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We describe a highly efficient, general-purpose, and easy-to-use method of calculating the optical absorption
of semiconductor microstructures. The linear optical susceptibility is obtained by the numerical evaluation of
the polarization in real space and real time, using finite differences and the leap-frog scheme. Numerical effort
and storage scale asO(N), whereN is the number of base elements. The algorithm is suitable for large-scale
quantum systems. For illustration, we apply this method to quantum wells in a perpendicular magnetic field,
flat quantum dots, superlattices, coupled multiple quantum wells, and excitons on rough interfaces.
@S0163-1829~96!04339-1#

I. INTRODUCTION

The physics of low-dimensional semiconductors has
evolved rapidly during the past two decades.1 Quantum
wells, superlattices, quantum wires, quantum dots, polymers,
and nanocrystals are examples of those materials.

The optical properties of semiconductors are determined
by eigenvalues and eigenvectors of the electron-hole
motion.2 Besides the Coulomb attraction between electron
and hole, and the quantum confinement, this motion can also
be under the influence of electric or magnetic fields, interface
roughness, and impurities. The configuration space is gener-
ally a six-dimensional domain in real~Wannier! or momen-
tum ~Bloch! space, and the wave function may have multiple
components due to spin and band quantum numbers. Thus, in
most cases of practical interest, the optical properties are
calculated numerically.

The number of base functionsN required for a numerical
treatment can reach huge values, typically a million. Obvi-
ously, those large-scale systems cannot be treated with stan-
dard eigenroutines where the full matrix withN2 elements
has to be stored and the numerical effort scales likeN3. The
dimension which can be handled that way is limited to about
10 000 by memory and computing time.3 For larger sets of
base functions, iterative diagonalizations, based on the Lanc-
zos algorithm, have been successfully used.4,7

An alternative approach is to express the Coulomb
Green’s function in terms of an inverse operator.5,6,8 Then a
boundary-value problem has to be solved for each frequency.
The differential operator is neither Hermitian and positive
definite, nor diagonal dominant, as required by most matrix
iterations. For one-dimensional domains, however, the band-
diagonal set of equations can be solved exactly inO(N)
operations withO(N) variables to be stored. As the dimen-
sionality increases, the computational effort approaches
O(N3) and the memoryO(N2). Yet the solution of the
boundary-value problem can still be efficient for strongly
anisotropic domains, and calculations with 50 000 base func-
tions have been reported.9

There is a long tradition in the numerical solution of
initial-value problems.10,11 Although only a very few publi-
cations explicitly deal with the Schro¨dinger equation, the
methods are very general and can be applied to this problem,
too. During the past 15 years, wave-packet propagation has
been studied numerically, mostly in atomic and molecular
physics.12–14

It is very common in semiconductor physics to use the
eigenfunctions of the interaction-free electron-hole pair as
base elements.4,6,15 This results in a tedious evaluation of
integrals for Coulomb matrix elements. The representation in
real space can be more efficient, and has recently been ap-
plied with much success in electronic-structure
calculations.16

In this paper, we present a highly efficient method for
calculating the optical spectrum of semiconductor micro-
structures which is based on a real-space representation of
the Hamiltonian, and the time-dependent solution of the
Schrödinger equation. In Sec. II, we derive the formulation
of the optical susceptibility as an initial-value problem.
Finite-difference schemes for the solution of the time-
dependent Schro¨dinger equation are evaluated in Sec. III. In
Sec. IV, the described method is applied to various kinds of
low-dimensional systems such as quantum wells, quantum
dots, superlattices, coupled quantum wells, and rough inter-
faces, with up to four million base functions. A summary is
given in Sec. V.

II. THE LINEAR OPTICAL SUSCEPTIBILITY
OF LOW-DIMENSIONAL SEMICONDUCTOR

STRUCTURES

The interaction of a semiconductor with an optical field is
described by the semiconductor Bloch equations.17 The
electron-hole pair amplitude, linearized in the field, obeys an
inhomogeneous Schro¨dinger equation. In the effective-mass
approximation and real-space representation, it takes the
form
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where

c~re ,rh ,2`!50.

The inhomogeneity~source term! is determined by the elec-
tric field E and the dipole matrix elementm. The meanings
of the other symbols are as follows:g — homogeneous line-
width ~dephasing constant!; me,h — effective masses of elec-
tron and hole, respectively;2e — electron charge;A —
vector potential of the magnetic field;Ue,h — confinement
potentials of electrons and holes, respectively;«058.85419
As/~Vm! — vacuum dielectric constant; and« — relative
background dielectric constant of the semiconductor.

The electron-hole-pair amplitude gives rise to a macro-
scopic polarization~dipole density!,

P~ t !5
1

V
m* E d3r c~r ,r ,t !, ~2!

whereV is the normalization volume~area, length!. Due to
the linear nature of Eq.~1!, the Fourier transform of the
polarization,

P̃~v!5E
2`

1`

dt e1 ivtP~ t !,

is proportional to the Fourier transform of the electric field
Ẽ. This relationship is expressed in the definition of the lin-
ear optical susceptibility:

x~v!5
P̃~v!

«0Ẽ~v!
. ~3!

In most cases, the differential operator in Eq.~1! reveals
symmetries. Then, using appropriate coordinates, the actual
number of variables can be reduced to less than six, and,
technically, Eqs.~1! and~2! take a different form. In order to
obtain a more general notation, we assume thatc is defined
on an a-dimensional domainG with a measuredG
5dj1•••dja g(j1 , . . . ,ja), whereg(j).0 almost every-
where. The scalar product

^wuc&5E
G
dGw* ~j!c~j! ~4!

defines a Hilbert space of functions defined onG and implies
a normii .

With the above definitions, Eqs.~1! and~2! take the form

i\S ddt1g D uc~ t !&2Ĥuc~ t !&52E~ t !um&,

uc~2`!&5u0& ~5!

and

P~ t !5^muc~ t !&, ~6!

respectively. The operatorĤ is Hermitian, and the remaining
prefactors are contained in the definition ofum&. The formu-
lation ~5–6! of the problem is very general, and is not re-
stricted to the effective-mass approximation. It also applies
for complicated valence band structures,15 molecules,18 and
semiconductor nanocrystals.19 In nonlinear optics, the prob-
lem is solved perturbatively. In that case, each order of the
density matrix obeys an equation of the same type as Eq.~5!,
with the inhomogeneity determined by its lower orders and
the electric field.

To obtain the optical susceptibility~3!, Eqs. ~5! and ~6!
can be solved using the Fourier transform. This leads to the
usual representations

x~v!5(
l

z^muwl& z2

El2\~v1 ig!
, ~7!

with

Ĥuwl&5Eluwl&; ^wluwl8&5dll8; (
l

uwl& ^ ^wlu5 Î

and

x~v!5^mu@Ĥ2\~v1 ig! Î #21um&. ~8!

The symbolÎ represents the identity operator. From Eq.~7!,
it follows that the optical susceptibility is discontinuous with
respect tog, at g50. The function Imx(v) in the limit
g→10 is called the optical density.

As an alternative to the eigenvalue problem~7! or the
boundary-value problem~8!, we trace back the optical sus-
ceptibility to an initial-value problem, viz.,

x~v!5
1

2 i\E0
`

dte2 ivte2gt^muc~ t !&, ~9!

where

i\
d

dt
uc~ t !&5Ĥuc~ t !&; uc~0!&5um&. ~10!

Sinceuc(t)&5exp@Ĥt /(i\)#um&, this is equivalent to Eq.~8!.
Equations ~9–10! can also be obtained by choosing
E(t)52 i\d(t) as the right-hand side of the inhomogeneous
Schrödinger equation~5!.

In practice, the upper limit of the Fourier integral~9! can
be truncated at a finite valuetmax55/g, since e255
0.006 73 . . . Then, the remaining task is to solve the initial-
value problem~10! in the interval@0, tmax#. In the next sec-
tion, we discuss finite-difference schemes for the solution of
Eq. ~10! and we address the issues of accuracy, stability,
numerical effort, storage, and implementation.
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III. NUMERICAL SOLUTION

A simple-minded numerical approach of Eq.~10!, e.g.,
solving a set of ordinary differential equations with a fully
N3N coefficient matrixH by means of a Runge-Kutta
method, would result inO(N2tmax

2 iHi2/\2) floating-point
operations, whereiHi is the norm ofH. However, using a
sparse matrix and a stable propagation scheme in the time
domain, the computational effort can be reduced to
O(NtmaxiHi /\).

Sparse matrices are either obtained from finite-element
methods or from finite differencing. Besides polynomial ap-
proximations for large time steps, there are basically two
difference schemes used for the time evolution of Schro¨-
dinger equations: the operator splitting method and the leap-
frog scheme. We chose finite differences combined with the
leap-frog method. As a fully explicit scheme in space and
time, it is the easiest to implement and most efficient on
vector machines.

A. Discretization in space

Now, we discretize the Schro¨dinger equation~10! in
space, using finite differences. Since it is a standard tech-
nique, we only give a brief description of the basic concepts
and expressions for those operators which will be used in the
next section. For a comprehensive representation of the sub-
ject, we refer to mathematical literature.10,11

A function w, defined on the domainG is characterized
by its valuesw j5w(jj ) on the grid$jj%, j51, . . . ,N. The
scalar product~4! is approximated by the quadrature for-
mula,

^wuc&5(
j51

N

w j* gjc j5~wW ,cW !,

with weightsgj.0. The symbolswW and cW denote column
vectors with componentsw j andc j , respectively. In accor-
dance with the above equation, the representation of the
Dirac function,D(j,j8)5d(j2j8)/g(j) is Dj j 85d j j 8 /gj ,
wherejj 85j8. For the discretization in time, it is essential
that the matrixH, resulting from the discretization of the
HamiltonianĤ, is Hermitian, with respect to the scalar prod-
uct (.,.) of thediscrete space of grid functions.

We consider a one-dimensional domainG5@a,b# with a
weight functiong(x)[1. A discretization of the operator
D5]2/]x2 is given by

~Dw! j5
w j2122w j1w j11

h2
.

The resulting matrix is Hermitian forgi[h. Vanishing
boundary conditions, i.e.,w(a)50 and w(b)50, lead to
xj5 jh, h5(b2a)/(N11), j51, . . . ,N, w050, and
wN1150. For cyclic ~or periodic! boundary conditions,
w(a)5w(b) and w8(a)5w8(b), we have xj5 jh,
h5(b2a)/N, j50, . . . ,N21, andwN1 j5w j . In this case,
the largest eigenvalue in magnitude is24/h2, which is
the same as for vanishing boundary conditions, in the limit
N→`.

Now, we consider the radial part of the two-dimensional
Laplacian,

D5
1

r

]

]r S r
]

]r D ,
on the domainG5@0,R#; g(r)5r with the boundary con-
dition w(R)50. A discretization is given by

~Dw! j5
1

r j

r j21/2w j2122r jw j1r j11/2w j11

h2

for j51, . . . ,N21,

~Dw!054
w12w0

h2
; r j61/25~ j61

2!h,

where r j5 jh, h5R/N, j50, . . . ,N21, and wN50. The
corresponding matrix is Hermitian forg05

1
8h, gj5 jh,

j51, . . . ,N21. Laplacians in many dimensions can be con-
structed from one-dimensional Laplacians.

The potentials encountered in the description of low-
dimensional semiconductors can take various forms. Infinite
barriers lead to vanishing boundary conditions in the con-
finement directions. If a potentialU is uniformly bound, it
can be discretized according to (Uw) j5Ujw j ; Uj5U(jj ).

A potential may have an integrable singularity, still lead-
ing to a finite value of the wave function. Some authors
circumvent this difficulty by transforming the wave function
to be zero at this point, thus obtaining an additional boundary
condition,14 or defining a grid which does not contain the
singularity.12 However, this results in a loss of accuracy if
the electron-hole-pair amplitude is to be calculated at the
singularity. The use of non-equidistant grid points would
make the method less flexible. A more convenient way is to
use the ground-state wave function and energy: if
21

2Dwg.s.(j)1V(j)wg.s.(j)5Eg.s.wg.s.(j) andwg.s.(j)Þ0 for
jPG, then

Vj5

1
2 ~Dwg.s.! j

wg.s.j
1Eg.s. ~11!

is a discretization of the potentialV.
With the above techniques, we successfully discretized

the HamiltonianĤ. The resultingN3N matrix H is sparse,
i.e., onlyO(N) of its elements are different from zero. All
eigenvalues are real, and the eigenvectors are orthogonal,
i.e.,

HwW l5ElwW l ; ~wW l ,wW l8!5dll8. ~12!

The norm ~or spectral radius! of H, defined as iHi
5 sup~ iHwi / iwi !; wW Þ0W , is related to the eigenvalues by
iHi5 max$uE1u, . . . ,uENu%.

B. Discretization in time

After having performed the discretization in space in the
last subsection, the initial-value problem~10! transforms into
a linear set of differential equations,
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i\
]

]t
cW ~ t !5HcW ~ t !. ~13!

SinceH has been found to be sparse, it is desirable to solve
Eq. ~13! by a direct method so that only the operation
cW °HcW , which requiresO(N) operations, has to be carried
out for each time step. This can be done by the following
difference scheme:

i\
cW ~ tn12!2cW ~ tn!

2Dt
5HcW ~ tn11!; tn5nDt, ~14!

which is called the central difference or ‘‘leap-frog’’
method.11,13,14

Now, we determine the step sizeDt for which the above
recursion is stable. Therefore, we expandcW on the eigenvec-
tors ~12! of H according to

cW ~ tn!5 (
l51

N

cl~ tn!wW l .

For eachl51, . . . ,N, the sequence$cl(tn)% obeys the
three-level recursion formula~14!, where the matrixH has
been replaced by its eigenvalueEl . Its fundamental solu-
tions are (vl5El /\):

cl
6~ tn!5H @2 ivlDt6A12~vlDt !2#n for vlDtÞ1

~16n!~2 i !n for vlDt51
.

~15!

Hence, the difference scheme~14! is stable, i.e.,icW (tn)i is
uniformly bound, ifDt,\/iHi .

The solution forcW follows from the homogeneous solu-
tions ~15! and the initial condition,cW (0)5mW . Since the
three-level recursion~14! requires two initial values, we have
to generatecW (t1) from cW (t0), consistently with the differen-
tial equation~13!. This can be done by an explicit Euler step,
cW (t1)5(I2 iHDt/\)cW (t0). Then, in the stability region, the
solution is

cW ~ tn!5 (
l51

N

~cl
1e2 ivl

1tn1cl
2e2 ivl

2tn!~wW l ,mW !wW l ,

where

cl
15

11A12~vlDt !2

2A12~vlDt !2
; cl

2512cl
1 ;

vl
15

arcsin~vlDt !

Dt
; vl

25
p

Dt
2vl

1 .

Let us briefly summarize the features of the method~14!
which are most important for our physical problem. The am-
plitudescl

6 are real. This is important in situations where the
real part of the optical susceptibility is divergent and must
not be mixed with the finite imaginary part. The deviation of

thecl
1 from unity isO@(vlDt)2# for vlDt→0. There is no

numerical damping introduced ifDt is in the stability region.
The relative error of the frequenciesvl

1 compared to the true
valuesvl is O@(vlDt)2#. Usually, the norm ofH already
enforces a sufficiently small step sizeDt and thus ensures
accurate propagation of the lower eigenmodes. The frequen-
cies vl

1 are located in the interval (2p/2/Dt,1p/2/Dt),
whereas the numerical artifactsvl

2 are all situated outside
this region. This is a big advantage over the operator-
splitting method, where the errors originate from noncom-
mutativity of operators and can be distributed over the whole
frequency range.

C. Storage, computational efforts, and implementation

Since we deal with large-scale systems, storage and com-
putational efforts are given in the limitN→`. The number
of complex variables is between 2N and 4N, depending on
whether two or three time levels are stored and if the poten-
tial is precalculated or not.

If the calculation ofcW (tn12) from cW (tn) and cW (tn11)
requireskN floating-point operations, then the total number
of floating-point operations is 5kNiHi /(\g). It is worth not-
ing that the computing speed is not only determined by the
nominal numerical effort, but depends on efficient imple-
mentations, too. Equation~14! is entirely built upon vector
additions and matrix-vector multiplications, and can be di-
rectly vectorized.

The implementation is very straightforward and does not
employ variable data structures and recursive calls. Besides a
fast Fourier transform, no library routines have to ‘‘make
work.’’ The FORTRAN programs used in the next section are
all shorter than 400 lines in total. In all cases, it took less
than one day to customize the program to a new situation, for
example, to add or remove space directions, and to exchange
Laplacians, boundary conditions, or potentials.20

IV. EXAMPLES

The main purpose of this section is to demonstrate the
usefulness of the described numerical method. The examples
also show how the abstract notations in Secs. II and III work,
in practice. They cover one-, two-, three-, and four-
dimensional domains, Cartesian and cylindrical coordinates,
vanishing and periodic boundary conditions. Out of a large
class of problems which could be treated, we choose those
which have not yet been comprehensively studied and only
partial results have been published, namely, quantum wells
with finite thickness in a perpendicular magnetic field, flat
quantum dots, superlattices, multiple quantum wells, and ex-
citons on rough interfaces.

Dimensionless quantities are obtained by choosing
\5m5e2/(4p«0«)51 in Eq. ~1!, where m5memh /
(me1mh) is the reduced mass. This leads to the Hartree
units E*5me4/@(4p«0«)

2\2# and a*54p«0«\2/(me2)
for energy and length, respectively. For Gallium Arsenide
we have approximatelyE*59.4 meV anda*512 nm.

To obtain a formulation which is independent of the en-
ergy gap, we either subtract the ‘‘bottom’’ of the band edge
or, when it was appropriate, the energy of the lowest sub-
band pair. Since we are mainly interested in qualitative re-
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sults, we assume equal masses for electron and hole. The
effect of different masses is discussed elsewhere.21 Except
for multiple quantum structures, where tunneling through the
barriers essentially modifies the optical spectrum, we assume
infinitely high barriers, which lead to vanishing boundary
conditions. The Coulomb potential is discretized according
to Eq. ~11! with wg.s.(x,y,z)5exp(2Ax21y21z2); Eg.s.
521

2 in three dimensions and wg.s.(x,y)
5exp(22Ax21y2); Eg.s.522 in two dimensions.

The homogeneous broadening is fixed atg50.1. The time
stepDt is chosen such that the condition of stability is ful-
filled and thattmax/Dt is an integer power of 2. In the fol-
lowing examples, the number of steps was between 212 and
215.

A. Ideal quantum well

In an ideal quantum well, the electron-hole motion is re-
stricted to a two-dimensional plane. This model is used for
the description of thin quantum wells, and has been treated
analytically and numerically many times. We calculate the
optical spectrum numerically to check the accuracy of our
numerical approach. In Cartesian coordinates, the Hamil-
tonian Ĥ, the dipole matrix elementm, the domainG, and
the weight functiong are

~Ĥc!~x,y!5F2
1

2

]2

]x2
2
1

2

]2

]y2
2

1

Ax21y2

1
1

8
vc
2~x21y2!Gc~x,y!,

m~x,y!5d~x!d~y!; G5F2
L

2
,1

L

2G 2; g~x,y![1.

Here,vc5eB/m is the cyclotron frequency of an applied
perpendicular magnetic fieldB. We use periodic boundary
conditions in thex and y direction with a normalization

lengthL5200 and mesh sizesh5 1
8 in thex andy direction.

A comparable accuracy can be expected from a solution in
polar coordinates,

~Ĥc!~r!5F2
1

2

1

r

]

]r S r
]

]r D2
1

r
1
1

8
vc
2r2Gc~x,y!,

m~r!5
d~r!

2pr
; G5@0,R#; g~r!52pr,

with R5141 and the same mesh sizeh5 1
8 .

In Fig. 1~a!, the optical absorption of a two-dimensional
semiconductor for zero magnetic field is plotted on a loga-
rithmic scale. The exact solution~solid line! is compared
with the numerical solution in Cartesian~dashed line! and in
polar coordinates~dotted line!. The continuum absorption is
slightly overemphasized in the numerical solution. Besides
this fact, the agreement is very good.

To study the accuracy of the discretization~11! of the
Coulomb potential, we take into account a perpendicular
magnetic field which manifests itself by an additional para-
bolic potential. The ground-state energyEg.s. is plotted in
Fig. 1~b!. The exact solution~solid line! is compared with
the numerical solution in Cartesian~circles! and polar~tri-
angles! coordinates. Up to high magnetic fields~GaAs:
vc'0.32B/T), the agreement is excellent. In the low-field
limit, vc→0, the ground-state energy behaves like
Eg.s.;221 3

64 vc
2 ~dashed line!. This result follows from

perturbation theory and is known as a diamagnetic shift.
From this case study, we conclude that reliable results can

be obtained from the chosen mesh sizes and the normaliza-
tion lengths in the directions of free motion. Unless stated
otherwise, we assume normalization lengths of 200 and 141
for Cartesian and polar coordinates, respectively, and a mesh
size of 18. If a dimension is smaller than 1, a minimum of
seven grid points is used.

B. Quantum well with finite thickness
in a perpendicular magnetic field

Extensive theoretical studies in the past were devoted to
ideal two-dimensional magnetoexcitons or to the ground-
state energy of magnetoexcitons in a quantum well. Here, we
perform a transition from two-dimensional magnetoexcitons
to three-dimensional magnetoexcitons.

We consider a quantum well with thicknessd in a mag-
netic field. The optical susceptibility is determined by

FIG. 1. Top: imaginary part of the optical susceptibility for an
ideal quantum well on a logarithmic scale vs frequency. Solid line
— exact solution; dashed line — numerical solution in Cartesian
coordinates; dotted line — numerical solution in polar coordinates.
Bottom: ground-state energy of a two-dimensional magnetoexciton
vs cyclotron frequency. Solid line — exact solution; dashed line —
diamagnetic shift; circles — numerical solution in Cartesian coor-
dinates; triangles — numerical solution in polar coordinates.
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~Ĥc!~r,ze ,zh!

5F2
1

2

1

r

]

]r S r
]

]r D 2
1

4

]2

]ze
2 2

1

4

]2

]zh
2 2

p2

2d2

1
1

8
vc
2r22

1

Ar21~ze2zh!
2Gc~r,ze ,zh!,

m~r,ze ,zh!5
1

Ad
d~r!

2pr
d~ze2zh!;

G5@0,R#3@0,d# 2; g~r,ze ,zh!52pr.

For a fixed cyclotron frequencyvc52, we choseR510,
which is about 14 times the magnetic length.

Figure 2 shows the optical spectrum for a well thickness
d50.25, 1, 4, and 16. The cyclotron frequency is fixed at
vc52. The spectrum of a thin quantum well resembles that
of the ideal two-dimensional case22 with discrete transition
energies. Except for the lowest one, they are separated from
each other by approximately the cyclotron frequency. An
intermixing with excited quantum-well states occurs as the
thickness is increased. The spectrum is fairly irregular when
the magnetic and the size quantization are of the same order
of magnitude. Finally, for large thickness, the absorption
profile turns into that of a bulk semiconductor in a magnetic
field with characteristic Fano resonances for higher-order
magnetoexciton states.23 Interestingly, the signatures of the
confinement in the growth direction are observed even for
very thick samples, which are usually referred to as ‘‘bulk’’
semiconductors.24

C. Quantum dots

We focus on quantum dots, which were fabricated on the
basis of a quantum well. Flat, square quantum dots have
been studied experimentally by Brunneret al.25 The Hamil-
tonian, the dipole matrix element, the domain, and the
weight function are

~Ĥc!~xe ,xh ,ye ,yh!5S 2
1

4

]2

]xe
2 2

1

4

]2

]xh
2 2

1

4

]2

]ye
2 2

1

4

]2

]yh
2

2
p2

b2
2

1

A~xe2xh!
21~ye2yh!

2D
3c~xe ,ye ,xh ,yh!,

m~xe ,ye ,xh ,yh!5
1

b
d~xe2xh!d~ye2yh!;

G5@0,b# 4; g~xe ,xh ,ye ,yh![1,

whereb is the length of the side.
The results of the calculation are shown in Fig. 3 for

b52, 3, 4, and 5. The spectrum of large quantum dots is
quasicontinuous, i.e., the separation of the individual peaks
is smaller than the homogeneous broadening. Forb55, the
binding energy is close to the binding energy of the two-
dimensional Coulomb potential, and the slope of the spec-
trum resembles the spectrum of a quantum well~dashed
line!. The spectra of the small dots are characterized by well-
separated absorption peaks with different amplitudes and an
increased binding energy.

D. Superlattices

Absorption spectra of superlattices have been calculated
by Chang and co-workers,4,7 using thek-space sampling

FIG. 2. Optical absorption of a quantum well in a perpendicular
magnetic field with cyclotron frequencyvc52. The well thick-
nesses ared50.25, 1, 4, and 16.

FIG. 3. Optical absorption of flat, square quantum dots with
sides of lengthb52, 3, 4, and 5.
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method combined with an iterative diagonalization. The
problem was also attacked by Whittaker,8 solving a
boundary-value problem. His model, however, only accounts
for a single miniband pair. In our approach, no restriction is
made with respect to the number of minibands. This allows
us to perform a transition, from a bulk semiconductor to a
superlattice and from a superlattice to a quantum well, by
increasing the band discontinuity. This corresponds to the
experimental situation, for example, of different Al concen-
trationsx in a GaAs/Ga12xAl xAs superlattice.

Let d be the period of the superlattice, andH the discon-
tinuity of both the valence and the conduction band. The
Hamiltonian, the dipole matrix element, the normalization
volume, and the weight function are

~Ĥc!~r,Z,z!5F2
1

2

1

r
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]r S r
]

]r D 2
1
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]2

]Z2
2
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1U~Z1 1
2z!1U~Z1 1
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2
1

Ar21z2
Gc~r,Z,z!,

U~z!5HQF2cosS 2pz

d D G ; m~r,Z,z!5
1
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2pr
d~z!,

G5@0,R#3@0,d#3F2
Lz
2
,1

Lz
2 G ; g~r,Z,z!52pr,

andQ denotes the Heavyside function. As a consequence of
the Bloch theorem, the wave-function obeys periodic bound-
ary conditions with respect to the center-of-mass coordinate
Z. We mention that only one sign has to be changed to ob-
tain the optical spectrum of a type-II superlattice.26 This is a
big advantage over previous approaches, where the Hamil-
tonian was represented in terms of miniband envelope
functions.4,7,8

The optical spectra are shown in Fig. 4 for a period
d51 and different band offsetsH50, 5, 10, 15, and 20. The
corresponding intervals for thez coordinate areLz5200, 60,
30, 20, and 15. In order to trace back the origin of the dif-
ferent peaks, the one-dimensional~miniband! density of
states in the growth (z) direction is plotted as a dashed line.

The valueH50 corresponds to a pure three-dimensional
semiconductor. The one-dimensional density of states has
the typical Lorentz-broadened 1/Av form. For H55, the
density of states exhibits forbidden zones. The continuum
absorption in the miniband regions is about the same as for
the bulk semiconductor, whereas it drops to the two-
dimensional value in the regions of miniband gaps. When the
width of the miniband is of the order of the two-dimensional
binding energy (H510 . . . 15), a saddle-point exciton can be
observed which originates from the critical point of the den-
sity of states at the top of the miniband.27 As the height of
the barriers is further increased (H515 . . . 20), the first
miniband reduces to a single energy level, and the absorption
spectrum turns into that of a quantum well.

E. Coupled quantum wells

A different approach to a superlattice is to start from a
single quantum well and increase the number of periodsp,
thus obtaining a double, triple, etc., quantum well. In the
limit p→`, one should obtain the spectrum of a superlattice
as calculated in the last subsection. Since any real superlat-
tice consists of a finite number of layers, it is important to
study the effects of the finite number of periods and to have
an estimate when coupled quantum wells can be considered
as a superlattice.

This time, Bloch symmetry cannot be assumed for the
center-of-mass coordinate. Instead, the problem has to be
formulated in terms of electron and hole coordinatesze and
zh in the growth direction. This leads to
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with the same potentialU as in the last subsection. Vanish-
ing boundary conditions are assumed forze and zh , which
means, physically, that the multiple quantum well is embed-
ded in a material with virtually infinite band offset.

FIG. 4. Optical spectra of superlattices with a length of the
periodd51 and barrier heightsH50, 5, 10, 15, and 20. The mini-
band density of states is marked as a dashed line.
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The results of the calculation are shown in Fig. 5 for layer
thicknessd50.5, a modulation depthH510, and a number
of periodsp51, . . . ,6. Again, the one-dimensional density
of states, which is discrete this time, is shown as a dashed
line.

A number of periodsp51 corresponds to a single quan-
tum well with thicknessd50.5. In this case, the continuum
starts atv5p2/(2 d2)5 19.73 . . . Forp52, we observe two
nearly degenerate excitons. The upper one is strongly
coupled to the continuum of the lower one and, therefore,
exhibits a pronounced Fano line shape. As the number of
periods is further increased, a series of closely spaced ab-
sorption lines accumulates just above the ground state. These
excitons are degenerate with continuum states and thus inho-
mogeneously broadened. The resulting quasicontinuum re-
sembles the absorption profile in Fig. 4. There is also a pro-
nounced Lorentzian peak at aboutv5H. Its height slightly
decreases as the number of periods is increased. Interest-
ingly, this feature is not found in the spectrum of the ideal
superlattice, Fig. 4.

The nature of the peaks can be explained by means of the
density of states. The lowest energy level of the quantization
in z direction splits up inton different eigenvalues. The low-
est n22 eigenstates accumulate at the superlattice absorp-
tion edge, and a miniband is formed forn→`. The upper
two eigenstates, however, stay separate from the rest of the
spectrum and their height disappears forn→`. However,
since they are weakly coupled to the continuum and their
spectral weight decreases as 1/n, they should be visible in
real superlattices.

F. Rough interfaces

Schrödinger equations with stochastic potentials have
been studied for many decades,28 and are used to describe

light scattering in inhomogeneous media, impurities, and op-
tical properties of low-dimensional semiconductors with
rough interfaces. Some one-dimensional potentials can be
treated exactly, using the transfer matrix method.28,29 As-
ymptotic expansions of the optical density can be performed
in arbitrary dimensions, provided the momentsAm of the
spectral density increase slower thanm!.30 This is useful
only if all orders are known within some approximation and
can be summed up analytically. In this subsection, we nu-
merically calculate absorption spectra of excitons on rough
interfaces, in one and two dimensions.

The optical absorption of an exciton under the influence
of a rough interface ina dimensions is described by29

~Ĥc!~x,y!5F2
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The factor 18 comes from the center-of-mass motion of the
exciton and the fact that we have assumed equal masses for
the electron and the hole. Fora51, the above equation de-
scribes an exciton in a quantum wire with rough barriers, and
a52 corresponds to an exciton in a quantum well with
thickness fluctuations.

We study the influence of the fluctuations on the line
shape for a Gaussian stochastic potential,30

W~r !5
1

AL1•••La
(

kP2pG21
e1 ik•rus~k!ueiF~k!,

us~k!u25E dak e2 ik•rA~r !,

F~k!5 random@2p,1p#; F~2k!52F~k!.

The statistical properties ofW are uniquely determined by
the autocorrelation functionA(r12r2)5^W(r1)W(r2)&. In
our example, we assumeA(r )5H2exp@2r2/(2s2)#. The
quantitiesH ands can be interpreted as the depths and the
correlation length of the fluctuations, respectively. The po-
tential is self-averaging forL1 , . . . ,La→`, which means
that the one calculation ofx(v) usually gives the same result
as the statistical average^x~v!&.

The calculation of the absorption spectra was done using
a normalization lengthLx5131 072 in the one-dimensional
case andLx5Ly5128 in the two-dimensional case. The re-
sults are shown in Fig. 6 for parametersH50.5 and
s50.125, 0.25, 0.5, and 1. The classical limit,s→`, was
obtained by convolution of the probability density
^d@v2V(r )#&5(2pH2)21/2exp@2v2/(2H2)# with a Lorentz-
ian g/(v21g2). In practice, this limit is reached if
1/(2s2)!H. If both energies,1/(2s2) andH, are of the
same order of magnitude, a pronounced asymmetric line
shape is observed: the maximum is shifted to a lower energy,
and the high-energy shoulder decreases slower than in the
classical limit. The full width at half maximum becomes

FIG. 5. Optical spectra of coupled quantum wells with a fixed
barrier heightH510 and a number of periodsp51, 2, 3, 4, and 5.
The one-dimensional density of states is marked as a dashed line.
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smaller as the correlation length is reduced and, as the cor-
relation length approaches zero, the spectrum turns into a
single Lorentzian line at the positionv50. This is surpris-
ing, since the mean square of the optical density is indepen-
dent of the correlation length, and is the same as for the
classical probability density. For equal correlation lengths,
s (2D)5s (1D), the departure of the line shape from the clas-
sical limit is much more pronounced in two dimensions than
in one dimension. This holds true even fors (2D)5A2s (1D),
where all moments of the optical densities are equal up to the
third order.30 This shows that a one-dimensional model gives
only a very rough approximation of the line shape in two
dimensions.

V. SUMMARY

We have presented a method of calculating optical spectra
of semiconductor microstructures which is based upon the

evaluation of the electron-hole-pair amplitude in real space
and real time. The numerical effort and the storage scale like
O(N) with the number of base functionsN. Up to prefactors,
this is the lowest possible value. The algorithm is even more
efficient for the calculation of exciton binding energies, since
a much smaller number of grid points is required than for
calculating a whole spectrum.

Virtually no errors arise from the time propagation, using
the leap-frog scheme, and the accuracy is determined by the
matrix representation of the Hamiltonian. The discretization
of the Coulomb potential by means of the ground-state wave
function provides accurate results, and avoids the calculation
of Coulomb matrix elements.

A particular strength of the real-space representation is its
flexibility: whereas many previous publications deal only
with limiting cases, we are able to cover the whole range of
parameters and, therefore, perform transitions, e.g., from thin
to thick samples, small to large confinement, and low to high
magnetic fields. To increase accuracy and efficiency for par-
ticular differential operators and geometries, it is also pos-
sible to use mixed bases, made up of finite differences, sub-
band indices, and Fourier coefficients.

To demonstrate the usefulness, we applied the algorithm
to calculate the optical spectra of various low-dimensional
semiconductors. The examples B–F in Sec. IV are treated for
the first time in the whole parameter range.
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