
Spontaneous interlayer coherence in double-layer quantum Hall systems:
Symmetry-breaking interactions, in-plane fields, and phase solitons

Kun Yang,* K. Moon,† Lotfi Belkhir,‡ H. Mori,§ S.M. Girvin, and A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

L. Zhengi

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506

D. Yoshioka
Institute of Physics, College of Arts and Sciences, University of Tokyo, Komaba, Meguroku Tokyo 153, Japan

~Received 23 May 1996!

At strong magnetic fields double-layer two-dimensional–electron-gas systems can form an unusual broken
symmetry state with spontaneous interlayer phase coherence. The system can be mapped to an equivalent
system of pseudospin 1/2 particles with pseudospin-dependent interactions and easy-plane magnetic order. In
this paper we discuss how the presence of a weak interlayer tunneling term alters the properties of double-layer
systems when the broken symmetry is present. We use the energy functional and equations of motion derived
earlier to evaluate the zero-temperature response functions of the double-layer system and use our results to
discuss analogies between this system and Josephson-coupled superconducting films. We also present a quali-
tative picture of the low-energy charged excitations of this system. We show that parallel fields induce a highly
collective phase transition to an incommensurate state with broken translational symmetry.
@S0163-1829~96!08239-2#

I. INTRODUCTION

The study of correlated electron systems in fewer than
three dimensions continues to be an important theme in con-
densed matter physics. In particular, the study of strongly
correlated two-dimensional~2D! electron systems on a lat-
tice has been motivated by high-temperature superconductiv-
ity, while the study of strong correlations in continuum two-
dimensional systems has been motivated by the fractional
quantum Hall effect.1 Properties of high-temperature super-
conductors are thought by some to be strongly influenced by
the weak coupling which exists between the superconducting
planes. In the fractional quantum Hall effect, early work by
Halperin2 anticipated fractional quantum Hall effects due to
interlayer correlations3 in multilayer systems. Recent techno-
logical progress has made it possible to produce double-layer
two-dimensional–electron-gas systems of extremely high
mobility in which these effects can be observed. The two
electron layers can either be bound in separate quantum
wells4 as illustrated schematically in Fig. 1 or bound to op-
posite edges of a single wide quantum well.5 In both cases
the 2D electron gases are separated by a distanced small
enough (d;100 Å! to be comparable to the typical spacing
between electrons in the same layer.

In a large magnetic field, strong Coulomb correlations
between the layers have long2 been expected to lead to frac-
tional quantum Hall effects. Correlations are especially im-
portant in the strong magnetic field regime because all elec-
trons can be accommodated within the lowest Landau level
and execute cyclotron orbits with a degenerate kinetic en-
ergy. The fractional quantum Hall effect occurs when the
system has a gap for making charged excitations, i.e., when
the system is incompressible. Theory has predicted2,3,6 that at

some Landau level filling factors, gaps occur in double-layer
systems only if interlayer interactions are sufficiently strong.
These theoretical predictions have been confirmed
experimentally.7 More recently, theoretical work from sev-
eral different points of view8–16has suggested that interlayer
correlations can also lead to unusual broken symmetry states
with spontaneous phase coherence between layers which are
isolated from each other~except for interlayer Coulomb in-
teractions!. We have argued13 that it is spontaneous inter-
layer phase coherence which is responsible for the recently
discovered4 extreme sensitivity of the fractional quantum

FIG. 1. Schematic conduction-band-edge profile for a double-
layer two-dimensional–electron-gas system.
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Hall effect at total Landau level filling factorn51 to small
tilts of the magnetic field away from the normal to the layers.
(n[N/Nf , whereN is the number of electrons andNf is
the number of single-particle levels per Landau level.! In a
previous lengthy paper14 ~hereafter referred to as I! we have
developed a rather complete description of the physics asso-
ciated with spontaneous interlayer phase coherence in the
case where there is no tunneling between the layers. The
present companion paper will analyze the case of finite tun-
neling between the layers and the role of magnetic field tilt.
Many of the ideas presented in detail here are discussed
qualitatively in Ref. 17.

II. EXPERIMENTAL BACKGROUND

In this section we review the experimental18 indications
that the system is spontaneously ordered and exhibits excita-
tions which are highly collective in nature. We focus here
and throughout this paper on the case of Landau level filling
factor n51 ~that is, 1/2 in each layer! and assume for sim-
plicity that the electronic spin degrees of freedom are frozen
out by the Zeeman energy. The schematic energy level dia-
gram for the growth-direction degree of freedom in the
double-layer system is shown in Fig. 1 for the case of non-
interacting electrons. For simplicity we assume that electrons
can occupy only the lowest electric subband in each quantum
well. If the barrier between the wells is not too strong, tun-
neling from one side to the other is allowed. The lowest
energy eigenstates split into symmetric and antisymmetric
combinations separated by an energy gapDSAS which can,
depending on the sample, vary from essentially zero to many
hundreds of Kelvins. The splitting can therefore be much
less than or greater than the interlayer interaction energy
scale,Ec[e2/ed.

When the layers are widely separated, there will be no
correlations between them and we expect no dissipationless
quantum Hall state, since each layer has19 n51/2. For
smaller separations, it is observed experimentally that there
is an excitation gap and a quantized Hall plateau.20,5,4 This
has either a trivial or a highly nontrivial explanation, depend-
ing on the ratioDSAS/Ec . For largeDSAS the electrons tun-
nel back and forth so rapidly that it is as if there is only a
single quantum well. The tunnel splittingDSAS is then analo-
gous to the electric subband splitting in a~wide! single well.
All symmetric states are occupied and all antisymmetric
states are empty and we simply have the ordinaryn51 in-
teger Hall effect. Correlations are irrelevant in this limit and
the excitation gap is close to the single-particle gapDSAS ~or
\vc , whichever is smaller!. What is highly nontrivial about
this system is the fact that then51 quantum Hall plateau
survives even when the tunnel splitting becomes arbitrarily
small:DSAS!Ec . In this limit the excitation gap has clearly
changed to become highly collective in nature since the
observed20,5,4 gap can be on the scale of 20 K even when
DSAS;1 K. As we will see below, because of a spontaneous
broken symmetry,8,9,12,13the excitation gap actually survives
the limit DSAS→0, as illustrated in Fig. 2. This crossover
from single-particle to collective gap is, as we will show,
quite analogous to the result that for spin polarized single
layers, the excitation gap survives the limit of zero Lande´
g factor and hence ‘‘n51 is a fraction too.’’21

A second indication of the highly collective nature of the
excitations can be seen in the Arrhenius plots showing ther-
mally activated dissipation.4 The low temperature activation
energyD is, as already noted, much larger thanDSAS. If D
were nevertheless somehow a single-particle gap, one would
expect the Arrhenius law to be valid up to temperatures of
orderD. Instead one observes a rather abrupt leveling off in
the dissipation as the temperature increases past values as
low as;0.1D. This effect is observed both in double-well
systems and wide single-well systems and is consistent with
the notion of a thermally induced collapse of the order that
had been producing the collective gap.

The third significant feature of the experimental data
pointing to a highly ordered collective state is the strong
response of the system to relatively weak magnetic fields
Bi applied in the plane of the 2D electron gases. Within a
model that neglects higher electric subbands, we can treat the
electron gases as strictly two dimensional.~There is ample
evidence22 that parallel field effects due to subband mixing
within a single quantum well produce only small, albeit mea-
surable, effects.! Bi can then affect the system only if there
are processes involving tunneling that carry electrons around
closed loops containing flux. A prototypical such process is
illustrated in Fig. 3. An electron tunnels from one layer to the

FIG. 2. Phase diagram for the double-layer QHE system@after
Murphy et al. ~Ref. 4!#. Only samples whose parameters lie below
the dashed line exhibit a quantized Hall plateau and excitation gap.

FIG. 3. A process in double-layer two-dimensional–electron-
gas systems which encloses flux from the parallel component of the
magnetic field. The quantum amplitude for such paths is sensitive to
the parallel component of the field.
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other at pointA, and travels to pointB. Then it ~or another
indistinguishable electron! tunnels back and returns to the
starting point. The parallel field contributes to the quantum
amplitude for this process~in the 2D gas limit! a gauge-
invariant Aharonov-Bohm phase factor exp(2piF/F0) where
F is the enclosed flux andF0 is the quantum of flux. Such
loop paths evidently contribute significantly to correlations
in the system since the activation energy gap is observed to
decrease very rapidly withBi , falling by factors of order 2 –
10 ~depending on the sample! until a critical field,
Bi*;0.8 T, is reached at which point the gap essentially
ceases changing. To understand how remarkably smallBi* is,
consider the following. We can define a lengthj i from the
size of the loop needed to enclose one quantum of flux:
j iBi* d5F0. (j i@Å #54.1373105/d@Å #Bi* @T#.! For Bi*
50.8 T andd5150 Å, j i50.27 mm, which is approxi-
mately 20 times the spacing between electrons in a given
layer and 30 times larger than the quantized cyclotron orbit
radius l [(\c/eB')

1/2 within an individual layer. Signifi-
cant drops in the excitation gap are already seen at fields of
0.1 T, implying that enormous phase coherent correlation
lengths must exist. Again this shows the highly collective
nature of the ordering in this system associated with sponta-
neous interlayer phase coherence.

III. SPONTANEOUS PHASE COHERENCE
AND SYMMETRY BREAKING

BY TUNNELING

The essential physics of spontaneous interlayer phase co-
herence can be addressed either from a microscopic point of
view10–14 or from a macroscopic Chern-Simons field theory
point of view,8,9,14but it is perhaps most easily explained in
terms of the simple variational wave function

uc&5)
X

$cX↑
† 1eiwcX↓

† %u0&, ~3.1!

where X is a state label~for instance, the Landau gauge
orbital guiding center14! and we are using a pseudospin no-
tation in which spin up refers to electrons in the upper layer
and spin down refers to electrons in the lower layer.14 The
interpretation of this wave function is that every Landau or-
bital X is occupied~hencen51), but the system is in a
coherent linear combination of pseudospin up and down
states determined by the phase anglew. This means that the
system has a definite total number of particles (n51 exactly!
but an indefinite number of particles in each layer. In the
absence of interlayer tunneling, the particle number in each
layer is a good quantum number. Hence this state has a spon-
taneously broken symmetry11,8,9,14in the same sense that the
BCS state for a superconductor has indefinite~total! particle
number but a definite phase relationship between states of
different particle number.

In the absence of tunneling, the energy cannot depend on
the phase anglew and the system exhibits a global U~1!
symmetry associated with conservation of particle number in
each layer. One can imagine allowingw to vary slowly with
position to produce excited states. Because of the U~1! sym-

metry, the effective Hartree-Fock energy functional for these
states has a gradient expansion whose leading term must
have the form

H5
1

2
rsE d2r u“wu21•••. ~3.2!

The origin of the finite ‘‘spin stiffness’’rs is the loss of
exchange energy which occurs whenw varies with position.
Imagine that two particles approach each other. They are in a
linear superposition of states in each of the layers~even
though there is no tunneling!. If they are characterized by the
same phasew, then the wave function is symmetric under
pseudospin exchange and so the spatial wave function is an-
tisymmetric and must vanish as the particles approach each
other.States with spontaneous phase coherence have better
interlayer electronic correlations and hence lower interlayer
Coulomb interaction energy.If a phase gradient exists then
there is a larger amplitude for the particles in opposite layers
to be near each other and hence the interlayer interaction
energy is higher.23 This loss of exchange energy is the source
of the finite spin stiffness and is what causes the system to
spontaneously ‘‘magnetize.’’

A skeptical reader might legitimately worry that the
single-Slater-determinant variational wave functions in terms
of which we have framed the above discussion misrepresent
the physics. Indeed, the ground state of double-layer systems
in the Hartree-Fock approximation has spontaneous phase
coherence at all values ofnT whereas we believe that this
property actually holds only at a discrete set of total filling
factors, includingnT51. To understand why these concerns
would be misplaced, it is useful to briefly review some of the
microscopic physics underlying the incompressible states
whose occurrence is responsible for the fractional quantum
Hall effect. For a pair of interacting electrons confined to the
lowest Landau level, only one relative motion state is avail-
able for each relative angular momentum. This property
means that the interaction is characterized by a discrete set of
energy scales,Vl , first identified by Haldane

24 and known as
Haldane pseudopotentials.Vl is the interaction energy of a
pair of electrons with relative angular momentuml ; in the
double-layer case, the pseudopotential values for interlayer
and intralayer interactions will differ. Many of the largest
charge gaps which occur in the fractional quantum Hall re-
gime can be understood in terms of Haldane pseudopoten-
tials. For example, for double-layer systems with nearby lay-
ers the largest energy scales should be the interlayer and
intralayerl50 pseudopotentials. It is easy to show that it is
possible to form many-body states in which pairs of particles
never havel50 for nT<1. This is not possible fornT.1.
Thus if nT51, the energy to add a charge to the system is
greater than the energy to remove one, hence the charge gap.
For nT51 it is easy25 to show that the only states which
completely avoid pairs with relative angular momentum
l50 are, up to rotation in pseudospin space, identical to the
wave functions in Eq.~3.1!. This is the real reason why the
variational wave functions used above are accurate. In the
following we describe low-energy states of the system as
spin-texture states with a position-dependent local pseu-
dospin orientation. The property that the low-energy states
are completely specified by spin textures, which we will use
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frequently in following sections, depends on both the broken
symmetry of the ground stateand on the existence of the
charge gap.

The U~1! symmetry leads to Eq.~3.2! which defines an
effective XY model which will contain vortex excitations
which interact logarithmically. In a thin film of superfluid
4He, vortices interact logarithmically because of the energy
cost of supercurrents circulating around the vortex centers.
~In superconducting thin films the same logarithmic interac-
tion appears but is cut off on length scales exceeding the
penetration depth.! Here the same logarithmic interaction ap-
pears. Microscopically this interaction is due to the potential
energy cost~loss of exchange! associated with the phase gra-
dients ~circulating pseudospin currents!. Hartree-Fock
estimates14 indicate that rs and hence the Kosterlitz-
Thouless critical temperature are on the scale of 1 K in typi-
cal samples. Vortices in thew field ~‘‘merons’’14! are remi-
niscent of Laughlin’s fractionally charged quasiparticles but
in this case carry charges6 1

2e and can independently be left-
or right-handed for a total of four ‘‘flavors.’’13,14 Bound
meron pairs with opposite vorticity are the lowest26 energy
charged excitations of the system. The finite pseudospin
stiffness not only permits the presence of spontaneous pseu-
dospin magnetization but leads to a finite charge excitation
gap~even though the tunnel splitting is zero!. Thus the QHE
survives14,26 the limit DSAS→0.

Since the ‘‘charge’’ conjugate to the phasew is the z
component of the pseudospinSz, the pseudospin ‘‘supercur-
rent’’

J5
2rs
\

“w ~3.3!

represents oppositely directed charge currents in each layer.
Below the KT transition temperature, such current flow will
be dissipationless~in linear response! just as in an ordinary
superfluid. Likewise there will be a linearly dispersing col-
lective Goldstone mode as in a superfluid.11,10,8,9,13,14

To reinforce the idea that this is not an ordinary superfluid
or superconductor, it is perhaps useful to rewrite the original
variational wave function as

uc&5)
X

F 1

A2
~11eiwcX,↓

† cX,↑!G uc↑&, ~3.4!

where

uc↑&[)
X

cX,↑
† u0& ~3.5!

is the fully up-polarized spin state. We now see that the
analogy to an excitonic insulator27,28 is closer than the anal-
ogy to a superconductor. Only a gauge-neutral object~a par-
ticle bound to a hole! can condense and propagate freely in a
strongB field. A phase gradient“w causes a flow of these
neutral objects which then constitutes a spin current analo-
gous to the charge current in a superconductor. In analogy to
the excitonic insulator case, one can make a particle-hole
transformation in one of the layers to produce a formal re-
semblance to the BCS mean field state:

uc&5)
X

F 1

A2
~11eiwcX,↓

† cX,↑
† !G uc↑&, ~3.6!

but it is then clear that one has a pairing between a particle
and hole; not between two particles. It is worth remarking
that there is in general an exact mapping28 between double-
layer electron-hole systems and two-component electron sys-
tems in the limit of strong magnetic fields. The Hamiltonian
for a double-layer electron system is mapped, up to a con-
stant term, to that for an electron-hole system if a particle-
hole transformation is made in one of the layers. The filling
factor of interest here,nT51, corresponds to an electron-
hole system with equal electron and hole densities and, as
explained above, the spontaneous phase coherence state cor-
responds to an excitonic superfluid state. In the electron-hole
case, the fact that a broken symmetry ground state can occur
had been appreciated some years ago.29 Some of the recent
advances in understanding the physics associated with the
spontaneous-phase-coherence ground state in the electron-
electron case, have important implications for the electron-
hole case which we will not explore at length here.

A finite tunneling amplitudet between the layers breaks
the U~1! symmetry

Heff5E d2r F12 rsu“wu22
t

2pl 2cosw G ~3.7!

by giving a preference to symmetric tunneling states. This
can be seen from the tunneling Hamiltonian

HT52tE d2r $c↑
†~r !c↓~r !1c↓

†~r !c↑~r !%, ~3.8!

which can be written in the spin representation as

HT522tE d2rSx~r !. ~3.9!

~Recall that the eigenstates ofSx are symmetric and antisym-
metric combinations of up and down.!

We can shed further light on the spontaneous symmetry
breaking by considering the tunneling HamiltonianHT in Eq.
~3.8! as a weak perturbation. Naively, since particle number
is separately conserved in each layer fort50, one might
expect

lim
t→0

1

t
^cuHTuc&50. ~3.10!

That is, one might expect that the first-order term in the
perturbation series for the energy due tot to vanish. Instead
however we find that the energy shiftslinearly in t,

lim
t→0

lim
A→`

1

tA
^cuHTuc&

5 lim
t→0

lim
A→`

1

A K cU2E d2r2Sx~r !Uc L
52mx, ~3.11!
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whereA is the system area, andmx is, by definition, the
magnetization which is the system’s order parameter.30 If the
interlayer spacingd is taken to be zero, one can readily
show14 that the variational wave function in Eq.~3.1! is ex-
act, hence limt→0m

x51, and t5DSAS/2. For finite d, Eq.
~3.1! is no longer exact and quantum fluctuations will14 re-
duce the magnitude ofmx and we must renormalize the hop-
ping parametert appropriately.

As the layer separationd increases, a critical pointd*
will be reached at which the magnetization vanishes and the
ordered phase is destroyed by quantum fluctuations.13,14This
is illustrated in Fig. 2. Forfinite tunneling t, we will see
below that the collective mode becomes massive and quan-
tum fluctuations will be less severe. Hence the phase bound-
ary in Fig. 2 curves upward with increasingDSAS. For
DSAS50 the destruction of long-range order and the charge
excitation gap are intimately related and occur simulta-
neously atd* and zero temperature. For finiteDSAS the sys-
tem always has nonzeromx even in the phase with zero
charge gap.

The effective Hamiltonian in Eq.~3.7! looks like the sine-
Gordon model which is known to have a finite temperature
Kosterlitz-Thouless phase transition.31 One might be tempted
to speculate then that the rapid collapse of the Arrhenius
plots of the dissipation at unexpectedly low temperatures is
associated with a true phase transition. We believe, however,
that these are merely rapid crossovers rather than true phase
transitions because the phasew is compact. The quantum
states defined byw andw12p are microscopically identical.
The interpretation ofw in a sine-Gordon theory as an elec-
trostatic potential for Coulomb charges or as the surface
height in the solid-on-solid model requires thatw and
w12p be distinguishable states. Hence what we really have
is anXY model in a symmetry-breaking field which has no
true phase transition since the vortices are linearly confined.
@Note that the solid-on-solid model has no analog of open
strings~see Sec. IV! terminated by vortices such as we have
here.17#

IV. CHARGED EXCITATIONS

At filling factor n51, there is an intimate connection be-
tween local distortions of the pseudospin orientation and the
local charge density.14 A simple example of this is provided
by the fully spin polarizedn51 state of Eq.~3.1!. Since the
Landau level is filled, the charge density is uniform and the
Pauli principle forbids any~intra-Landau-level! excitations
which do not flip spins. One can form a spin-flip particle-
hole pair at an energy cost of21

U05DSAS1
e2

el S p

2 D 1/2, ~4.1!

where the first term is the tunneling energy necessary to flip
the pseudospin and the second represents the loss of Cou-
lomb exchange energy~here computed for the special case
d50). The Coulomb exchange energy gives a finite cost
even in the absence of tunneling and this explains the fact
that the typical observed gap can be much larger than the
tunnel splitting.7,4,5 The simple spin flip is not, however, the
optimal charged-pair excitation. From analogy with results

of Sondhiet al.21 For the case of ‘‘real’’ spins, we know that
smooth local distortions of the pseudospins produce a charge
density given by the remarkable formula21,14

dr~r !52
n

8p
emnm~r !•@]mm~r !3]nm~r !#, ~4.2!

wherem is a unit vector giving the local pseudospin orien-
tation. dr(r ) is exactly n times the Pontryagin index, or
topological charge density.21,31 The density in Eq.~4.2! can
be viewed as the timelike component of a conserved~diver-
genceless! topological ‘‘three-current’’

j a52
n

8p
eabgeabcm

a~r !]bm
b~r !]gm

c~r !. ~4.3!

Using the fact thatm is a unit vector, it is straightforward to
verify that ]m j

m50.
‘‘Skyrmion’’ ~hedgehog! configurations of the order pa-

rameter carry net charge61 and, whenDSAS50 and
d50,21,11 a skyrmion pair has an excitation energy which is
one-half of that of a simple spin-flip pair for the case of
Coulomb interactions between the electrons. At finited, the
SU~2! symmetry is lowered to U~1! and the cheapest charged
excitations are composed of merons, which are essentially
vortex solutions in which the local pseudospin winds by
62p at infinity and tilts either up or down out of theXY
plane in the core region as shown in Fig. 9 of I. Integration
of the charge density using Eq.~4.2! shows that vortices
carry charge6 1

2. They are somewhat analogous to Laughlin
quasiparticles; however, they differ considerably in that, be-
low the Kosterlitz-Thouless temperature, they are confined
together in vorticity neutral pairs by their logarithmic inter-
action. The cheapest object with a net charge is then a
vortex-antivortex pair, with each vortex carrying charge
1 1

2 ~or 2 1
2! for a total charge of11 ~or 21). The charge

excitation cost can be estimated by minimizing

Epair52Emc1
e2

4eR
12prslnF R

Rmc
G , ~4.4!

whereEmc is the meron core energy,
26 andRmc is the meron

core size. The optimal separation is given by14

R05e2/(8pers). It is important for the discussion below
that in typical double-layer systemsrs is much smaller than
the microscopic energy scalee2/el . For d/l 51,
rs56.1931023(e2/el ) in the Hartree-Fock approximation
and it is further renormalized downward by quantum
fluctuations.14 Typical values ofrs for double-layer systems
are smaller than 531023(e2/el ) so thatR0 /l will typically
be larger than;8l . The small values of the pseudospin
stiffness allow the charged pseudospin textures to be large,
as required for the validity of the long-wavelength descrip-
tion being employed here.

The introduction of finite tunneling amplitude destroys
the U~1! symmetry and makes the simple vortex-pair con-
figuration extremely expensive. To lower the energy the sys-
tem distorts the spin deviations into a domain wall or
‘‘string’’ connecting the vortex cores as shown in Fig.~4!.
The spins are oriented in thex̂ direction everywhere except
in the domain line region where they tumble rapidly through
2p. The domain line has a fixed energy per unit length and
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so the vortices are now confined by a linear potential corre-
sponding to a fixed ‘‘string tension’’ rather than being con-
fined only logarithmically. We can estimate the string ten-
sion by examining the energy of a domain line of infinite
length. The optimal form for a domain line lying along the
y axis is given by

w~r !52arcsin@ tanh~x/j!#, ~4.5!

where the characteristic width of the string is

j5F2pl 2rs
t G1/2 . ~4.6!

The resulting string tension is32

T058F trs
2pl 2G1/25

8rs
j
. ~4.7!

Provided the string is long enough (R@j), the total energy
of a segment of lengthR will be well approximated by the
expression

Epair8 52Emc8 1
e2

4eR
1T0R. ~4.8!

The prime onEmc in Eq. ~4.8! indicates that the meron core
energy can depend onDSAS. Epair8 is minimized at
R5R08[Ae2/4eT0 where it has the value

Epair* 52Emc8 1Ae2T0 /e. ~4.9!

Note that apart from the core energies, the charge gap at
fixed layer separation~and hence fixedrs) is }T0

1/2

}t1/4;DSAS
1/4 , which contrasts with the case of free electrons,

for which the charge gap is linearly proportional toDSAS.

Note that because the exponent 1/4 is so small, there is an
extremely rapid initial increase in the charge gap as tunnel-
ing is turned on.

The crossover between the meron-pair pseudospin texture
which holds fort[0 and the domain line string pseudospin
texture described above occurs at a finite value oft which we
can estimate by the following argument. ForR08.R0 the vor-
tices are already bound by the logarithmic attraction due to
the gradient energy before the linear attraction due to the
hopping becomes important at larger separations. In this re-
gime tunneling does not play an important role in determin-
ing the nature of the lowest energy charged pseudospin tex-
ture. As t increasesR08}t

21/4 decreases and will eventually
reachR0 which is, of course, independent oft. Since

R08

R0
5S 2p2rs

e2/ej D 1/25 pj

4R08
, ~4.10!

the characteristic width of the domain line becomes compa-
rable toR08 in the same range oft values whereR08 andR0

become comparable. We may conclude that the nature of the
charged pseudospin texture crosses over directly from the
meron pair form to the finite length domain line string form
for rs /(e

2/ej);1/25, or equivalently fort;tcr where

tcr543103F rs
e2/el G3 e2el

. ~4.11!

The crossover tunneling amplitude is thus typically smaller
than 531024(e2/el ). Typical tunneling amplitudes in
double-layer systems are smaller than;1021(e2/el ) and
can be made quite small by adjusting the barrier material or
making the barrier wider. Nevertheless, it seems likely that
t will be larger thantcr except for samples which are care-
fully prepared to maket as small as possible. Ast increases
beyondtcr , R08 will continue to decrease. WhenR08 becomes
comparable to the microscopic lengthl , the description
given here will become invalid and the lowest energy
charged excitations will have single-particle character. How-
ever, the domain-wall string picture of the charged pseu-
dospin texture has a very large range of validity sinceR08
}t21/4 decreases very slowly with increasingt. Writing
R08;(e2/8eprs)(tcr /t)

1/4 we find that R08;l only for
t;1022@(e2/el )2/rs#. Using typical values ofrs we see
that the charged excitation crosses over to single-particle
character only when the hopping energyt becomes compa-
rable to the microscopic interaction energy scale. The vari-
ous regimes for the charge excitations of double-layer sys-
tems are summarized in Table I. Almost all typical double-
layer systems lie within the regime of the domain-wall-string
pseudospin texture charge excitation.

We should emphasize that all the discussion of charged
excitations above assumes that the meron core energies do
not make a dominant contribution to the charge excitation
energies and that meron core sizes are small compared to the
overall size of the quasiparticles. Recent calculations33 have
demonstrated that these conditions are never well satisfied
when the Hartree-Fock approximation is used to approximate
the charged excitations. The physical pictures summarized
still have some qualitative validity, however. The Hartree-
Fock approximation neglects quantum fluctuation effects

FIG. 4. Illustration of a meron pair in the presence of tunneling
which confines the region of spin twist to a relatively narrow do-
main wall or ‘‘string.’’ Each end of the string is a vortex carrying
charge61/2.
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which reduce both the spin-stiffness and the order parameter,
tending in both cases to increase the size of the quasiparticles
and increase the appropriateness of the pictures presented
here.

V. PARALLEL MAGNETIC FIELD

Murphy et al.4,18 and Santoset al.5 have shown that the
charge gap in double-layer systems is remarkably sensitive
to the application of relatively weak magnetic fieldsBi , ori-
ented in the plane of the 2D electron gas. Experimentally this
field component is generated by slightly tilting the sample
relative to the magnetic field orientation. Tilting the field~or
sample! has traditionally been an effective method for iden-
tifying effects due to~real! spins because orbital motion in a
single-layer 2DEG system is primarily22 sensitive toB' ,
while the ~real! spin Zeeman splitting is proportional to the
full magnitude ofB. Adding a parallel field component will
tend to favor more strongly spin-polarized states. For the
case of the double-layern51 systems studied by Murphy
et al.,4 the ground state is known to already be an isotropic
ferromagnetic state of thetrue spinsand the addition of a
parallel field would not, at first glance, be expected to influ-
ence the low energy states since they are already fully spin-
polarized.~At a fixed Landau level filling factorB' is fixed
and so both the totalB and the corresponding Zeeman en-
ergy increase with tilt.! Nevertheless experiments4 have
shown that these systems are very sensitive toBi . The acti-
vation energy drops rapidly~by factors varying from two up
to an order-of-magnitude in different samples! with increas-
ing Bi . At Bi5Bi* there appears to be a phase transition to
a new state whose activation gap is approximately indepen-
dent of further increases inBi .

The effect ofBi on thepseudospinsystem can be visual-
ized in two different pictures. In the first picture we use a
gauge in whichBi5“3Ai where Ai5Bi(0,0,x). In this
gauge the vector potential points in theẑ direction ~perpen-
dicular to the layers! and varies with positionx as one moves
parallel to the layers. As an electron tunnels from one layer
to the other it moves along the direction in which the vector
potential points and so the tunneling matrix element acquires
a position-dependent phaset→teiQx whereQ52p/L i and
L i5F0 /Bid is the length associated with one flux quantum
F0 between the layers~defined in Fig. 3!. This modifies the
tunneling Hamiltonian to HT52*d2rh(r )•S(r ) where
h(r ) ‘‘tumbles’’: i.e., h(r )52t(cosQx,sinQx,0). The effec-
tive XY model now becomes

H5E d2r H 12 rsu“wu22
t

2pl 2cos@w~r !2Qx#J ,
~5.1!

which is precisely the Pokrovsky-Talapov~PT! model34 and
has a very rich phase diagram. For smallQ and/or smallrs
the phase obeys~at low temperatures! w(r )[Qx; the mo-
ment rotates commensurately with the pseudospin Zeeman
field. However, asBi is increased, the local field tumbles too
rapidly and a continuous phase transition to an incommensu-
rate state with broken translation symmetry occurs. This is
because at largeBi it costs too much exchange energy to
remain commensurate and the system rapidly gives up the
tunneling energy in order to return to a uniform state
“w'0 which becomes independent ofBi . As explained in
further detail below we13 find that the phase transition occurs
at zero temperature for

Bi*5B'~2l /pd!~2t/prs!
1/2. ~5.2!

Using the parameters of the samples of Murphyet al.4 and
neglecting quantum fluctuation renormalizations of botht
and rs we find that the critical field for the transition is
'1.6 T which is within a factor of 2 of the observed value.4

Note that the observed valueBi*50.8 T corresponds in
these samples to a large value forL i : L i /l ;20 indicating
that the transition is highly collective in nature. We empha-
size again that these very large length scales are possible in a
magnetic field only because of the interlayer phase coherence
in the system associated with condensation of aneutral ob-
ject.

Having argued for the existence of the commensurate-
incommensurate transition, we must now connect it to the
experimentally observed transport properties. In the com-
mensurate phase, the order parameter tumbles more and
more rapidly asBi increases. As we shall see below, it is this
tumbling which causes the charge gap to drop rapidly. In the
incommensurate phase the state of the system is approxi-
mately independent ofBi and this causes the charge excita-
tion gap to saturate at a fixed value.

Recall that in the presence of tunneling, the cheapest
charged excitation was found to be a pair of vortices of op-
posite vorticity and like charge~each having charge61/2)
connected by a domain line with a constant string tension. In
the absence ofBi the energy is independent of the orientation
of the string. The effect ofBi is most easily studied by
changing variables to

TABLE I. Charged spin texture energies atnT51 for double-layer systems with tunneling.
r̃s[rs /(e

2/l ) and t̃[t/(e2/l ), wherers is the pseudospin stiffness,t is the renormalized tunneling am-
plitude, l is the magnetic length,T058rs /j is the soliton string tension, andj5(2pl 2rs /t)

1/2 is the
domain wall width.

Regime t̃<43103r̃ s
3 43103r̃ s

3< t̃<1022/ r̃s 1022/ r̃s<t

Nature of charged Meron pairs Finite length Single-particle
excitations domain line strings excitation
Excitation size

;
e2

8prs
;A e2

4T0
}t21/4

l

Excitation energy ;2prs ;Ae2T0}t1/4 t
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u~r ![w~r !2Qx. ~5.3!

This variable is a constant in the commensurate phase but
not in the incommensurate phase. In terms of this new vari-
able, the PT model energy is

H5E d2r H 12 rs@~]xu1Q!21~]yu!2#2
t

2pl 2cosuJ .
~5.4!

We see thatBi defines a preferred direction in the problem.
Domain walls will want to line up in they direction and
contain a phase slip of a preferred sign (22p for Q.0) in
terms of the fieldu. Since the extra term induced byQ
represents a total derivative, the optimal form of the soliton
solution is unchanged. However, the energy per unit length
of the soliton, which is the domain line string tension, de-
creases linearly withQ and henceBi :

T5T0F12
Bi

Bi*
G , ~5.5!

whereT0 is the tension in the absence of parallelB field
given by Eq. ~4.7! and Bi* is the critical parallel field at
which the string tension goes to zero.35 We thus see that by
tuningBi one can conveniently control the ‘‘chemical poten-
tial’’ of the domain lines. The domain lines condense and the
phase transition occurs when the string tension becomes
negative.

Recall that the charge excitation gap is given by the en-
ergy of a vortex pair separated by the optimal distance
R05Ae2/4eT. From Eq.~4.8! we have that the energy gap
for the commensurate state of the phase transition is given by

D52Emc8 1@e2T/e#1/2

5D01Ae2T0 /eF12S Bi

Bi*
D G1/2 . ~5.6!

As Bi increases, the reduced string tension allows the Cou-
lomb repulsion of the two vortices to stretch the string and
lower the energy. Far on the incommensurate side of the
phase transition the possibility of interlayer tunneling be-
comes irrelevant. From the discussion of the previous section
it follows that the ratio of the charge gap atBi50 to the
charge gap atBi→` should be given approximately by

D0

D`
5~ t/tcr!

1/4'~e2/el !1/2t1/48rs
3/4. ~5.7!

Putting in typical values oft and rs gives gap ratios
;1.527, in agreement with experiment. According to the
discussion of the previous section, gap ratios as large as
;(tmax/tcr)

1/4;0.07(e2/el )/rs can be expected in the re-
gime where the pseudospin texture picture applies. Here
tmax is the hopping parameter at which the crossover to
single-particle excitations occurs. Thus gap ratios as large as
an order of magnitude are easily possible. Of course, all the
discussion here neglects orbital effects~electric subband
mixing! within each of the electron gas layers, and these will
always become important at sufficiently strong parallel
fields.

It should be emphasized that only this highly collective
picture involving large length scale distortions of topological
defects can possibly explain the extreme sensitivity of the
charge gap to small tilts of theB field. Recall that atBi* the
tumbling lengthL i is much larger than the particle spacing
and the magnetic length. Simple estimates of the cost to
make a local one-body-type excitation~a pseudospin-flip
pair, for example! shows that the energy decrease due to
Bi is extremely small sincel /L i is so small. As we will see
in Sec. VII numerical exact-diagonalization calculations on
small systems confirm the existence of this phase transition
and show that the fermionic excitation gap drops to a much
smaller value in the incommensurate phase.

We now discuss the commensurate-incommensurate
phase transition from the microscopic point of view. At
d50, the Bi50 Landau-gauge many-body ground state
wave function is a single Slater determinant in which the
single-body states are the symmetric linear combination of
two single-layer states with the same guiding center. This is
the state represented by Eq.~3.1! with w50. Phase coher-
ence is established~either spontaneously or in this case! by
tunneling between single-layer states with the same guiding
center. For many purposes this state is still a good approxi-
mation to the ground state at finited since it optimizes the
tunneling energy and has good correlation energy; an elec-
tron in one layer automatically sees an exchange-correlation
hole in the other layer at the same place.~It would remain an
exact ground state at finited in the absence of interactions.!
From a microscopic point of view it is the good interlayer
correlations of states with phase coherence which leads to
the broken symmetry in the absence of tunneling.

To see the effect of a parallelB field, it is convenient to
choose a new Landau gauge for the perpendicular field
A'52B'(y,0,0). In this gauge, a parallel field giving rise to
t→texp(iQx) causes tunneling to couple states in the two
layers whose wave vectors differ byQ and whose guiding
centers therefore differ byQl 2.36 Thus, for noninteracting
electrons the exact ground state in a parallel field is one in
which the exchange-correlation hole is not directly opposite
its electron but rather is shifted away byl 2Qŷ as theB field
tilts in the x̂ direction~i.e., the displacement is perpendicular
to the direction of the in-plane field!:

ucQ&5)
Y

$cY,↑
† 1cY1Ql 2,↓

† %u0&. ~5.8!

This state maintains all of its tunneling energy but rapidly
loses interlayer correlation energy as the field tilts. At large
tilt it is better to give up on the tunneling by shifting the two
layers relative to each other to put the correlation hole back
next to its electron.

This shift can be seen to be the change from commensu-
rate to incommensurate states discussed above. A straightfor-
ward computation shows that the commensurate state has the
pseudospin tumbling

^cQuc↑
†~r !c↓~r !ucQ&5e2~1/4! Q2l 2e2 iQx, ~5.9!

while the pseudospin is constant in the incommensurate
phase.

All of our discussion of the phase transition in a parallel
field has been based on mean-field theory. Close to the phase
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transition, thermal fluctuations will be important. At finite
temperatures there is no strict phase transition atBi* in the
the PT model. However, there is a finite temperature KT
phase transition at a nearbyBi.Bi* . At finite temperatures
translation symmetry is restored34 in the incommensurate
phase by means of dislocations in the domain string struc-
ture. Thus there are two separate KT transitions in this sys-
tem, one fort50, the other fortÞ0 andBi.Bi* . Recently
Read37 has studied this model at finite temperatures in some
detail and has shown that at the critical value ofBi there
should be a square-root singularity in the charge gap on both
sides of the transition. The existing data does not have the
resolution to show this, however. At zero temperature the
commensurate-incommensurate38,37 phase transition must be
treated quantum mechanically. It is necessary to account for
the world sheets traced out by the time evolution of the
strings which fluctuate into existence due to quantum zero-
point motion. Read also points out that the inevitable random
variations in the tunneling amplitude with position, which we
have not considered at all here, cause a relevant perturbation.

VI. COLLECTIVE MODES AND RESPONSE FUNCTIONS

In this section we will discuss the charge neutral collec-
tive excitations of double-layer systems and some physically
important response functions which have poles at the collec-
tive excitation energies. In the pseudospin language, the col-
lective excitations are spin waves in which the pseudospin
precesses around its ground state orientation. We will thus
need to enlarge our description of the system by allowing the
pseudospin texture to have orientations out of thex̂-ŷ plane.
This requires that we generalize from theXY-model descrip-
tion of the system employed in previous sections, to the more
complete anisotropic nonlinears model description which
we have discussed at length in Ref. 14~I!. ~Actually this
generalization is also required if want to render the physics
of the meron cores.! States of the system are characterized by
a pseudospin texture functionm̂(r …, which specifies the
space dependence of the pseudospin orientation. The energy
of a pseudospin texture is given by the following functional
~where we retain only the leading terms in number of deriva-
tives!:

E@m̂~r !#5E d2r Fb„mz
2~r !…1

rs
2

u“m'u22ntmx~r !G ,
~6.1!

where m̂(r …–m̂„r …[1 andm' is the projection of the unit
vector onto thex̂-ŷ plane. The energy is with respect to the
ground state in the absence of tunneling. Here
n5(2pl 2)21 is the total electron density. This energy func-
tional is expected to be accurate for states with spin textures
which vary slowly on a microscopic scale. If the pseudospin
is confined to thex̂-ŷ plane, its orientation is specified by its
azimuthal angle and the energy functional reduces to the
XY functional used above. This Ginzburg-Landau energy
functional differs from the one discussed in Ref. 14 only
through the addition of the tunneling term. The form of the
functional follows from symmetry considerations and the pa-
rameters can be considered as phenomenological constants.
In Ref. 14, Eq.~6.1! was derived microscopically using a

Hartree-Fock approximation, and explicit expressions for the
coefficients were obtained, which become exact in the limit
d→0. We now generalize the discussion of collective modes
given there to the case where tunneling occurs between the
layers.

A. Collective modes with tunneling:B i50

In the presence of interwell tunneling, the pseudospin-
orientation in the ground state is constant and points in the
x̂ direction. To calculate response functions we use the equa-
tions of motion derived in Ref. 14. We will assume that for
low-lying excitations the pseudospin orientation is always
close to thex̂ direction. Then the equation of motions of the
pseudospin texture in Fourier space is

dmy~q!

dt
52

4pl 2

\

dE@m#

dmz~2q!
, ~6.2!

dmz~q!

dt
5
4pl 2

\

dE@m#

dmy~2q!
. ~6.3!

In the rest of this section we will usel as the unit of length.
It is possible to linearize these equations if the pseudospin
orientation is close to the x̂ direction by letting
mx512(my

21mz
2)/21•••, and dropping terms higher than

first order inmy andmz . For the double-layer systemmy is
proportional to the current flowing locally between layers
andmz is proportional to the difference between the local
densities in the two layers. To calculate the response func-
tions of interest we add terms to the energy functional cor-
responding to pseudospin Zeeman fields in theŷ and ẑ di-
rections, hy and hz . Physically hy corresponds to a
perturbation in which an imaginary term is added to the tun-
neling amplitude andhz corresponds to a bias potential be-
tween the two layers. Linearizing and adding the Zeeman
terms we find that

dmy~q!

dt
52

4p

\
~2b1tn!mz~q!1hz , ~6.4!

dmz~q!

dt
5
4p

\
~ tn1rsq

2!my~q!2hy . ~6.5!

There is a similarity between these equations of motion
and those of the Josephson effect, which is connected to the
similarities between interlayer phase coherence and super-
conductivity mentioned previously.39 The current across a
Josephson junction between two superconductors is propor-
tional to sin(f) wheref is the difference in the phase of the
order parameter across the junction. The current between
layers in a double-layer system is similarly proportional to
my , i.e., proportional to sin(f) wheref in the double-layer
case specifies orientation of the component of the pseudospin
in the x̂-ŷ plane.@In the linearized case we are discussing we
can equatef and sin(f).# More physicallyf in the double-
layer case specifies the difference between the phase-
coherence angle and the phase angle of the interlayer tunnel-
ing amplitude. In the case of the Josephson effect
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df

dt
5
2eV

\
, ~6.6!

whereV is the potential drop across the junction. Thus the
equations of motion for the phase angles in the Josephson
effect case and in the present case differ because of the pres-
ence of the term proportional to (2b1tn)mz(q); a Joseph-
son effect could be achieved if the tunneling current were
somehow extracted from the double-layer system sufficiently
quickly to prevent any difference in the charge densities of
the two-layers from building up, i.e., ifmz were identically
zero. In the case of double-layer systems, unlike the case of
a Josephson junction between two superconductors, it seems
to be impossible to do this. The results we derive below are
for an isolated double-layer system and the resonance fre-
quencies we obtain are analogous to the Josephson plasma
oscillations in an isolated Josephson junction.

Solving for the pseudospin magnetization induced by
Zeeman fields with frequencyv we obtain the following
result for the pseudospin response tensor:

Smy

mz
D 5

\

Ecm
2 2~\v!2

S 2 iv 8pb12t

2~2t14pq2rs! 2 iv D
3S 24phz

4phy
D , ~6.7!

where the collective mode energy is given by

Ecm5@~2t18pb!~2t14pq2rs!#
1/2. ~6.8!

The linearly dispersing collective mode of thet→0 case
acquires a gap because of the lifting of theU(1) symmetry.

All components of this response tensor have poles at the
collective mode energies. The response of the charge density
difference to a time-dependent interlayer bias potential is
given by

xzz[
mz

hz
5

~4p\!2t14pq2rs
Ecm
2 2~\v!2

. ~6.9!

Using the continuity equation we can evaluate the corre-
sponding conductivity, the response in oppositely directed
electric currents to oppositely directed electric fields in the
two layers:

szz~q,v!5e2vxzz~q,v!/ iq2. ~6.10!

For t→0 the real part of the conductivity has ad-function
peak at zero frequency leading to spin-channel
superfluidity.14 In the presence of interlayer tunneling the
d-function peak is shifted tov52t/\ and the superfluid be-
havior is lost.

In the static (v→0) long-wavelength (q→0) limit xzz
approaches a constant:

xzz~v50;q50!5
1

~8pb12t !
. ~6.11!

A constant static interlayer bias potential will40 simply tilt
the pseudospin orientation slightly out of thex̂-ŷ plane. The
effect of interlayer tunneling is to favor smaller tilts. On the
other hand,

xyy~v50,q50!5
1

2t
. ~6.12!

If the tunneling amplitude goes to zero there is no restoring
force for rotations of the pseudospin in thex̂-ŷ plane, the
addition of an infinitesimal imaginary tunneling amplitude
will shift the pseudospin orientation from thex̂ direction to
the ŷ direction, andxyy(v50,q50) diverges.

B. Collective modes with tunneling: Commensurate state

ForBi50 we have been able to calculate collective mode
energies and linear response functions by linearizing the
nonlinears model energy functional around the ground state
pseudospin orientation. ForBiÞ0, the ground state pseu-
dospin orientation in the commensurate state rotates with the
pseudospin Zeeman field and it is necessary to linearize the
nonlinear s model energy functional around the rotating
pseudospin texture. In anticipation of our needs for the case
of the incommensurate state we allow an arbitrary rate of
rotation for the rotating frame pseudospin function:

m̃x5mxcosPx2mysinPx, ~6.13!

m̃y5mxsinPx1mycosPx. ~6.14!

In order to be able to treat the problem analytically, we limit
ourselves to the case of a position-independent tumbling rate
P. The Ginzburg-Landau energy functional, expressed in
terms of the rotating frame pseudospins, is

E5E d2r Fbmz
21

rs
2

u“m̃'u21
rsP

2

2
um̃'u2

2tn@m̃xcos~P2Q!x1m̃ysin~P2Q!x#

1rsPẑ•S ]m̃'

]x
3m̃'D G . ~6.15!

If we allowed only translationally invariant spin textures in
the rotating frame for which the lowest energy occurs, this
energy functional would be minimized for small parallel
fields by choosingP5Q to obtain an energy per area of
rsQ

2/22tn. This is the commensurate state. At large parallel
fields the energy functional would be minimized by the state
with P50, which has the same energy as if no tunneling
were present. These two states cross in energy when
Q2j252. However, as we detail in the following section, the
ground state at high parallel fields can lower its energy fur-
ther by breaking translational symmetry. The commensurate
state is the ground state only forQ,Qc where
Qc
2j2516/p2. Q5Qc for Bi5Bi*
In order for the linearization of this functional to be valid

we must assume we can chooseP so thatm̃x is close to 1
everywhere, both for the ground state and for the collective
excitations in which we are interested. Assuming this to be
the case we can apply periodic boundary conditions in the
thermodynamic limit and drop the total derivative term in the
energy functional. For the commensurate state the linearized
energy functional simplifies to the following Fourier space
version:
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E@m̃y ,mz#5AS rsQ
2

2
2tnD1(

q
S b1

tn

2
2

rsQ
2

2 D umz~q!u2

1S rs
2
q21

tn

2 D um̃yu2. ~6.16!

The first term on the right-hand-side of Eq.~6.16! is the
ground state energy of the commensurate state. The fact that
it becomes positive at largeQ implies that the commensurate
state eventually becomes unstable. As discussed in previous
sections we expect the state to become unstable to the intro-
duction of phase slips or solitons, which involve only the
planar portion of the pseudospin texture, when
rsQ

2.16tn/p2. We note from Eq.~6.16! that if b is small
enough the ground state will become unstable with respect to
textures withmzÞ0 before the solitons are introduced. The
requirement for the applicability of the scenario we intro-
duced previously based on theXY language is that
bl 2.t(162p2)/(4p3). From estimates ofb in Ref. 14, it
is clear that for present double-layer samples this condition is
secure. Nevertheless, the possibility exists that the behavior
in parallel fields could be quite different from that described
here, for double-layer systems with a layer spacing much
smaller than what is achievable at present. We have not ex-
plored this regime in detail and will assume in what follows
that 2b1tn2rsQ

2 is positive in the incommensurate state.
The effect ofBi is then to reduce the collective mode energy,
just as the charged excitation energies are lowered. Solving
the equations of motion with the linearized energy functional
of the commensurate state we find that

Ecm5@~2t18pb24prsQ
2!~2t14prsq

2!#1/2.
~6.17!

This result agrees with collective mode energies calculated
in the Hartree-Fock approximation41 if the Hartree-Fock ap-
proximation is used for the pseudospin stiffness.

C. Collective modes with tunneling: Incommensurate state

For Bi.Bi* it becomes energetically favorable to break
translational symmetry and introduce phase slips, or solitons,
into the pseudospin texture. In the ground state the phase
slips are periodic34,41 with a periodLs which is determined
by minimizing the energy. In general then we choose to work
with pseudospins in a~again uniformly! rotating reference
frame with

P5H Q, Q,Qc

Q2
2p

Ls
5Q2Qs , Q>Qc ,

~6.18!

where Q52p/L i}Bi . For PÞQ the linearized energy
functional is obtained by setting m̃'

2512mz
2 ,

m̃x512(m̃y
21mz

2)/2, and dropping terms higher than second
order inm̃y andmz . We obtain

E5
ArsP

2

2
1E d2r F S b2

rsP
2

2 Dmz
21

rs
2

u¹m̃yu2

1
tn

2
~m̃y

21mz
2!cos~P2Q!x2tnm̃ysin~P2Q!x

2rsPS ]m̃y

]x D . ~6.19!

To be consistent with the linearization assumptions,P must
be chosen so that]m̃y /]x integrates to 0 and this term can
be dropped.

In Fourier space

E5
ArsP

2

2
1(

p
H S b2

rsP
2

2 D um̃z~p!u21
rsq

2

2
um̃y~p!u2J

1
tn

4(
p
„m̃y~p!$m̃y@2p1~P2Q!x̂#

1m̃y@2p1~Q2P!x̂#%1mz~p!$mz@2p1~P2Q!x̂#

1mz@2p1~Q2P!x̂#%…2
tn

2i
AA(

p
$m̃y@~P2Q!x̂#

2m̃y@~Q2P!x̂#%. ~6.20!

We first need to minimize this functional to determine the
ground state. Since there is no term linear inmz it follows
thatmz(q)[0 in the ground state. For ground state calcula-
tions we could work with theXY model in both commensu-
rate and incommensurate cases. Minimizing with respect to
m̃y we find that in the ground statem̃y depends only onx and
that itsx dependence is determined in Fourier space by solv-
ing

rsqx
2m̃y

0~qx!1
tn

2
@m̃y

0~qx1Qs#1my
0~qx2Qs!#

5
tAA
4pl 2i

~dqx ,Qs
2dqx ,2Qs

!. ~6.21!

We restrict our attention here to results which are valid to
leading order int so that the second term on the left-hand
side of Eq.~6.20! can be dropped. This gives

my
0~qx!5

tnAA
2irsQs

2 ~dqx ,Qs
2dqx ,2Qs

!, ~6.22!

which gives a ground state energy per unit area equal to

E

A
52

1

4

~ tn!2

rs~Q2P!2
1

rsP
2

2
. ~6.23!

Minimizing this energy with respect toP we find that the
overall ground state occurs for

P

Q
5
1

2

~ tn!2

rsQ
4 5

p4

512SQc

Q D 4. ~6.24!

This result agrees with the analytic expression given in Ref.
34 after making several corrections of some typos in Eqs.
~2.7! and ~2.8!. For large parallel fieldsP approaches 0,Qs
approachesQ, and the ground state of the system asymptoti-
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cally approaches the ground state in the absence of interlayer
tunneling. We emphasize that asQ approachesQc from
abovem̃y

0 can become large and the linearization approxima-
tions will fail even in the ground state.

Having identified the ground state pseudospin functional
we are able to calculate the collective mode energies and
response functions. To leading order int we find that

m8 y~q!52
4pl 2

\

]E

]mz~2q!

52
2

\n F2hz~q!1~2b1rsq
22rsP

2!mz~q!

1
tn

2
@mz~q1Qsx̂!1mz~q2Qsx̂!#G , ~6.25!
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The soliton lattice acts like an internal grating41 which
couples collective excitations of the ground state in the ab-
sence of interlayer tunneling whose wave vectors are sepa-
rated by multiples ofQs'Q. The collective modes of the
system for smallt will consist of the zone-folded modes of
the t50 system with small corrections due to mode-mode
coupling. The response functions of the system are readily
evaluated numerically from the above equations. Artificial
external gratings are often42 used to allow the infrared light
to couple to finite-wave-vector excitations of two-
dimensional electron systems. The soliton lattice appears to
offer an opportunity to couple to the Goldstone collective
mode of thet50 system at a wave vector which can be
tuned by the application of an in-plane magnetic field. We
reemphasize that asQ approachesQc from abovem̃y

0 can
become large and the linearization approximations will fail
even in the ground state.

VII. EXACT DIAGONALIZATION STUDIES

We now turn to a discussion of exact numerical studies of
the commensurate-incommensurate transition, and in par-
ticular theBi dependence of the energy gap. The importance
of long length scales in this transition will limit the power of
the exact diagonalization approach, but we are still able to
obtain some useful insights into the experimental results ob-
tained by Murphyet al.4 We simulate a bilayer 2D quantum
Hall system in the presence of a tilted magnetic field with a
finite number of electrons, and perform our calculations on
the torus. We make use of the formalism developed by
Haldane43 for the torus to block-diagonalize the Hamiltonian
in each momentum sector. As noted in Sec. V, the in-plane
component of the magnetic field enters only in the tunneling
matrix elements. In order to keep the momentum a good
quantum number, we are constrained to use only discrete

values of the magnetic field, namely, the values which cor-
respond to an integer number of flux quanta enclosed be-
tween the layers. We therefore study the transition for a fixed
value of Bi , and continuously vary the tunneling between
the layers. This is to be contrasted with the experimental
situation in which the tunneling is fixed andBi varies con-
tinuously.

Figure 5 shows the pseudomagnetization calculated as a
function of tunneling amplitude for various fixed values of
Bi , for ten electrons andd/l 51. For fixedBi the commen-
surate state which optimizes the tunneling energy at the cost
of exchange energy occurs at larget. We see in Fig. 5 that
the component of pseudomagnetization aligned with the ef-
fective Zeeman field increases with increasingt and de-
creases withBi , even in the commensurate state. This quan-
tum fluctuation effect is not captured in the classical field
theoretic results we have presented since, strictly speaking,
they apply only when the tunneling amplitude is small. The
increase in the effective magnitude of the ordered moment
with tunneling in the commensurate state may explain the
discrepancy between thet1/2 behavior of the ordered moment
predicted here and the approximately linear behavior seen
experimentally.4

In our finite-size studies the phase transition to the incom-
mensurate state appears as a level crossing between states
with different Haldane pseudomomenta which is accompa-
nied by a large decrease in the component of the pseudospin
aligned with the Zeeman field. In the thermodynamic limit
and close to the phase transition, the pseudospin in the in-
commensurate state is expected to be aligned with the Zee-
man field except in the domain walls of the soliton lattice.
Thus the spatial average of aligned moment is expected to
decrease continuously at the phase boundary.

In our finite size calculations the wave vectorQ corre-
sponding to the rotating Zeeman field satisfies

FIG. 5. Magnetization as a function of tunneling, for several
integer numbers of flux quanta between the layers atN510 and
d/l 51. The curves are labeled by the integer number of flux
quanta produced by the parallel component of the field in the finite
size system.
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Ql 5NfS 2p

N D 1/2, ~7.1!

where N is the number of states in a Landau level,
Nf5BidL/F0, andL is the edge length for a square finite
size square sample. ForN510, Ql '0.79 even for
Nf51. Even the smallest value ofQl that we can consider
is close to the edge of the regime where we expect the long
wavelength theory developed in previous sections to apply.
We do, however, still expect the phase transition to occur
outside this regime. In order to compare these microscopic
calculations more directly with the long-wavelength theory
we have evaluated the energy gap as a function oft. We
present our results in terms of an estimate of the dimension-
less parameterQj which plays the central role in the long-
wavelength theory.

Qj5
2pdl Bi

f0
S 2prs

t D 1/2. ~7.2!

To plot our results we have evaluatedQj in the Hartree-
Fock approximation;t5DSAS/2, corresponding to full pseu-
dospin polarization and

rs
HF52

1

32p2E
0

`

dk Vkh~k!k3, ~7.3!

where Vk5(2pe2/ek)exp(2kd), and h(k)52exp(2k2/2).
Both rs and t are substantially reduced by quantum fluctua-
tions. Previous estimates from finite-size exact diagonaliza-
tion calculations14 suggest thatt is reduced by a larger frac-
tion thanrs , so that the Hartree-Fock approximation should
increasingly underestimateQj as the layer separation in-
creases. According to the PT model, the transition should
occur whenQj54/p. This will allow us to compare the HF
prediction with the exact diagonalization result.

Figures 6, 7, and 8 show theQjHF dependence of the
energy gap ford/l 50.5, 1, and 2, respectively. Note also
that the system studied by Murphyet al. corresponds ap-

proximately tod/l 51.85. The cusp in the energy gap seen
in these figures results from the ground state level crossing
and is not obviously associated with the square root singu-
larities in the energy gap predicted by Read37 which would
be expected to appear only in much larger systems than we
are able to treat. Nevertheless, it does show the expected
behavior of weakening at larger layer separations where the
spin-stiffness and hence the meron-pair string energy is
weakened. We also notice that Hartree-Fock theory accu-
rately predicts the critical field ford/l 50.5, becomes worse
at d/l 51 and fails badly atd/l 52. The direction of the
discrepancy is in the direction anticipated by the above dis-
cussion since the value ofQjHF at the transition is smaller
than 4/p. These results suggest that the mean source of dis-
crepancy between the experiments of Murphyet al. and the

FIG. 6. The energy gap as a function ofQjHF , for Bi corre-
sponding to one enclosed flux quantum, i.e.,Nf51, for N58 and
d/l 50.5.

FIG. 7. The energy gap as a function ofQjHF , for Bi corre-
sponding to one enclosed flux quantum, i.e.,Nf51, for N58 and
d/l 51.

FIG. 8. The energy gap as a function ofQjHF , for Bi corre-
sponding to one enclosed flux quantum, i.e.,Nf51, for N58 and
d/l 52.

11 656 54KUN YANG et al.



PT theory with Hartree-Fock parameters is quantum fluctua-
tions which reduce the ordered moment aligned by the effec-
tive magnetic field. This reduction is responsible for a pro-
portional reduction in the energy gained by forming the
commensurate state and reduces the parallel field strength at
which the transition occurs. For parameters appropriate to
the system studied by Murphyet al. our PT theory withrs
andt given by Hartree-Fock theory givesBi51.3 T whereas
the experimental value isBi*'0.8 T. From Fig. 8, we find
Bi*'0.6 T, in substantially better agreement with experi-
ment.

VIII. SUMMARY

We have presented in this paper a theory of the interesting
effects of a weak interlayer tunneling in double layer quan-
tum Hall systems that spontaneously develop interlayer co-
herence in the absence of tunneling. We have discussed the
properties of the ground state, as well as low energy collec-
tive excitations~neutral and charged! of the system, using
both effective field theory and microscopic Hartree-Fock ap-

proaches. In particular, we have identified a commensurate-
incommensurate phase transition driven by an in-plane com-
ponent of the external magnetic field, which has been
observed in recent experiments. Our theory is in good quali-
tative and semiquantitative agreement with experiments.
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