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Scaling behavior in submonolayer film growth: A one-dimensional model
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The theory of submonolayer thin-film growth has focused on the use of mean-field rate equations as analytic
support to Monte Carlo simulations. While these give an excellent account of certain properties, they are totally
inadequate for dealing with the distribution of island sizes and the related scaling properties. The reason is the
neglect of spatial fluctuations in the mean-field theory. A capture zone construction has recently been intro-
duced by the present authdihilos. Mag. Lett.72, 55(1995; Phys. Rev. B53, 10 261(1996] as a way of
overcoming this deficiency. The present paper explores and develops this idea in a one-dimensional “point
island” model. Note that the rate of capture of diffusing monomers is independent of the spatial extent of an
island in one dimension. A complete theory for the dynamical and spatial features of the model is developed,
including the derivation of a scale-invariant analytic expression for the island size distribution function which
agrees very well with the results of Monte Carlo simulations. The implications for two-dimensional systems
are discussedS0163-182¢06)02839-]

I. INTRODUCTION nucleation does occur, but much more slowly than in the
earlier period. The aggregation regime is finally terminated
The theory of submonolayer film growth has, until re- by the onset of coalescence at 30—40 % coverage.

cently, focused on the use of mean-field rate equations as the We start by defining the parameters that characterize the
main analytic partner to Monte Carlo simulations. While thisgrowing islands. One has first of all the number denbity
has successfully explained the dynamics of growth, it had his is the number of islands on unit area of substrate that
become clear that one must look beyond a mean-field treafontains atoms. It will depend on the coveragevhich, for
ment to obtain insight into the spatial features of the systenfwo-dimensional growth, is proportional to the deposition
and, in particular, to understand the scaling properties thdime and the rate of depositioR (assuming evaporation
characterize the growth. These properties are manifestddom the surface is negligibe Other quantities of interest
most directly in the island size distributions. In this paper,are mean island sizgs), total density of island#\, and the
we study an artificial one-dimensional model since this willdensity of monomersl;. An important parameter in the de-
allow us to demonstrate explicitly the limitations of the Scription is the monomer diffusion rate, which depends on
mean-field approachnd to go beyond itwe shall derive a both material and temperature. _
complete analytical theory for the dynamical and spatial fea- An important approach to studies of the aggregation re-
tures for our model system and, crucially, we shall give adime is the use of dynamical scaling theory. In extensive
rigorous explanation for the origin of its scaling properties.Monte Carlo simulations, Bartelt and Evans' showed that
All of our work is supported by Monte Carlo simulations, the island density takes the form
and outstanding agreement is found throughout. We begin s
with a brief survey of the background to this work. N~ 6(s)~“f(s/(s)), 1)

There has been a huge resurgence of interest in thgneref(x) is a universal scaling function that is independent
mgchamsms of thin film growt.h over recent years. Electronys coverage and the deposition rate; it does depend on the
microscopy has, for a long time, been the main tool forgitical island size, however. This behavior has since been
studying surfaces, but the development of scanning tunnelingynfirmed?=28 for a number of different models. and has
mlcrosgopf/'z (STM) and surface sensitive electron- 5150 heen observed experimentally in STM studiekhe
diffraction techniques™® such as reflection high-energy elec- mean quantitiegs), N, and N, display a dependence on

tron diffraction now allows one to probe surface details atcoverage and on the ratii(=D/F), which can be de-
submonolayer coverages. The thédrpf film growth was  <riped by four exponents: '

developed largely through the sixties and the seventies

mainly with reference to three-dimensional island growth, (s)~ %RX, 2

but the refinements in experiments have sparked a renewed

interest in the corresponding thedty. Ny~ 6 "R, 3)
Existing growth theoriés’ define an initial regime in

which the density of monomer$solated atoms on the sur- N~ gl 21X ()

face increases linearly with time until small islands begin to

nucleate. As deposition proceeds, the density of island¥alues of these exponents have been deduced both from
eventually becomes larger than that of monomers. One enteexperimert® and from Monte Carlo simulatiorns-® and

the so-called aggregation regime which is dominated by théheir dependence on critical island size and on the islands’
capture of diffusing monomers by existing islands; newshape(compact or ramifiedhas been studied.
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A popular way to obtain these exponents theoretically igng direct impact of the new material. However, as long as
via rate equation$/ These are mean field in nature; that is, one is aware of the caveats, it is usually possible, in practice,
they ignore fluctuations in the island distribution on the sub-to observe a tendency toward a particular asymptotic behav-

strate. Nevertheless, it has been shown that such mean-figist. This is important because obtaining the exponents is a

predictions are often in very good agreement with computegery convenient way of characterizing a particular growth
simulations:>*® The usual rate equations describing islandmode. It allows one to identify critical island size, for

growth are example> and to distinguish growth dominated by monomer
N, diffusio_n and capture from other growth processes. The con-
—=F—2K1N§—N12 K<Ns, (5) trast with the exponents obtained in a s_|mple coalescence
dt §>2 modef® has been explored by Blacknfimising a rate equa-
tion formalism.
dNs = Ny(Kq_1Nq_;—KNy) ©6) The rate equation analysis was taken one stage further by
dt — s sm1 Mstsh Bales and Chrzatf They solved the equations self-

consistently so that a form af; was used that was appro-
priate to all stages of coverage. They also included the effect
of direct impact of impinging monomers on existing islands.
It was found that the rate equations give a surprisingly accu-
rate prediction of the mean quantitié¥, N, and(s)) when
K.=Do 9=Ft @) compared with computer simulations. However, the descrip-
s s . : X . SR .
tion of the island size distribution functions was a complete
Equations(5) and (6) are specific to growth with a critical failure. The reason for this is clear; it is the neglect of spatial
island size of 1. Additional terms describing island dissociafluctuations which are a consequence of the mean-field na-
tion can be introduced to accommodate other critical islandure of a rate equation approach.
sizes. There have been attempts by Bartelt and EVamsi by
The solution of these equations has been studied via scakmar, Family, and Larif to address the issue of fluctuations
ing theory®>?® and by asymptotic method$?? both in the  through studies of pair-correlation functions and structure
context of island growth?° and also as applied to other factors. An alternative method introduced recently by the
growth problems such as aerosol thetGenerally it is  present authof$?® employs a capture zone approach. The
assumed that, has a simple functional dependence on thecapture zone is the region surrounding an island from which
island size(~sP). There has been some controversy over thdt predominantly acquires the monomers that are responsible
appropriate value to use fqr. The “point island” model for its growth. To a good approximation these capture zones
assumes that is zero, while an alternative approach adoptscan be identified with Voronoi cells centered on the islands
the value3. Paradoxically it appeared that the point islandthemselves. It was showhthat, for heterogeneous growth,
model gave a better prediction of theand w exponents, the island size distribution function closely mirrors the dis-
while the observed dynamic exponemtand z appeared to tribution of Voronoi cell sizes. The scaling of the size distri-
be consistent with thgg=3 description. The problem was bution occurs because the cell distribution also scales. For
resolved by Ratsclet al® referring back to the diffusion homogeneous growtfthere is the additional complication
based theory of Venablé3.They proposed that the correct that new islands are produced during the growth, but it was
form to take isos~(Ns)Y2 BecauseN has a logarithmic demonstrated that the Voronoi cell distribution still holds the
dependence o#f, there is no change to the prediction of the key to an understanding of the island distribution. The cap-
dynamic exponents by Blackman and Wilditfgyho solved  ture zones represent the environment of the growing islands.
the general p problem and assignep=3 for two-  Monitoring their size distribution provides the information
dimensional growth. However, the modification of Ratschwhich is absent from mean-field theory. Elements of the cap-
et al1® does change the exponentsndw from their values ture zone idea are also found in the work of Venables and
in the o~ s2 theory, so that they are now identical to thoseBall?® and of Li, Vidali, and Bihanf.
arising from the point island model. The theory now exhibits  Our previous work? established the importance of cap-
internal consistency. ture zones largely from Monte Carlo simulations. In the
It should be noted that thes~(Ns;)1’2 theory represents present work, we shall examine some of these ideas using a
asymptotic behavior and thus applies only at the higher covene-dimensional analog. It has the advantage that analytic
erages when the aggregation regime is fully establishedvork can be taken much further than in the two-dimensional
When the islands are very small the point island model is arcase, allowing us to probe the process more fully. Further-
appropriate description. Surveys have been given of the connore, the logarithmic effects that gave rise to subtleties in
ditions operating at the various stages of coverage by Amatwo dimensions are absent in this case. One is, of course,
Family, and Lam® and by Evans and Bartétt.It could be  concerned that one-dimensional models have their own pe-
argued that using a simple power dependencegiornsgis an  culiarities that can obscure issues that are ideally generic. We
unnecessary oversimplification. There is the question ofind that there are no serious pathologies in this case and the
whether the aggregation regime lasts long enough for asympnodel does indeed make transparent issues that are relevant
totic behavior to obtain before the coalescence regime takes two dimensions.
over. There is also the additional effect at higher coverages The model is studied by Monte Carlo simulations, rate
of growing islands reducing the area of the substrate availequations, and by the capture zone description. There are
able for deposition and, at the same time, themselves receithree issuesi) Growth exponentsAs in two dimensions, we

whereKg is the capture kernel for monomers by islands of
sizes. It is convenient to introduce a diffusion constdht
common to all theKg and to use the amount of material
deposited g, as the time variable.
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by each trap. Thigtogether with the monomer present at that

capture zone - ) . - .
site at the time of trap nucleatipnepresents the island size.

- "y This allows us to avoid any complication due to direct cap-
ture by impact on existing islands which will become signifi
— t t cant at higher coverages. In our algorithm, we rejected any
gap capture  nucleation direct impacts on the point island traps. An alternative would

be to allow immediate capture of any direct impacts. A check
FIG. 1. Summary of the features of the model. Full circles rep-was made with the alternative algorithm and it was found
resent static traps; open circles are monomers. A trap is formethat, at coverages involved in the simulations, there was neg-
(nucleation when a monomer moves onto a lattice site alreadyligible difference in the growth statistics obtained in the two
occupied by another monomer. A capture zone is the separation gftrategies.
the bisectors of neighboring gaps. In two dimensions, the rate at which diffusing monomers
are captured depends on the island size and so the use of a
will find excellent agreement between Monte Carlo calculaoint island model in that case would alter fundamentally the
tions and the rate equation predictiofis) Mean quantities growth process. In one dimension, the capture rate of diffus-
({s),N,N;). Numerical solution of the rate equations gives aing monomers is independent of whether one uses a point
fair description of these, but not quite as satisfactory as Baleisland model or a model in which the islands are allowed to
and Chrzaff find in two dimensions. A simple development increase in actual size. In this case, any differences will arise
beyond mean-field theory is necessary to produce excellefitom processes involving direct impact and capture.
agreement with Monte Carlo resuli@i) Distribution func- Our time scale is coverage defined here as the number of
tions As we expect, mean-field theory is totally inadequatemonomers deposited per site. Because the traps do not actu-
here. The capture zone description is explored and is showdlly grow, values of larger than 1 are possible, while true
to account fully for the island size distributions. coverage of the line is only partial. The results of the simu-
The details of the Monte Carlo procedure for one dimendations will be described along with the related theoretical
sion are outlined in Sec. Il. In Sec. lll we develop the mean-developments.
field theory and compare the predictions with the results
from the Monte Carlo simulations, first for the exponents and 1. RATE EQUATION ANALYSIS
then for(s), N, andN,. The initial signs of the breakdown of , , , o )
mean-field theory appear in the treatment of the average |N€ Starting point for the mean-field analysis is again the
quantities. We show, in Sec. IV, how information about thefat€ equationg5) and(6). Using Eq.(7), these can be rewrit-
spatial distribution of islands must be introduced to rectify€n as
the deficiencies of mean-field theory. This is developed in

detail in Sec. V. In Sec. VI, we address the issue of the island ﬁ =1— Zﬁ‘iale—D‘ile oNg, (8
size distribution itself, including a derivation of a scale- do $>2

invariant analytic expression that relates the island size dis-

tribution to the cell distribution. The concluding Sec. VI dNs N N N 9
discusses the implications of this work for the two- ao 1(0s-1Ns—1= TsNo). ©)

dimensional case. . . .
The total cluster density, which has already been introduced

is defined as
II. MONTE CARLO SIMULATIONS
In the simulations, monomers are deposited at random on NZSZZ Ns. (10
a line of L sites, and random diffusive moves of monomers -
are made one step to the right or the lefI2; monomer Until now, the rate equations are not dimension specific.

moves are made at random for each time a particle is addegyithin mean-field theory, the dimension dependence comes
The factor 2 appears because the hopping rate is twice thg through the quantity . The peculiarity of one dimension
d|ffu5|9n rate. When a monomer moves onto a site alread_yS thato is certainly independent afat all stages of growth.
occupied by another monomer a trap is formed. Traps remaiRiow let us consider the deposition of monomers onto a line
static; it is only monomers that are mobile. Similarly a of lengthL. To evaluates,, we need to consider the varia-
monomer that moves onto a site that is occupied by a trap ion of monomer density in the vicinity of a static island.
absorbed. Traps remain one lattice site in ext@ntpoint  Foliowing Venable? and Bales and Chrzawe define the

mers and no dissociation of islands once they have formef . \e can write dowm, in terms of a diffusion equation,

(critical island sizej=1). Thei=1 case is the most complex

one (because for higher values bfthere is less new nucle- an, a°n, .

ation during the aggregation regiimeand so the subtle issues ot P 5 tF-D¢& ny, (12)

are most apparent here. The elements of the model are sum-

marized in Fig. 1. where ¢ is the average distance a monomer travels before

To focus the study on the deposition/diffusion/capturebeing captured by an island or another monomer. So that the
process alone, the traps were not allowed to grow in sizeequation is consistent with E5) in the limit x—o when
simply a record was kept of the number of particles absorbed;— N;, we make the identification
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£2=]20,N;+ > aoNg|. (12) 1o
s=2
Combining Eqgs(5) and (10),
0.1
d(ny—Ny) an s
M) 5 2% pe2n-ny. (3 S
ot X 35
Assuming a quasistatic regime with very small time varia- - 0.01 <
tions, we obtain for the monomer density as a function of ’
distancex from an island
ny=N;[1—exp —x/&)]. (14 0.001
The rate of capture of monomers i®pdn,/dx],_,, where 10°
the factor of 2 is included because they arrive from both 0
sides of the trap. This is to be compared with the capture rate
defined asDogN,, giving os=2/¢ independent of as ex- FIG. 2. Trap densitiN as a function o (=Ft) for three values

pected. The above argument applies $8r2; for monomer  of :2(0.5x10° chain line; 0.5<10° broken line; 0.5 10’ full line).
monomer capture, the argument has to be modified slightlysecond group of plots shows the scaled trap density.

but the behaviowr;=2/¢ still applies. At this stage it is con-

venient to anticipate that modifications to mean-field theorysystem by the traps at a faster rate than new ones are depos-
will be necessary and to introduce correction faci@endB  jted. A largerL is necessary to extend the range. At the
into the capture kernels, and writg=2a/¢ andos=0 (for  |argest values of reached in the simulations, the real cov-
s=2) with o=2p/¢. Using these definitions and E{.2), one eragegas opposed t@) are about 14%, 6%, and 2% for the

obtains three deposition rates.
_ Now let us examine the capture kernets and o that
o1=4a(2aN,+BN), (153 pave been employed in the rate equation formalism. At the
_ moment they contain two free parameterand 8 each of
o=4B(2aN;+BN), (150 which is expected to be unity if mean-field theory applies.
£ 1=2(2aN; + BN). (150 From the data displayed in Figs. 2 and 3, we can calculate

dN,/d6 anddN/d#@. Then all quantities in the rate equations
Assuming that we are in the regime whéte-N, and that ~ (8) and(9) are known except for and 8 themselves. Thus,

« and 8 have the mean-field values of unity, thepando & cOmparison of the rate equations with the simulation data

are proportional tN, while the mean-free patl, is just half ~ €nables us to extraat and 8 and any¢ dependence they

the trap separation. The techniques of scaling theory can thdRight show. The results of the calculation are shown in Fig.

be applied to obtain growth exponents. Following the stan®- At €arly time both are considerably above unity; this is not

dard method516%the following values for the exponents rémarkable because the assumptigasy., quasistatic re-

are obtained: gime) implicit in the derivation of the expressions for the
capture kernels do not apply at this stage. At largervhen
w=1/2, r=1/2, x=1/4, z=3/4. (16)  aggregation conditions are believed to operate, interesting

, behavior is observedr, the coefficient inoy, does settle
We have defineds) as

<s>=|\r122 sNg=(6—N;)/N. (17) 10°+

An alternative commonly used definition of the mean size
which involves the second moment of the distribution func-  4g°]

tion will give identical growth exponents. o

The Monte Carlo simulations are used first to test the = o =
growth exponent behavior predicted by E@8)—(4), (16). A+ — Ban, e Loos =
The deposition was done on a linelof2x 10° sites and for 10°4 4+ Dy aa
three values of: 0.5x10°, 0.5x10°, and 0.5<10’. The re- + ®©
sults were average over 10 runs in each case. The trap den- + L 0.01
sity N, monomer densityN;, and average trap siZe) are 1 '
plotted as a function of (=Ft) in Figs. 2—4, respectively. 10° T l T T
For convenience, the quantities scaled according to the 10 10 10° 10° 10° 10°
mean-field predictions are also plotted. The scaled plots are 6
seen to be in accord with the predictions; in each of the
figures they asymptote to a limit that is independen# ahd FIG. 3. Monomer densiti, as a function ofd (=Ft) for three

2R. The range off is more restricted at the higher values of values of93(0.5x10° crosses; 0.81C triangles; 0.5 10’ circles.
R, because all monomers are eventually taken out of th&econd group of plots shows the scaled monomer density.
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FIG. 4. Mean trap siz¢s) as a function off (=Ft) for ghree FIG. 6. Trap densityN and mean trap sizés) as a function of
values ofR (0.5x 10° chain line; 0.5<10° broken line; 0.X10°full ¢ (=Ft). Data points are from Monte Carlo simulations. Lines are
line). Second group of plots shows the scaled trap size. from numerical solution of the rate equations wit=1.0 and 3

equal to 1.0(broken lineg and 1.389(full lines).
down to approximately one, whilg, the coefficient ing,
quite definitely approaches a value that is larger than unityyhe capture kernels is not correct. Once the amendment is
There is some ewdenc_e th_atmay be m_a_rglnally Ies_s than .made of using the value ¢ that is different from unity, the
one but, because of noise in the data, it is not a point that i§geement is excellent. The use of the rate equations them-

worth pursuing. Even with the noise in the data, it is quitegg)yeg js successful even though they are mean field in na-
clear thatg lies in the range 1.3—-1.4. From evidence to beture; it is necessary though to use a valueoofvhich can

presented later, we will take the best@®as 1.389. Although only be derived, as we shall show later, by going beyond

this is our first evidence of departures from mean-field bei,a5n-field theory. In two dimensions, by comparison, Bales

havior, it has not influenced the predictions of the exponents 4 chrzat show that corrections to mean-field theory are
bepause all that was required in their. derivation was SUSregligible at this stage.
tained constant values far and 3; their absolute values —\yg finish this section by examining the distribution func-
were not important. . tion Ng. The time evolution found from Monte Carlo simu-
To.present these observatlon_s n a”?’ther way, the ragions is shown by the solid curves in Fig. 7. The results
equations are now solved numerically using valuea@ahd  ¢om the numerical solution of the rate equations are shown
B of 1 and 1.389, respectively. The results frnd(s) are  j, ihe same figure. One set of plots displays the results when
shown in Fig. 6 along with the data points from the Monte g i taen as unity and the other is the data obtained when
Carlo simulations and a numerical solution of the rate equag_1 389. Clearly the modified value @ does bring some
tion_s with both 'coefficients set to unity. Monte Carlo data forimprovement but, as in two dimensions, the rate equation
N, is more noisy because of the small number mo_nome:?redicts distribution functions that are much too narrow.
remaining at the later stages of the aggregation regime, a
does not yield conclusive results in the present comparison.
The comparison displayed in the plots férand(s) is quite x10°
conclusive, however. Clearly the mean-field predictions of

R=05x10" o[, B+
40 R=0.5x10 aO, X
o 3 R=05x10" a A, O
@ A
. | Ox .8
0 204 &
o
3 +
o+ O A
2ty s ssessbenadyiyegass
Poxe X v
1.0 ul mam§§§9@@@aﬂ@gﬁga@AgoﬂgeoAAO
i A004
0.7 ° )
T l ! '

° * 10" 10° 10' o .
10 10 0 0 0 FIG. 7. Distribution functionNg versuss for three coverages

6 (#=1.19, 2.62, 5.76—rplots left to rightFull lines: Monte Carlo
simulations; other plots are results from numerical solution of the
FIG. 5. Coefficientsy and 8 versusf (=Ft). Data is shown for  rate equations withw=1.0 andg equal to 1.0(dotted line$ and
three values ofR. 1.389(broken lines.
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FIG. 8. Scaled distributiof(S) from Monte Carlo simulations FIG. 9. Scaled distributio®(S) from numerical solution of rate

plotted for several values of and 93. Full and broken lines are equationga=1.0 ands=1.389 for same values of and% used in
theoretical distribution functions from E¢38): as discussed in Sec. Fig. 8.
VI.
d’n,

The scaling properties of the distribution functions have D dx2 +F~0. (19
been well studied in two dimensions and, not surprisingly,
scaling behavior is exhibited in the one-dimensional modelThat is,
This is illustrated in Fig. 8 where the scaling properties of
the Monte Carlo results are shown. An equivalent way to ni(x)=3R"X(y—x), (20)
study the scaling behavior expressed in 8g.is to write Ng
as a function of the scaled varialfewhereS=s/(s), and to
normalize it so that it is a probability function; we denote the
function by P(S):

and the total number of monomers in the gap is given by
n,=y%12%. If n, is averaged over all gaps along the line,
we can obtain the mean monomer dengiy in the notation
already introduced N; =(y3)N/121. The mean gap size is
given by(y)=N""1. Introducing scaled variable¥,=y/(y),

f P(S)dS=f SP(S)dS=1. (18) we obtain the relation

. T 12NZN M= (Y3). (21)

Note thatP describes the distribution of traps onlsnono-
mers are excluded; i.e., there is Be1). In Fig. 8, P(S) To check the validity of this relation, the left- and right-hand
shows the characteristic scaling behavior for a range of valsides of Eq.(21) are plotted against in Fig. 10 using data
ues of # and*R. from the Monte Carlo simulations at three valueshf The

Although we have already demonstrated that the rat@pproach to the common limit in the aggregation regime is
equations do not give a correct description of the distributiorseen quite clearly. Also the fact that the common limit is the
function, it is instructive to show th®(S) obtained from same for eachk implies that the distribution of gap sizes is
their numerical solution. Th@=1.389 results are displayed a function that exhibits scaling properties.
in Fig. 9. The rate equations do not give scaling behavior. It

is true that scaling theory arguments can be used to derive 6 UPPER 3 PLOTS: <*
the growth exponents, but the assumption is made that one is s >2
in a regime whereN;~t~", and that is only valid in the 51 ™n,00s LOWER 3 PLOTS: 12NN.&
asymptotic limit. Thus, scaling to a common function does om Ay A%
occur but only at smak/(s), where(s)~t?. 44m, o ; o 4 R=05x10° A O
a Y 5 A R=05x10° O x
m 7
IV. BEYOND MEAN-FIELD THEORY 94 o © * %=0.5x10" [0 +
A i % s,
. . . . . IIl
The rate equations ignore spatial fluctuationdliandN; 2 mﬂmﬁi&]@ ¢
. . b4
and, in that sense, they are a type of mean-field theory. We ot e @%@@@ﬁ‘augﬁaﬂa o

can begin to introduce the effect of fluctuations if we recog-
nize that the actual monomer densityis a strong function

of position on the line and is highly sensitive to the local trap
separation.

In the aggregation regime, when the monomer density is 6
in an approximately steady state;(x) between a pair of
islands situated at=0 andx=y is obtained from the diffu- FIG. 10. Plots ofY3) and 1N?N; % againsté (=Ft), for three

sion equation, values offR.
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The quantity(Y3) contains details about the spatial distri- at positionx is proportional ton;(x)? and the probability of
bution of traps that is absent from mean-field theory. Thisnew nucleation somewhere within a gap of widthwill be
extra information will provide us with an estimate of the proportional to[¥n,(x)dx; that is, toy®. The monomer
coefficientB which has been observed to take a value differ-density is given in Eq(20). Normalizing these values, the
ent from the mean-field prediction of unity. The rate of cap-probability that the new nucleation will take place some-

ture of monomers by a trap ak=0 is given by

where in a particular gap of width is y°/ .\ (5). The prob-

2D[dn/dX],_o=DMR ! {y). As before the factor 2 arises ability, given a particular gap, that it will take place between
because of capture from left and right. We have averaged andx+dx within that gap isy(x/y)dx/y, where

over all gap sizes. Identifying the capture rate witlrN,
noting thatN=(y) "%, and using Eq(21), we obtain an ex-
pression foro,

o=12N/{Y3). (22

A comparison with Eq.(15b) in the aggregation regime

whereN>N; leads to the identification

B=[3KY3)1". (23

The common value ofY3) in Fig. 10 is about 1.6a more
accurate estimate will be given in the next secdijavhich is
consistent with the value @ used earlier. From Eq150), it
can be seen that the physical effect g8 targer than 1 is to

P(N)=300%(1—\)2. (29

The effect of a new nucleation can be described by the equa-
tion

Fu1(Y)=FuWI[1=y% um(5)]1+ fwaM(Z)[ZSIMM(S)]

X[(ylz)+ y(1—ylz)]dz/z. (30

The first term on the right-hand side gives the number of
gaps of sizey remaining after the new nucleation. The sec-
ond term gives the number of new gaps of sizeébeing
created from larger gaps of sizeThere are two parts to the

reduce the mean diffusion path to less than its mean- flelgecond term because a Sy@ap is created by new nucle-
value. Since(Y3) is proposed as a universal number, oneation both aty and atz—y.

would like to be able to obtain it from theory rather than

Using the relation,Fy,.(y)—Fu(y)=N[2G+Y dG&

from a Monte Carlo simulation. This entails an investigationdy+ O(1/M)], together with the symmetry(\)=y(1—\),
of the distribution function for the gaps between the traps. an equation for the scaled probability can be derived from

V. THE GAP DISTRIBUTION FUNCTION

Consider a line of length with trap densityN. There are

a total of M (=NL) traps on the line. It is convenient to
define two probability distributions for the gaps between

traps.Fy(y) is the number of gaps in the rangdo y+dy.
The moments of,(y) are

s(p) = f:yPFM(wdy (24

and obviouslyuy(0)=M and uy(1)=L.
A scaled distribution functiorG(Y) is also introduced

whereY=y/(y). This is the probability distribution for gap

widths normalized so that

J G(Y)dY=J YG(Y)dY=1. (25
0 0
The moments of5(Y) are defined
QP:J YPG(Y)dY (26)
0

Qo and Q, are both 1 and it iR that is relevant to the
discussion in the previous section.

Y d@dY+(2+Y%Qs5)G

=2F[Z5G(Z)/Q5]lp(Y/Z)z—ldz. (31
Y

A useful relation between moments can be obtained straight-
forwardly from Eq.(31),
(P—1)QpQs=(1-2A;)Qp- s, (32)

where

A= folxpz//(x)dx. (33

With the specific form ofy from Eq. (29), the following
relation emerges:

15 24 N 10
p+3 p+4 p+5

QpQSZ Qp+5- (34)

A consideration of theY—cw limit of Eg. (31) shows
that the distribution function has the fornG(Y)
=H(Y)exp(—Y°/5Q;). Note that this general behavior is
mdependent of the precise polynomlal expressmn for the

summarized by the expressions

Fm(y)=MNG(Y),

pm(p)=MN"PQ,,

(27)

(28)

andY=y/{y)=Ny
We proceed by considerirfgy,(y) and the effect on it of

the probablllty of new nucleation within a gap is proportional
to the size of that gap to the fifth power. The details of the
nucleation probability within a gap determine the function
H. We are unable to obtain an analytic solution @&fY) in
our model, but we can make the following additional state-
ments about the form oH(Y) by examining Eq.(31) in
various limits. In particular,H(Y)= 15(Q2/Q5)Y2 in the

a single new nucleation. The probability of a new nucleationsmall Y limit and, asY—o, H(y)~Y 2.
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TABLE |. Zeroth through eight moments.

1.0 o M R=0.5x10° 6=0.11
o O R=05x10° =1.19 p Q Q, [from Eq.(32)]
0.8 A §R=0.5x107 6=12.65 0 10
X R=0.5x10" §=0.11 1 10
;0.6— + R=0.5x10" 9=1.19 2 1.178-0.002
G} — theory 3 1.555-0.003
0.4 4 2.237£0.005
5 3.44+0.01
0.2 6 5.59+0.03 5.58:0.02
7 9.52+0.06 9.46:0.05
0.0 8 16.83+0.15 16.64-0.09

0.0 0.5 1.0 1.5 2.0 25 3.0

this is a very good approximation and the broadening effects
FIG. 11. G(Y) as a function of for several values ak andg ~ Can probgbly be ascribed to the very slow variation in mono-
from the Monte Carlo simulationgdata points The theoretical ~Mer density. _ _ _
curve is shown by the full line. From the table, our best theoretical estimate(@f is
1.555. This is just th&Y3) that appeared in Eq23) and
o _provides the value oB of 1.389 that we used in the discus-
As an exactly soluble model, although an artificial one, itgions of the rate equation and the plots in Fig. 6.
is interesting to study>(Y) wheny(\)=1. In this case, the |, this section we have defined an abstract problem about
weighting according to gap size is included, but nucleationhe distribution of points along a line according to a particu-
within the gap can occur anywhere with equal probability.|ar algorithm. A distribution function has been obtained and
Details are given in the Appendix. it has been shown that this function agrees in essentials with
The gap distributions are recorded over a range of valuethe distribution of gaps observed in the one-dimensional
of #during the Monte Carlo simulations. These are shown bydeposition model. In the following section, it will be shown
the data points in Fig. 11. Scaling behavior is evident. Wethat this development provides a basis for overcoming the
wish to compare these plots with the theoretical distributionshortcomings of mean-field theory.
given implicitly by Eq.(31). Rather than solve the integrod-
ifferential equation numerically, we prefer to obt&{Y) by VI. CAPTURE ZONE AND TRAP DISTRIBUTIONS

a statistical method. A line of length is taken and an array . ) . 28
of point on the line is generated. Each new point is intro-, OUr Previous work in two dimensiofis = demonstrated

duced via weighted random number generation. First, a pa{%he key role played by capture zones in determining the dis-

of existing points is selected between which to introduce th ”b;t{?groorfc;isclzaerllldcsllzsetfﬁc-'lt—ikc‘)?lo(':I'ipetuereuﬁloar::r?t \(I:Vg;it:ﬂ(zt?g::ed
new one. The selection is weighted by the fifth power of the]c y . ' 9 . .

) . L or obtaining the capture zone of a particular trap in one
separation of the points. Then the actual position in the ga

for i tion i lected with weighti . by the functi imension is the trivial bisection of the gaps to its left and
orinsertion IS selected with weighting given by the Tunclion 4t it there is no correlation between the sizes of the two

¢ in EqQ. (29). This was done for a final set of point densities gaps, then we would expect that a simple convolution of the

along the line ranging from 1-10%, and for line lengthsyay distribution function would yield the capture zone distri-
between 1000 and 10 000. Each configuration was averagq;htion,v(y)’

over 10 000 runs. The results f@(Y) obtained for the dif-

ferent configurations were indistinguishable, and are shown 2y

by the continuous line in Fig. 11. As a check ti&tY) thus V(Y)=2 0 G(2)G(2Y-2)dz. (39

obtained agrees with the analytic result of E81), we

evaluated the moments and compared them for consistendy/e can use scaled variables immediately because the mean

with the prediction of Eq(34). The moments from the zeroth gap and capture zone sizes are identical. The prefactor 2

to the eighth are reproduced in Table I. The second columensures a normalization f&M(Y) similar to that forG(Y) in

showsQ,, obtained numerically from the theoretical curve in Eqg. (25). One might argue that the nucleation process tends

Fig. 11. For the third column, Eq.34) has been used to to produce correlations; new nucleation is weighted toward

calculate higher moments from the lower ones. One can sdbe center of existing gaps and, therefore, one might expect

the good agreement. that the gaps to the left and right of a new island are of
In comparing the Monte Carlo data with the theoreticalsimilar size. However, any such correlations that are present

curve, one can see some slight broadening in the former; Theaith an existing island will tend to be destroyed when a new

Monte Carlo data tends to lie a little above the tail andnucleation occurs in its vicinity. It is likely that the second

slightly below the peak of the theoretical curve. It would beeffect will dominate and Eq35) will be valid to a very good

surprising if there was a perfect fit, because we have beeapproximation.

proceeding on the assumption that the monomer density is in This conjecture is tested by evaluativgY) numerically

a steady state. Obviously the very close agreement in Fig. 1dsing Eg. (35 and the theoreticaG(Y) of Fig. 10. The

between the data points and the theory curve indicates thag¢sults are compared with data on the capture zones from the
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R=0.5x10° #=0.11
R=0.5x10° 6=1.19

™M
O]
[22]
A R=05x10" §=12.65 S
1.0 X R=05x10" §=0.11 _‘g
= + R=05x10" §=1.19 £
< =]
T —— theory o
L
0.5 5
[0]
E
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
s/<s,>
FIG. 12. V(Y) as a function ofy for several values gk and ¢ FIG. 13. Distribution functions at time for islands that were
from the Monte Carlo simulationgédata points The theoretical nucleated in time slice of width7=0.1 at timer (data points Full
curve[from Eq.(35)] is shown by the full line. line is V(Y) from Fig. 12.

Monte Carlo simulations for several values @fand %t in  Can then add the contribution from each time skdé\ is-
Fig. 12. The excellent agreement demonstrates the validity dﬁnds originate in an intervai7) to get the complete island
ignoring correlations and, through E@5), gives us a direct Si2€ distribution.
means of evaluating the capture zone distribution. t

In the present simplified model, the traps remain static at P'(s,t)zAf dr V(sl{s)[ 7 ¥(s)]. (37)
essentially zero size. The capture zone construction is done 0

by a trivial bisection of the gaps between the traps. In a8yt the moment, we are using the unscaled distribution de-

model where trap growth is included, the capture zones argseq hypP’. The relation between the scaled and unscaled
constructed t_)y the simple extension of bisecting the gapg,nctions isP(s/(s))ds/(s)=P’(s,t)ds. In Eq.(37), Ais a
between the island edges. normalization constant.

Now let us construct a heuristic argument to relate the The constantsA andk. can be determined by satisfying
capture zone distributionV/(Y), to the island size distribu- o normalization conditions Eq18), which yield 4AtY4=1
tion, P(S). This is based on the observatféf®in two di- ;4 3/&t9*=(s), where(s) is the mean size of the complete

mensions that the rate of growth of an island is proportionaket of jslands. The final result after these substitutions is
to its capture zone. We wish to describe the island size dis-

tribution at timet, and consider first those islands that were 1 1 4¢S dx
nucleated in a time intervadr at time 7 (0<7<t). Since P(S)= (1+42) fOV (A4 4e)(1-N)| (1= NI T@
mean-field behavior has been shown to give a good account (39)

of the time dependence of the island dendily,we can use
Egs.(4) and(16) to deduce that the number 2/f4new islands  ysing e=2, the capture zone distribution function(Y)
created in this time interval is given BN~ 7 ~"dr. ~ from Eq. (35) and Fig. 12 and numerically integrating Eq.
We follow the evolution of the islands formed in the time (38), we obtain the plot shown by the broken line in Fig. 8.
slice atr and denote their average size at subsequent timeSjyen the rather drastiand, as yet, to be substantiated
by (s,). Now, given our earlie_r observati(_)ns, we assume thaéssumptions used in deriving E(B8), the agreement be-
rate of change of this quantity at any tie(7<t'<t) is  tyeen this plot and the Monte Carlo data is remarkably good.
proportional to the mean capture zone Sigp, and(y) itself  There is a possible concern that the discussion given is in-
is proportional toN V_Vll}r theN dependence on time noted yjig at early times before the aggregation regime is estab-
above, d(s)/dt'~t'""" leading to the relation, |ished. From Figs. 2—4, it can be seen that the aggregation

(s)=kt"[1—(7/t)*7, as an estimate of the mean size atregime is established very earlg~102) and so any doubt
timet of islands nucleated at; k is a constant. We prefer to of thjs nature exists only fok in Eq. (38) close to zero.

write the relation as Becausd1—1/(4e)]<1, only a very small contribution to the
integral comes from this region and so preaggregation re-
(s,) =kt 1—(7/t)°] (36) gime influences are negligible.

Let us now examine rather more closely the validity of the
two main assumptions made in deriving E&8). A key
with, for the momentg=3/4. ingredient was the supposition that the size distribution at
Now let us make the rather drastic assumpfimnbe jus- time t of islands originating within a time slice at was
tified latep that the size distribution of islands created in agiven by V(s/{s,)), where(s,) is the average size atof
particular time slice maintains throughout the subsequenislands from that time slice. We monitored the evolution of
evolution a functional form similar to that of the capture islands from a range of time slices and display some sample
zone distribution; that is, it is proportional ¥(s/(s,)). We  distribution functions in Fig. 13. The line curve YY) for
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comparison. The Monte Carlo data sets used in the test cor-
respond tat=5.0 (in units of ) and®\=0.5x10°. The data
for each value ofr is gathered from a time slice of width
A7=0.1(in the units of6). It can be seen that the assumption
made is a remarkablfand perhaps surprisinglgood one. If
anything the time slice distributions are marginally narrower
than V(YY) at the earlier values of, but any discrepancy
between the Monte Carlo data and the theoretical function is
small.
Now let us examine, the validity of E¢36) with £=0.75.
The mean valuesés,) from each time slice are shown as a
function of 7 by the box symbols in Fig. 14. Again, the time
observations are madetis-5.0. The full curve indicates the
fraction of the total number of islands present @hat have )
been nucleated at time. The ratio (s,)/[1—(7/t)%"9 is T (units of )
shown by the circles and is seen to be fairly constant, al-
though there is a systematic fall off in the curve uprte2.0 FIG. 14. Mean size of islands,), at timet that were nucleated
during which time~80% of the islands have formed. in a time slice of width A7=0.1 at time 7 (box symbols.
We can argue that E436) with e=3/4 overestimates the (s )/[1—(/t)®] is shown fore=0.75 (circles and =0.61 (tri-
mean size of the environment of an island immediately afteangles. Full curve indicates fraction of total number of islandg at
it is formed. When an island forms in a gap between existingdin units of §) that have been created by time
islands, its capture zone size is half of the size of the gap. At

the simplest level, one would argue that the average capture \We have thus fu||y overcome the Shortcomings of mean-
zone size of a newly formed island is half the average capfield theory. An analytic expression has been obtained for the
ture zone size of existing islands, and as the newly formegsjand size distribution function that is in excellent agree-
island evolves it also eventually sees the average envirormment with the Monte Carlo simulations. The expression, Eq
ment. One must remember, however, that new islands ar@g), relates the trap sizes to their spatial distribution and
more likely to form in the larger gaps; to be precise theprovides a first-principles derivation of the scaling proper-
probability of the formation taking place in a gap of sigés  tjes.

proportional toy®. This would lead us to predict that the

mean gap size that a newly formed island finds itself in is

equal toQg¢/Qs, where these moments are defined in Eq. VII. CONCLUSIONS

(26). The average capture zone size of a newly formed island
will be half of this.

We will now try to incorporate this extra information into
the free parametes that we have left ourself in Eq36).
Remember that equation has been obtained from the assu
tion thatd(s,)/dt is proportional to the average capture zone
size. Fort>r and arbitrarye>0, d(s,)/dt=3/4kt™ * this
implies that the islands are growing in an average environ
ment whose size~t ¥ this time dependence was one
of the valid predictions of mean-field theory. At time
when the islands are just formed, Ed36) vyields
d(s,)/dt=3/4kr" Y44¢/3). The factor 4/3 is a convenient
way of representing the reduction in size of the environmen
of the newly formed islands compared with the average en
vironment that exists at that time. We identify that factor
with Qg/(2Qs), and deduce that

200

150

=5.0)

100

N/N(@

50

time-slice averages (data points)

(=)
o
=]

00 05 10 15 20 25 3.0 35 40

The key injection into the theory is the one-dimensional
equivalent of Voronoi cells. There are two comments stem-
ming from this, one qualitative, the other quantitative. The
ualitative statement that an island traps on average those
lonomers within its capture zone is, of course, an exact one
purely on symmetry grounds. In two dimensions, the polygo-
nal construction of the capture zones is not exact in the same
sense but is likely to bdand has been demonstrated to
be?”? true to a very good approximation. It is also to be
expected that the rate of growth of an island will be propor-
tional to its capture zone. However, in a homogeneous model
like the current one where an island is evolving through an
bver changing environment due to new deposition, one might
anticipate that there would be some broadening out of the
distribution due to the random nature of the process. Instead
a distribution that mirrors that of the capture zones is main-
tained in a very robust fashion as was seen in Fig. 13.
o & (39 Similar observations have already been made in the two-
8Qs" dimensional cas#.?® A main objective of the current work
has been to address these issues in a more quantitative way
Referring to Table I, this leads to a value ©bf 0.61. using simple diffusion theory coupled with an analytic treat-
The triangular data points in Fig. 14 display the ratioment of the spatial distribution of points along a line. The
(s)[1—(7/t)*®Y. The closeness to constancy of the plot is essential point in the development is the quasistatic approxi-
evidence that the argument is basically a correct one. Finallynation; the time variation of the monomer densily,, is
we repeat the calculation of E(8) with the new value o  slow compared with the rate of introduction of new mono-
and display the results by the continuous curve in Fig. 8mers into the system. The approximation is, of course, a
There is a distinct improvement on the previous calculatiorgood one and it has enabled us to obtain an overall picture of
over most of the plot apart from some minor deviation in theall aspects of the growth process including the island size
tail aboves/(s)~1.8. distribution function itself. Any departures from the approxi-
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mations assumed are small ones and will produce only verwould like to acknowledge interesting discussions with

minor changes in the finer details. Charles Clement about analogous problems in aerosol
The scaling that is ubiquitous in the growth phenomenaheory.

has been tied to the scaling that occurs in the capture zone

distribution function. This has enabled us to derive an ana-

lytic form for the island size distribution function, E¢38),

that exhibits scaling without it having to be implanted be- | y(\)=1 so that the probability of nucleation is uniform

cause of empirical observation. _ _ ~within a gap, then Eq(31) can be recast into a differential
What are the implications for two dimensions? In prin- equation

ciple, the ideas that are underlying the current development
are transferable. We know that the mean-field theory for thg{ @
exponents operates in that case. The need to introduce the
fnoer;iaflr?ar; La;g”% pIJr:etrc;\ath ;jljgtuasi'ls':);ecoi;ltPOeor:ré?rT(S;_The solution of this, normalized to 1 for the zeroth moment
sion. This necessity is probably connected with the fact that
a monomer, once deposited, is strictly confined to move in
the gap between two traps. There is no analogous constric- G(Y)=K exp(—Y°/5Qs), (A2)
tion in two dimensions, and this could be the reason why
Bales and Chrzdfi had no need to introduce such a correc-where the constant and the various moments can be written
tion. in terms ofy functions.
The capture zone and island size distributions have al-
ready been related for heterogengdusand for 2
homogeneo#§ growth in two dimensions by means of 51“(5
Monte Carlo simulations and canonical expressions for the K= 5 (A3)
Voronoi cell behaviof!32n this case, of course, there is a r A
size dependence to the that appears in the rate equations 5
as opposed to the point island behavior of one dimension.
That is a mean-field theory complication however and, in the 5
capture zone model, both types of behavior are incorporated F(l)
in the statement that the rate of growth of an island is pro- S
portional to its cell area. The outstanding issues are precise 5Qs= 2 ' (Ad)
forms for the capture zone and island size distribution func- F(g
tions which contain scaling from first-principles arguments.
Both of these issues have been answered in the one-
dimensional model and work is currently underway to adapf”md generally
this approach to the two-dimensional case.

APPENDIX

G/dY2+ (3+Y°/Qs)dG/dY+7Y*G/Q5=0. (A1)
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