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The theory of submonolayer thin-film growth has focused on the use of mean-field rate equations as analytic
support to Monte Carlo simulations. While these give an excellent account of certain properties, they are totally
inadequate for dealing with the distribution of island sizes and the related scaling properties. The reason is the
neglect of spatial fluctuations in the mean-field theory. A capture zone construction has recently been intro-
duced by the present authors@Philos. Mag. Lett.72, 55 ~1995!; Phys. Rev. B53, 10 261~1996!# as a way of
overcoming this deficiency. The present paper explores and develops this idea in a one-dimensional ‘‘point
island’’ model. Note that the rate of capture of diffusing monomers is independent of the spatial extent of an
island in one dimension. A complete theory for the dynamical and spatial features of the model is developed,
including the derivation of a scale-invariant analytic expression for the island size distribution function which
agrees very well with the results of Monte Carlo simulations. The implications for two-dimensional systems
are discussed.@S0163-1829~96!02839-1#

I. INTRODUCTION

The theory of submonolayer film growth has, until re-
cently, focused on the use of mean-field rate equations as the
main analytic partner to Monte Carlo simulations. While this
has successfully explained the dynamics of growth, it has
become clear that one must look beyond a mean-field treat-
ment to obtain insight into the spatial features of the system
and, in particular, to understand the scaling properties that
characterize the growth. These properties are manifested
most directly in the island size distributions. In this paper,
we study an artificial one-dimensional model since this will
allow us to demonstrate explicitly the limitations of the
mean-field approachand to go beyond it. We shall derive a
complete analytical theory for the dynamical and spatial fea-
tures for our model system and, crucially, we shall give a
rigorous explanation for the origin of its scaling properties.
All of our work is supported by Monte Carlo simulations,
and outstanding agreement is found throughout. We begin
with a brief survey of the background to this work.

There has been a huge resurgence of interest in the
mechanisms of thin film growth over recent years. Electron
microscopy has, for a long time, been the main tool for
studying surfaces, but the development of scanning tunneling
microscopy1,2 ~STM! and surface sensitive electron-
diffraction techniques3–5 such as reflection high-energy elec-
tron diffraction now allows one to probe surface details at
submonolayer coverages. The theory6,7 of film growth was
developed largely through the sixties and the seventies
mainly with reference to three-dimensional island growth,
but the refinements in experiments have sparked a renewed
interest in the corresponding theory.8

Existing growth theories6,7 define an initial regime in
which the density of monomers~isolated atoms on the sur-
face! increases linearly with time until small islands begin to
nucleate. As deposition proceeds, the density of islands
eventually becomes larger than that of monomers. One enters
the so-called aggregation regime which is dominated by the
capture of diffusing monomers by existing islands; new

nucleation does occur, but much more slowly than in the
earlier period. The aggregation regime is finally terminated
by the onset of coalescence at 30–40 % coverage.

We start by defining the parameters that characterize the
growing islands. One has first of all the number densityNs .
This is the number of islands on unit area of substrate that
contains atoms. It will depend on the coverageu which, for
two-dimensional growth, is proportional to the deposition
time and the rate of depositionF ~assuming evaporation
from the surface is negligible!. Other quantities of interest
are mean island sizês&, total density of islandsN, and the
density of monomersN1. An important parameter in the de-
scription is the monomer diffusion rate,D, which depends on
both material and temperature.

An important approach to studies of the aggregation re-
gime is the use of dynamical scaling theory. In extensive
Monte Carlo simulations, Bartelt and Evans9–11 showed that
the island density takes the form

Ns;u^s&22f ~s/^s&!, ~1!

wheref (x) is a universal scaling function that is independent
of coverage and the deposition rate; it does depend on the
critical island size, however. This behavior has since been
confirmed12–18 for a number of different models, and has
also been observed experimentally in STM studies.2 The
mean quantitieŝ s&, N, and N1 display a dependence on
coverage and on the ratioR(5D/F), which can be de-
scribed by four exponents:

^s&;uzRx, ~2!

N1;u2rR2v, ~3!

N;u12zR2x. ~4!

Values of these exponents have been deduced both from
experiment2,5 and from Monte Carlo simulations,5,16 and
their dependence on critical island size and on the islands’
shape~compact or ramified! has been studied.
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A popular way to obtain these exponents theoretically is
via rate equations.6,7 These are mean field in nature; that is,
they ignore fluctuations in the island distribution on the sub-
strate. Nevertheless, it has been shown that such mean-field
predictions are often in very good agreement with computer
simulations.15,16 The usual rate equations describing island
growth are

dN1

dt
5F22K1N1

22N1(
s>2

KsNs , ~5!

dNs

dt
5N1~Ks21Ns212KsNs!, ~6!

whereKs is the capture kernel for monomers by islands of
size s. It is convenient to introduce a diffusion constantD
common to all theKs and to use the amount of material
deposited,u, as the time variable.

Ks5Dss , u5Ft. ~7!

Equations~5! and ~6! are specific to growth with a critical
island size of 1. Additional terms describing island dissocia-
tion can be introduced to accommodate other critical island
sizes.

The solution of these equations has been studied via scal-
ing theory19,20 and by asymptotic methods,21,22 both in the
context of island growth19,20 and also as applied to other
growth problems such as aerosol theory.22 Generally it is
assumed thatss has a simple functional dependence on the
island size~;sp!. There has been some controversy over the
appropriate value to use forp. The ‘‘point island’’ model
assumes thatp is zero, while an alternative approach adopts
the value1

2. Paradoxically it appeared that the point island
model gave a better prediction of thex and v exponents,
while the observed dynamic exponentsr andz appeared to
be consistent with thep5 1

2 description. The problem was
resolved by Ratschet al.15 referring back to the diffusion
based theory of Venables.23 They proposed that the correct
form to take isss;(Ns)1/2. BecauseN has a logarithmic
dependence onu, there is no change to the prediction of the
dynamic exponents by Blackman and Wilding,19 who solved
the general p problem and assignedp5 1

2 for two-
dimensional growth. However, the modification of Ratsch
et al.15 does change the exponentsx andv from their values
in thess;s1/2 theory, so that they are now identical to those
arising from the point island model. The theory now exhibits
internal consistency.

It should be noted that thess;(Ns)1/2 theory represents
asymptotic behavior and thus applies only at the higher cov-
erages when the aggregation regime is fully established.
When the islands are very small the point island model is an
appropriate description. Surveys have been given of the con-
ditions operating at the various stages of coverage by Amar,
Family, and Lam16 and by Evans and Bartelt.24 It could be
argued that using a simple power dependence ons in ss is an
unnecessary oversimplification. There is the question of
whether the aggregation regime lasts long enough for asymp-
totic behavior to obtain before the coalescence regime takes
over. There is also the additional effect at higher coverages
of growing islands reducing the area of the substrate avail-
able for deposition and, at the same time, themselves receiv-

ing direct impact of the new material. However, as long as
one is aware of the caveats, it is usually possible, in practice,
to observe a tendency toward a particular asymptotic behav-
ior. This is important because obtaining the exponents is a
very convenient way of characterizing a particular growth
mode. It allows one to identify critical island size, for
example,5 and to distinguish growth dominated by monomer
diffusion and capture from other growth processes. The con-
trast with the exponents obtained in a simple coalescence
model25 has been explored by Blackman26 using a rate equa-
tion formalism.

The rate equation analysis was taken one stage further by
Bales and Chrzan.18 They solved the equations self-
consistently so that a form ofss was used that was appro-
priate to all stages of coverage. They also included the effect
of direct impact of impinging monomers on existing islands.
It was found that the rate equations give a surprisingly accu-
rate prediction of the mean quantities~N, N1, and^s&! when
compared with computer simulations. However, the descrip-
tion of the island size distribution functions was a complete
failure. The reason for this is clear; it is the neglect of spatial
fluctuations which are a consequence of the mean-field na-
ture of a rate equation approach.

There have been attempts by Bartelt and Evans9 and by
Amar, Family, and Lam16 to address the issue of fluctuations
through studies of pair-correlation functions and structure
factors. An alternative method introduced recently by the
present authors27,28 employs a capture zone approach. The
capture zone is the region surrounding an island from which
it predominantly acquires the monomers that are responsible
for its growth. To a good approximation these capture zones
can be identified with Voronoi cells centered on the islands
themselves. It was shown27 that, for heterogeneous growth,
the island size distribution function closely mirrors the dis-
tribution of Voronoi cell sizes. The scaling of the size distri-
bution occurs because the cell distribution also scales. For
homogeneous growth28 there is the additional complication
that new islands are produced during the growth, but it was
demonstrated that the Voronoi cell distribution still holds the
key to an understanding of the island distribution. The cap-
ture zones represent the environment of the growing islands.
Monitoring their size distribution provides the information
which is absent from mean-field theory. Elements of the cap-
ture zone idea are also found in the work of Venables and
Ball29 and of Li, Vidali, and Biham.4

Our previous work27,28established the importance of cap-
ture zones largely from Monte Carlo simulations. In the
present work, we shall examine some of these ideas using a
one-dimensional analog. It has the advantage that analytic
work can be taken much further than in the two-dimensional
case, allowing us to probe the process more fully. Further-
more, the logarithmic effects that gave rise to subtleties in
two dimensions are absent in this case. One is, of course,
concerned that one-dimensional models have their own pe-
culiarities that can obscure issues that are ideally generic. We
find that there are no serious pathologies in this case and the
model does indeed make transparent issues that are relevant
to two dimensions.

The model is studied by Monte Carlo simulations, rate
equations, and by the capture zone description. There are
three issues:~i! Growth exponents. As in two dimensions, we
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will find excellent agreement between Monte Carlo calcula-
tions and the rate equation predictions.~ii ! Mean quantities
(^s&,N,N1). Numerical solution of the rate equations gives a
fair description of these, but not quite as satisfactory as Bales
and Chrzan18 find in two dimensions. A simple development
beyond mean-field theory is necessary to produce excellent
agreement with Monte Carlo results.~iii ! Distribution func-
tions. As we expect, mean-field theory is totally inadequate
here. The capture zone description is explored and is shown
to account fully for the island size distributions.

The details of the Monte Carlo procedure for one dimen-
sion are outlined in Sec. II. In Sec. III we develop the mean-
field theory and compare the predictions with the results
from the Monte Carlo simulations, first for the exponents and
then for^s&, N, andN1. The initial signs of the breakdown of
mean-field theory appear in the treatment of the average
quantities. We show, in Sec. IV, how information about the
spatial distribution of islands must be introduced to rectify
the deficiencies of mean-field theory. This is developed in
detail in Sec. V. In Sec. VI, we address the issue of the island
size distribution itself, including a derivation of a scale-
invariant analytic expression that relates the island size dis-
tribution to the cell distribution. The concluding Sec. VII
discusses the implications of this work for the two-
dimensional case.

II. MONTE CARLO SIMULATIONS

In the simulations, monomers are deposited at random on
a line of L sites, and random diffusive moves of monomers
are made one step to the right or the left. 2RN1 monomer
moves are made at random for each time a particle is added.
The factor 2 appears because the hopping rate is twice the
diffusion rate. When a monomer moves onto a site already
occupied by another monomer a trap is formed. Traps remain
static; it is only monomers that are mobile. Similarly a
monomer that moves onto a site that is occupied by a trap is
absorbed. Traps remain one lattice site in extent~a point
island model!. There is no evaporation of deposited mono-
mers and no dissociation of islands once they have formed
~critical island size,i51!. The i51 case is the most complex
one ~because for higher values ofi , there is less new nucle-
ation during the aggregation regime!, and so the subtle issues
are most apparent here. The elements of the model are sum-
marized in Fig. 1.

To focus the study on the deposition/diffusion/capture
process alone, the traps were not allowed to grow in size;
simply a record was kept of the number of particles absorbed

by each trap. This~together with the monomer present at that
site at the time of trap nucleation! represents the island size.
This allows us to avoid any complication due to direct cap-
ture by impact on existing islands which will become signifi-
cant at higher coverages. In our algorithm, we rejected any
direct impacts on the point island traps. An alternative would
be to allow immediate capture of any direct impacts. A check
was made with the alternative algorithm and it was found
that, at coverages involved in the simulations, there was neg-
ligible difference in the growth statistics obtained in the two
strategies.

In two dimensions, the rate at which diffusing monomers
are captured depends on the island size and so the use of a
point island model in that case would alter fundamentally the
growth process. In one dimension, the capture rate of diffus-
ing monomers is independent of whether one uses a point
island model or a model in which the islands are allowed to
increase in actual size. In this case, any differences will arise
from processes involving direct impact and capture.

Our time scale is coverage defined here as the number of
monomers deposited per site. Because the traps do not actu-
ally grow, values ofu larger than 1 are possible, while true
coverage of the line is only partial. The results of the simu-
lations will be described along with the related theoretical
developments.

III. RATE EQUATION ANALYSIS

The starting point for the mean-field analysis is again the
rate equations~5! and~6!. Using Eq.~7!, these can be rewrit-
ten as

dN1

du
5122Rs1N1

22RN1(
s>2

ssNs , ~8!

dNs

du
5RN1~ss21Ns212ssNs!. ~9!

The total cluster density, which has already been introduced
is defined as

N5(
s>2

Ns . ~10!

Until now, the rate equations are not dimension specific.
Within mean-field theory, the dimension dependence comes
in through the quantityss . The peculiarity of one dimension
is thatss is certainly independent ofs at all stages of growth.
Now let us consider the deposition of monomers onto a line
of lengthL. To evaluatess , we need to consider the varia-
tion of monomer density in the vicinity of a static island.
Following Venables23 and Bales and Chrzan,18 we define the
position dependent monomer density asn1(x); its average is
N1. We can write downn1 in terms of a diffusion equation,

]n1
]t

5D
]2n1
]x2

1F2Dj22n1 , ~11!

where j is the average distance a monomer travels before
being captured by an island or another monomer. So that the
equation is consistent with Eq.~5! in the limit x→` when
n1→N1 , we make the identification

FIG. 1. Summary of the features of the model. Full circles rep-
resent static traps; open circles are monomers. A trap is formed
~nucleation! when a monomer moves onto a lattice site already
occupied by another monomer. A capture zone is the separation of
the bisectors of neighboring gaps.
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j225F2s1N11(
s>2

ssNsG . ~12!

Combining Eqs.~5! and ~10!,

]~n12N1!

]t
5D

]2n1
]x2

2Dj22~n12N1!. ~13!

Assuming a quasistatic regime with very small time varia-
tions, we obtain for the monomer density as a function of
distancex from an island

n15N1@12exp~2x/j!#. ~14!

The rate of capture of monomers is 2D[dn1/dx] x50, where
the factor of 2 is included because they arrive from both
sides of the trap. This is to be compared with the capture rate
defined asDssN1 , giving ss52/j independent ofs as ex-
pected. The above argument applies fors>2; for monomer
monomer capture, the argument has to be modified slightly,
but the behaviors152/j still applies. At this stage it is con-
venient to anticipate that modifications to mean-field theory
will be necessary and to introduce correction factorsa andb
into the capture kernels, and writes152a/j andss5s ~for
s>2! with s52b/j. Using these definitions and Eq.~12!, one
obtains

s154a~2aN11bN!, ~15a!

s54b~2aN11bN!, ~15b!

j2152~2aN11bN!. ~15c!

Assuming that we are in the regime whereN@N1 and that
a andb have the mean-field values of unity, thens1 ands
are proportional toN, while the mean-free path,j, is just half
the trap separation. The techniques of scaling theory can then
be applied to obtain growth exponents. Following the stan-
dard methods,15,16,19 the following values for the exponents
are obtained:

v51/2, r51/2, x51/4, z53/4. ~16!

We have defined̂s& as

^s&5N21(
s>2

sNs5~u2N1!/N. ~17!

An alternative commonly used definition of the mean size
which involves the second moment of the distribution func-
tion will give identical growth exponents.

The Monte Carlo simulations are used first to test the
growth exponent behavior predicted by Eqs.~2!–~4!, ~16!.
The deposition was done on a line ofL523105 sites and for
three values ofR: 0.53105, 0.53106, and 0.53107. The re-
sults were average over 10 runs in each case. The trap den-
sity N, monomer densityN1, and average trap sizês& are
plotted as a function ofu ~5Ft! in Figs. 2–4, respectively.
For convenience, the quantities scaled according to the
mean-field predictions are also plotted. The scaled plots are
seen to be in accord with the predictions; in each of the
figures they asymptote to a limit that is independent ofu and
R. The range ofu is more restricted at the higher values of
R, because all monomers are eventually taken out of the

system by the traps at a faster rate than new ones are depos-
ited. A larger L is necessary to extend the range. At the
largest values ofu reached in the simulations, the real cov-
erages~as opposed tou! are about 14%, 6%, and 2% for the
three deposition rates.

Now let us examine the capture kernelss1 and s that
have been employed in the rate equation formalism. At the
moment they contain two free parametersa andb each of
which is expected to be unity if mean-field theory applies.
From the data displayed in Figs. 2 and 3, we can calculate
dN1/du anddN/du. Then all quantities in the rate equations
~8! and~9! are known except fora andb themselves. Thus,
a comparison of the rate equations with the simulation data
enables us to extracta and b and anyu dependence they
might show. The results of the calculation are shown in Fig.
5. At early time both are considerably above unity; this is not
remarkable because the assumptions~e.g., quasistatic re-
gime! implicit in the derivation of the expressions for the
capture kernels do not apply at this stage. At largeru, when
aggregation conditions are believed to operate, interesting
behavior is observed.a, the coefficient ins1, does settle

FIG. 3. Monomer densityN1 as a function ofu ~5Ft! for three
values ofR~0.53105 crosses; 0.53106 triangles; 0.53107 circles!.
Second group of plots shows the scaled monomer density.

FIG. 2. Trap densityN as a function ofu ~5Ft! for three values
of R~0.53105 chain line; 0.53106 broken line; 0.53107 full line!.
Second group of plots shows the scaled trap density.
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down to approximately one, whileb, the coefficient ins,
quite definitely approaches a value that is larger than unity.
There is some evidence thata may be marginally less than
one but, because of noise in the data, it is not a point that is
worth pursuing. Even with the noise in the data, it is quite
clear thatb lies in the range 1.3–1.4. From evidence to be
presented later, we will take the best ofb as 1.389. Although
this is our first evidence of departures from mean-field be-
havior, it has not influenced the predictions of the exponents
because all that was required in their derivation was sus-
tained constant values fora and b; their absolute values
were not important.

To present these observations in another way, the rate
equations are now solved numerically using values ofa and
b of 1 and 1.389, respectively. The results forN and^s& are
shown in Fig. 6 along with the data points from the Monte
Carlo simulations and a numerical solution of the rate equa-
tions with both coefficients set to unity. Monte Carlo data for
N1 is more noisy because of the small number monomers
remaining at the later stages of the aggregation regime, and
does not yield conclusive results in the present comparison.
The comparison displayed in the plots forN and^s& is quite
conclusive, however. Clearly the mean-field predictions of

the capture kernels is not correct. Once the amendment is
made of using the value ofb that is different from unity, the
agreement is excellent. The use of the rate equations them-
selves is successful even though they are mean field in na-
ture; it is necessary though to use a value ofs which can
only be derived, as we shall show later, by going beyond
mean-field theory. In two dimensions, by comparison, Bales
and Chrzan18 show that corrections to mean-field theory are
negligible at this stage.

We finish this section by examining the distribution func-
tion Ns . The time evolution found from Monte Carlo simu-
lations is shown by the solid curves in Fig. 7. The results
from the numerical solution of the rate equations are shown
in the same figure. One set of plots displays the results when
b is taken as unity and the other is the data obtained when
b51.389. Clearly the modified value ofb does bring some
improvement but, as in two dimensions, the rate equation
predicts distribution functions that are much too narrow.

FIG. 4. Mean trap sizês& as a function ofu ~5Ft! for three
values ofR ~0.53105 chain line; 0.53106 broken line; 0.53107 full
line!. Second group of plots shows the scaled trap size.

FIG. 5. Coefficientsa andb versusu ~5Ft!. Data is shown for
three values ofR.

FIG. 6. Trap densityN and mean trap sizês& as a function of
u ~5Ft!. Data points are from Monte Carlo simulations. Lines are
from numerical solution of the rate equations witha51.0 andb
equal to 1.0~broken lines! and 1.389~full lines!.

FIG. 7. Distribution functionNs versuss for three coverages
~u51.19, 2.62, 5.76—plots left to right!. Full lines: Monte Carlo
simulations; other plots are results from numerical solution of the
rate equations witha51.0 andb equal to 1.0~dotted lines! and
1.389~broken lines!.
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The scaling properties of the distribution functions have
been well studied in two dimensions and, not surprisingly,
scaling behavior is exhibited in the one-dimensional model.
This is illustrated in Fig. 8 where the scaling properties of
the Monte Carlo results are shown. An equivalent way to
study the scaling behavior expressed in Eq.~1! is to writeNs
as a function of the scaled variableS, whereS5s/^s&, and to
normalize it so that it is a probability function; we denote the
function byP(S):

E P~S!dS5E SP~S!dS51. ~18!

Note thatP describes the distribution of traps only~mono-
mers are excluded; i.e., there is nos51!. In Fig. 8, P(S)
shows the characteristic scaling behavior for a range of val-
ues ofu andR.

Although we have already demonstrated that the rate
equations do not give a correct description of the distribution
function, it is instructive to show theP(S) obtained from
their numerical solution. Theb51.389 results are displayed
in Fig. 9. The rate equations do not give scaling behavior. It
is true that scaling theory arguments can be used to derive
the growth exponents, but the assumption is made that one is
in a regime whereN1;t2r , and that is only valid in the
asymptotic limit. Thus, scaling to a common function does
occur but only at smalls/^s&, where^s&;tz.

IV. BEYOND MEAN-FIELD THEORY

The rate equations ignore spatial fluctuations inN andN1
and, in that sense, they are a type of mean-field theory. We
can begin to introduce the effect of fluctuations if we recog-
nize that the actual monomer densityn1 is a strong function
of position on the line and is highly sensitive to the local trap
separation.

In the aggregation regime, when the monomer density is
in an approximately steady state,n1(x) between a pair of
islands situated atx50 andx5y is obtained from the diffu-
sion equation,

D
d2n1
dx2

1F'0. ~19!

That is,

n1~x!5 1
2R

21x~y2x!, ~20!

and the total number of monomers in the gap is given by
n̄15y3/12R. If n̄1 is averaged over all gaps along the line,
we can obtain the mean monomer density~N1 in the notation
already introduced!: N15^y3&N/12R. The mean gap size is
given by^y&5N21. Introducing scaled variables,Y5y/^y&,
we obtain the relation

12N2N1R5^Y3&. ~21!

To check the validity of this relation, the left- and right-hand
sides of Eq.~21! are plotted againstu in Fig. 10 using data
from the Monte Carlo simulations at three values ofR. The
approach to the common limit in the aggregation regime is
seen quite clearly. Also the fact that the common limit is the
same for eachR implies that the distribution of gap sizes is
a function that exhibits scaling properties.

FIG. 8. Scaled distributionP(S) from Monte Carlo simulations
plotted for several values ofu andR. Full and broken lines are
theoretical distribution functions from Eq.~38!: as discussed in Sec.
VI.

FIG. 9. Scaled distributionP(S) from numerical solution of rate
equations~a51.0 andb51.389! for same values ofu andR used in
Fig. 8.

FIG. 10. Plots of̂Y3& and 12N2N1 R againstu ~5Ft!, for three
values ofR.
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The quantitŷ Y3& contains details about the spatial distri-
bution of traps that is absent from mean-field theory. This
extra information will provide us with an estimate of the
coefficientb which has been observed to take a value differ-
ent from the mean-field prediction of unity. The rate of cap-
ture of monomers by a trap atx50 is given by
2D[dn1/dx] x505DR

21 ^y&. As before the factor 2 arises
because of capture from left and right. We have averaged
over all gap sizes. Identifying the capture rate withDsN1,
noting thatN5^y&21, and using Eq.~21!, we obtain an ex-
pression fors,

s512N/^Y3&. ~22!

A comparison with Eq.~15b! in the aggregation regime
whereN@N1 leads to the identification

b5@3/̂ Y3&#1/2. ~23!

The common value of̂Y3& in Fig. 10 is about 1.6~a more
accurate estimate will be given in the next section!, which is
consistent with the value ofb used earlier. From Eq.~15c!, it
can be seen that the physical effect of ab larger than 1 is to
reduce the mean diffusion path to less than its mean-field
value. Since^Y3& is proposed as a universal number, one
would like to be able to obtain it from theory rather than
from a Monte Carlo simulation. This entails an investigation
of the distribution function for the gaps between the traps.

V. THE GAP DISTRIBUTION FUNCTION

Consider a line of lengthL with trap densityN. There are
a total ofM ~5NL! traps on the line. It is convenient to
define two probability distributions for the gaps between
traps.FM(y) is the number of gaps in the rangey to y1dy.
The moments ofFM(y) are

mM~p!5E
0

`

ypFM~y!dy ~24!

and obviouslymM(0)5M andmM(1)5L.
A scaled distribution functionG(Y) is also introduced

whereY5y/^y&. This is the probability distribution for gap
widths normalized so that

E
0

`

G~Y!dY5E
0

`

YG~Y!dY51. ~25!

The moments ofG(Y) are defined

Qp5E
0

`

YpG~Y!dY. ~26!

Q0 andQ1 are both 1 and it isQ3 that is relevant to the
discussion in the previous section.

The relationship between the two distribution functions is
summarized by the expressions

FM~y!5MNG~Y!, ~27!

mM~p!5MN2pQp , ~28!

andY5y/^y&5Ny
We proceed by consideringFM(y) and the effect on it of

a single new nucleation. The probability of a new nucleation

at positionx is proportional ton1(x)
2 and the probability of

new nucleation somewhere within a gap of widthy will be
proportional to* 0

yn1(x)
2dx; that is, to y5. The monomer

density is given in Eq.~20!. Normalizing these values, the
probability that the new nucleation will take place some-
where in a particular gap of widthy is y5/mM~5!. The prob-
ability, given a particular gap, that it will take place between
x andx1dx within that gap isc(x/y)dx/y, where

c~l!530l2~12l!2. ~29!

The effect of a new nucleation can be described by the equa-
tion

FM11~y!5FM~y!@12y5/mM~5!#1E
y

`

FM~z!@z5/mM~5!#

3@c~y/z!1c~12y/z!#dz/z. ~30!

The first term on the right-hand side gives the number of
gaps of sizey remaining after the new nucleation. The sec-
ond term gives the number of new gaps of sizey being
created from larger gaps of sizez. There are two parts to the
second term because a sizey gap is created by new nucle-
ation both aty and atz2y.

Using the relation,FM11(y)2FM(y)5N[2G1Y dG/
dY1O(1/M )], together with the symmetryc~l!5c~12l!,
an equation for the scaled probability can be derived from
Eq. ~30!,

Y dG/dY1~21Y5/Q5!G

52E
Y

`

@Z5G~Z!/Q5#c~Y/Z!Z21dZ. ~31!

A useful relation between moments can be obtained straight-
forwardly from Eq.~31!,

~p21!QpQ55~122Ap!Qp15 , ~32!

where

Ap5E
0

1

lpc~l!dl. ~33!

With the specific form ofc from Eq. ~29!, the following
relation emerges:

QpQ55S 15

p13
2

24

p14
1

10

p15DQp15 . ~34!

A consideration of theY→` limit of Eq. ~31! shows
that the distribution function has the formG(Y)
5H(Y)exp(2Y5/5Q5). Note that this general behavior is
independent of the precise polynomial expression for the
function c. The form of the exponential tail arises because
the probability of new nucleation within a gap is proportional
to the size of that gap to the fifth power. The details of the
nucleation probability within a gap determine the function
H. We are unable to obtain an analytic solution forG(Y) in
our model, but we can make the following additional state-
ments about the form ofH(Y) by examining Eq.~31! in
various limits. In particular,H(Y)515(Q2/Q5)Y

2 in the
smallY limit and, asY→`, H(y);Y22.
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As an exactly soluble model, although an artificial one, it
is interesting to studyG(Y) whenc~l!51. In this case, the
weighting according to gap size is included, but nucleation
within the gap can occur anywhere with equal probability.
Details are given in the Appendix.

The gap distributions are recorded over a range of values
of u during the Monte Carlo simulations. These are shown by
the data points in Fig. 11. Scaling behavior is evident. We
wish to compare these plots with the theoretical distribution
given implicitly by Eq.~31!. Rather than solve the integrod-
ifferential equation numerically, we prefer to obtainG(Y) by
a statistical method. A line of lengthL is taken and an array
of point on the line is generated. Each new point is intro-
duced via weighted random number generation. First, a pair
of existing points is selected between which to introduce the
new one. The selection is weighted by the fifth power of the
separation of the points. Then the actual position in the gap
for insertion is selected with weighting given by the function
c in Eq. ~29!. This was done for a final set of point densities
along the line ranging from 1–10%, and for line lengths
between 1000 and 10 000. Each configuration was averaged
over 10 000 runs. The results forG(Y) obtained for the dif-
ferent configurations were indistinguishable, and are shown
by the continuous line in Fig. 11. As a check thatG(Y) thus
obtained agrees with the analytic result of Eq.~31!, we
evaluated the moments and compared them for consistency
with the prediction of Eq.~34!. The moments from the zeroth
to the eighth are reproduced in Table I. The second column
showsQp obtained numerically from the theoretical curve in
Fig. 11. For the third column, Eq.~34! has been used to
calculate higher moments from the lower ones. One can see
the good agreement.

In comparing the Monte Carlo data with the theoretical
curve, one can see some slight broadening in the former; The
Monte Carlo data tends to lie a little above the tail and
slightly below the peak of the theoretical curve. It would be
surprising if there was a perfect fit, because we have been
proceeding on the assumption that the monomer density is in
a steady state. Obviously the very close agreement in Fig. 11
between the data points and the theory curve indicates that

this is a very good approximation and the broadening effects
can probably be ascribed to the very slow variation in mono-
mer density.

From the table, our best theoretical estimate ofQ3 is
1.555. This is just thêY3& that appeared in Eq.~23! and
provides the value ofb of 1.389 that we used in the discus-
sions of the rate equation and the plots in Fig. 6.

In this section we have defined an abstract problem about
the distribution of points along a line according to a particu-
lar algorithm. A distribution function has been obtained and
it has been shown that this function agrees in essentials with
the distribution of gaps observed in the one-dimensional
deposition model. In the following section, it will be shown
that this development provides a basis for overcoming the
shortcomings of mean-field theory.

VI. CAPTURE ZONE AND TRAP DISTRIBUTIONS

Our previous work in two dimensions27,28 demonstrated
the key role played by capture zones in determining the dis-
tribution of island sizes. The capture zones were identified
by a Voronoi cell construction.30 The equivalent construction
for obtaining the capture zone of a particular trap in one
dimension is the trivial bisection of the gaps to its left and
right. If there is no correlation between the sizes of the two
gaps, then we would expect that a simple convolution of the
gap distribution function would yield the capture zone distri-
bution,V(Y),

V~Y!52E
0

2Y

G~Z!G~2Y2Z!dZ. ~35!

We can use scaled variables immediately because the mean
gap and capture zone sizes are identical. The prefactor 2
ensures a normalization forV(Y) similar to that forG(Y) in
Eq. ~25!. One might argue that the nucleation process tends
to produce correlations; new nucleation is weighted toward
the center of existing gaps and, therefore, one might expect
that the gaps to the left and right of a new island are of
similar size. However, any such correlations that are present
with an existing island will tend to be destroyed when a new
nucleation occurs in its vicinity. It is likely that the second
effect will dominate and Eq.~35! will be valid to a very good
approximation.

This conjecture is tested by evaluatingV(Y) numerically
using Eq. ~35! and the theoreticalG(Y) of Fig. 10. The
results are compared with data on the capture zones from the

TABLE I. Zeroth through eight moments.

p Qp Qp @from Eq. ~32!#

0 1.0
1 1.0
2 1.17860.002
3 1.55560.003
4 2.23760.005
5 3.4460.01
6 5.5960.03 5.5860.02
7 9.5260.06 9.4660.05
8 16.8360.15 16.6460.09

FIG. 11.G(Y) as a function ofY for several values ofR andu
from the Monte Carlo simulations~data points!. The theoretical
curve is shown by the full line.
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Monte Carlo simulations for several values ofu andR in
Fig. 12. The excellent agreement demonstrates the validity of
ignoring correlations and, through Eq.~35!, gives us a direct
means of evaluating the capture zone distribution.

In the present simplified model, the traps remain static at
essentially zero size. The capture zone construction is done
by a trivial bisection of the gaps between the traps. In a
model where trap growth is included, the capture zones are
constructed by the simple extension of bisecting the gaps
between the island edges.

Now let us construct a heuristic argument to relate the
capture zone distribution,V(Y), to the island size distribu-
tion, P(S). This is based on the observation27,28 in two di-
mensions that the rate of growth of an island is proportional
to its capture zone. We wish to describe the island size dis-
tribution at timet, and consider first those islands that were
nucleated in a time intervaldt at time t ~0,t,t!. Since
mean-field behavior has been shown to give a good account
of the time dependence of the island density,N, we can use
Eqs. ~4! and ~16! to deduce that the number of new islands
created in this time interval is given bydN;t23/4dt.

We follow the evolution of the islands formed in the time
slice att and denote their average size at subsequent times
by ^st&. Now, given our earlier observations, we assume that
rate of change of this quantity at any timet8 (t,t8,t) is
proportional to the mean capture zone size^y&, and^y& itself
is proportional toN21. With theN dependence on time noted
above, d^st&/dt8;t821/4, leading to the relation,
^st&5kt1/4[12(t/t)3/4], as an estimate of the mean size at
time t of islands nucleated att ; k is a constant. We prefer to
write the relation as

^st&5kt3/4@12~t/t !«#, ~36!

with, for the moment,«53/4.
Now let us make the rather drastic assumption~to be jus-

tified later! that the size distribution of islands created in a
particular time slice maintains throughout the subsequent
evolution a functional form similar to that of the capture
zone distribution; that is, it is proportional toV(s/^st&). We

can then add the contribution from each time slice~dN is-
lands originate in an intervaldt! to get the complete island
size distribution.

P8~s,t !5AE
0

t

dt V~s/^st& !@t23/4/^st&#. ~37!

At the moment, we are using the unscaled distribution de-
noted byP8. The relation between the scaled and unscaled
functions isP(s/^s&)ds/^s&5P8(s,t)ds. In Eq. ~37!, A is a
normalization constant.

The constants,A andk, can be determined by satisfying
the normalization conditions, Eq.~18!, which yield 4At1/451
and 3/4kt3/45^s&, where^s& is the mean size of the complete
set of islands. The final result after these substitutions is

P~S!5
1

~114«!
E
0

1

VF 4«S

~114«!~12l!G dl

~12l!l@121/~4«!# .

~38!

Using «53
4, the capture zone distribution functionV(Y)

from Eq. ~35! and Fig. 12 and numerically integrating Eq.
~38!, we obtain the plot shown by the broken line in Fig. 8.
Given the rather drastic~and, as yet, to be substantiated!
assumptions used in deriving Eq.~38!, the agreement be-
tween this plot and the Monte Carlo data is remarkably good.
There is a possible concern that the discussion given is in-
valid at early times before the aggregation regime is estab-
lished. From Figs. 2–4, it can be seen that the aggregation
regime is established very early~u;1022! and so any doubt
of this nature exists only forl in Eq. ~38! close to zero.
Because@121/~4«!#,1, only a very small contribution to the
integral comes from this region and so preaggregation re-
gime influences are negligible.

Let us now examine rather more closely the validity of the
two main assumptions made in deriving Eq.~38!. A key
ingredient was the supposition that the size distribution at
time t of islands originating within a time slice att was
given by V(s/^st&), where ^st& is the average size att of
islands from that time slice. We monitored the evolution of
islands from a range of time slices and display some sample
distribution functions in Fig. 13. The line curve isV(Y) for

FIG. 12.V(Y) as a function ofY for several values ofR andu
from the Monte Carlo simulations~data points!. The theoretical
curve @from Eq. ~35!# is shown by the full line.

FIG. 13. Distribution functions at timet for islands that were
nucleated in time slice of widthDt50.1 at timet ~data points!. Full
line is V(Y) from Fig. 12.
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comparison. The Monte Carlo data sets used in the test cor-
respond tot55.0 ~in units of u! andR50.53106. The data
for each value oft is gathered from a time slice of width
Dt50.1 ~in the units ofu!. It can be seen that the assumption
made is a remarkably~and perhaps surprisingly! good one. If
anything the time slice distributions are marginally narrower
than V(Y) at the earlier values oft, but any discrepancy
between the Monte Carlo data and the theoretical function is
small.

Now let us examine, the validity of Eq.~36! with «50.75.
The mean valueŝst& from each time slice are shown as a
function oft by the box symbols in Fig. 14. Again, the time
observations are made ist55.0. The full curve indicates the
fraction of the total number of islands present att that have
been nucleated at timet. The ratio ^st&/[12(t/t)0.75] is
shown by the circles and is seen to be fairly constant, al-
though there is a systematic fall off in the curve up tot;2.0
during which time;80% of the islands have formed.

We can argue that Eq.~36! with «53/4 overestimates the
mean size of the environment of an island immediately after
it is formed. When an island forms in a gap between existing
islands, its capture zone size is half of the size of the gap. At
the simplest level, one would argue that the average capture
zone size of a newly formed island is half the average cap-
ture zone size of existing islands, and as the newly formed
island evolves it also eventually sees the average environ-
ment. One must remember, however, that new islands are
more likely to form in the larger gaps; to be precise the
probability of the formation taking place in a gap of sizey is
proportional toy5. This would lead us to predict that the
mean gap size that a newly formed island finds itself in is
equal toQ6/Q5 , where these moments are defined in Eq.
~26!. The average capture zone size of a newly formed island
will be half of this.

We will now try to incorporate this extra information into
the free parameter« that we have left ourself in Eq.~36!.
Remember that equation has been obtained from the assump-
tion thatd^st&/dt is proportional to the average capture zone
size. Fort@t and arbitrary«.0, d^st&/dt53/4kt21/4; this
implies that the islands are growing in an average environ-
ment whose size;t21/4; this time dependence was one
of the valid predictions of mean-field theory. At timet,
when the islands are just formed, Eq.~36! yields
d^st&/dt53/4kt21/4(4«/3). The factor 4«/3 is a convenient
way of representing the reduction in size of the environment
of the newly formed islands compared with the average en-
vironment that exists at that time. We identify that factor
with Q6/(2Q5) , and deduce that

«5
3Q6

8Q5
. ~39!

Referring to Table I, this leads to a value of« of 0.61.
The triangular data points in Fig. 14 display the ratio

^st&/[12(t/t)0.61]. The closeness to constancy of the plot is
evidence that the argument is basically a correct one. Finally,
we repeat the calculation of Eq.~38! with the new value of«
and display the results by the continuous curve in Fig. 8.
There is a distinct improvement on the previous calculation
over most of the plot apart from some minor deviation in the
tail aboves/^s&;1.8.

We have thus fully overcome the shortcomings of mean-
field theory. An analytic expression has been obtained for the
island size distribution function that is in excellent agree-
ment with the Monte Carlo simulations. The expression, Eq
~38!, relates the trap sizes to their spatial distribution and
provides a first-principles derivation of the scaling proper-
ties.

VII. CONCLUSIONS

The key injection into the theory is the one-dimensional
equivalent of Voronoi cells. There are two comments stem-
ming from this, one qualitative, the other quantitative. The
qualitative statement that an island traps on average those
monomers within its capture zone is, of course, an exact one
purely on symmetry grounds. In two dimensions, the polygo-
nal construction of the capture zones is not exact in the same
sense but is likely to be~and has been demonstrated to
be27,28! true to a very good approximation. It is also to be
expected that the rate of growth of an island will be propor-
tional to its capture zone. However, in a homogeneous model
like the current one where an island is evolving through an
ever changing environment due to new deposition, one might
anticipate that there would be some broadening out of the
distribution due to the random nature of the process. Instead
a distribution that mirrors that of the capture zones is main-
tained in a very robust fashion as was seen in Fig. 13.

Similar observations have already been made in the two-
dimensional case.27,28 A main objective of the current work
has been to address these issues in a more quantitative way
using simple diffusion theory coupled with an analytic treat-
ment of the spatial distribution of points along a line. The
essential point in the development is the quasistatic approxi-
mation; the time variation of the monomer density,N1, is
slow compared with the rate of introduction of new mono-
mers into the system. The approximation is, of course, a
good one and it has enabled us to obtain an overall picture of
all aspects of the growth process including the island size
distribution function itself. Any departures from the approxi-

FIG. 14. Mean size of islandŝst&, at timet that were nucleated
in a time slice of width Dt50.1 at time t ~box symbols!.
^st&/[12(t/t)«] is shown for «50.75 ~circles! and «50.61 ~tri-
angles!. Full curve indicates fraction of total number of islands att
~in units of u! that have been created by timet.
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mations assumed are small ones and will produce only very
minor changes in the finer details.

The scaling that is ubiquitous in the growth phenomena
has been tied to the scaling that occurs in the capture zone
distribution function. This has enabled us to derive an ana-
lytic form for the island size distribution function, Eq.~38!,
that exhibits scaling without it having to be implanted be-
cause of empirical observation.

What are the implications for two dimensions? In prin-
ciple, the ideas that are underlying the current development
are transferable. We know that the mean-field theory for the
exponents operates in that case. The need to introduce the
correction factor,b, into the discussion of the monomer
mean free path,j, is perhaps a detail special to one dimen-
sion. This necessity is probably connected with the fact that
a monomer, once deposited, is strictly confined to move in
the gap between two traps. There is no analogous constric-
tion in two dimensions, and this could be the reason why
Bales and Chrzan18 had no need to introduce such a correc-
tion.

The capture zone and island size distributions have al-
ready been related for heterogeneous27 and for
homogeneous28 growth in two dimensions by means of
Monte Carlo simulations and canonical expressions for the
Voronoi cell behavior.31,32 In this case, of course, there is a
size dependence to thess that appears in the rate equations
as opposed to the point island behavior of one dimension.
That is a mean-field theory complication however and, in the
capture zone model, both types of behavior are incorporated
in the statement that the rate of growth of an island is pro-
portional to its cell area. The outstanding issues are precise
forms for the capture zone and island size distribution func-
tions which contain scaling from first-principles arguments.
Both of these issues have been answered in the one-
dimensional model and work is currently underway to adapt
this approach to the two-dimensional case.
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APPENDIX

If c~l!51 so that the probability of nucleation is uniform
within a gap, then Eq.~31! can be recast into a differential
equation

Y d2G/dY21~31Y5/Q5!dG/dY17Y4G/Q550. ~A1!

The solution of this, normalized to 1 for the zeroth moment
is

G~Y!5K exp~2Y5/5Q5!, ~A2!

where the constant and the various moments can be written
in terms ofg functions.

K5

5GS 25D
GS 15D

2 , ~A3!

5Q55F GS 15D
GS 25D G

5

, ~A4!

and generally

Qp5F GS 15D
GS 25D G

p

GS p11

5 D
GS 15D

. ~A5!
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