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Spontaneous interlayer coherence in double-layer quantum Hall systems:
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At strong magnetic fields double-layer two-dimensional—electron-gas systems can form an unusual broken
symmetry state with spontaneous interlayer phase coherence. The system can be mapped to an equivalent
system of pseudospin 1/2 particles with pseudospin-dependent interactions and easy-plane magnetic order. In
this paper we discuss how the presence of a weak interlayer tunneling term alters the properties of double-layer
systems when the broken symmetry is present. We use the energy functional and equations of motion derived
earlier to evaluate the zero-temperature response functions of the double-layer system and use our results to
discuss analogies between this system and Josephson-coupled superconducting films. We also present a quali-
tative picture of the low-energy charged excitations of this system. We show that parallel fields induce a highly
collective phase transition to an incommensurate state with broken translational symmetry.
[S0163-182696)08239-7

I. INTRODUCTION some Landau level filling factors, gaps occur in double-layer
systems only if interlayer interactions are sufficiently strong.
The study of correlated electron systems in fewer thanThese theoretical predictions have been confirmed
three dimensions continues to be an important theme in corexperimentally. More recently, theoretical work from sev-
densed matter physics. In particular, the study of stronglyeral different points of vieffr'° has suggested that interlayer
correlated two-dimensiondPD) electron systems on a lat- correlations can also lead to unusual broken symmetry states
tice has been motivated by high-temperature superconductiwith spontaneous phase coherence between layers which are
ity, while the study of strong correlations in continuum two- isolated from each othdexcept for interlayer Coulomb in-
dimensional systems has been motivated by the fractiondéractions. We have arguéd that it is spontaneous inter-
quantum Hall effect. Properties of high-temperature super- layer phase coherence which is responsible for the recently
conductors are thought by some to be strongly influenced bgliscoveredl extreme sensitivity of the fractional quantum
the weak coupling which exists between the superconducting
planes. In the fractional quantum Hall effect, early work by
Halperirf anticipated fractional quantum Hall effects due to
interlayer correlatiorisin multilayer systems. Recent techno-
logical progress has made it possible to produce double-layer
two-dimensional—electron-gas systems of extremely high
mobility in which these effects can be observed. The two
electron layers can either be bound in separate quantum LW W
wells* as illustrated schematically in Fig. 1 or bound to op-
posite edges of a single wide quantum welh both cases
the 2D electron gases are separated by a distdnsmall
enough ~100 A) to be comparable to the typical spacing
between electrons in the same layer. froreeee s
In a large magnetic field, strong Coulomb correlatons | / pO—
between the layers have Iodhigeen expected to lead to frac- A ’
tional quantum Hall effects. Correlations are especially im-
portant in the strong magnetic field regime because all elec-
trons can be accommodated within the lowest Landau level
and execute cyclotron orbits with a degenerate kinetic en- d
ergy. The fractional quantum Hall effect occurs when the
system has a gap for making charged excitations, i.e., when FIG. 1. Schematic conduction-band-edge profile for a double-
the system is incompressible. Theory has predictéthat at  layer two-dimensional—electron-gas system.
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Hall effect at total Landau level filling factor=1 to small

tilts of the magnetic field away from the normal to the layers.
(v=N/N,, whereN is the number of electrons arid,, is

the number of single-particle levels per Landau levil.a
previous lengthy papdt (hereafter referred to ag we have
developed a rather complete description of the physics asso-
ciated with spontaneous interlayer phase coherence in the
case where there is no tunneling between the layers. The
present companion paper will analyze the case of finite tun-
neling between the layers and the role of magnetic field tilt.
Many of the ideas presented in detail here are discussed
qualitatively in Ref. 17.

Il. EXPERIMENTAL BACKGROUND

In this section we review the experimerfaindications
that the system is spontaneously ordered and exhibits excita-
tions which are highly collective in nature. We focus here
and throughout this paper on the case of Landau level filling
factor v=1 (that is, 1/2 in each layg¢rand assume for sim-
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FIG. 2. Phase diagram for the double-layer QHE sysftafter

plicity that the electronic spin degrees of freedom are frozemurphy et al. (Ref. 4]. Only samples whose parameters lie below
out by the Zeeman energy. The schematic energy level diakhe dashed line exhibit a quantized Hall plateau and excitation gap.

gram for the growth-direction degree of freedom in the
double-layer system is shown in Fig. 1 for the case of non-

A second indication of the highly collective nature of the

interacting electrons. For simplicity we assume that electrongxcitations can be seen in the Arrhenius plots showing ther-
can occupy only the lowest electric subband in each quantually activated dissipatioh The low temperature activation
well. If the barrier between the wells is not too strong, tun-energyA is, as already noted, much larger thAg,s. If A
neling from one side to the other is allowed. The lowestyere nevertheless somehow a single-particle gap, one would
energy eigenstates split into symmetric and antisymmetrigxpect the Arrhenius law to be valid up to temperatures of

combinations separated by an energy gaps which can,

orderA. Instead one observes a rather abrupt leveling off in

depending on the sample, vary from essentially zero to manihe dissipation as the temperature increases past values as
hundreds of Kelvins. The splitting can therefore be muchow as~0.1A. This effect is observed both in double-well
less than or greater than the interlayer interaction energ¥ystems and wide single-well systems and is consistent with

scale,E.=e?/ed.

the notion of a thermally induced collapse of the order that

When the layers are widely separated, there will be nthad been producing the collective gap.
correlations between them and we expect no dissipationless The third significant feature of the experimental data

quantum Hall state, since each layer Hag=1/2. For

pointing to a highly ordered collective state is the strong

smaller separations, it is observed experimentally that thergesponse of the system to relatively weak magnetic fields

is an excitation gap and a quantized Hall platé&ts! This

B, applied in the plane of the 2D electron gases. Within a

has either a trivial or a highly nontrivial explanation, depend-model that neglects higher electric subbands, we can treat the

ing on the ratioAgag/E.. For largeAgag the electrons tun-

electron gases as strictly two dimensiondlhere is ample

nel back and forth so rapidly that it is as if there is only aevidencé?® that parallel field effects due to subband mixing

single quantum well. The tunnel splittinfgg5s is then analo-
gous to the electric subband splitting ifveide) single well.

within a single quantum well produce only small, albeit mea-
surable, effect$.B| can then affect the system only if there

All symmetric states are occupied and all antisymmetricare processes involving tunneling that carry electrons around

states are empty and we simply have the ordinasyl in-

closed loops containing flux. A prototypical such process is

teger Hall effect. Correlations are irrelevant in this limit and llustrated in Fig. 3. An electron tunnels from one layer to the

the excitation gap is close to the single-particle dap (or
fhw, whichever is smallgr What is highly nontrivial about
this system is the fact that the=1 quantum Hall plateau
survives even when the tunnel splitting becomes arbitrarily
small: Agps<E.. In this limit the excitation gap has clearly
changed to become highly collective in nature since the
observed>* gap can be on the scale of 20 K even when
Asps~1 K. As we will see below, because of a spontaneous
broken symmetr{;®1213the excitation gap actually survives
the limit Agps—0, as illustrated in Fig. 2. This crossover
from single-particle to collective gap is, as we will show,

LII

FIG. 3. A process in double-layer two-dimensional—electron-

quite analogous to the result that for spin polarized singlgyas systems which encloses flux from the parallel component of the
layers, the excitation gap survives the limit of zero Landemagnetic field. The quantum amplitude for such paths is sensitive to

g factor and hence =1 is a fraction too.?!

the parallel component of the field.



11 646 KUN YANG et al. 54

other at pointA, and travels to poinB. Then it(or another  metry, the effective Hartree-Fock energy functional for these

indistinguishable electrontunnels back and returns to the states has a gradient expansion whose leading term must

starting point. The parallel field contributes to the quantumhave the form

amplitude for this proces§in the 2D gas limit a gauge-

invariant Aharonov-Bohm phase factor exp{@/®,) where 1 ) )

@ is the enclosed flux an®, is the quantum of flux. Such H= Epsj d*r|Vel*+- - 3.2

loop paths evidently contribute significantly to correlations

in the system since the activation energy gap is observed tphe origin of the finite “spin stiffness”p, is the loss of

decrease very rapidly witB), falling by factors of order 2 —  exchange energy which occurs whervaries with position.

10 (depending on the sampleuntil a critical field, |magine that two particles approach each other. They are in a

Bﬁ‘~0.8 T, is reached at which point the gap essentialllinear superposition of states in each of the lay@rsen

ceases changing. To understand how remarkably Siia},  though there is no tunnelinglf they are characterized by the

consider the following. We can define a lengthfrom the ~ same phasep, then the wave function is symmetric under

size of the loop needed to enclose one quantum of fluxpseudospin exchange and so the spatial wave function is an-

§ B d=,. (§[A1=4.137x 10‘3/d[A]B‘T[T],) For Bf  tisymmetric and must vanish as the particles approach each

=0.8 T andd=150 A, £=0.27 um, which is approxi- other. States with spontaneous phase coherence have better

mately 20 times the spacing between electrons in a givemterlayer electronic correlations and hence lower interlayer

layer and 30 times larger than the quantized cyclotron orbioulomb interaction energyf a phase gradient exists then

radius /= (#ic/eB, )Y within an individual layer. Signifi- there is a larger amplitude for the particles in opposite layers

cant drops in the excitation gap are already seen at fields ¢ be near each other and hence the interlayer interaction

0.1 T, implying that enormous phase coherent correlatior€nergy is highef? This loss of exchange energy is the source

lengths must exist. Again this shows the highly collectiveof the finite spin stiffness and is what causes the system to

nature of the ordering in this system associated with spontéspontaneously “magnetize.”

neous interlayer phase coherence. A skeptical reader might legitimately worry that the
single-Slater-determinant variational wave functions in terms
of which we have framed the above discussion misrepresent

Ill. SPONTANEOUS PHASE COHERENCE the physics. Indeed, the ground state of double-layer systems
AND SYMMETRY BREAKING in the Hartree-Fock approximation has spontaneous phase
BY TUNNELING coherence at all values of; whereas we believe that this

roperty actually holds only at a discrete set of total filling
jctors, includingvt=1. To understand why these concerns
ould be misplaced, it is useful to briefly review some of the
microscopic physics underlying the incompressible states
whose occurrence is responsible for the fractional quantum
Hall effect. For a pair of interacting electrons confined to the
lowest Landau level, only one relative motion state is avail-
_ able for each relative angular momentum. This property
lpy=1] {ck;+e'“ck}l0), (3.)  means that the interaction is characterized by a discrete set of
X energy scaled/|, first identified by Haldarfé and known as
Haldane pseudopotentialg; is the interaction energy of a
where X is a state labelfor instance, the Landau gauge pair of electrons with relative angular momentdmin the
orbital guiding centéf) and we are using a pseudospin no-double-layer case, the pseudopotential values for interlayer
tation in which spin up refers to electrons in the upper layemand intralayer interactions will differ. Many of the largest
and spin down refers to electrons in the lower la{fefhe  charge gaps which occur in the fractional quantum Hall re-
interpretation of this wave function is that every Landau or-gime can be understood in terms of Haldane pseudopoten-
bital X is occupied(hencev=1), but the system is in a tials. For example, for double-layer systems with nearby lay-
coherent linear combination of pseudospin up and dowrers the largest energy scales should be the interlayer and
states determined by the phase anglérhis means that the intralayerl =0 pseudopotentials. It is easy to show that it is
system has a definite total number of particles-(L exactly  possible to form many-body states in which pairs of particles
but an indefinite number of particles in each layer. In thenever havd =0 for vt<1. This is not possible fop:>1.
absence of interlayer tunneling, the particle number in eacfihus if vr=1, the energy to add a charge to the system is
layer is a good quantum number. Hence this state has a spogreater than the energy to remove one, hence the charge gap.
taneously broken symmef{#%14in the same sense that the For vr=1 it is easy® to show that the only states which
BCS state for a superconductor has indefifitgal) particle  completely avoid pairs with relative angular momentum
number but a definite phase relationship between states df0 are, up to rotation in pseudospin space, identical to the
different particle number. wave functions in Eq(3.1). This is the real reason why the
In the absence of tunneling, the energy cannot depend ovariational wave functions used above are accurate. In the
the phase angle and the system exhibits a global(1)  following we describe low-energy states of the system as
symmetry associated with conservation of particle number irspin-texture states with a position-dependent local pseu-
each layer. One can imagine allowiggto vary slowly with  dospin orientation. The property that the low-energy states
position to produce excited states. Because of tfle Bym-  are completely specified by spin textures, which we will use

The essential physics of spontaneous interlayer phase cg
herence can be addressed either from a microscopic point
view!®~*or from a macroscopic Chern-Simons field theory
point of view®%but it is perhaps most easily explained in
terms of the simple variational wave function
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frequently in following sections, depends on both the broken 1 _
symmetry of the ground statend on the existence of the =11 7(1+ eleck ek ) |lvn), (3.6
charge gap. X V2

The U1) symmetry leads to Eq.3.2) which defines an
effective XY model which will contain vortex excitations
which interact logarithmically. In a thin film of superfluid

“He, vortices interact logarithmically because of the ENergy,ver electron-hole systems and two-component electron sys-

cost of supercurrents _circ_ulating around the vortex center§y s in the limit of strong magnetic fields. The Hamiltonian
(In superconducting thin films the same logarithmic interac-,

tion appears but is cut off on lenath scales exceedin thfor a double-layer electron system is mapped, up to a con-
' P ut s cu gih scales exceeding e n term, to that for an electron-hole system if a particle-
penetratlpn depth'Here th.e same quar!thmlc Interaction ap- Ihole transformation is made in one of the layers. The filling
pears. Microscopically this interaction is due to the potentia

energy cosfloss of exchangeassociated with the phase gra- factor of interest hereyr=1, corresponds to an electron-
nergy co : . P 9 hole system with equal electron and hole densities and, as
dients (circulating pseudospin currents Hartree-Fock

. L ) explained above, the spontaneous phase coherence state cor-
_e}itlmlateg“ r:gd'ﬁtem th‘;"t tp ? arrld Eeiﬂce t;:l: KKiﬁstterIil_tz— responds to an excitonic superfluid state. In the electron-hole
lou esslc S/a t'e pe atu ef'a|§ ?‘ € SC,,14) ypi- case, the fact that a broken symmetry ground state can occur
?1? sa;]rppfef. ohr"'rf,esfr'n ttiwn 'ﬁ hmrerodns iarertzelml_b thad been appreciated some years Zgdome of the recent
instﬁ?s ce?se ?:r%y cthnglg aigccanaiggepgzzzﬁgy t‘):eelzftu advances in understanding the physics associated with the
) 2 " spontaneous-phase-coherence ground state in the electron-
or right-handed for a total of four “flavors*®!* Bound b P g

. ) ) - WG electron case, have important implications for the electron-
meron pairs with opposite vorticity are the lowestnergy .hole case which we will not explore at length here.

charged excitations of the system. The finite pseudospin A finite tunneling amplitude between the layers breaks
stiffness not only permits the presence of spontaneous PSefq U(1) symmetry

dospin magnetization but leads to a finite charge excitation

gap(even though the tunnel splitting is zerdhus the QHE

survives*?® the limit Agag—0. Heff:f d?r
Since the “charge” conjugate to the phasgeis the z

component of the pseudosp®, the pseudospin “supercur- py giving a preference to symmetric tunneling states. This

rent” can be seen from the tunneling Hamiltonian

but it is then clear that one has a pairing between a particle
and hole; not between two particles. It is worth remarking
that there is in general an exact mappfhigetween double-

L Vel 3
5pslVel"—5——5c0sp (3.7)

2ps
=5 Ve @3 HT=—tfdzr{wkrwrw¢I<r>wT<r>}, (3.9

represents oppositely directed charge currents in each laye¥hich can be written in the spin representation as
Below the KT transition temperature, such current flow will
be dissipatio_nles:?in linear re;spons)ejgst as in an ordinary Hy= _th d2rS,(r). (3.9
superfluid. Likewise there will be a linearly dispersing col-
lective Goldstone mode as in a superflifd®891314

To reinforce the idea that this is not an ordinary superfluid
or superconductor, it is perhaps useful to rewrite the original
variational wave function as

(Recall that the eigenstates 8f are symmetric and antisym-
etric combinations of up and down.
We can shed further light on the spontaneous symmetry
breaking by considering the tunneling Hamiltontdr in Eq.
(3.8) as a weak perturbation. Naively, since particle number

1 . . . .
_ —(1+eect . is separately conserved in each layer ferO, one might
l4) 1;[ {\/5(1 e Cx,lcx,w)lww% (3.9 expect
where 1
lim = (| Hqy)=0. (3.10
t—0
— T
|¢T>=1;[ Cx,T|0> 39  That is, one might expect that the first-order term in the

perturbation series for the energy duet tto vanish. Instead

is the fully up-polarized spin state. We now see that the'owever we find that the energy shiftsearly in t,
analogy to an excitonic insulatdr®is closer than the anal-

ogy to a superconductor. Only a gauge-neutral oljgar- lim  lim i('/f“" )

ticle bound to a holecan condense and propagate freely ina, 5 o_. tA T

strongB field. A phase gradienV¢ causes a flow of these

neutral objects which then constitutes a spin current analo- 1
gous to the charge current in a superconductor. In analogy to =lim lim K< Pl — f d?r2S,(r) ¢>
the excitonic insulator case, one can make a particle-hole t—0 Ao

transformation in one of the layers to produce a formal re-
semblance to the BCS mean field state: =—-m¥, (3.11)
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where A is the system area, and” is, by definition, the  of Sondhiet al?! For the case of “real” spins, we know that
magnetization which is the system’s order param&#fithe  smooth local distortions of the pseudospins produce a charge
interlayer spacingd is taken to be zero, one can readily density given by the remarkable formtia*

show!* that the variational wave function in E¢B.1) is ex-

act, hence lim,om*=1, andt=Agxg42. For finite d, Eq. v

(3.1 is no longer exact and quantum fluctuations ite- op(r)=- %ewm(r)-[&Mm(r)xavm(r)], (4.2)
duce the magnitude @f* and we must renormalize the hop- ) ) o ) )
ping parametet appropriately. wherem is a unit vector giving the local pseudospin orien-

As the layer separatiod increases, a critical poird*  tation. p(r) is exactly » ti£T11es the Pontryagin index, or
will be reached at which the magnetization vanishes and thEPPological charge_den.sn?)}: The density in Eq(4.2) can
ordered phase is destroyed by quantum fluctuatidibThis e viewed as the timelike component of a consertetider-
is illustrated in Fig. 2. Foffinite tunnelingt, we will see  9encelesstopological “three-current”
below that the collective mode becomes massive and quan-
tum fluctuations will be less severe. Hence the phase bound- jo=— Leameabcma(r)ﬁﬁmb(r)<9ym°(r). 4.3
ary in Fig. 2 curves upward with increasin§gas. For 8

Asas=0 the destruction of long-range order and the chargg)sing the fact thatn is a unit vector, it is straightforward to
excitation gap are intimately related and occur S'mUIta'verify thatd,j*=0.

neously atd* and zero temperature. For finifesag th_e sys- “Skyrmion” (hedgehoy configurations of the order pa-
tem always has nonzenm* even in the phase with zero rameter carry net charge-1l and, whenAgxs=0 and

charge gap. o _ _ d=02!a skyrmion pair has an excitation energy which is
The effective Hamiltonian in E(3.7) looks like the sine-  Ja_haif of that of a simple spin-flip pair for the case of

Gordon model which is known to have a finite temperaturec,jomp interactions between the electrons. At finitehe
Kosterlitz-Thouless phase transitidhOne might be tempted SU(2) symmetry is lowered to (1) and the cheapest charged

to speculate then that the rapid collapse of the Artheniug, jiations are composed of merons, which are essentially
plots of the dissipation at unexpectedly low temperatures igq ey sojutions in which the local pseudospin winds by
associated with a true phase transition. We believe, howeve&zw at infinity and tilts either up or down out of théY
that these are merely rapid crossovers rather than true phaﬁf‘ane in the core region as shown in Fig. 9 of I. Integration
transitions because the phageis compact. The quantum

defined b d . ically identical of the charge density using Eg4.2) shows that vortices
states defined by ande+ 2 are microscopically identical. - 5y charger 1 They are somewhat analogous to Laughlin
The interpretation ofp in a sine-Gordon theory as an elec-

) ) quasiparticles; however, they differ considerably in that, be-
trostatic potential for Coulomb charges or as the surfacg, the Kosterlitz-Thouless temperature, they are confined
height in the solid-on-solid model requires that and  y5ether in vorticity neutral pairs by their logarithmic inter-
f,o+27r be d|st|ngwshable states. Her)ce vyhat we really have tion. The cheapest object with a net charge is then a
is anXY model in a symmetry-breaking field which has no grtex-antivortex pair, with each vortex carrying charge
true phase transition since the vortices are linearly conf|ned+% (or — 1) for a total charge of+ 1 (or —1). The charge
[Note that the solid-on-solid model has no analog of openyycitation cost can be estimated by minimizing

strings(see Sec. IYterminated by vortices such as we have

here!’] 2

Epair: 2Ect 1R +2mpgn

=
—1, (4.9
Rmc
IV. CHARGED EXCITATIONS . .
whereE, . is the meron core enerd$,andR,,. is the meron
At filling factor v=1, there is an intimate connection be- core size. The optimal separation is given by
tween local distortions of the pseudospin orientation and th®,=e?/(87ep,). It is important for the discussion below
local charge densit}# A simple example of this is provided that in typical double-layer systems is much smaller than
by the fully spin polarized’=1 state of Eq(3.1). Since the the microscopic energy scale’/e/. For d//=1,
Landau level is filled, the charge density is uniform and thep =6.19x 10 3(e?/ /) in the Hartree-Fock approximation
Pauli principle forbids anyintra-Landau-level excitations and it is further renormalized downward by quantum
which do not flip spins. One can form a spin-flip particle- fluctuations'* Typical values ofp, for double-layer systems
hole pair at an energy cost®of are smaller than § 10 3(e?/ /) so thatRy// will typically
be larger than—~8/. The small values of the pseudospin
)12 stiffness allow the charged pseudospin textures to be large,
2/ as required for the validity of the long-wavelength descrip-
tion being employed here.
where the first term is the tunneling energy necessary to flip The introduction of finite tunneling amplitude destroys
the pseudospin and the second represents the loss of Caire U1) symmetry and makes the simple vortex-pair con-
lomb exchange energghere computed for the special case figuration extremely expensive. To lower the energy the sys-
d=0). The Coulomb exchange energy gives a finite costem distorts the spin deviations into a domain wall or
even in the absence of tunneling and this explains the factstring” connecting the vortex cores as shown in Fig).
that the typical observed gap can be much larger than th&he spins are oriented in thedirection everywhere except
tunnel splitting”*®° The simple spin flip is not, however, the in the domain line region where they tumble rapidly through
optimal charged-pair excitation. From analogy with results27. The domain line has a fixed energy per unit length and

eZ

= + —
UO ASAS E/

4.1
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Note that because the exponent 1/4 is so small, there is an
extremely rapid initial increase in the charge gap as tunnel-
ing is turned on.

The crossover between the meron-pair pseudospin texture
which holds fort=0 and the domain line string pseudospin
texture described above occurs at a finite valuewfiich we
can estimate by the following argument. FRjj> R, the vor-
tices are already bound by the logarithmic attraction due to
the gradient energy before the linear attraction due to the
hopping becomes important at larger separations. In this re-
gime tunneling does not play an important role in determin-
ing the nature of the lowest energy charged pseudospin tex-
ture. Ast increasesR,>t~ 4 decreases and will eventually
reachR, which is, of course, independent bfSince

Ry [2mps\Y?
N A =—§,, (4.10
Ro | eXek) 4R}

the characteristic width of the domain line becomes compa-
rable toR} in the same range dfvalues whereR; and R,
become comparable. We may conclude that the nature of the
charged pseudospin texture crosses over directly from the
meron pair form to the finite length domain line string form

FIG. 4. lllustration of a meron pair in the presence of tunneling¢qy pS/(ez/6§)~1/25, or equivalently fot~t,, where
which confines the region of spin twist to a relatively narrow do-

main wall or “string.” Each end of the string is a vortex carrying
charge+1/2. ta=4%X10°
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so the vortices are now confined by a linear potential correThe crossover tunneling amplitude is thus typically smaller
sponding to a fixed “string tension” rather than being con-ihan 5} 10 4(e?/e/). Typical tunneling amplitudes in

fined only logarithmically. We can estimate the string ten-double-layer systems are smaller tharl0 1(e%/e/) and
sion by examining the energy of a domain line of infinite c5 pe made quite small by adjusting the barrier material or
length. The optimal form for a domain line lying along the making the barrier wider. Nevertheless, it seems likely that
y axis is given by t will be larger thant,, except for samples which are care-

_ ; fully prepared to makée as small as possible. Asincreases
r)=2arcsiftani(x/¢&)], 4. : i
a ). o ftank( g)]. . @9 beyondt,,, R} will continue to decrease. WheRy, becomes
where the characteristic width of the string is comparable to the microscopic length, the description
27/ %p |12 given here will become invalid and the lowest energy
“ S

(4.6) charged excitations will have single-particle character. How-
t ever, the domain-wall string picture of the charged pseu-
The resulting string tension’s dospin texture has a very large range of validity sifge
«t~ 14 decreases very slowly with increasirlg Writing
_8ps @ R5~(g§/8mps)(tcr/t)1’4 we find that Ry~ only for
£ : t~10 ?[(e?/e/)?ps]. Using typical values ofps we see
that the charged excitation crosses over to single-particle
character only when the hopping energhpecomes compa-
rable to the microscopic interaction energy scale. The vari-

tps 1/2

2w/

Provided the string is long enougiR¥$ £), the total energy
of a segment of lengtR will be well approximated by the

T0:8

expression ous regimes for the charge excitations of double-layer sys-
o2 tems are summarized in Table I. Almost all typical double-
Epair= 2E /et R +ToR. (4.9 layer systems lie within the regime of the domain-wall-string
€

pseudospin texture charge excitation.

The prime onE . in Eq. (4.8) indicates that the meron core  We should emphasize that all the discussion of charged
energy can depend omgxs. E.. is minimized at excitations above assumes that the meron core energies do
' pair

R=R’= J/eZ4eT. where it has the value not make a dominant contribution to the charge excitation
0 €lo energies and that meron core sizes are small compared to the
EX,=2E e+ VETTo/e. (4.9  overall size of the quasiparticles. Recent calculaffohave

demonstrated that these conditions are never well satisfied
Note that apart from the core energies, the charge gap @hen the Hartree-Fock approximation is used to approximate
fixed layer separation(and hence fixedps) is *Tg?  the charged excitations. The physical pictures summarized
ot~ AYYS, which contrasts with the case of free electronsstill have some qualitative validity, however. The Hartree-
for which the charge gap is linearly proportional Ag;,s. Fock approximation neglects quantum fluctuation effects
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TABLE I. Charged spin texture energies aty=1 for double-layer systems with tunneling.
ps=ps/(€%/) andt=t/(e* /), wherep, is the pseudospin stiffness,s the renormalized tunneling am-
plitude, / is the magnetic lengthT,=8p,/¢ is the soliton string tension, ang= (27/%pg/t)*? is the
domain wall width.

Regime T<4x10°%3 4Xx10%p 3<t<10"?/p, 107 %/pe<t
Nature of charged Meron pairs Finite length Single-particle
excitations domain line strings excitation
Excitation size e? e /
—— — _xtflﬂl
8mpg 4T,
Excitation energy ~2mps ~ T gtV t

which reduce both the spin-stiffness and the order parameter, 1 t
tending in both cases to increase the size of the quasiparticles H= f dzf( EPS|V<P|2—WCO$D(V)—QX]],
and increase the appropriateness of the pictures presented : (5.1)
here.
which is precisely the Pokrovsky-Talap¢é®T) modef* and
V. PARALLEL MAGNETIC EIELD has a very rich phase diagram. For sn@lland/or smallpg
the phase obey&t low temperaturgse(r)=Qx; the mo-

Murphy et al**® and Santost al’> have shown that the ment rotates commensurately with the pseudospin Zeeman
charge gap in double-layer systems is remarkably sensitivield. However, a8, is increased, the local field tumbles too
to the application of relatively weak magnetic fieBg, ori-  rapidly and a continuous phase transition to an incommensu-
ented in the plane of the 2D electron gas. Experimentally thigate state with broken translation symmetry occurs. This is
field component is generated by slightly tilting the samplebecause at larg8) it costs too much exchange energy to
relative to the magnetic field orientation. Tilting the figtt remain commensurate and the system rapidly gives up the
sample has traditionally been an effective method for iden-tunneling energy in order to return to a uniform state
tifying effects due tqreal) spins because orbital motion in a V ¢~0 which becomes independent BH(- As explained in
single-layer 2DEG system is primarify sensitive toB, ,  further detail below w¥ find that the phase transition occurs
while the (rea) spin Zeeman splitting is proportional to the at zero temperature for
full magnitude ofB. Adding a parallel field component will
tend to favor more strongly spin-polarized states. For the BWIBL(Z/’/wd)(Zt/wps)l’z. (5.2)
case of the double-layev=1 systems studied by Murphy
et al,* the ground state is known to already be an isotropidUsing the parameters of the samples of Murghyal* and
ferromagnetic state of the#ue spinsand the addition of a neglecting quantum fluctuation renormalizations of both
parallel field would not, at first glance, be expected to influ-and p, we find that the critical field for the transition is
ence the low energy states since they are already fully spin~1.6 T which is within a factor of 2 of the observed vaftie.
polarized.(At a fixed Landau level filling factoB, is fixed Note that the observed valuﬁ‘ =0.8 T corresponds in
and so both the tota and the corresponding Zeeman en-these samples to a large value for: Lj//~20 indicating
ergy increase with tilf. Nevertheless experimefithave  that the transition is highly collective in nature. We empha-
shown that these systems are very sensitivBjtoThe acti-  size again that these very large length scales are possible in a
vation energy drops rapidifpy factors varying from two up  magnetic field only because of the interlayer phase coherence
to an order-of-magnitude in different samplegth increas-  in the system associated with condensation oeatral ob-
ing B|. At B= B‘T there appears to be a phase transition tgect.
a new state whose activation gap is approximately indepen- Having argued for the existence of the commensurate-
dent of further increases B . incommensurate transition, we must now connect it to the

The effect ofB; on thepseudospirsystem can be visual- experimentally observed transport properties. In the com-
ized in two different pictures. In the first picture we use amensurate phase, the order parameter tumbles more and
gauge in whichBj=V XA where Aj=B;(0,0x). In this  more rapidly a$3 increases. As we shall see below, it is this
gauge the vector potential points in thelirection (perpen-  tumbling which causes the charge gap to drop rapidly. In the
dicular to the layersand varies with position as one moves incommensurate phase the state of the system is approxi-
parallel to the layers. As an electron tunnels from one layemately independent d8 and this causes the charge excita-
to the other it moves along the direction in which the vectortion gap to saturate at a fixed value.
potential points and so the tunneling matrix element acquires Recall that in the presence of tunneling, the cheapest
a position-dependent phase-te'?* whereQ=2n/L and  charged excitation was found to be a pair of vortices of op-
L,=®,/Bd is the length associated with one flux quantumposite vorticity and like chargéeach having charge- 1/2)
d, between the layer&efined in Fig. 3. This modifies the connected by a domain line with a constant string tension. In
tunneling Hamiltonian to Hy=—fd?rh(r)-S(r) where the absence d8, the energy is independent of the orientation
h(r) “tumbles™ i.e., h(r) =2t(coxsinQx,0). The effec- of the string. The effect oB| is most easily studied by
tive XY model nhow becomes changing variables to

|4,18
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0(r)=¢(r)—Qx. (5.3 It should be emphasized that only this highly collective
) ) . ] picture involving large length scale distortions of topological
This variable is a constant in the commensurate phase bdfefects can possibly explain the extreme sensitivity of the
not in the incommensurate _phase. In terms of this new Va”charge gap to small tilts of thB field. Recall that aB} the
able, the PT model energy is tumbling lengthL is much larger than the particle spacing
and the magnetic length. Simple estimates of the cost to
H:f er{EpS[(ﬁanrQ)er(a 0)2]— t,,zcosﬁ _ ma}ke a local one-body-type excitatida pseudospin-flip
2 Y 2n/ pair, for example shows that the energy decrease due to
(5.9 By is extremely small since’/L is so small. As we will see
in Sec. VIl numerical exact-diagonalization calculations on
small systems confirm the existence of this phase transition
and show that the fermionic excitation gap drops to a much
smaller value in the incommensurate phase.

We see thaB| defines a preferred direction in the problem.
Domain walls will want to line up in they direction and
contain a phase slip of a preferred signZ# for Q>0) in
terms of the fieldd. Since the extra term induced Y . :
represents a total derivative, the optimal form of the soliton We now discuss the commensurate-incommensurate

solution is unchanged. However, the energy per unit Iengtigrlaose tthran§|t|_o(r)1 [ronzj the mlcroscoplcbp?jmt of wgw.tﬁ;t
of the soliton, which is the domain line string tension, de-~ ™’ ¢ et' =Y Lan alIJ—gglug[e rgatny— 0 ytgrounh_ r??he
creases linearly witl) and hence, wave function is a single Slater determinant in which the

single-body states are the symmetric linear combination of
two single-layer states with the same guiding center. This is
} (5.5 the state represented by E@®.1) with ¢=0. Phase coher-
ence is establishegither spontaneously or in this cadsy
tunneling between single-layer states with the same guiding
center. For many purposes this state is still a good approxi-
mation to the ground state at finitesince it optimizes the
tunneling energy and has good correlation energy; an elec-
tial” of the domain lines. The domain lines condense and th fron i_n one layer automatically sees an exchange—C(_)rreIation
phase transition occurs when the string tension become Ole in the other layer gt_thg same pIa@EwouId_ remain an
negative. exact grou_nd state at f|r_1|tda in the al_as_ence of |nter_act|0|)15.
Recall that the charge excitation gap is given by the en_From a microscopic point of view it Is the good.mterlayer
ergy of a vortex pair separated by the optimal distanc correlations of states with phase coherence which leads to

where T, is the tension in the absence of paralklfield
given by Eq.(4.7) and B is the critical parallel field at
which the string tension goes to zefoWe thus see that by
tuning B one can conveniently control the “chemical poten-

$he broken symmetry in the absence of tunneling.
e e 20 To see e ffct of & pall e, conerient
¢hoose a new Landau gauge for the perpendicular field
A= 2Er’nc+[e2T/€]1/2 A, =-B,(y,0,0). In this gauge, a parallel field givi_ng rise to
t—texp(Qx) causes tunneling to couple states in the two
B| 172 layers whose wave vectors differ By and whose guiding
=Ao+ e Tole 1—(—*) (5.6)  centers therefore differ b@)~2.3® Thus, for noninteracting
I electrons the exact ground state in a parallel field is one in
As By increases, the reduced string tension allows the Couwhich the exchange-correlation hole is not directly opposite
lomb repulsion of the two vortices to stretch the string andits electron but rather is shifted away BYQY as theB field
lower the energy. Far on the incommensurate side of thélts in thex direction(i.e., the displacement is perpendicular
phase transition the possibility of interlayer tunneling be-to the direction of the in-plane fieid
comes irrelevant. From the discussion of the previous section
it follows that the ratio of the charge gap Bi=0 to the - Tyt ) ]
charge gap aBj— > should be given approxirLately by Q) 1;[ tev, CYW/ZJHO) ©8

This state maintains all of its tunneling energy but rapidly
(t/te) VA=~ (€%l e/ ) V218 p 34, (5.7) Ipsgg interlayer c_orrelation energy as the fielq t@lts. At large
tilt it is better to give up on the tunneling by shifting the two
layers relative to each other to put the correlation hole back

Ay
A—OO_

Putting in typical values oft and pg gives gap ratios

~1.5-7, in agreement with experiment. According to the ne>_i:[h'go |tf]_$tlectrok;1. o be the ch f
discussion of the previous section, gap ratios s 1a1ge a3 o' ncomend ote Crares discussed above, A siraighifor-
~ (tmax!te) Y4~0.07@%/ /) ps can be expected in the re- : 9

gime where the pseudospin texture picture applies Her)g/ard computation shows that the commensurate state has the

tmax IS the hopping parameter at which the crossover thSGUdOSpIn tumbling

single-particle excitations occurs. Thus gap ratios as large as t — (119 2 /2,-iQx

an order of magnitude are easily possible. Of course, all the WQWT(”%“)W@ © Q' /te 69
discussion here neglects orbital effedelectric subband while the pseudospin is constant in the incommensurate
mixing) within each of the electron gas layers, and these willphase.

always become important at sufficiently strong parallel All of our discussion of the phase transition in a parallel
fields. field has been based on mean-field theory. Close to the phase
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transition, thermal fluctuations will be important. At finite Hartree-Fock approximation, and explicit expressions for the
temperatures there is no strict phase transitioBjatn the  coefficients were obtained, which become exact in the limit
the PT model. However, there is a finite temperature KTd— 0. We now generalize the discussion of collective modes
phase transition at a neartf> Bﬁ‘. At finite temperatures given there to the case where tunneling occurs between the

translation symmetry is restor¥din the incommensurate |2Yers
phase by means of dislocations in the domain string struc-
ture. Thus there are two separate KT transitions in this sys- A. Collective modes with tunneling:Bj=0

tem, one fort=0, the other fort#0 andBy>BJ'. Recently In the presence of interwell tunneling, the pseudospin-
Read"” has studied this model at finite temperatures in SOMe,ientation in the ground state is constant and points in the
detail and has shown that at the critical valueByfthere ¢ girection. To calculate response functions we use the equa-
should be a square-root singularity in the charge gap on both, s ot motion derived in Ref. 14. We will assume that for
sides of the transition. The existing data does not have thﬁ)W—Iying excitations the pseudospin orientation is always

resolution 1o Sh.OW this, however. At zero temperature & |ose to thex direction. Then the equation of motions of the
commensurate-incommensurite’ phase transition must be (Pseudospin texture in Fourier space is
)

treated quantum mechanically. It is necessary to account f

the world sheets traced out by the time evolution of the dmy(q) am/? dE[m]

strings which fluctuate into existence due to quantum zero- = 6.2
point motion. Read also points out that the inevitable random dt fi dmy(—q)’
variations in the tunneling amplitude with position, which we
have not considered at all here, cause a relevant perturbation. dmy,(q) 4n/? dE[m]
= . (6.3
dt i dmy(—q)

VI. COLLECTIVE MODES AND RESPONSE FUNCTIONS

In the rest of this section we will usé as the unit of length.

In this section we will discuss the charge neutral COIIec'It is possible to linearize these equations if the pseudospin
tive excitations of double-layer systems and some physicall)é 1S Pos : cquation pseudosp
rientation is close to thex direction by letting

important response functions which have poles at the collec- 2 5 . .

tive excitation energies. In the pseudospin language, the co M=1=(m,+m;)/2+ - -, and dropping terms higher than
lective excitations are spin waves in which the pseudospi jrst ord_er inm, andm, . For the QOubIe-Iayer system, Is
precesses around its ground state orientation. We will thugroportlpnal to th_e current f'OV.V'”g locally between layers
need to enlarge our description of the system by allowing th&@nd m, |s_pr0port|0nal to the difference between the local
pseudospin texture to have orientations out ofxheplane. dgnsme; in the two layers. To calculate the response func-
This requires that we generalize from tK&-model descrip- tions of .|nterest we add .terms to the. ener.gyﬂfuncus)na}l cor-
tion of the system employed in previous sections, to the moréespondlng to pseudospin Zgzeman fields in yhendz di-
complete anisotropic nonlinear model description which rections, .hy .and .hZ' Physpally hy co_rresponds o a
we have discussed at length in Ref. {14. (Actually this per_turbat|on_ in which an imaginary term is _added to t_he tun-
generalization is also required if want to render the physic§'€/ing amplitude andh, corresponds to a bias potential be-
of the meron core States of the system are characterized b>}ween the wo layers. Linearizing and adding the Zeeman
a pseudospin texture functiof(r), which specifies the terms we find that

space dependence of the pseudospin orientation. The energy

of a pseudospin texture is given by the following functional dmy(q) _ 4_77
(where we retain only the leading terms in number of deriva- dt & (2B+tn)my(q)+h,, 6.4
tives):
dm,(q) 4w 5
e~ | dzr{ﬂ(mﬁ(r)H %leilz—ntmxuﬁ, gt w (reeImi@shy. (69
(6.1

There is a similarity between these equations of motion
where m(r)-m(r)=1 and m, is the projection of the unit and those of the Josephson effect, which is connected to the
vector onto thex-y plane. The energy is with respect to the similarities between interlayer phase coherence and super-
ground state in the absence of tunneling. Hereconductivity mentioned previousfy. The current across a
n=(2m/?)"is the total electron density. This energy func- Josephson junction between two superconductors is propor-
tional is expected to be accurate for states with spin textureonal to sing) where ¢ is the difference in the phase of the
which vary slowly on a microscopic scale. If the pseudospinorder parameter across the junction. The current between
is confined to the&-y plane, its orientation is specified by its layers in a double-layer system is similarly proportional to
azimuthal angle and the energy functional reduces to the, i.e., proportional to sing) where¢ in the double-layer
XY functional used above. This Ginzburg-Landau energycase specifies orientation of the component of the pseudospin
functional differs from the one discussed in Ref. 14 onlyin theX-y plane.[In the linearized case we are discussing we
through the addition of the tunneling term. The form of thecan equatep and sing).] More physically¢ in the double-
functional follows from symmetry considerations and the padayer case specifies the difference between the phase-
rameters can be considered as phenomenological constant®herence angle and the phase angle of the interlayer tunnel-
In Ref. 14, Eq.(6.1) was derived microscopically using a ing amplitude. In the case of the Josephson effect
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d¢_2€V 6.6 =0 _0_1 6.1
TR (6.6) Xyy(0=00g= )_2_t' (6.12
whereV is the potential drop across the junction. Thus thejt the tunneling amplitude goes to zero there is no restoring

equations of motion for the phase angles in the Josephsgg,ce for rotations of the pseudospin in they plane, the

effect case and in the present case differ beczfluse of the pregydition of an infinitesimal imaginary tunneling amplitude
ence of the term proportional to 2+tn)m,(q); a Joseph- || shift the pseudospin orientation from thedirection to
son effect could be achieved if the tunneling current Werghe ¥ direction andy,,(«=0q=0) diverges.

somehow extracted from the double-layer system sufficiently
quickly to prevent any difference in the charge densities of
the two-layers from building up, i.e., ih, were identically
zero. In the case of double-layer systems, unlike the case of ForB =0 we have been able to calculate collective mode
a Josephson junction between two superconductors, it seerapergies and linear response functions by linearizing the
to be impossible to do this. The results we derive below argonlinearc model energy functional around the ground state
for an isolated double-layer system and the resonance frepseudospin orientation. Fd;#0, the ground state pseu-
guencies we obtain are analogous to the Josephson plasmaspin orientation in the commensurate state rotates with the
oscillations in an isolated Josephson junction. pseudospin Zeeman field and it is necessary to linearize the
Solving for the pseudospin magnetization induced bynonlinear o model energy functional around the rotating
Zeeman fields with frequency we obtain the following pseudospin texture. In anticipation of our needs for the case
result for the pseudospin response tensor: of the incommensurate state we allow an arbitrary rate of
rotation for the rotating frame pseudospin function:

B. Collective modes with tunneling: Commensurate state

m, f ) 8B+ 2t
m,) E2—(hw)?| —(2t+4mg%p) —iw M, =m,cosPx— m,sinPx, (6.13
—4h, ~ .
X , (6.7) my, = m,sinP X+ m, cosPx. (6.19
4mh,

In order to be able to treat the problem analytically, we limit

ourselves to the case of a position-independent tumbling rate
_ n n 2, \112 ' P. The Glnzburg_—Landau energy fur_lctlo.nal, expressed in

Eem=[(2t+8mp)(2t+47q"ps)] ©.8 terms of the rotating frame pseudospins, is

where the collective mode energy is given by

The linearly dispersing collective mode of the>0 case

acquires a gap because of the lifting of tHél) symmetry. ) 2 Psio~ |2 psP? _ )
All components of this response tensor have poles at the E:f d*r| pm;+=>|Vim, [*+ ——[m, |

collective mode energies. The response of the charge density _ _

difference to a time-dependent interlayer bias potential is —tn[m,cog P—Q)x+mysin(P—Q)x]

given by _

A AR 6.15
_m,  (4wh)2t+4mePp, - TpsPz| T XMy (®.
Xz b, T B2~ (fw)? (69

If we allowed only translationally invariant spin textures in
Using the continuity equation we can evaluate the correthe rotating frame for which the lowest energy occurs, this
sponding conductivity, the response in oppositely directecenergy functional would be minimized for small parallel
electric currents to oppositely directed electric fields in thefields by choosingP=Q to obtain an energy per area of
two layers: p<Q?/2—tn. This is the commensurate state. At large parallel
fields the energy functional would be minimized by the state

7.49,0)=*wx,Aq,0)/ig>. (6.10  with P=0, which has the same energy as if no tunneling

For t—0 the real part of the conductivity hasdfunction W‘;rg present. These two states cross in energy when
peak at zero frequency leading to spin-channeIQ &°=2. Howevgr, as we dete_ul in the followmg section, the
superfluidity! In the presence of interlayer tunneling the ground state at high parallel fields can lower its energy fur-

s-function peak is shifted tay=2t/# and the superfluid be- ther by breaking translational symmetry. The commensurate
havior is lost state is the ground state only foQ<Q. where

242 2 — _n*
In the static —0) long-wavelength —0) limit x,, Qcé —16/7°. Q=Qc for Bj=Bf" _ _
approaches a constant: In order for the linearization of this furlgthnal to be valid
we must assume we can choddeso thatm, is close to 1
everywhergboth for the ground state and for the collective
XAw=0;0=0)= —F7—F~. (6.1)  excitations in which we are interested. Assuming this to be
(8wB+2t) S he .
the case we can apply periodic boundary conditions in the
A constant static interlayer bias potential Milisimply tilt  thermodynamic limit and drop the total derivative term in the
the pseudospin orientation slightly out of they plane. The energy functional. For the commensurate state the linearized
effect of interlayer tunneling is to favor smaller tilts. On the energy functional simplifies to the following Fourier space
other hand, version:
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PSQ2

~ _ tn PSQ2 2 _ ApSP2 f 2 pSP2 2 2
E[my,mz]—A( 5 —tn +% ,84—?— 5 |m,(q)| E= 5+ der|| B— 5 Z+?|me|
P M 2 6.1 +t—n(ﬁ'12+m2)cos{P—Q)x—tn~ sin(P—Q)x
24Ty [my|=. (6.16 o \Vly T my
am,
The first term on the right-hand-side of E(6.16) is the —psPl o) 6.19

ground state energy of the commensurate state. The fact that ] ) ) o )

it becomes positive at largg implies that the commensurate 10 P€ consistent with the linearization assumptidhsnust
state eventually becomes unstable. As discussed in previold§ chosen so thatm, /dx integrates to 0 and this term can
sections we expect the state to become unstable to the intr8€ dropped.

duction of phase slips or solitons, which involve only the !N Fourier space

planar portion of the pseudospin texture, when Ap.P2

psQ?>16tn/72. We note from Eq(6.16 that if 8 is small E= Ps
enough the ground state will become unstable with respect to

textures withm,# 0 before the solitons are introduced. The n
requwement.for the applicability of the scenario we intro- + ZE (my(p){ﬁ‘qy[_er(p_Q))‘(]
duced previously based on thXY language is that P

B/?>t(16— 7?)/(47>). From estimates oB in Ref. 14, it

is clear that for present double-layer samples this condition is
secure. Nevertheless, the possibility exists that the behavior R tn _ .
in parallel fields could be quite different from that described +m,[—p+(Q—-P)x]})— ZJKE {my[(P—Q)x]
here, for double-layer systems with a layer spacing much P

smaller than vv_hat i_s achie_vable a_t present. We have not ex- _ﬁ']y[(Q_ P)X]}. (6.20
plored this regime in detail and will assume in what follows i L ) _ .
that 28+tn— p.Q? is positive in the incommensurate state. We first need t(_) m|n|m|ze_th|s funcUonaI to-d.etermlne the
The effect ofB) is then to reduce the collective mode energy,dround state. Since there is no term lineamip it follows
just as the charged excitation energies are lowered. Solvin{@M:(q)=0 in the ground state. For ground state calcula-

the equations of motion with the linearized energy functionafions we could work with theY model in both commensu-
of the commensurate state we find that rate and incommensurate cases. Minimizing with respect to

m, we find that in the ground stafe, depends only ox and
that itsx dependence is determined in Fourier space by solv-
Ecm=[(2t+877,8—47TPSQ2)(2t+47Tpsq2)]1/2- ing
(6.17

2

SP ~ S 2 ~
-3 || - 25 Fupit 2 mor
p

+my[_p+(Q_ P)g(]}+mz(p){mz[_p+(P_Q)§(]

2~0 tn ~0 0
Psquy(qx) + ?[my(qx"' Qs]+ my(qx_ Qs)]
This result agrees with collective mode energies calculated

in the Hartree-Fock approximatiénif the Hartree-Fock ap- tVA
proximation is used for the pseudospin stiffness. = 2,77 (94,.0,7 %,.-q)- (6.2
We restrict our attention here to results which are valid to
C. Collective modes with tunneling: Incommensurate state leading order int so that the second term on the left-hand
For BH>Bﬁ‘ it becomes energetically favorable to break side of Eq.(6.20) can be dropped. This gives
translational symmetry and introduce phase slips, or solitons, tnyA
into the pseudospin texture. In the ground state the phase mg(qx)z,—z(éq 0.~ %..-0) (6.22
slips are periodié*! with a periodL ¢ which is determined 2ipQs s e

by minimizing the energy. In general then we choose to workyhich gives a ground state energy per unit area equal to
with pseudospins in dagain uniformly rotating reference

frame with E 1 (tn)? psP?

A apQ P2z 23

Q, Q<Q. Minimizing this energy with respect t& we find that the
6.18 overall ground state occurs for

P 1(tn)? «* (Qc)“

Q 2pQ" 512 Q

where Q=2#/LxB. For P#Q the linearized energy This result agrees with the analytic expression given in Ref.
functional is obtained by setting M°=1-mZ, 34 after making several corrections of some typos in Egs.
my= 1—('n'1§+ m2)/2, and dropping terms higher than second(2.7) and(2.8). For large parallel field® approaches 0Q,

order in my andm,. We obtain approache€), and the ground state of the system asymptoti-

P= 2
Q-T-=0-Qs Q=Q

(6.29
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cally approaches the ground state in the absence of interlayer N=10,d/l,=1
tunneling. We emphasize that &3 approachesQ. from

abovemg can become large and the linearization approxima- 10 ' ' i - = .
tions will fail even in the ground state.
Having identified the ground state pseudospin functional | i
we are able to calculate the collective mode energies and
response functions. To leading ordertime find that -
, An/? OE g
m - —_— ~
Y ) N i
- o~ <
2 R A
== o= @) +(28+psa*~psP?)m(q)
02 - _
tn . -
+7[mz(q+QsX)+mz(q_QsX)] ) (625)
9% 00 ' 0.05 0.10 ' 0.15 ' 0.20
2
477/2 JE t(e'/ely)
MmAQ)=+—— =———
h amy(—q) FIG. 5. Magnetization as a function of tunneling, for several
integer numbers of flux quanta between the layerdatl0 and
_ i 257 () + t_n d//=1. The curves are labeled by the integer number of flux
" An psq Y(q 2 gquanta produced by the parallel component of the field in the finite
size system.

x[émy(q+Qs§()+ 5my(q_Qs§()] : (6.26 o .

values of the magnetic field, namely, the values which cor-
The soliton lattice acts like an internal gratfhgwhich respond to an integer number of flux quantg_enclosed_ be-
couples collective excitations of the ground state in the abtween the layers. We therefore study the transition for a fixed
sence of interlayer tunneling whose wave vectors are sepaalue of By, and continuously vary the tunneling between
rated by multiples 0fQs~Q. The collective modes of the the layers. This is to be contrasted with the experimental
system for smalt will consist of the zone-folded modes of situation in which the tunneling is fixed ari) varies con-
the t=0 system with small corrections due to mode-modetinuously.
coupling. The response functions of the system are readily Figure 5 shows the pseudomagnetization calculated as a
evaluated numerically from the above equations. Atrtificialfunction of tunneling amplitude for various fixed values of
external gratings are oftéhused to allow the infrared light By, for ten electrons and//'=1. For fixedB| the commen-
to couple to finite-wave-vector excitations of two- surate state which optimizes the tunneling energy at the cost
dimensional electron systems. The soliton lattice appears tef exchange energy occurs at largéWe see in Fig. 5 that
offer an opportunity to couple to the Goldstone collectivethe component of pseudomagnetization aligned with the ef-

mode of thet=0 system at a wave vector which can befective Zeeman field increases with increasingnd de-

tuned by the application of an in-plane magnetic field. Wegreases wittB), even in the commensurate state. This quan-

reemphasize that & approacheL). from abovefy can  yym fluctuation effect is not captured in the classical field
become large and the linearization approximations will failiheoretic results we have presented since, strictly speaking,
even in the ground state. they apply only when the tunneling amplitude is small. The
increase in the effective magnitude of the ordered moment
VII. EXACT DIAGONALIZATION STUDIES with tunneling in the commensurate state may explain the
]discrepancy between thi&? behavior of the ordered moment

We now turn to a discussion of exact numerical studies o : . : X
p_red|cted here and the approximately linear behavior seen

the commensurate-incommensurate transition, and in pal .
ticular theB; dependence of the energy gap. The importanc@Xpe”mer,‘t"_""y" , _ o _

of long length scales in this transition will limit the power of N our finite-size studies the phase transition to the incom-
the exact diagonalization approach, but we are still able tn€nsurate state appears as a level crossing between states
obtain some useful insights into the experimental results obwith different Haldane pseudomomenta which is accompa-
tained by Murphyet al* We simulate a bilayer 2D quantum hied by a large decrease in the component of the pseudospin
Hall system in the presence of a tilted magnetic field with a@ligned with the Zeeman field. In the thermodynamic limit
finite number of electrons, and perform our calculations orand close to the phase transition, the pseudospin in the in-
the torus. We make use of the formalism developed byommensurate state is expected to be aligned with the Zee-
Haldané? for the torus to block-diagonalize the Hamiltonian man field except in the domain walls of the soliton lattice.

in each momentum sector. As noted in Sec. V, the in-plan@hus the spatial average of aligned moment is expected to
component of the magnetic field enters only in the tunnelingdecrease continuously at the phase boundary.

matrix elements. In order to keep the momentum a good In our finite size calculations the wave vectQr corre-
guantum number, we are constrained to use only discretgponding to the rotating Zeeman field satisfies
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FIG. 6. The energy gap as a function Q&e, for B corre- FIG. 7. The energy gap as a function Q€ye, for By corre-
sponding to one enclosed flux quantum, ifé,=1, for N=8 and  sponding to one enclosed flux quantum, ik,=1, for N=8 and
d//=0.5. d//=1.

: 27\ 12 proximately tod//'=1.85. The cusp in the energy gap seen
Q/=N, N 7D in these figures results from the ground state level crossing
) ) and is not obviously associated with the square root singu-
where N is the number of states in a Landau level, giies in the energy gap predicted by R¥adhich would
N,=BjdL/®,, andL is the edge length for a square finite pe expected to appear only in much larger systems than we
size square sample. FAN=10, Q/=0.79 even for 4 able to treat. Nevertheless, it does show the expected
N4=1. Even the smallest value @/ that we can consider pehavior of weakening at larger layer separations where the
is close to the edge of the regime where we expect the '0n§pin—stiffness and hence the meron-pair string energy is
wavelength theory developed in previous sections to applyyeakened. We also notice that Hartree-Fock theory accu-
We do, however, still expect the phase transition to ocCulately predicts the critical field fod// = 0.5, becomes worse
outside this regime. In order to compare these microscopig; 4/,/=1 and fails badly atl//=2. The direction of the
calculations more directly with the long-wavelength theory giscrepancy is in the direction anticipated by the above dis-
we have evaluated the energy gap as a function. e  cyssion since the value @&, at the transition is smaller
present our results in terms of an estimate of the dimensionyan 447, These results suggest that the mean source of dis-

less paramete®¢& which plays the central role in the long- crepancy between the experiments of Murghyal. and the
wavelength theory.

27wd/ B[ 2mps 12 N=8 d/l,=2
Qg:—¢ — (7.2
0 04 T T T T ¥ ¥ T T T T
To plot our results we have evaluat€¥ in the Hartree-
Fock approximationt=Agad2, corresponding to full pseu-
dospin polarization and 03 | A

F Prediction

1 ©
HF_ _ 3
== fo dk Vih(k)K3, (7.3

A (€7ely)
o
n
\ H

where V= (27e?/ ek)exp(—kd), and h(k)= —exp(—k?2).
Both p; andt are substantially reduced by quantum fluctua-
tions. Previous estimates from finite-size exact diagonaliza- o1 L i
tion calculation$* suggest that is reduced by a larger frac- '
tion thanpg, so that the Hartree-Fock approximation should
increasingly underestimat®¢ as the layer separation in-
creases. According to the PT model, the transition should 00 —————————* 5 &
occur whenQé&=4/7. This will allow us to compare the HF Q5.
prediction with the exact diagonalization result.

Figures 6, 7, and 8 show th@¢,r dependence of the FIG. 8. The energy gap as a function Q&ye, for B corre-
energy gap fod//=0.5, 1, and 2, respectively. Note also sponding to one enclosed flux quantum, iN,=1, for N=8 and
that the system studied by Murphst al. corresponds ap- d//=2.
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PT theory with Hartree-Fock parameters is quantum fluctuaproaches. In particular, we have identified a commensurate-
tions which reduce the ordered moment aligned by the effecincommensurate phase transition driven by an in-plane com-
tive magnetic field. This reduction is responsible for a pro-ponent of the external magnetic field, which has been
portional reduction in the energy gained by forming theobserved in recent experiments. Our theory is in good quali-
commensurate state and reduces the parallel field strength @tive and semiquantitative agreement with experiments.
which the transition occurs. For parameters appropriate to

the system studied by Murphst al. our PT theory withpg
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