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Numerical calculation of the optical absorption in semiconductor quantum structures
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We describe a highly efficient, general-purpose, and easy-to-use method of calculating the optical absorption
of semiconductor microstructures. The linear optical susceptibility is obtained by the numerical evaluation of
the polarization in real space and real time, using finite differences and the leap-frog scheme. Numerical effort
and storage scale &(N), whereN is the number of base elements. The algorithm is suitable for large-scale
guantum systems. For illustration, we apply this method to quantum wells in a perpendicular magnetic field,
flat quantum dots, superlattices, coupled multiple quantum wells, and excitons on rough interfaces.
[S0163-18296)04339-1

I. INTRODUCTION There is a long tradition in the numerical solution of
initial-value problemg%!! Although only a very few publi-

The physics of low-dimensional semiconductors hascations explicitly deal with the Schdinger equation, the
evolved rapidly during the past two decadeQuantum methods are very general and can be applied to this problem,
wells, superlattices, quantum wires, quantum dots, polymerdpo. During the past 15 years, wave-packet propagation has
and nanocrystals are examples of those materials. been studied numerically, mostly in atomic and molecular

The optical properties of semiconductors are determineghysics?-14
by eigenvalues and eigenvectors of the electron-hole |t is very common in semiconductor physics to use the
motion” Besides the Coulomb attraction between electroreigenfunctions of the interaction-free electron-hole pair as
and hole, and the quantum confinement, this motion can alsgase elements®*® This results in a tedious evaluation of
be under the influence of electric or magnetic fields, interfacepmegra|S for Coulomb matrix elements. The representation in
roughness, and impurities. The configuration space is genefag| space can be more efficient, and has recently been ap-
ally a six-dimensional domain in re@Wannie) or momen-  plied  with much success in electronic-structure
tum (Bloch) space, and the wave function may have multiple-g|cylationst®
components due to spin and band quantum numbers. Thus, in | this paper, we present a highly efficient method for
most cases of practical interest, the optical properties argajculating the optical spectrum of semiconductor micro-
calculated numerically. _ _ _ structures which is based on a real-space representation of

The number of base functiom$ required for a numerical the Hamiltonian, and the time-dependent solution of the
treatment can reach huge values, typically a million. Obvi-gchrainger equation. In Sec. II, we derive the formulation

ously, those large-scale systems cannot be treated with stagf the optical susceptibility as an initial-value problem.
dard eigenroutines where the full matrix witi® elements  Finjte-difference schemes for the solution of the time-

has to be stored and the numerical effort ScalesteThe dependent Scﬁd'mger equation are evaluated in Sec. Ill. In

dimension which can be handled that way is limited to aboutsec. |v, the described method is applied to various kinds of
10 000 by memory and computing tifior larger sets of |ow-dimensional systems such as quantum wells, quantum
base functions, iterative diagonalizations, based on the Langiots, superlattices, coupled quantum wells, and rough inter-

zos algorithm, have been successfully uéd. faces, with up to four million base functions. A summary is
An alternative approach is to express the Coulombyiven in Sec. V.

Green’s function in terms of an inverse oper&8f. Then a
boundary-value problem has to be solved for each frequency.
The differential operator is neither Hermitian and positive
definite, nor diagonal dominant, as required by most matrix
iterations. For one-dimensional domains, however, the band-
diagonal set of equations can be solved exacthyOifN)
operations withO(N) variables to be stored. As the dimen-  The interaction of a semiconductor with an optical field is
sionality increases, the computational effort approachedescribed by the semiconductor Bloch equatithghe
O(N®) and the memoryO(N?). Yet the solution of the electron-hole pair amplitude, linearized in the field, obeys an
boundary-value problem can still be efficient for stronglyinhomogeneous Schiinger equation. In the effective-mass
anisotropic domains, and calculations with 50 000 base funcapproximation and real-space representation, it takes the
tions have been reportéd. form

II. THE LINEAR OPTICAL SUSCEPTIBILITY
OF LOW-DIMENSIONAL SEMICONDUCTOR
STRUCTURES
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- m} P(re,rp) respectively. The operatét is Hermitian, and the remaining
0%lte Th prefactors are contained in the definition|gfy. The formu-
—ud(re—ry)E(1), (1) lation (5—-6) of the problem is very general, and is not re-
stricted to the effective-mass approximation. It also applies
where for complicated valence band structutésyolecules® and
semiconductor nanocrystdf$In nonlinear optics, the prob-
p(re,rn,—*)=0. lem is solved perturbatively. In that case, each order of the

density matrix obeys an equation of the same type as3g.
with the inhomogeneity determined by its lower orders and
the electric field.

To obtain the optical susceptibilit§8), Egs. (5) and (6)
can be solved using the Fourier transform. This leads to the
usual representations

The inhomogeneitysource termis determined by the elec-
tric field E and the dipole matrix elemenpt. The meanings
of the other symbols are as followg:— homogeneous line-
width (dephasing constantm, ;, — effective masses of elec-
tron and hole, respectively:-e — electron chargeA —
vector potential of the magnetic fieldl, , — confinement

potentials of electrons and holes, respectively=8.85419 [IPNG
As/(Vm) — vacuum dielectric constant; and — relative X(w)=2 m W)
background dielectric constant of the semiconductor. B Tty

The electron-hole-pair amplitude gives rise to a macroyip
scopic polarizatior(dipole density,

1 Hlew=Edey: (elex)=dui 2 lene(el=I
P<t>=5u*f dr y(r,r,0), 2 AR
) o and

where() is the normalization voluméarea, length Due to
the linear nature of Eq(l), the Fourier transform of the X(w):<ﬂ|[ﬁ_ﬁ(w+i,y)i]—1|’u>_ (8)

polarization, R

The symboll represents the identity operator. From Eqd,

it follows that the optical susceptibility is discontinuous with
respect toy, at y=0. The function Iny(w) in the limit
v—+0 is called the optical density.

is proportional to the Fourier transform of the electric field As an alternative to the eigenvalue probld€i®) or the

E. This relationship is expressed in the definition of the lin-boundary-value problert8), we trace back the optical sus-
ear optical susceptibility: ceptibility to an initial-value problem, viz.,

E(w)=f+wdt e lp(t),

— oo

_ o
x(@)= @ xw)=— [ Tdte e ey, 9)
eoE(w) :

where
In most cases, the differential operator in Et). reveals

symmetries. Then, using appropriate coordinates, the actual d -
number of variables can be reduced to less than six, and, 'ﬁaW(t)):HW(t)); |4(0))=1p). (10
technically, Eqs(1) and(2) take a different form. In order to A
obtain a more general notation, we assume thit defined  Since|y(t))=exHt /(if)]|w), this is equivalent to EQ8).
on an a-dimensional domainG with a measuredG Equations (9—10 can also be obtained by choosing
=dé;---dé, g(&1,....,&,), whereg(£§>0 almost every- E(t)=—i#6(t) as the right-hand side of the inhomogeneous
where. The scalar product Schralinger equation(s).
In practice, the upper limit of the Fourier integr&) <5:an
be truncated at a finite value,,=5/y, since e °>=
(elyy= JGdG¢*(§) 489 4 0,006 B... Then, the remaining task is tyo solve the initial-
value problem(10) in the interval[ 0, t;4]. In the next sec-
defines a Hilbert space of functions defined@mand implies  tion, we discuss finite-difference schemes for the solution of
a norm|||. Eq. (100 and we address the issues of accuracy, stability,
With the above definitions, Egél) and(2) take the form  numerical effort, storage, and implementation.
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ll. NUMERICAL SOLUTION Now, we consider the radial part of the two-dimensional

A simple-minded numerical approach of EAQ.0), e.g., Laplacian,

solving a set of ordinary differential equations with a fully
NXN coefficient matrixH by means of a Runge-Kutta A:Ei i)
method, would result inO(N?t2_|H||%/%?) floating-point pap\Pap)

operations, wher@H|| is the norm ofH. However, using a L . . )
sparse matrix and a stable propagation scheme in the tima! the domairG=[0,R]; g(p) =p with the boundary con

domain, the computational effort can be reduced to(%tlon ¢(R)=0. A discretization is given by
O(NtmallH[/%).

Sparse matrices are either obtained from finite-element
methods or from finite differencing. Besides polynomial ap-
proximations for large time steps, there are basically two )
difference schemes used for the time evolution of Schro for j=1,... N—1,
dinger equations: the operator splitting method and the leap-
frog scheme. We chose finite differences combined with the ®1— @0
leap-frog method. As a fully explicit scheme in space and (A(p)o=4T; pjil/ZZ(ji%)h,
time, it is the easiest to implement and most efficient on
vector machines. where p;=jh, h=R/N, j=0,... N=1, and ¢y=0. The

corresponding matrix is Hermitian fogy= 3h, gj=ih,
A. Discretization in space j=1,... N—1. Laplacians in many dimensions can be con-
structed from one-dimensional Laplacians.

The potentials encountered in the description of low-

Space, using f|n!te d|fferences. $|r}ce Itis a standard teChHimensional semiconductors can take various forms. Infinite
nique, we Omy give a brief description O_f the_baSIC CoanEpt%arriers lead to vanishing boundary conditions in the con-
and expressions for those operators which will be used in th nement directions. If a potential is uniformly bound, it

next section. For a comprehensive representation of the sul; '\ yiscretized according t0¢);=U;¢;; U;=U(£).

ject, we rgfer to mthemaUcaI I|teratd|fé?1_ . A potential may have an integrable singularity, still lead-
A function ¢, defined on the qlomalfsl is characterized ing to a finite value of the wave function. Some authors
by its valuese;=¢(£)) on the gridi&}, j=1,... N. The i vent this difficulty by transforming the wave function
scalar product4) is approximated by the quadrature for- to be zero at this point, thus obtaining an additional boundary
mula, condition!* or defining a grid which does not contain the
singularity’®> However, this results in a loss of accuracy if
N . the electron-hole-pair amplitude is to be calculated at the
(<p|zp>=2 @}‘gjwj:(go,w), singularity. The use of non-equidistant grid points would
=1 make the method less flexible. A more convenient way is to

with weightsa.>0. The svmbolss and 4 denote column use the ground-state wave function and energy: if
gntsg;>0. The symbolsp and § d — 38 0g 5(§) T V(8 0gs(§) =Eqs9q5(& and ogo(§#0 for
vectors with componentg; and ¢; , respectively. In accor- g cG. then

dance with the above equation, the representation of th

Dirac function,D(§,&")=46(§—¢&')/9(é) is Dj; =95/ 19;, )

where &, = £'. For the discretization in time, it is essential 3(A@gs);

that the matrixH, resulting from the discretization of the Vis—

HamiltonianH, is Hermitian, with respect to the scalar prod- . L )

uct (.,.) of thediscrete space of grid functions. is a discretization of the potentiaf. _ _
We consider a one-dimensional dom&r=[a,b] with a With the above techniques, we successfully discretized

weight functiong(x)=1. A discretization of the operator the HamiltonianH. The resulting\’x N matrix H is sparse,

1 pj—120j-1—2pjjF Pj+ 120 +1
(A‘P)j:__ h2

Pj

Now, we discretize the Schdinger equation(10) in

(11)

.S.
Pg.sj 9

A=a%9x? is given by i.e., only O(N) of its elements are different from zero. All
eigenvalues are real, and the eigenvectors are orthogonal,
ie.,

Pj-17 20T @ji1
(Ag)="——7——. L
Hox=Exen:  (@xn,@n)= - (12

The resulting matrix .is Hermitian fog;=h. Vanishing  The norm (or spectral radius of H, defined as|/H||
boundary conditions, i.e.p(a)=0 and ¢(b)=0, lead to  _ g,y IHe| /]|¢ll); ¢#0, is related to the eigenvalues by
X]-Zjh, h=(b—a)/(N+1), j=1,...N, ¢=0, and ”HH: ma>{|E1| o |EN|}-

on+1=0. For cyclic (or periodio boundary conditions, o
p(@)=¢(b) and ¢'(a)=¢'(b), we have x;=jh,
h=(b—a)/N, j=0,... N=1, andey;=¢; . In this case,
the largest eigenvalue in magnitude is4/h?, which is After having performed the discretization in space in the
the same as for vanishing boundary conditions, in the limitast subsection, the initial-value problgf0) transforms into
N— o0, a linear set of differential equations,

B. Discretization in time
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thec,” from unity is O[ (w,At)?] for w,At—0. There is no
numerical damping introduced &t is in the stability region.
The relative error of the frequencies compared to the true

SinceH has been found to be sparse, it is desirable to 30|V%alue5w>\ is O[(w)At)2]. Usually, the norm oH already

Eq. (13 by a direct method so that only the operation enforces a sufficiently small step si2d and thus ensures

¢ —Hys, which require<O(N) operations, has to be carried accurate propagation of the lower eigenmodes. The frequen-
out for each time step. This can be done by the followingcies w,” are located in the interval{m/2/At, + 7/2/At),

difference scheme:

 P(tara) — Pty

Iﬁz—At:H‘Z(tnu); t,=nAt, (14
which is called the central difference or “leap-frog”
method!!134

Now, we determine the step sizg for which the above

recursion is stable. Therefore, we expahdn the eigenvec-
tors (12) of H according to

N
Pt =2 Ity @y -
A=1

For eachA=1,... N, the sequenced,(t,)} obeys the
three-level recursion formulél4), where the matrixH has
been replaced by its eigenvalls, . Its fundamental solu-
tions are @, =E, /A):

[—iw\At= V11— (0 At)?]"  for o At#1
i(tn): .
" (1£n)(=i)" for w,At=1
(19

Hence, the difference scheni4) is stable, i.e.|¢(t,)] is
uniformly bound, ifAt<#/|H|.

The solution fory follows from the homogeneous solu-

tions (15 and the initial condition,(0)= . Since the
three-level recursiofil4) requires two initial values, we have
to generatej(t;) from i(t,), consistently with the differen-

tial equation(13). This can be done by an explicit Euler step,

J(t))=(1 —iHAt/%) J(ty). Then, in the stability region, the
solution is

N
> PR - > s>
Bt =3, (cle it cre (¢, W),

where

L 11 (0\A1)*

c c,=1-c¢;
Y21 —(wA2 T o
+_arcsir(w)\At)_ oo N
ODTTTTAL 0 TAr v

Let us briefly summarize the features of the metlibd)

which are most important for our physical problem. The am-

whereas the numerical artifacts, are all situated outside
this region. This is a big advantage over the operator-
splitting method, where the errors originate from noncom-
mutativity of operators and can be distributed over the whole
frequency range.

C. Storage, computational efforts, and implementation

Since we deal with large-scale systems, storage and com-
putational efforts are given in the limil—c. The number
of complex variables is betweerN2and 4N, depending on
whether two or three time levels are stored and if the poten-
tial is precalculated or not.

If the calculation of g(t,.») from (t,) and g(t,.1)
requireskN floating-point operations, then the total number
of floating-point operations iskN||H||/(# ). It is worth not-
ing that the computing speed is not only determined by the
nominal numerical effort, but depends on efficient imple-
mentations, too. Equatiofi4) is entirely built upon vector
additions and matrix-vector multiplications, and can be di-
rectly vectorized.

The implementation is very straightforward and does not
employ variable data structures and recursive calls. Besides a
fast Fourier transform, no library routines have to “make
work.” The FORTRAN programs used in the next section are
all shorter than 400 lines in total. In all cases, it took less
than one day to customize the program to a new situation, for
example, to add or remove space directions, and to exchange
Laplacians, boundary conditions, or potentfls.

IV. EXAMPLES

The main purpose of this section is to demonstrate the
usefulness of the described numerical method. The examples
also show how the abstract notations in Secs. Il and IIl work,
in practice. They cover one-, two-, three-, and four-
dimensional domains, Cartesian and cylindrical coordinates,
vanishing and periodic boundary conditions. Out of a large
class of problems which could be treated, we choose those
which have not yet been comprehensively studied and only
partial results have been published, namely, quantum wells
with finite thickness in a perpendicular magnetic field, flat
quantum dots, superlattices, multiple quantum wells, and ex-
citons on rough interfaces.

Dimensionless quantities are obtained by choosing
h=m=e?/(4meqe)=1 in Eq. (1), where m=m.m;/
(mg+my) is the reduced mass. This leads to the Hartree
units E* =meé*/[(4mege)?h?] and a* =4meqehi’l/(MeP)
for energy and length, respectively. For Gallium Arsenide
we have approximatelf£* =9.4 meV anda* =12 nm.

To obtain a formulation which is independent of the en-

plitudesc, are real. This is important in situations where theergy gap, we either subtract the “bottom” of the band edge
real part of the optical susceptibility is divergent and mustor, when it was appropriate, the energy of the lowest sub-
not be mixed with the finite imaginary part. The deviation of band pair. Since we are mainly interested in qualitative re-
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sults, we assume equal masses for electron and hole. The 22
effect of different masses is discussed elsewfexcept sl
for multiple quantum structures, where tunneling through the sl

barriers essentially modifies the optical spectrum, we assume

infinitely high barriers, which lead to vanishing boundary I

conditions. The Coulomb potential is discretized according E L

to Eq (1) with @gs(x,y,2)=exp(— WC+y2+79); Egs. o5 L TR
in three dimensions and  ¢g4(X,Y) 02'5 |

—exp(—2\/x2+y2) Egs=—2 in two dimensions. 01'25 . , ) . , L
The homogeneous broadening is fixed/at0.1. The time s 0 5 10 15
stepAt is chosen such that the condition of stability is ful-
filled and thatt,,,,/At is an integer power of 2. In the fol-
lowing examples, the number of steps was betwetrafd

215

A. ldeal quantum well

In an ideal quantum well, the electron-hole motion is re-
stricted to a two-dimensional plane. This model is used for
the description of thin quantum wells, and has been treated L
analytically and numerically many times. We calculate the 24 P T T T
optical spectrum numerically to check the accuracy of our 0 1 2 3 4 5
numerical approach. In Cartesian coordinates, the Hamil-
tonian H, the dipole matrix elementk, the domainG, and
the weight functiong are

FIG. 1. Top: imaginary part of the optical susceptibility for an
ideal quantum well on a logarithmic scale vs frequency. Solid line
— exact solution; dashed line — numerical solution in Cartesian
12 142 1 coordinates; dotted line — numerical so_lution_in polar coordinat_es.

_ _ Bottom: ground-state energy of a two-dimensional magnetoexciton
20x° 2z9y2 w/X2+y2 vs cyclotron frequency. Solid line — exact solution; dashed line —
diamagnetic shift; circles — numerical solution in Cartesian coor-
dinates; triangles — numerical solution in polar coordinates.

(Hp)(xy)=| -

+%w§(x2+y2> %y,

To study the accuracy of the discretizatiohl) of the
Coulomb potential, we take into account a perpendicular
2 magnetic field which manifests itself by an additional para-
cogxy)=1. bolic potential. The ground-state energy, s is plotted in
Fig. 1(b). The exact solutior(solid line) is compared with
the numerical solution in Cartesidgircles and polar(tri-
angle$ coordinates. Up to high magnetic field&aAs:

conditions in thex andy direction with a normalization ‘."070'32 BIT), the agreement is excellent. In the Iow-ﬁe}d
limit, o —>0 the ground-state energy behaves like

lengthL =200 and mesh sizés=3% in thex andy direction. 2+ 2 wz (dashed ling This result follows from

A comparable accuracy can be expected from a solution ”E)erturbatlon theory and is known as a diamagnetic shift.

polar coordinates, From this case study, we conclude that reliable results can
be obtained from the chosen mesh sizes and the normaliza-
tion lengths in the directions of free motion. Unless stated

2L(x,Y), otherwise, we assume normalization lengths of 200 and 141
for Cartesian and polar coordinates, respectively, and a mesh
size of 3. If a dimension is smaller than 1, a minimum of
seven grid points is used.

n(x,y)=9ax)d(y), G= —§,+ 5

Here, w.=€eB/m is the cyclotron frequency of an applied
perpendicular magnetic fielB. We use periodic boundary

~ 11 4 17 1 1
e L e

uip)= (:p); G=[0,R]; 9(p)=2mp,

B. Quantum well with finite thickness

with R=141 and the same mesh siae :. in a perpendicular magnetic field

In Fig. 1(a), the optical absorption of a two-dimensional  Extensive theoretical studies in the past were devoted to
semiconductor for zero magnetic field is plotted on a logaideal two-dimensional magnetoexcitons or to the ground-
rithmic scale. The exact solutiosolid line) is compared state energy of magnetoexcitons in a quantum well. Here, we
with the numerical solution in Cartesidadashed lingand in  perform a transition from two-dimensional magnetoexcitons
polar coordinatesdotted ling. The continuum absorption is to three-dimensional magnetoexcitons.
slightly overemphasized in the numerical solution. Besides We consider a quantum well with thicknedsn a mag-
this fact, the agreement is very good. netic field. The optical susceptibility is determined by
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C. Quantum dots

We focus on quantum dots, which were fabricated on the
basis of a quantum well. Flat, square quantum dots have
been studied experimentally by Brunresral ?® The Hamil-
tonian, the dipole matrix element, the domain, and the
weight function are

R 1P 1P 1P 1P
(He) (Xe Xn,Ye Yn) = A2 490 Aol a2
2 1
-
b™ J(Xe=Xn) 2+ (Ye—Yn)?

X ¢(XaneaXh 1yh)’
1
m(Xe Ye Xn:Yn) = i O(Xe™Xn) 8(Ye = Yn);
G=[0,b] . 9(Xe Xn,Ye,Yn) =1,

whereb is the length of the side.
The results of the calculation are shown in Fig. 3 for

FIG. 2. Optical absorption of a quantum well in a perpendicular®=2, 3, 4, and 5. The spectrum of large quantum dots is

magnetic field with cyclotron frequency.=2. The well thick-
nesses ard=0.25, 1, 4, and 16.

(H)(p,2e,2p)

| 119 d 19 1% a?
S| TZ2pip\Pap| 332 iR 28
2 a2p? L W )
—wipt— Zo,Zn),
Ch Vp*+(ze—2p)* Préerth
1 d(p)
M(p,Ze,Zh)=ﬁm5(Ze—Zh);

G=[0,RIX[0,d]%  g(p.Ze.2zn)=2mp.

For a fixed cyclotron frequencw.=2, we choseR=10,
which is about 14 times the magnetic length.

Figure 2 shows the optical spectrum for a well thickness
d=0.25, 1, 4, and 16. The cyclotron frequency is fixed at
wc=2. The spectrum of a thin quantum well resembles that

of the ideal two-dimensional caewith discrete transition

energies. Except for the lowest one, they are separated from
each other by approximately the cyclotron frequency. An
intermixing with excited quantum-well states occurs as the
thickness is increased. The spectrum is fairly irregular when
the magnetic and the size quantization are of the same order
of magnitude. Finally, for large thickness, the absorption
profile turns into that of a bulk semiconductor in a magnetic
field with characteristic Fano resonances for higher-order

magnetoexciton statés.Interestingly, the signatures of the

guasicontinuous, i.e., the separation of the individual peaks
is smaller than the homogeneous broadening.l=eb, the
binding energy is close to the binding energy of the two-
dimensional Coulomb potential, and the slope of the spec-
trum resembles the spectrum of a quantum wdkshed
line). The spectra of the small dots are characterized by well-
separated absorption peaks with different amplitudes and an
increased binding energy.

D. Superlattices

Absorption spectra of superlattices have been calculated
by Chang and co-workefs, using thek-space sampling

Im y (arb. units)

confinement in the growth direction are observed even for

very thick samples, which are usually referred to as “bulk”
semiconductoré?

FIG. 3. Optical absorption of flat, square quantum dots with
sides of lengtth=2, 3, 4, and 5.
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method combined with an iterative diagonalization. The 20.0
problem was also attacked by WhittaRersolving a
boundary-value problem. His model, however, only accounts
for a single miniband pair. In our approach, no restriction is 1754
made with respect to the number of minibands. This allows
us to perform a transition, from a bulk semiconductor to a 15.0
superlattice and from a superlattice to a quantum well, by
increasing the band discontinuity. This corresponds to the 12.5
experimental situation, for example, of different Al concen-
trationsx in a GaAs/Ga_,Al,As superlattice. =
Let d be the period of the superlattice, aHdthe discon- E 100
tinuity of both the valence and the conduction band. The
Hamiltonian, the dipole matrix element, the normalization 75
volume, and the weight function are
5.0
~ 1o a) 18 1
(Hl/f)(PaZaZ)— ZPaP pc?p 8 (922 2(922 2.5
+U(Z+32)+U(Z+32) 0.0-
0 5 10 15
1 [}
NPT ¥(p,2,2),
p FIG. 4. Optical spectra of superlattices with a length of the
periodd=1 and barrier heightsl=0, 5, 10, 15, and 20. The mini-
- 5(p) band density of states is marked as a dashed line.
U(z)=H® _COS(T”’ #(p.2,2)= ﬁ ﬁé(z)’ E. Coupled quantum wells
A different approach to a superlattice is to start from a
single quantum well and increase the number of perjpds
G=[0,R]x[0,d]x _E,+E . g(p,Z,2)=27p, thus obtaining a double, triple, etc., quantum well. In the
2° 2 limit p— <0, one should obtain the spectrum of a superlattice

as calculated in the last subsection. Since any real superlat-

and® denotes the Heavyside function. As a consequence dic€ consists of a finite number of layers, it is important to
the Bloch theorem, the wave-function obeys periodic boundStudy the effects of the finite number of periods and to have
ary conditions with respect to the center-of-mass coordinat@n estimate when coupled quantum wells can be considered
Z. We mention that only one sign has to be changed to ob2S & Superlattice.

tain the optical spectrum of a type-II superlattféehis is a This time, Bloch symmetry cannot be assumed for the
big advantage over previous approaches, where the Hamienter-of-mass coordinate. Instead, the problem has to be

tonian was represented in terms of miniband envelopdormulated in terms of electron and hole coordinatgsind
functions®7:8 z;, in the growth direction. This leads to

The optical spectra are shown in Fig. 4 for a period
d=1 and different band offsetd =0, 5, 10, 15, and 20. The (|:|¢)(P 20.2,)=
corresponding intervals for trecoordinate aré.,= 200, 60, e
30, 20, and 15. In order to trace back the origin of the dif-
ferent peaks, the one-dimension@hiniband density of +U(ze) +U(z,)

2pap

11 4 d 19 12
Pop

states in the growthz) direction is plotted as a dashed line.

The valueH=0 corresponds to a pure three-dimensional _ (P, Ze,2n),
semiconductor. The one-dimensional density of states has Vp2+(Ze—24)? ¢
the typical Lorentz-broadened {é form. For H=5, the
density of states exhibits forbidden zones. The continuum 1 8(p)
absorption in the miniband regions is about the same as for m(p,ze,zn)= \/T mé(ze_zh),
the bulk semiconductor, whereas it drops to the two- z
dimensional value in the regions of miniband gaps. When the G=[0RIX[0,L,]% L,=(p-2)d:

width of the miniband is of the order of the two-dimensional
binding energy H=10. .. 15), a saddle-point exciton can be 9(p.ze.z) =27
observed which originates from the critical point of the den- Prferhn p:

sity of states at the top of the minibaftiAs the height of  with the same potentidll as in the last subsection. Vanish-
the barriers is further increasedH €15. .. 20), the first ing boundary conditions are assumed fgrand z,, which
miniband reduces to a single energy level, and the absorptiomeans, physically, that the multiple quantum well is embed-
spectrum turns into that of a quantum well. ded in a material with virtually infinite band offset.
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light scattering in inhomogeneous media, impurities, and op-
tical properties of low-dimensional semiconductors with
rough interfaces. Some one-dimensional potentials can be
treated exactly, using the transfer matrix metfoth As-
ymptotic expansions of the optical density can be performed
in arbitrary dimensions, provided the momems, of the
spectral density increase slower tham.*° This is useful
only if all orders are known within some approximation and
can be summed up analytically. In this subsection, we nu-
merically calculate absorption spectra of excitons on rough
interfaces, in one and two dimensions.

The optical absorption of an exciton under the influence
of a rough interface inv dimensions is described By

R [ 1 92 1 92
FW(Xq, .o X)) [ W(Xq, - oo X)),
= ! ; G=[0,L,]X X[0,L,I; =1
NI Tt Tl 975

FIG. 5. Optical spectra of coupled quantum wells with a fixed 1 .
barrier heightH =10 and a number of periods=1, 2, 3, 4, and 5. The factorg comes from the center-of-mass motion of the

The one-dimensional density of states is marked as a dashed Iinee.XCiton and the fact that we have assumed equal masses for
the electron and the hole. Far=1, the above equation de-
The results of the calculation are shown in Fig. 5 for layerSCriP€s an exciton in a quantum wire with rough barriers, and
thicknessd=0.5, a modulation depthi =10, and a number @=2 corresponds to an exciton in a quantum well with
of periodsp=1,...,6. Again, the one-dimensional density thickness fluctuations.

of states, which is discrete this time, is shown as a dashed e Study the influence of the fluctuations on the line
shape for a Gaussian stochastic poterifial,

line.

A number of periodg=1 corresponds to a single quan- 1
tum well with thicknesgd=0.5. In this case, the continuum W(r)= E e 1kr|s(k)[el®k),
starts atw=7?/(2d%) = 19.73... Forp=2, we observe two VL1 L, ke2ngt

nearly degenerate excitons. The upper one is strongly
coupled to the continuum of the lower one and, therefore,

exhibits a pronounced Fano line shape. As the number of
periods is further increased, a series of closely spaced ab-
sorption lines accumulates just above the ground state. These ®(k)= randonf—m,+7]; ®(—k)=—-D(k).
excitons are degenerate with continuum states and thus inhg; - . . .
mogeneously broadened. The resulting quasicontinuum re—he statistical p.ropertles.dN are uniquely determined by
sembles the absorption profile in Fig. 4. There is also a prot-he autocorrelation funcqu\(rl—r22)=(W(r21)W(r2)). In
nounced Lorentzian peak at abautH. Its height slightly our example, we assumé(r)=H’exd—r?%(20%)]. The

decreases as the number of periods is increased. Intere§uantitiesH and o can be interpreted as the depths and the

ingly, this feature is not found in the spectrum of the idealcorrelation length of the fluctuations, respectively. The po-
supe’rlattice Fig. 4. tential is self-averaging fot,...,L,—0%, which means

The nature of the peaks can be explained by means of tHhat the one calculation gf(w) usually gives the same result

density of states. The lowest energy level of the quantizatio* ”;]e staltistlical avefre;}g{g(ak;». _ g _
in z direction splits up into different eigenvalues. The low- The calculation of the absorption spectra was done using

estn—2 eigenstates accumulate at the superlattice absorf Normalization lengtt.,=131 072 in the one-dimensional
tion edge, and a miniband is formed for-=. The upper 2S¢ and,=L,= 128 |n.the two-dimensional case. The re-
two eigenstates, however, stay separate from the rest of tiy/ltS areé shown in Fig. 6 for parametet$=0.5 and
spectrum and their height disappears for. However, ¢~ 0-125,0.25, 0.5, and 1. The classical limit;»c, was
since they are weakly coupled to the continuum and theiPPt@ined by convolution of the probability density

— 2\—1/2 2 2 :
spectral weight decreases asi1they should be visible in ,<5[“’_V(£)]>;(27TH ) "ex — w/(2H7)] with a Lorentz-
real superlattices. ian y/(w°+vy9). In practice, this limit is reached if

1/(20%)<H. If both energies1/(20?) and H, are of the
same order of magnitude, a pronounced asymmetric line
shape is observed: the maximum is shifted to a lower energy,
Schralinger equations with stochastic potentials haveand the high-energy shoulder decreases slower than in the
been studied for many decad@sand are used to describe classical limit. The full width at half maximum becomes

|s(k)|2=J’ dek e ™ TA(r),

F. Rough interfaces
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16+ evaluation of the electron-hole-pair amplitude in real space
and real time. The numerical effort and the storage scale like
O(N) with the number of base functiomMs Up to prefactors,
this is the lowest possible value. The algorithm is even more
efficient for the calculation of exciton binding energies, since
a much smaller number of grid points is required than for
calculating a whole spectrum.

Virtually no errors arise from the time propagation, using
the leap-frog scheme, and the accuracy is determined by the
matrix representation of the Hamiltonian. The discretization
of the Coulomb potential by means of the ground-state wave
function provides accurate results, and avoids the calculation
of Coulomb matrix elements.

A particular strength of the real-space representation is its
flexibility: whereas many previous publications deal only
with limiting cases, we are able to cover the whole range of

FIG. 6. Spectra of excitons on rough interfaces for a Gaussiaparameters and, therefore, perform transitions, e.g., from thin
stochastic potential with Gaussian autocorrelation function, in ongq thick samples, small to large confinement, and low to high
(_Ieft) and two (right) dimensions_. The depth of the fluctuations is magnetic fields. To increase accuracy and efficiency for par-
fixed atH=0.5, and the correlation lengths are==, 1, 0.5, 0.25, ooy differential operators and geometries, it is also pos-
and 0.125. . . - .

sible to use mixed bases, made up of finite differences, sub-

smaller as the correlation length is reduced and, as the coP—and indices, and Fourier coefficients. ) )
relation length approaches zero, the spectrum turns into a |© demonstrate the usefulness, we applied the algorithm

single Lorentzian line at the positian=0. This is surpris- to cz_alculate the optical spectra of vgrious low-dimensional

ing, since the mean square of the optical density is indeperﬁem'_CO”qUCt‘?rS- The examples B—F in Sec. IV are treated for

dent of the correlation length, and is the same as for théhe first time in the whole parameter range.

classical probability density. For equal correlation lengths,

o®P)= (D) the departure of the line shape from the clas-

sical limit is much more pronounced in two dimensions than ACKNOWLEDGMENTS
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