next-nearest-neighbor tip-sample hop-
ping terms by the parameteks;, and V,, respectively. In
order to estimate the approximate dependence of these pa-
rameters upon the tip-surface separation, we have performed
the following calculation.

The TB tip-surface hopping parameters are defined by

V= < wsurd H| l/’tip)! (Cl)

where{y;} are eigenstates of the TBH, the set of Wannier
states centered about the lattice sites. However, to calculate
V, we approximate the Wannier states by atomiclike states
{¢;} which are eigenstates of an atomiclike Hamiltonian, so
that

V= j A7¢* (Feurd AU(F) (P i), (c2)

whereAU(F) is the difference between the atomic potential
and the true tip-surface potential. Bard&eshowed that Eq.

(46) to first order inAU(r) is equivalent to

V= | A8 (0" (Fasi V #lF) ~ 9o T (P} (C3)

The integration surface is chosen to be the infixig plane
halfway between the tip and the surface. We approximate the
Wannier states in graphite by the atomiclike,2vave func-
tions localized about each lattice site. Here we present results
for the tip modeled by 8,2 hydrogenlike wave functions.
Reference 38 also contains tip-height corrugation results for
a 1s-like and 2p,-like tips, which show the same overall
trends, though with smaller magnitude. In atomic units, the
respective wave functions are
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512 70 MEISE: P 7 ar, thz
bsur=—=2€"°'s, (CH Viip=13.6 eV——| dS e fremaig2l - — —— — —
\/; T 4 4 4rg
712 T2 2 2
ipa=— = (32— 1D, (c5) fi Sadt S8 (o)
3V2m d 16r,  16rq

wherer ¢ is the position vector of the surface wave function, wherer (r,) is r¢(r;) evaluated at the surfacép), andd is
andr, is the position vector of the tip wave functiofi.and  the tip-surface separation. USiInATHEMATICA, we calcu-

a correspond taZy/n, wherey is a parameter accounting latedVg;, as a function of the tip-surface separation assum-
for the screening of the nucleus by the inner electrahis  ing a=¢=1.5. These values are representative of those of
the atomic number, and is the principal quantum number. the free carbon atom value ¢fi=1.6*% and «=1.3 for a
The corresponding hopping parameters are calculated frontungsten tig"

1G. Binnig and H. Rohrer, Helv. Phys. AckS, 726 (1982. although it can be showfB. McKinnon and T. Choy, Phys.
2J. Tersoff and D. Hamann, Phys. Rev. L&), 1998(1983. Rev. B 52, 14531 (1995] to be equivalent to the nearest-
3J. Tersoff and D. Hamann, Phys. Rev.38, 805 (1985. neighbor non-orthogonal TB model.
4J. Soler, A. Baro, N. Garcia, and H. Rohrer, Phys. Rev. I5tt.  2°D. Tomaek and S. Louie, Phys. Rev. &, 8327(1988.
444 (1986. 30H, Ou-Yang, B. K#ebring, and R. Marcus, J. Chem. Phs,
5C. Chen, J. Vac. Sci. Technol. B, 2193(1994. 7405(1993.
®(a) P. Ouseph, T. Poothackanal, and G. Mathew, Phys. Lett. A1 Ou-Yang, B. K#lebring, and R. Marcus, J. Chem. Phgs,
205 65 (1999; (b) S. Awo and C. K. Shin, Phys. Rev. &7, 7565 (1993.
7R13H059'(1993. 823, Pople and D. Beveridgépproximate Methods in Molecular
81y aering, Can. J. Phys§, 352(19,58' Orbital Theory(McGraw-Hill, New York, 1970.
H. Mizes, S.-I. Park, and W. Harrison, Phys. Rev.38 4491

334, Mizes and J. Foster, Scien2d4, 559 (1989.

34J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Europhys. Lett.
28, 403(1994.

D. Kalkstein and P. Soven, Surf. S@6, 85 (1971).

36E. EconomouGreen’s Functions in Quantum Physicnd ed.

(1987.
7. Rong and P. Kuiper, Phys. Rev.4B, 17 427(1993.
103. Xhie, K. Sattler, M. Ge, and N. Venkateswaran, Phys. Rev. B,
47, 15 835(1993.
114, Mamin et al, Phys. Rev. B34, 9015(1986.

12M.-H. Whang-boet al, J. Phys. Cherm98, 7602 (1994. . (Springer-Verlag, Berlin, 1979
13D, Tomaneket al, Phys. Rev. B35, 7790(1987. B. McKinnon and T. Choy, Aust. J. Phy46, 601 (1993.

14N. Lang, Phys. Rev. 86, 8173(1987). %B. McKinnon, Ph.D. thesis, Monash University, Australia, 1995.
15A. Lucaset al, Phys. Rev. B37, 10 708(1988. 39E. Foo, M. Thorpe, and D. Weaire, Surf. SB, 323(1976.

16T, Laloyauxet al, Phys. Rev. B47, 7508(1993. 40An equivalent expression of the tunnelling current is obtained
7X.-W. Liu and A. Stamp, J. Vac. Sci. Technol. B2, 2189 beginning from the equation of motion of the density operator in

(1994. Refs. 20 and T. Todorov, G. Briggs, and A. Sutton, J. Phys.
8G. Doyen, J. Phys. Condens. Mat&r3305(1993. Condens. Matteb, 2389(1993.

197.-H. Huang, M. Weimer, and R. Allen, Phys. Rev4B, 15068  “!|. Batra and S. Ciraci, J. Vac. Sci. Technol.6A313(1988.

(1993. “2This form of the tunneling current is directly related to those
20\, sacks and C. Noguera, J. Microd&2, 23 (1988. obtained employing the nonequilibrium Keldysh formalism such
213. Pendry, A. Piiee, and B. Krutzen, J. Phys. Condens. Ma8er as Refs. 19 and J. Ferrer, A. Martin-Rodero, and F. Flores, Phys.

4313(199). Rev. B38. 10 113(1988.

22\, Sacks and C. Noguera, Phys. Rev4® 11 612(1991). 433. Bardeen, Phys. Rev. Le6, 57 (1961).
233, Tersoff and N. Lang, Phys. Rev. Lef5, 1132(1990. 44p. Sautet and C. Joachim, Ultramicroscef®44 115(1992.
24N, Isshiki, K. Kobayashi, and M. Tsukada, Surf. S288 L439 4SW. Harrison,Electronic Structure and Properties of Solidgree-

(1990. man, San Francisco, 1980
25M. Tsukada, K. Kobayashi, and N. Isshiki, Surf. Se42 12  “5To carry out this work we intend to modify an existing semi-

(199). empirical molecular dynamics scheme, CHEMQOS, developed in
26 Tekman and S. Ciraci, Phys. Rev.4B, 10 286(1989. D. Wallaceet al, J. Phys. Condens. Matt8 3879(1991).

G, Doyen, D. Drakova, and M. Scheffler, Phys. Rev4B 9778 4"M. Ramos, A. Stoneham, and A. Sutton, J. Phys. Condens. Matter

(1993. 5, 2849(1993.
28There is a long history of TB models of graphite. The well-known “8E. Clementi and L. Roetti, At. Data Nucl. Data Tabtk4 178

Slonczewski-Weiss-McClure mode€ld. Sloncjewski and P. (1974.

Weiss, Phys. Rev. B9, 636 (1995; J. McClure, Phys. Rev. O, Zypman, L. Fonseca, and Y. Goldstein, Phys. Re¢9B1981
108 612 (1957)] is a popular fourth-nearest-neighbor scheme, (1994.



