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A method is developed for implementing the coupled-band envelope-function-approxirtiafianformal-
ism for the calculation of the electronic structure of superlattices. The approach overcomes the difficulties in
handling exponentially growing and decaying wave-function components, in particular, the so-called wing
solutions, as is the case with existing secular equations. As importantly, the secular equation, which, in general,
is general complex, is recast into a Hermitian form, which makes it easy to separate degenerate eigensolutions
of the superlattice problem. Therefore, it is not necessary to first find a unitary transformation to eliminate the
Kramers degeneracy of the startikgp Hamiltonian. In the case of the simple Kronig-Penney model, the
present formalism recasts the characteristic equation into a form that directly exhibits its parentage to the
underlying quantum-well problem. The present method can be used in conjunction with Burt's EFA formalism
in the form of a coupled differential equation with piecewise-constant coefficients. The method is demonstrated
on the example of the technologically important semiconducting In4&Gén ,Sb type-Il superlattice.
[S0163-182696)03340-1

I. INTRODUCTION ducesN pairs of real eigenvalues. The product of distinct
eigenvalues changes sign at the roots of the superlattice

b | hod f lculati he el . roblem and Kramers degenerate solutions correspond to the
€ a popular method for calculating the electronic structurg, ., ;oq_diagonal elements of the secular matrix at the root.

of band-gap engineered materials such as quantum wells aRgherefore, it is not necessary to first find a unitary transfor-

N -3 . . .
superlatﬂcgé. However, the numerical implementation of ation to eliminate the Kramers degeneracy of the starting
the formalism suffers from two difficulties. First, the com- . Hamiltonian.

monly used EFA secular equatléﬁg have difficulties in In the case of the Simp'e Kronig_Penney moﬁe& dif-
handling exponentially growing or decaying wave functionferent characteristic equation is obtained, which, in the limit
components, especially the spurious evanescent solutionst very wide barriers, becomes the characteristic equation for
sometimes called the “wing solutions.’A solution for han-  a quantum well. The equation also furnishes convenient so-
dling such numerical problems for quantum wells was of-lutions for bands at the center and the edges of the Brillouin
fered earlief In the case of nonperiodic semiconductor het-zone. In addition, the present method can be used in conjunc-
erostructures, the mathematical problems caused bijon with Burt's EFA formalism® in the form of a coupled
exponentially growing and decaying solutions are known tddifferential equation with piecewise-constant coefficients, as
be acute in the transfer-matrix approdcfiKo and Inksoh® ~ implemented by Foremar. The method will be demon-
were able to solve the problem through their scattering mastrated on the example of the technologically important
trix approach. semiconducting InAs/Ga ,Sb type-Il superlattice®™*®
Second, the superlattice secular equation is general com- This paper is arranged as follows. Section Il deals with
plex, thus non-Hermitiah In practice, this means that the the construction of the EFA secular equation based on Burt’s

. 4 .
secular determinant does not change sign at the root in tHeeundary condltlont%. Section Ill shows how the secular
equation can be written in a form that does not lead to nu-

case of Kramers degeneracy, which makes it difficult to lo-=7"¢ | instabilities. As a test of the f i it is sh
cate the eigenvalues of the superlattice problem. Such a d _ael?i(;arelgjcaesl 'l(;et?w.e erﬁiligf K?oni N P%rrﬂ?els?,ulatli)r? ir?vtvr?e
generacy can be eliminated only if the bldlkp Hamiltonian : g-renney eql

case of a single band. However, even in this simple case, a

can be exactly block diagonalized, which is difficult for different characteristic equation is derived and analyzed to

higher-order Hamiltonian$’ obtain additional insights into band formation. Section IV

In this paper the superlattice secular equation is recast in &hows how the secular equation can be made Hermitian by a

form in which the evanescent solutions occur not in eXPOgimple matrix operation. In Sec. V, the formalism is applied

nentials but inside hyperbolic tangents. Whereas for largg, 5 sample calculation for an InAs/@a,_,Sb superlattice.
arguments the exponentials lead to over and underflows, theonclusions are presented in Sec. VI.

hyperbolic tangents tend tecl. However, the problem of

real spurious solutions, which lead to oscillatory behavior, is Il. THEORY
not addressed in this paper since such solutions more often
cause physical but not mathematical problems. Next, for an
N-band EFA problem, the secular equation is transformed Let the superlattice consist of an infinite succession of
into a 2N X 2N Hermitian form, whose diagonalization pro- material A of width 2a and materialB of width 2b. In a

The envelope-function approximatiggFA) continues to

A. Notation
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superlattice, the total wave function for thkth subband is B. Construction of the envelope function

an eigenstate off and k), crystal momenta in the growth e N_column vector envelope function for théth band

direction and parallell to 'the plang of the well, respectively.is the solution of theN X N coupled differential equation in
The total wave function is then given ¥y each layet-™®

. N
Tk, =e*r> F,(Mkq,2)u,r), 1) S HAB
! v=1 wy

- d
K, —i d—Z>F’j'B(M,kq,z)

where u,(r) are a complete set of cell-periodic functions, AB
which are required to be the same throughout the structure, =En(k@)F, (M kq,2), ®

independent of material compositiéhi°andF, (M, ki, 2 wherek, has been replaced by the derivative in theirec-
are the corresponding envelope-function amplitudes. Begon, By multiplying the original Hamiltonian by the inverse
cause the potential has the peridet 2a+2b in the growth o the H, matrix, one can rewrite the original Hamiltonian

direction, the Bloch condition requires that equation in each layer of the heterostructure as

F.(M,k,qg,z+d)=€"9F (M ,kq,2). 2) d2F =
+i(Hy) "Hy —=—(Hy) "Y(Ho—E)F=0. (9
In arriving at an effective-mass equation, Burt first ne- dZ 2 't dz ? °
glects the nonlocal parts of the exact EFA Sainger  aygmenting the vectoF with the vectorF’, it is possible to

equatior:* Next, he eliminates small envelope functions in yacast the EFA Schdinger equation as a first-order differ-
favor of the larger ones, chosen to bein number. This  gptial equation

results in anN coupled-band formalism with a Hermitian
NXN EFA HamiltonianH whose formal structure is given 0 I F d [F
by the following expansion in powers df dz: HyY(Ho—E) —iH; .\ F' T az\F ) (10

- d o d - d
H(k I d_z) =~ d—Z)Hz(ku)( -1 dz Hir(k)) C. General solution

d
dz

L
2

The solution of Eq(10) is a superposition of functions of

+Ho(k). theform

X | =i +

- d
143 Hy (k)
ik,C,

whereC; areN-column vectors for eack (k;,E). The expo-
nentsk are obtained by solving theNex 2N, complex, non-

: (11)

® £ )=ene
In the conventional EFA the left and right coefficients are
equal, so that

Ha (k) =Hir(k)). (4  Hermitian eigenvalue probleh®
In Burt’s formalism, however, the left and right coefficients -k I C
only have to be Hermitian conjugates of one another, H,(Ho—E) —H,'H,—k/\kC =0 (12
[Hqi (k)1T=H1r(k)); (5)  The solution yields Rl linearly independent eigenvectors

moreover, the exact meaning of the coefficients is differenE‘EC(k”’ki) and 2N corresponding, complex eigenvalues
i -

oA han et ihe Coneciany of smvalope, 1118 Well known that, in the case of hed k.p Haril
P . . 9 1ty P€ionian, the solutions for exponerkdgk, ,E) contain spurious
function solutions at interfaces. Away from interfaces, one

: . G . =2 “"®solutionst*>?° In the case of GaAs/AGa,_,As and
E?r}gﬁ;?r?éne the left and right coefficients in the HamIltonlanInAs/InxGai,be heterojunctions, the spurious solutions can

be large real(leading to propagating stalesr imaginary
[Hy (k) +Hir(k)1/2=H(k;). (6)  numbersresulting in evanescent statedsing a 2<2 model

involving the conduction and light-hole bands, it can be
Because of the Hermiticity of the originalp Hamiltonian,  shown that whem? m_>0 the spurious exponent is real and
the threeNx N matricesHo, Hy, andH, are Hermitiart.  \yhen m*m, <0 the spurious exponent is pure imagin&ry.
Boundary conditions require the continuity of envelope funC'SoIving analytically a 3 k-p Hamiltonian atk,=0, involv-
tions across interches as well as of a quantity obtained b)hg the conduction, light-hole, and spin-orbit bands, expo-
integrating the Schriinger equation across an interface, sopentsk are found to switch from real to imaginary depending
that on whether the quantity -48y4/(y;+2y,)y, is greater or

F_F smaller than zer.

' It is beyond the scope of this paper to discuss thoroughly
the physical problems introduced by the spurious solutions
or the possible means for their elimination. In this author’'s
on both sides of an interface, wheFe are understood as experience, spurious evanescent or oscillatory solutions
N-column vectors. Note that the second condition usesnake small contributions to the total wave function and even
H 1. (k,) rather tharH(k;), as in conventional theory. less to the calculated energies. Sometimes, one can convert

(lH1|_/2)F+H2F’:(|H1L/2)F+H2F, (7)
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an oscillatory to an evanescent spurious solution by a small F. Burt's boundary conditions

adjustment of the Luttinger parameters. Burt'* has developed an exact envelope-function formal-

ism that avoidsad hocassumptions about the boundary con-
D. Properties of vectorsC(k; k;) and exponentsk; ditions. In practical implementation of Burt's formalisisee,

Equation (12 is equivalent to the non-Hermitian for example, Ref. 1 the effective-mass equation for the

Hamiltoniarf single- and coupled-band cases has the form of a differential
equation with piecewise-constant coefficients. As imple-
H(ky ki) C(ky ki) =[Ha(k)k?+H 1 (k)k; (r:noir;itrelzgit)?)éflzoreman, the boundary conditions require the
+Ho(k) JC(ky ki) =EC(K; k).
I 0\(F
13
(13 (iHl,_/Z Ha/ | F? @D

Sincek;(k; ,E) are in general complex, for each right eigen-
vector C(k; k) there is a corresponding left eigenvector at each interface. For notational convenience, defindNa 2

L(k; k;), which satisfies X 2N matrix
LKy, ki) H (K, ki) =EL(k; k). (14
| 0 C
As shown by Smith and MailhidtEq. (12) hasN pairs of M= ( Hoy /2 H2> ( CK)' (22)

doubly degenerate solutions. Also,kf(k,,E) is a solution,
so are—kik* ,—k* . The left- and right-hand eigenvectors With this notation, the boundary conditions can be written
satisfy the relatioh compactly as

Cin=C(k; k) =Lk k) "=L]. (15 M Ae'KAPCA= M ,eKBbCB, 7= (23)

The orthogonality condition reatls
(16) e 199\ LKAl DI cA= M e KePcB  z=—b. (24

C]'T*[Hz(kj_"ki)""Hl]Ci:\]j*igij ;

whereJ has the units of current density. The orthogonality:jn f(_:onj'tructlng these equations, the following matrices are
relation becomes an orthonormality relation with the normal-d€finéd: a nonsquard X 2N matrix

ization of the eigenvectors

[C(kp)1,i=Cu(ky ki), (253
Ci—>Ci/ /_Ji*', (17) I/ dvi RN
a nonsquare [N matrix
LiﬁLi/\/‘]i*i' (18)

[L(kpTi,=L,(ky ki), (25b

E. Wave-function expansion ] .
. i a diagonal X 2N matrix
The envelope wave function is a sum over all periods

of the superlattice,

[eP];=5;€'P, (263
F.(M.kq,2) ) _
and a diagonal BX 2N matrix
-y 2N [eAMCAK, k)eX 2, md+b=z<md+b+2a
- m i=1 CtimCE(k” ,ki)eikiBZ, md—b=z<md+b. K”EkI 5”', (26b)
19
(19 Altogether, there areM equations in # unknownsc” and
However, periodicity requires that cB. At points of high symmetryi.e., q=0, +x/d), these
equations can be simplified further; in particular, solutions
ciA'm(k”q)=ei(q‘kf\>mdc{*’°(k“q), can be made eigenstates of parity, which reduces the size of

(20) the secular matrix ttN X N only. With these definitions and

LB normalizationd Egs. (17) and (18)] the orthonormality con-
P (k) =€ a7 kImIeB0 K, q)

in terms of the expansion coefficients for the zeroth period.
From now on,cB, without the superscript zero, will be Hy H
i (L KL) H
2

(27)

dition [Eg. (16)] can be conveniently rewritten as
C )_( I 0

used. The expansion coefficients also obey symmetry prop- 0J\CK/ \0 1)

erties with respect to Brillouin-zone periodicity, mirror re-

flection symmetry, time reversal, inversion symmetry, and Combining the two boundary conditions, one obtains the

180° rotation in thexy plane. 2NX 2N secular equation
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’ [MAeiZKAaM;].][MBeiZKBbMEl]+[MBe—iZKBbMgl][MAe—iZKAaM;l]
2

—cosqd’ =0. (28

The above matrix is not Hermitian, but can be made so, asherek,= \2ma(E—V)/42, kg=V2mgE/#?, andV is the
will be shown in Sec. IV. It can also be reduced to a Kronig-height of the barrier. Interestingly, although a superlattice is
Penney-like formt3 a chain of quantum wells, the characteristic equation for
Diagonalizing Eq.(28), one finds that its eigenvalues are bound states in a finite quantum well contains only tangents
quadruply degenerate. The first double degeneracy is digiot sines or cosinesThis dilemma will be resolved in Sec.
tated by the invariance of the secular equation under thél.
interchangeg— — g and the second is the result of Kramers
degeneracy.
The transfer-matrix formalism of Ram-Mohan, Yoo, and lIl. ALTERNATIVE SECULAR EQUATION

AggarwaF results in a secular equation that can be brought - gjnce the spurious wing solutions and other complex and
to the same algebraic form as the equation above, since boffiher solutions of Eq(12) lead to numerical over- and un-

methods are based on wave-function matching at boundariegerfiows in the computer code, the evaluation of superlattice

However, because of the work of Smith and Mailfiiand of eigenvalues and wave functions is unreliable or even impos-
the developments in this pape3ecs. Il C and II D and Ap-  gjpje The same is true in the transfer-matrix formalism of

pendix A), the properties of the various components of theg,m_Mohanet al®® In order to overcome this shortcoming,

secular equation are better known for the present method. 4 giternative form of the secular equation was sought. Such
In practice, however, the secular equation is dominated by, approach was successful in the case of the quantum-well

the large exponentials of the wing solutions and of othek,majism of Ref. 8, where the spurious solutions were con-

large, complex exponents, making numerical computatioRined inside hyperbolic tangents, which asymptotically ap-

impossible or inaccurate. Using a GaAs{Aba, As 50 proach+1 as their argument goes tow.

A{SO_A superlattice as an exampi8x8 EFA calculation, Therefore, the strategy is to eliminate the exponentials in

with input parameters from Ref.)8the diagonalization of Eq. (29) in favor of hyperbolic tangents. First, all four

the secular equation produced 4 very large and 12 very smgllondary conditionfEgs.(23) and (24)] are rewritten in the
eigenvalues, differing by at least 18 orders of magnitudesym of a super MX 4N secular equation

The search for roots of the secular equation was impossible

and, as a result, an approach that eliminates the effect of the

large exponential terms was sougtiiowever, this form can M pe!ab —Mpe'KeP | [cA

be useful in the absence of spurious solutions and large com- (eiquAeiKA(db) -M Be—iKBb> ( CB) =0. (30
plex exponents and for the case of short period superlattices.

Through a series of elementary matrix transformatigas-
toring and row additions Eq. (30) can be recast as
G. Kronig-Penney test
In the case of a one-band model, it was checked that the
secular equation properly reduces to the familiar Kronig-
Penney model result. In fact, the secular matrix E&8) is
diagonal, with four equal roots, each equal to

McogKpa—qd/2) —MgcoKgh
iMsin(Kpa—qd/i2)  iMgsinKgh

o i0012gIK AdI2 A
cB

—0. (31

Makg  Mgka
mgka  Makg

Now, multiply row 1 on the left by
(iM gsinKgh)(—MgcoKgh) "t and then subtract it from row
2, which annihilates the lower-right diagonal element, leav-
X sinZgb sin X,a, (29 ing

1
cogyd=cosXgb cosX,a— > (

Macog Kpa—qd/2 — MacoKab) [ e iad/2giKad2cA
acogKpa—qd/2) B B)( )=0. -

Mpgtan Kgh)M g M scog K sa—qdi2) + M zsin(K sa— qd/2) 0 c®

The determinant of Eq.32) is of order 2N X 2N only and is given by the product of the determinants of the two off-diagonal
2N X 2N blocks

[IMgtanKgh)Mg 1+ M stan(K sa— qdi2)M 1 1| X | M scog K sa— qd/2) || X |[Mgcog K gb)||=0. (33
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In the case of imaginary exponents, the cosine factors be- Once the expansion coefficients are found, the corre-
come hyperbolic cosines and are never zero, and so can lsponding wave function can be normalized and its band char-
dropped, and the corresponding tangents become hyperbolicter (conduction electron, heavy hole, light hole, or spin
tangents, which are bounded hyl. So, unless one of the orbit) examined. In normalizing the wave function, to avoid
cosines becomes zero, the secular equation is given by  numerical problems, it is better to deal with

| i _ -1
IMgtan Kgb)M5 1+ M atan(K xa— qd/2)M ;4| =0; A=e 199%ad27cog K ya—qdi2)ch=M, 'y,
(34) (39)

— B_pn—1
several other variants of EG34) are possible. For real ex- B=codKgb)c™=Mg .

ponents, the cosine factors in E§3) should be retained to
remove the singularities due to the tangents. The cosines do B. Relation to previous work
not, however, alter the solutions of the secular equation.

Equation(34) represents the alternative form that is the sub-vol-\l;gg t:ﬁquskgf ?r?;?ct)lronr]] used in this wakq. (36)], in-
ject of this paper.

2N 2N
A. Wave functions >, > [MjtarkjaM;p xe . (39
Once a root of Eq(34) is located, the corresponding wave PoLi=t
function can be found. Using E¢32), one obtains thel  Here P andQ denote band indices and the expansion coef-
X 2N equation ficient xp is subscripted with band indices as well. This is in
1 _ contrast to the original problefiEgs.(23) and(24)] in which
[Mgtan(Kgb)Mg "MacosKaa—qd/2) the expansion coefficients"® were subscripted with expo-
+Msin(K a—qdi2)J[e 199%eiKad2cA]=0, (35)  nentsk;. The latter situation is the one encountered in the
) i work of Smith and Mailhiof, whereas the former is used in
Factoring outM scoSK xa—qd/2), one obtains the formalism of Ram-Mohan, Yoo, and AggarwaHow-

1 B 14 ever, none of the these approaches, including E2f3.and
[MgtanKgh)Mg ™+ MatanK,a—qd/i2)M,, ]X_O’(%) (34), yields Hermitian secular matrices.

x=M scog K a—qd/2)e'Kad2e1ad/2cA,

B - o C. Single-band test case
The c® coefficients can be found by back substitution into

Eq. (32) As an illustration, one can use a single-band model of a
superlattice. EquatiofB4) leads to the secular equation for a
x=MpgcogKgb)cB. (37)  single bandN=2 with two sping
|
A 0 2mp 2mg 0
0 A; 72K At f°kg As 2m, 2mg
Wa H%Ke 0 0 ik 22T ik | (40
2mA 2 sz 3 ﬁzkA hsz A Al 0
0 2m, 2 2mg 3 0 A,
|
where 2m, s 2mg A A,
hoka 2 h%kg 2 ke B%kg | (42
= - - +
A;=[tankya—qd/2) —tankaa+qd/2)]/2, AL TN ot T As
Ax=[tan(kaa+qd/2) +tankaa—qd/2)]/2, Setting the determinant to zero, one obtains an eigenvalue

equationwith tangents only
Az=tarkgb, 41
) (AT+aB)(A”"+Bl/a)+(A”+aB)(AT+Bl/a)=0,

and other symbols have the same meaning as before. Ob- (43)
serve that Eq(40) is non-Hermitian; howeveras will be
proved more generally lateif one interchanges the first two where A*=tank,a+qd/i2), A =tanksa—qd/2), B
columns(rows) with the last two columngrows), the secular =tarkgh, and a=mpkg/mgk, . It is this tangents-only form
equation does become Hermitian. that makes the present derivation more akin to the underlying

In this simple case, one can decouple the up- and dowrguantum-well problem. Except near the tangent discontinui-
spin solutions by performing additional row and column in-ties (removable by multiplication by cosingsthe present
terchanges and obtain two identicak2 blocks of the form  superlattice equation can be shown by trigonometric identi-
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ties to be equivalent to the standard Kronig-Penney equatiofirst and lastN rows; when postmultiplying a matrix; in-

[Eq. (29)]. Equation(43) can be made more symmetricAn  terchanges the first and ldstcolumns.

andB. Next, consider the form of the two terms comprising Eq.
One immediate benefit of the present secular equation i€34), i.e.,

that it is simple to obtain the conditions for band extrema at

g=0, =x/d. These conditions are not apparent from the Q=M tarKa(M ™), (47)

standard Kronig-Penney equation. In fact, the standargyhere )pz==,MptarkaM g and P,R are band indices.
Kronig-Penney equation for these wave vectors is obtainege equation for the inverdd L is developed in the Appen-
by first constructing even- and odd-parity wave functidns. dix, Eq. (A5). To explore Hermiticity, it is necessary to deal

However, in the present formalism, E3) immediately  \yith the Hermitian adjoint of2, whose elements are
yields the eigenvalue conditions

q=0, tarkgb=p tanhkxya —— 8, QEPEZK (M) * tarka(Mpye ) *. (48)
a—®
However, from(Al), (A5), and(15),
g=*w/d, tarkgb=p cothkpa —— B, (49

o (Mpie)* ( 0 )( Cs )
Pk+) =
for even-parity bands and 112 H3 ]\ kCy,
=0, tarkgh=—tanhka/g —— —1/B, I Hirl2 _
| ° WP TP —Lk] g M e a9

q==ald, tarkgb=— cothka/ B _1, Similarly, using the equation for the inverggq. (A5)]

a—®

N Hiz/2 |
49 (Ml*=(L} kL:*)( ;Z 0)
for odd-parity bands, whereB=(mgk,)/(mpkg) and
ka=ixp for E<V. H.y /2 H,\[ Cy

Unlike in the present treatment, E¢44) and(45) are not :( | 0 )(kck
immediately derivable from the Kronig-Penney motiéh ) ) )
particular, in the limit of infinite barriera—c, the hyper- nserting Eqs(49) and(50) into Eq. (48), one finds that
bolic tangents and cotangents approach unity and the condi- aQf=ToT (51)
tions for the even- and odd-parity bands immediately be- '
come the standard conditions for the even- and odd-paritgo that QT)'=TQ'=T2QT=QT. Therefore, althougtf
levels of an isolated quantum wéif. is not Hermitian, matrice$) T and T(), obtained by inter-

As importantly, for states below the top of the well and changing the first and la® columns or rows, respectively,
wide barriers, Eq(43) (multiplied by cosines to remove dis- of the original matrix(2, are Hermitian. These developments
continuities in the tangents, if necessatgads to secular were anticipated in the discussion of the secular equation for
determinants on the order of unity, while the Kronig-Pennethe single-band case E@0). Finally, following the lines of
model EqQ.(29) can lead to numbers on the order of48nd  the present derivation, one can also show that the original
larger. In the case of multiband EFA, especially in the pressuperlattice secular equatipiq. (28)] can be made Hermit-
ence of the so-called wing solutions, the numerical overflowsan by the same row and column interchange.
in the standard formulation Eq28) can be even more se-

=(TM)ox. (50)

vere. A. Properties of the secular equation
Given an operatof) that is not Hermitian but obeys the
IV. HERMITICITY conditionQ'=TQT so thatQ T and T are Hermitian, sev-
Here it will be shown that a simple columinow) inter- ~ €ral theorems can be proved. . _
change can render the present secular equégiher Eq. (1) If A; is an eigenvalue of), then\i is an eigenvalues
(28) or (34)] Hermitian. The theorem to be proved is asOf Q' (standard result from linear algefta _
follows. (i) The eigenvalues of) come in complex-conjugate
TheoremInterchanging the firsl columns(or rows and ~ Palrs. _ .
the lastN columns(or rows of secular equatiohEqgs. (34)] Proof. If \ is an elgenvalue of), then defQQ—\1)=0.
results in a Hermitian matrix. From the general relation
Proof. The proof proceeds as follows. Define a unitar
e T proot p W Ne a untiary  o_ de(Q— ) =de(Q = \*1)=def TQT—1\*1)
0 | =detT(Q—A*)T=de(Q—\*1), (52
T=( | 0) =T 1=T1" (46)  so that bothh and\* are eigenvalues df. By contrast, the

eigenvalues of) T and T are real.
of order 2NX 2N, where the unit matrices are of order (iii) If ¢, is an eigenvector of) with eigenvaluey;, then
NxN. When premultiplying a matrixT interchanges the T¢; is an eigenvector of2! with the same eigenvalue.
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Proof. Let ¢; satisfy the eigenvalue equatiéhg; =\, ¢; . 600
Multiplying by T, one obtains TQ¢;=\;Te;. But,
TO=0'T, so thatQ(Te,)=\(Te;). c1
(iv) Hermitian operator€)T and T} have the same ei- 400 \
genvalues and their eigenvectors differ only by row inter- %"
change. E 200} HH1 ]
Proof. If u; is an eigenvalue o) T and¢; the correspond- - H
ing eigenvector, then®T) &= u,; & . Therefore, 2 LH1
i iSi E /\‘
TODE=pTE, (TO(TE)=m(TE), (53 e e
HH2
so thatT¢; is the corresponding eigenvector Df) with the
same eigenvalugy . In effect, the problem can be made 400

n/d 0 0.012 0.024 0.036 0.048

Hermitian by either row or column interchange. e
q k, (Bohr radius)

(v) The determinants ofl T and{) are equal to within a
sign since dét=(—1). In practice, because of spin multi-
plicity, N is even. HoweverN could be odd if the Kramers ~ FIG. 1. Band dispersions for a 30 A/30 A InAsjl§Sa, /Sb
degeneracy is eliminated beforehand by block diagonalizin@“pe”aﬂ'ce calculated using the method developed in this paper.
the starting bulk Hamiltoniafe.g., as in the case of thex®

Hamiltonian for the heavy-, light-, and spin-orbit-hole mani- ¢asting the secular equation in terms of tangents. Since the
folds). In fact, it is easy to show that present formalism and that of Ram-Mohan, Yoo, and Aggar-

wal are related via a similarity transformation, the latter
should obey the relations derived in the present paper.
de(QTQ) =[] A\ A =de(Q'TTQ)=de(TQ)2=]] w?,
| |

(54) V. APPLICATION TO InAs/In ,Ga;_,Sb SUPERLATTICES

so that for each real rogy; there is one X; ,\}) pair; how- In this section an InAs/iiGa, _,Sb superlattice is used as
ever,\F N # . an example to demonstrate the utility of the calculational

The practical implication of these theorems has to do witrScheme developed here. A fuller discussion of the system is
the multiplicity of eigenvalues and their reality. In the casel€ft for & separate paper.

of the time-reversal and inversion symmetries, each solution "€ calculation involves an>88_'_50']:r% Hamiltonian and
in the superlattice at a givetk,q) is doubly degenerate. the standard EFA boundary conditions.(Observe that in

Therefore, each root of the Hermitian secular equation willth® 8<8 case, the conduction band is included explicitly, so
be at least a double root. As a result, the product of distincthat the valence-band coupling to the first conduction band is
eigenvalues of the Hermitian matrix furnishes a real seculaP©t included in the Luttinger parameteys. It is this cou-
determinant that changes sign at the roots of the problem. Pling that is the main source of the discrepancy discovered
However, by theoreniv), to each such real root, there by Forgmaﬁ5 between the _con_ventlonal and Burk6 EFA-
will correspond a pair of complex-conjugate roots of theformalisms) The superlattice is chosen to have 30-A InAs
original, non-Hermitian secular equation. If the complex-ayers and 30-A G, _,Sb layers withx=0.30 M indium
conjugate roots happen to be rdas is the case for the content. The superlattice is free standing and oriented in the
single-band case of E428)], then such roots will occur as [001] direction. The material input parameters are the same

3 .
real quadruplets. The zeros of the corresponding secular @S those used earlfé’ (mainly from Refs. 24 and 25

terminant are not easily identified, as it does not change sigrtain effects are treated using the Bir-Picus deformation-
at the roots of the problem. Finally, note that the reformu-Potential theory® The secular equation is in the tangent

lated secular equatiofEq. (34)] is not invariant under the form Eq.(34) and is made Hermitian via column interchange

interchangeg— —q, so no additional degeneracies ensue aéSe“c. IV). Spurious exponents on the order of 2 inverse Bohr
a result. radii were found in diagonalizing E@12), leading to expo-

nentials on the order of 1d°in Eq. (29).

The accuracy of the eigenvalue determination was
checked against a separate codegfei0 and#/d. These two

The secular equation of Smith and Mailidor superlat- cases possess more symmetry than at a gewgrathich
tices is non-Hermitian as it yields complex eigenvalues thaallows one to halve the size of the secular determinant and to
come in conjugate pairs. Therefore, the zeros of their deteiimplement numerical techniques for avoiding overflows that
minant are not located as easily as those of the Hermitiaare similar to those used for quantum wéllsBoth
matrix derived above. In the case of the transfer matrix fordnAs/In,Ga, _,Sb and GaAs/AlGa, _,As superlattices were
malism of Ram-Mohan, Yoo, and Aggarwatheir secular examined. The eigenvalues obtained in these test cases were
equation leads to a general complex matrix, which is alsadentical to within the machine accuracy when compared to
less convenient for locating the zeros of the determinantthose obtained from the more general code tested here.
especially in the case of degenerate roots. As importantly, Figure 1 shows the calculated band dispersions for the
both Smith and Mailhidtas well as Ram-Mohan, Yoo, and InAs/InGa,_,Sb superlattice. The chosen example is a
AggarwaP report grave difficulties in handling imaginary ex- semiconducting superlattice, with a gap in midinfrared. Its
ponents, a problem that the present formalism avoids by redesign is not optimized for any particular use. The example

B. Comparisons
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is included here only to demonstrate that the scheme devekrom the orthonormality relatiofEq. (27)]
oped here is eminently workable and possesses many useful
properties. In particular, an eigenvalue search is trivial be- Hy Ha)(C) (IO

e . (L KL) = : (A3)
cause of the Hermiticity of the secular equation, because the H, 0/\CK 0o |
secular determmants are on the order of unity, and becausoene finds that
they change sign at each root.

c\1? H, H,
VI. CONCLUSION ck/] =LKL, o (A4)

In this paper an alternative form of the EFA secular equaxg that
tion for superlattices was developed. The present secular
equation avoids troublesome exponentials in favor of well-
behaved hyperbolic tangents whenever wave function expo-
nents are imaginary. As a result, the method has no difficul- )
ties in handling evanescent wave function components, iry€rfying, one finds that
particular the so-called wing solutions, which often render Hoo/2 | | 0\/ C
the calculation impossible. The present method does not ad- MM =(L KL)( ﬁIR 0) ( Ho 2 H )(CK)
dress the issue of spurious oscillatory solutions because they 2 i 2
do not lead to over- and underflows, although they may lead H, H,\[C I 0

H, O)(CK)_(O |) (A6)

to physical problems. =(L KL)
As importantly, the generally complex secular equation is
made Hermitian by a simple interchange of rows or columnsis the left inverse, so that
Its diagonalization produce¥ pairs of real eigenvalues. At a
root, two of the eigenvalues are zero and the corresponding E T
eigenvectors are associated with the Kramers degenerate “ Mj"MLi=3;, (A7)
wave functions for the superlattice. Roots are easily identi- o
fied since the secular determinant obtained by multiplyingvhere the sum proceeds of the band indicesnd the Kro-
distinct eigenvalues changes sign at the roots. Therefore, it iRecker delta is with respect to exponekis
not necessary to first find a unitary transformation to elimi-
nate the Kramers degeneracy of the startingg Hamil- 2. Right inverse
tonian. . L .
When applied to the case of a carrier in a single parabolic Fr_om matrix algebrg, itis known that the I?ﬁ inverse Of_ a
. . ; matrix is also its right invers#. Nevertheless, in our case, it
band(i.e., the simple Kronig-Penney modethe present for- . " : : ;
. . . . is instructive to prove this fact based on orthogonality rela-
malism results in a secular equation with tangents rather than

, : . jons. Forming the required product, one obtains
sines and cosines. The present form is more closely related t0

Hip/2 | )

M~ i=(L KL)( H, o

(A5)

2N

the underlying quantum-well problem_. In addition, the | 0 C Hyl2 | n, 1,
present method was shown to be applicable to Burt's EFA (H H )(CK)(L KL)( H O)E M. 11 )
formalism as implemented by Foreman. Finally, the method iz 12 2 3 4(A8)
was demonstrated by the example of the technologically im-
portant semiconducting InAs/Ga, _,Sb type-Il superlat- Explicitly,
tice.

(Hz)nm:; anijZO, (A9)
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APPENDIX: INVERSE OF MATRIX M = Snm> (A10)
1. Left inverse fror_n .(A%) and identities(24b) and (24d) of Smith and
. L Mailhiot;* and
The matrixM is given by
AT D (M)nm=2 2 [(H11/2np+ Kj(H2)npl CoiLje[(H1r/2)im
N H1|_/2 H2 CK)J’ p.rol
+kj(H2)rm]:ov (Al1)

so that its left inverse is given by
-1 | 0 from (A9) and identities(24b) and (24c of Smith and
Mailhiot.* Therefore, Eq(A5) is both the left and the right
- -1/ (A2) | ;
Hy"Hu /2 H, inverse of matrixM.

C

-1_
M7=l ck
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