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A method is developed for implementing the coupled-band envelope-function-approximation~EFA! formal-
ism for the calculation of the electronic structure of superlattices. The approach overcomes the difficulties in
handling exponentially growing and decaying wave-function components, in particular, the so-called wing
solutions, as is the case with existing secular equations. As importantly, the secular equation, which, in general,
is general complex, is recast into a Hermitian form, which makes it easy to separate degenerate eigensolutions
of the superlattice problem. Therefore, it is not necessary to first find a unitary transformation to eliminate the
Kramers degeneracy of the startingk•p Hamiltonian. In the case of the simple Kronig-Penney model, the
present formalism recasts the characteristic equation into a form that directly exhibits its parentage to the
underlying quantum-well problem. The present method can be used in conjunction with Burt’s EFA formalism
in the form of a coupled differential equation with piecewise-constant coefficients. The method is demonstrated
on the example of the technologically important semiconducting InAs/InxGa12xSb type-II superlattice.
@S0163-1829~96!03340-1#

I. INTRODUCTION

The envelope-function approximation~EFA! continues to
be a popular method for calculating the electronic structure
of band-gap engineered materials such as quantum wells and
superlattices.1–3 However, the numerical implementation of
the formalism suffers from two difficulties. First, the com-
monly used EFA secular equations4–6 have difficulties in
handling exponentially growing or decaying wave function
components, especially the spurious evanescent solutions,
sometimes called the ‘‘wing solutions.’’7 A solution for han-
dling such numerical problems for quantum wells was of-
fered earlier.8 In the case of nonperiodic semiconductor het-
erostructures, the mathematical problems caused by
exponentially growing and decaying solutions are known to
be acute in the transfer-matrix approach.9,10Ko and Inkson11

were able to solve the problem through their scattering ma-
trix approach.

Second, the superlattice secular equation is general com-
plex, thus non-Hermitian.4,5 In practice, this means that the
secular determinant does not change sign at the root in the
case of Kramers degeneracy, which makes it difficult to lo-
cate the eigenvalues of the superlattice problem. Such a de-
generacy can be eliminated only if the bulkk•p Hamiltonian
can be exactly block diagonalized, which is difficult for
higher-order Hamiltonians.12

In this paper the superlattice secular equation is recast in a
form in which the evanescent solutions occur not in expo-
nentials but inside hyperbolic tangents. Whereas for large
arguments the exponentials lead to over and underflows, the
hyperbolic tangents tend to61. However, the problem of
real spurious solutions, which lead to oscillatory behavior, is
not addressed in this paper since such solutions more often
cause physical but not mathematical problems. Next, for an
N-band EFA problem, the secular equation is transformed
into a 2N32N Hermitian form, whose diagonalization pro-

ducesN pairs of real eigenvalues. The product of distinct
eigenvalues changes sign at the roots of the superlattice
problem and Kramers degenerate solutions correspond to the
two zero-diagonal elements of the secular matrix at the root.
Therefore, it is not necessary to first find a unitary transfor-
mation to eliminate the Kramers degeneracy of the starting
k•p Hamiltonian.

In the case of the simple Kronig-Penney model,13 a dif-
ferent characteristic equation is obtained, which, in the limit
of very wide barriers, becomes the characteristic equation for
a quantum well. The equation also furnishes convenient so-
lutions for bands at the center and the edges of the Brillouin
zone. In addition, the present method can be used in conjunc-
tion with Burt’s EFA formalism14 in the form of a coupled
differential equation with piecewise-constant coefficients, as
implemented by Foreman.15 The method will be demon-
strated on the example of the technologically important
semiconducting InAs/InxGa12xSb type-II superlattice.16–18

This paper is arranged as follows. Section II deals with
the construction of the EFA secular equation based on Burt’s
boundary conditions.14 Section III shows how the secular
equation can be written in a form that does not lead to nu-
merical instabilities. As a test of the formalism, it is shown
that it reduces to the familiar Kronig-Penney equation in the
case of a single band. However, even in this simple case, a
different characteristic equation is derived and analyzed to
obtain additional insights into band formation. Section IV
shows how the secular equation can be made Hermitian by a
simple matrix operation. In Sec. V, the formalism is applied
to a sample calculation for an InAs/InxGa12xSb superlattice.
Conclusions are presented in Sec. VI.

II. THEORY

A. Notation

Let the superlattice consist of an infinite succession of
materialA of width 2a and materialB of width 2b. In a
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superlattice, the total wave function for theM th subband is
an eigenstate ofq and ki, crystal momenta in the growth
direction and parallel to the plane of the well, respectively.
The total wave function is then given by14

CM~kiq,r !5eiki•r(
n

Fn~M ,kiq,z!un~r !, ~1!

where un~r ! are a complete set of cell-periodic functions,
which are required to be the same throughout the structure,
independent of material composition,14,15andFn ~M , kiq, z!
are the corresponding envelope-function amplitudes. Be-
cause the potential has the periodd52a12b in the growth
direction, the Bloch condition requires that

Fn~M ,kiq,z1d!5eiqdFn~M ,kiq,z!. ~2!

In arriving at an effective-mass equation, Burt first ne-
glects the nonlocal parts of the exact EFA Schro¨dinger
equation.14 Next, he eliminates small envelope functions in
favor of the larger ones, chosen to beN in number. This
results in anN coupled-band formalism with a Hermitian
N3N EFA HamiltonianH whose formal structure is given
by the following expansion in powers ofd/dz:

HS ki ,2 i
d

dzD5S 2 i
d

dzDH2~ki!S 2 i
d

dzD1
1

2 FH1R~ki!

3S 2 i
d

dzD1S 2 i
d

dzDH1L~ki!G1H0~ki!.

~3!

In the conventional EFA,3 the left and right coefficients are
equal, so that

H1L~ki!5H1R~ki!. ~4!

In Burt’s formalism, however, the left and right coefficients
only have to be Hermitian conjugates of one another,

@H1L~ki!#
†5H1R~ki!; ~5!

moreover, the exact meaning of the coefficients is different
in conventional and Burt’s formalisms.14 The form of Eq.~3!
is important when determining the connectivity of envelope
function solutions at interfaces. Away from interfaces, one
can combine the left and right coefficients in the Hamiltonian
by forming

@H1L~ki!1H1R~ki!#/2[H1~ki!. ~6!

Because of the Hermiticity of the originalk•p Hamiltonian,
the threeN3N matricesH0, H1, andH2 are Hermitian.4

Boundary conditions require the continuity of envelope func-
tions across interfaces as well as of a quantity obtained by
integrating the Schro¨dinger equation across an interface, so
that

F5F,

~ iH 1L/2!F1H2F85~ iH 1L/2!F1H2F8 ~7!

on both sides of an interface, whereF are understood as
N-column vectors. Note that the second condition uses
H1L~ki! rather thanH1~ki!, as in conventional theory.

B. Construction of the envelope function

TheN-column vector envelope function for theM th band
is the solution of theN3N coupled differential equation in
each layer,1–5

(
n51

N

Hmn
A,BS ki ,2 i

d

dzDFn
A,B~M ,kiq,z!

5EM~kiq!Fm
A,B~M ,kiq,z!, ~8!

wherekz has been replaced by the derivative in thez direc-
tion. By multiplying the original Hamiltonian by the inverse
of the H2 matrix, one can rewrite the original Hamiltonian
equation in each layer of the heterostructure as

d2F

dz2
1 i ~H2!

21H1

dF

dz
2~H2!

21~H02E!F50. ~9!

Augmenting the vectorF with the vectorF8, it is possible to
recast the EFA Schro¨dinger equation as a first-order differ-
ential equation

S 0
H2

21~H02E!

I
2 iH 2

21H1
D S FF8D5

d

dz S FF8D . ~10!

C. General solution

The solution of Eq.~10! is a superposition of functions of
the form

S FF8 D5eikizS Ci

ikiCi
D , ~11!

whereCi areN-column vectors for eachki~ki ,E!. The expo-
nentsk are obtained by solving the 2N32N, complex, non-
Hermitian eigenvalue problem4,19

S 2k
H2

21~H02E!

I
2H2

21H12kD S CkCD50. ~12!

The solution yields 2N linearly independent eigenvectors
Ci[C~ki ,ki! and 2N corresponding, complex eigenvalues
ki .

It is well known that, in the case of the 838 k•p Hamil-
tonian, the solutions for exponentski~ki ,E! contain spurious
solutions.1,4,5,20 In the case of GaAs/AlxGa12xAs and
InAs/InxGa12xSb heterojunctions, the spurious solutions can
be large real~leading to propagating states! or imaginary
numbers~resulting in evanescent states!. Using a 232 model
involving the conduction and light-hole bands, it can be
shown that whenmc*mL.0 the spurious exponent is real and
whenmc*mL,0 the spurious exponent is pure imaginary.8

Solving analytically a 333 k•p Hamiltonian atki50, involv-
ing the conduction, light-hole, and spin-orbit bands, expo-
nentsk are found to switch from real to imaginary depending
on whether the quantity 128g2

2/~g112g2!g1 is greater or
smaller than zero.8

It is beyond the scope of this paper to discuss thoroughly
the physical problems introduced by the spurious solutions
or the possible means for their elimination. In this author’s
experience, spurious evanescent or oscillatory solutions
make small contributions to the total wave function and even
less to the calculated energies. Sometimes, one can convert
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an oscillatory to an evanescent spurious solution by a small
adjustment of the Luttinger parameters.

D. Properties of vectorsC„ki ,ki… and exponentski

Equation ~12! is equivalent to the non-Hermitian
Hamiltonian4

H~ki ,ki !C~ki ,ki !5@H2~ki!ki
21H1~ki!ki

1H0~ki!#C~ki ,ki !5EC~ki ,ki !.

~13!

Sinceki~ki ,E! are in general complex, for each right eigen-
vector C~ki ,ki! there is a corresponding left eigenvector
L~ki ,ki!, which satisfies

L~ki ,ki !H~ki ,ki !5EL~ki ,ki !. ~14!

As shown by Smith and Mailhiot,4 Eq. ~12! hasN pairs of
doubly degenerate solutions. Also, ifki~ki ,E! is a solution,
so are2kiki* ,2ki* . The left- and right-hand eigenvectors
satisfy the relation4

Ci*[C~ki ,ki* !5L~ki ,ki !
†[Li

† . ~15!

The orthogonality condition reads4

Cj*
†

@H2~kj1ki !1H1#Ci5Jj* id i j , ~16!

whereJ has the units of current density. The orthogonality
relation becomes an orthonormality relation with the normal-
ization of the eigenvectors

Ci→Ci /AJi* i , ~17!

Li→Li /AJi* i . ~18!

E. Wave-function expansion

The envelope wave function is a sum over all periodsm
of the superlattice,

Fn~M ,ki q,z!

5(
m

(
i51

2N H ciA,mCn
A~ki ,ki !e

iki
Az,

ci
B,mCn

B~ki ,ki !e
iki
Bz,

md1b<z,md1b12a
md2b<z,md1b.

~19!

However, periodicity requires that

ci
A,m~kiq!5ei ~q2ki

A
!mdci

A,0~kiq!,
~20!

ci
B,m~kiq!5ei ~q2ki

B
!mdci

B,0~kiq!

in terms of the expansion coefficients for the zeroth period.
From now on,c i

A,B, without the superscript zero, will be
used. The expansion coefficients also obey symmetry prop-
erties with respect to Brillouin-zone periodicity, mirror re-
flection symmetry, time reversal, inversion symmetry, and
180° rotation in thexy plane.

F. Burt’s boundary conditions

Burt14 has developed an exact envelope-function formal-
ism that avoidsad hocassumptions about the boundary con-
ditions. In practical implementation of Burt’s formalism~see,
for example, Ref. 15!, the effective-mass equation for the
single- and coupled-band cases has the form of a differential
equation with piecewise-constant coefficients. As imple-
mented by Foreman, the boundary conditions require the
continuity of

S I
iH 1L/2

0
H2

D S FF8 D ~21!

at each interface. For notational convenience, define a 2N
32N matrix

M5S I
H1L/2

0
H2

D S C
CKD . ~22!

With this notation, the boundary conditions can be written
compactly as

MAe
iKAbcA5MBe

iKBbcB, z5b ~23!

e2 iqdMAe
iKA~d2b!cA5MBe

2 iKBbcB, z52b. ~24!

In constructing these equations, the following matrices are
defined: a nonsquareN32N matrix

@C~ki!#n i[Cn~ki ,ki !, ~25a!

a nonsquare 2N3N matrix

@L~ki!# in[Ln~ki ,ki !, ~25b!

a diagonal 2N32N matrix

@eiKb# i j[d i j e
ikib, ~26a!

and a diagonal 2N32N matrix

Ki j[kid i j , ~26b!

Altogether, there are 4N equations in 4N unknownscA and
cB. At points of high symmetry~i.e., q50, 6p/d!, these
equations can be simplified further; in particular, solutions
can be made eigenstates of parity, which reduces the size of
the secular matrix toN3N only. With these definitions and
normalizations@Eqs. ~17! and ~18!# the orthonormality con-
dition @Eq. ~16!# can be conveniently rewritten as

~L KL !SH1

H2

H2

0 D S C
CKD5S I0 0

I D . ~27!

Combining the two boundary conditions, one obtains the
2N32N secular equation
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I @MAe
i2KAaMA

21#@MBe
i2KBbMB

21#1@MBe
2 i2KBbMB

21#@MAe
2 i2KAaMA

21#

2
2cosqdI50. ~28!

The above matrix is not Hermitian, but can be made so, as
will be shown in Sec. IV. It can also be reduced to a Kronig-
Penney-like form.13

Diagonalizing Eq.~28!, one finds that its eigenvalues are
quadruply degenerate. The first double degeneracy is dic-
tated by the invariance of the secular equation under the
interchangeq→2q and the second is the result of Kramers
degeneracy.

The transfer-matrix formalism of Ram-Mohan, Yoo, and
Aggarwal5 results in a secular equation that can be brought
to the same algebraic form as the equation above, since both
methods are based on wave-function matching at boundaries.
However, because of the work of Smith and Mailhiot4 and of
the developments in this paper~Secs. II C and II D and Ap-
pendix A!, the properties of the various components of the
secular equation are better known for the present method.

In practice, however, the secular equation is dominated by
the large exponentials of the wing solutions and of other
large, complex exponents, making numerical computation
impossible or inaccurate. Using a GaAs/Al0.3Ga0.7As 50
Å/50 Å superlattice as an example~838 EFA calculation,
with input parameters from Ref. 8!, the diagonalization of
the secular equation produced 4 very large and 12 very small
eigenvalues, differing by at least 18 orders of magnitude.
The search for roots of the secular equation was impossible
and, as a result, an approach that eliminates the effect of the
large exponential terms was sought.~However, this form can
be useful in the absence of spurious solutions and large com-
plex exponents and for the case of short period superlattices.!

G. Kronig-Penney test

In the case of a one-band model, it was checked that the
secular equation properly reduces to the familiar Kronig-
Penney model result. In fact, the secular matrix Eq.~28! is
diagonal, with four equal roots, each equal to

cosqd5cos2kBb cos2kAa2
1

2 SmAkB
mBkA

1
mBkA
mAkB

D
3sin2kBb sin 2kAa, ~29!

wherekA5A2mA(E2V)/\2, kB5A2mBE/\
2, andV is the

height of the barrier. Interestingly, although a superlattice is
a chain of quantum wells, the characteristic equation for
bound states in a finite quantum well contains only tangents
not sines or cosines.1 This dilemma will be resolved in Sec.
III.

III. ALTERNATIVE SECULAR EQUATION

Since the spurious wing solutions and other complex and
other solutions of Eq.~12! lead to numerical over- and un-
derflows in the computer code, the evaluation of superlattice
eigenvalues and wave functions is unreliable or even impos-
sible. The same is true in the transfer-matrix formalism of
Ram-Mohanet al.5,6 In order to overcome this shortcoming,
an alternative form of the secular equation was sought. Such
an approach was successful in the case of the quantum-well
formalism of Ref. 8, where the spurious solutions were con-
tained inside hyperbolic tangents, which asymptotically ap-
proach61 as their argument goes to6`.

Therefore, the strategy is to eliminate the exponentials in
Eq. ~28! in favor of hyperbolic tangents. First, all four
boundary conditions@Eqs.~23! and~24!# are rewritten in the
form of a super 4N34N secular equation

S MAe
iKAb

e2 iqdMAe
iKA~d2b!

2MBe
iKBb

2MBe
2 iKBbD S cAcBD50. ~30!

Through a series of elementary matrix transformations~fac-
toring and row additions!, Eq. ~30! can be recast as

S MAcos~KAa2qd/2!

iM Asin~KAa2qd/2!

2MBcosKBb
iM BsinKBb

D S e2 iqd/2eiKAd/2cA

cB D
50. ~31!

Now, multiply row 1 on the left by
( iM BsinKBb)(2MBcosKBb)

21 and then subtract it from row
2, which annihilates the lower-right diagonal element, leav-
ing

S MAcos~KAa2qd/2!

MBtan~KBb!MB
21MAcos~KAa2qd/2!1MAsin~KAa2qd/2!

2MBcosKBb
0 D S e2 iqd/2eiKAd/2cA

cB D50. ~32!

The determinant of Eq.~32! is of order 2N32N only and is given by the product of the determinants of the two off-diagonal
2N32N blocks

iMBtan~KBb!MB
211MAtan~KAa2qd/2!MA

21i3iMAcos~KAa2qd/2!i3iMBcos~KBb!i50. ~33!
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In the case of imaginary exponents, the cosine factors be-
come hyperbolic cosines and are never zero, and so can be
dropped, and the corresponding tangents become hyperbolic
tangents, which are bounded by61. So, unless one of the
cosines becomes zero, the secular equation is given by

iMBtan~KBb!MB
211MAtan~KAa2qd/2!MA

21i50;
~34!

several other variants of Eq.~34! are possible. For real ex-
ponents, the cosine factors in Eq.~33! should be retained to
remove the singularities due to the tangents. The cosines do
not, however, alter the solutions of the secular equation.
Equation~34! represents the alternative form that is the sub-
ject of this paper.

A. Wave functions

Once a root of Eq.~34! is located, the corresponding wave
function can be found. Using Eq.~32!, one obtains the 2N
32N equation

@MBtan~KBb!MB
21MAcos~KAa2qd/2!

1MAsin~KAa2qd/2!#@e2 iqd/2eiKAd/2cA#50. ~35!

Factoring outMAcos~KAa2qd/2!, one obtains

@MBtan~KBb!MB
211MAtan~KAa2qd/2!MA

21#x50,
~36!

x5MAcos~KAa2qd/2!eiKAd/2e2 iqd/2cA.

The cB coefficients can be found by back substitution into
Eq. ~32!

x5MBcos~KBb!cB. ~37!

Once the expansion coefficients are found, the corre-
sponding wave function can be normalized and its band char-
acter ~conduction electron, heavy hole, light hole, or spin
orbit! examined. In normalizing the wave function, to avoid
numerical problems, it is better to deal with

A[e2 iqd/2eiKAd/2cos~KAa2qd/2!cA5MA
21x,

~38!
B[cos~KBb!cB5MB

21x.

B. Relation to previous work

The secular equation used in this work@Eq. ~36!#, in-
volves terms of the form

(
P51

2N

(
j51

2N

@MQjtankjaMjP
21#xP . ~39!

HereP andQ denote band indices and the expansion coef-
ficient xP is subscripted with band indices as well. This is in
contrast to the original problem@Eqs.~23! and~24!# in which
the expansion coefficientsc i

A,B were subscripted with expo-
nentski . The latter situation is the one encountered in the
work of Smith and Mailhiot,4 whereas the former is used in
the formalism of Ram-Mohan, Yoo, and Aggarwal.5 How-
ever, none of the these approaches, including Eqs.~28! and
~34!, yields Hermitian secular matrices.

C. Single-band test case

As an illustration, one can use a single-band model of a
superlattice. Equation~34! leads to the secular equation for a
single band~N52 with two spins!

S A1

0
\2kA
2mA

A21
\2kB
2mB

A3

0

0
A1

0
\2kA
2mA

A21
\2kB
2mB

A3

2mA

\2kA
A21

2mB

\2kB
A3

0
A1

0

0
2mA

\2kA
A21

2mB

\2kB
A3

0
A1

D , ~40!

where

A15@ tan~kAa2qd/2!2tan~kAa1qd/2!#/2,

A25@ tan~kAa1qd/2!1tan~kAa2qd/2!#/2,

A35tankBb, ~41!

and other symbols have the same meaning as before. Ob-
serve that Eq.~40! is non-Hermitian; however,as will be
proved more generally later, if one interchanges the first two
columns~rows! with the last two columns~rows!, the secular
equation does become Hermitian.

In this simple case, one can decouple the up- and down-
spin solutions by performing additional row and column in-
terchanges and obtain two identical 232 blocks of the form

S 2mA

\2kA
A21

2mB

\2kB
A3

A1

A1

\2kA
2mA

A21
\2kB
2mB

A3
D . ~42!

Setting the determinant to zero, one obtains an eigenvalue
equationwith tangents only

~A11aB!~A21B/a!1~A21aB!~A11B/a!50,
~43!

where A15tan(kAa1qd/2), A25tan(kAa2qd/2), B
5tankBb, anda5mAkB/mBkA . It is this tangents-only form
that makes the present derivation more akin to the underlying
quantum-well problem. Except near the tangent discontinui-
ties ~removable by multiplication by cosines!, the present
superlattice equation can be shown by trigonometric identi-
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ties to be equivalent to the standard Kronig-Penney equation
@Eq. ~29!#. Equation~43! can be made more symmetric inA
andB.

One immediate benefit of the present secular equation is
that it is simple to obtain the conditions for band extrema at
q50, 6p/d. These conditions are not apparent from the
standard Kronig-Penney equation. In fact, the standard
Kronig-Penney equation for these wave vectors is obtained
by first constructing even- and odd-parity wave functions.2

However, in the present formalism, Eq.~43! immediately
yields the eigenvalue conditions

q50, tankBb5b tanhkAa ——→
a→`

b,

q56p/d, tankBb5b cothkAa ——→
a→`

b, ~44!

for even-parity bands and

q50, tankBb52tanhkAa/b ——→
a→`

21/b,

q56p/d, tankBb52cothkAa/b ——→
a→`

21/b,

~45!

for odd-parity bands, whereb[(mBkA)/(mAkB) and
kA5 ikA for E<V.

Unlike in the present treatment, Eqs.~44! and~45! are not
immediately derivable from the Kronig-Penney model.2 In
particular, in the limit of infinite barriersa→`, the hyper-
bolic tangents and cotangents approach unity and the condi-
tions for the even- and odd-parity bands immediately be-
come the standard conditions for the even- and odd-parity
levels of an isolated quantum well.1,2

As importantly, for states below the top of the well and
wide barriers, Eq.~43! ~multiplied by cosines to remove dis-
continuities in the tangents, if necessary! leads to secular
determinants on the order of unity, while the Kronig-Penney
model Eq.~29! can lead to numbers on the order of 1016 and
larger. In the case of multiband EFA, especially in the pres-
ence of the so-called wing solutions, the numerical overflows
in the standard formulation Eq.~28! can be even more se-
vere.

IV. HERMITICITY

Here it will be shown that a simple column~row! inter-
change can render the present secular equation@either Eq.
~28! or ~34!# Hermitian. The theorem to be proved is as
follows.

Theorem.Interchanging the firstN columns~or rows! and
the lastN columns~or rows! of secular equation@Eqs.~34!#
results in a Hermitian matrix.

Proof. The proof proceeds as follows. Define a unitary
matrix T

T5S 0I I
0D5T215T† ~46!

of order 2N32N, where the unit matrices are of order
N3N. When premultiplying a matrix,T interchanges the

first and lastN rows; when postmultiplying a matrix,T in-
terchanges the first and lastN columns.

Next, consider the form of the two terms comprising Eq.
~34!, i.e.,

V[M tanKa~M21!, ~47!

whereVPR[(kMPktankaMkR
21 and P,R are band indices.

The equation for the inverseM21 is developed in the Appen-
dix, Eq. ~A5!. To explore Hermiticity, it is necessary to deal
with the Hermitian adjoint ofV, whose elements are

VRP* [(
k

~Mk*R
21

!* tanka~MPk* !* . ~48!

However, from~A1!, ~A5!, and~15!,

~MPk* !*⇒S I
H1L* /2

0
H2*

D S Ck*
*

kCk*
* D

5~Lk kLk!S I0 H1R/2
H2

D⇒~M21T!kP . ~49!

Similarly, using the equation for the inverse@Eq. ~A5!#

~Mk*Q
21

!*⇒~Lk*
* kLk*

* !SH1R* /2

H2*
I
0D

5SH1L/2
I

H2

0 D S Ck

kCk
D⇒~TM!Qk . ~50!

Inserting Eqs.~49! and ~50! into Eq. ~48!, one finds that

V†5TVT, ~51!

so that (VT)†5TV†5T2VT5VT. Therefore, althoughV
is not Hermitian, matricesVT and TV, obtained by inter-
changing the first and lastN columns or rows, respectively,
of the original matrixV, are Hermitian. These developments
were anticipated in the discussion of the secular equation for
the single-band case Eq.~40!. Finally, following the lines of
the present derivation, one can also show that the original
superlattice secular equation@Eq. ~28!# can be made Hermit-
ian by the same row and column interchange.

A. Properties of the secular equation

Given an operatorV that is not Hermitian but obeys the
conditionV†5TVT so thatVT andTV are Hermitian, sev-
eral theorems can be proved.

~i! If li is an eigenvalue ofV, thenl i* is an eigenvalues
of V† ~standard result from linear algebra21!.

~ii ! The eigenvalues ofV come in complex-conjugate
pairs.

Proof. If l is an eigenvalue ofV, then det~V2lI !50.
From the general relation

05det~V2lI !†5det~V†2l* I !5det~TVT2l* I !

5detT~V2l* I !T5det~V2l* I !, ~52!

so that bothl andl* are eigenvalues ofV. By contrast, the
eigenvalues ofVT andTV are real.

~iii ! If wi is an eigenvector ofV with eigenvalueli , then
Tw i is an eigenvector ofV† with the same eigenvalue.
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Proof.Let wi satisfy the eigenvalue equationVw i5l iw i .
Multiplying by T, one obtains TVw i5l iTw i . But,
TV5V†T, so thatV†(Tw i)5l i(Tw i).

~iv! Hermitian operatorsVT andTV have the same ei-
genvalues and their eigenvectors differ only by row inter-
change.

Proof. If mi is an eigenvalue ofVT andji the correspond-
ing eigenvector, then (VT)j i5m ij i . Therefore,

T~VT!j i5m iTj i , ~TV!~Tj i !5m i~Tj i !, ~53!

so thatTj i is the corresponding eigenvector ofTV with the
same eigenvaluemi . In effect, the problem can be made
Hermitian by either row or column interchange.

~v! The determinants ofVT andV are equal to within a
sign since detT5(21)N. In practice, because of spin multi-
plicity, N is even. However,N could be odd if the Kramers
degeneracy is eliminated beforehand by block diagonalizing
the starting bulk Hamiltonian~e.g., as in the case of the 636
Hamiltonian for the heavy-, light-, and spin-orbit-hole mani-
folds!. In fact, it is easy to show that

det~V†V!5)
i

l i* l i5det~V†TTV!5det~TV!25)
i

m i
2,

~54!

so that for each real rootmi there is one (l i ,l i* ) pair; how-
ever,l i* l iÞm i

2.
The practical implication of these theorems has to do with

the multiplicity of eigenvalues and their reality. In the case
of the time-reversal and inversion symmetries, each solution
in the superlattice at a given~kiq! is doubly degenerate.
Therefore, each root of the Hermitian secular equation will
be at least a double root. As a result, the product of distinct
eigenvalues of the Hermitian matrix furnishes a real secular
determinant that changes sign at the roots of the problem.

However, by theorem~v!, to each such real root, there
will correspond a pair of complex-conjugate roots of the
original, non-Hermitian secular equation. If the complex-
conjugate roots happen to be real@as is the case for the
single-band case of Eq.~28!#, then such roots will occur as
real quadruplets. The zeros of the corresponding secular de-
terminant are not easily identified, as it does not change sign
at the roots of the problem. Finally, note that the reformu-
lated secular equation@Eq. ~34!# is not invariant under the
interchangeq→2q, so no additional degeneracies ensue as
a result.

B. Comparisons

The secular equation of Smith and Mailhiot5 for superlat-
tices is non-Hermitian as it yields complex eigenvalues that
come in conjugate pairs. Therefore, the zeros of their deter-
minant are not located as easily as those of the Hermitian
matrix derived above. In the case of the transfer matrix for-
malism of Ram-Mohan, Yoo, and Aggarwal,5 their secular
equation leads to a general complex matrix, which is also
less convenient for locating the zeros of the determinant,
especially in the case of degenerate roots. As importantly,
both Smith and Mailhiot4 as well as Ram-Mohan, Yoo, and
Aggarwal5 report grave difficulties in handling imaginary ex-
ponents, a problem that the present formalism avoids by re-

casting the secular equation in terms of tangents. Since the
present formalism and that of Ram-Mohan, Yoo, and Aggar-
wal are related via a similarity transformation, the latter
should obey the relations derived in the present paper.

V. APPLICATION TO InAs/In xGa12xSb SUPERLATTICES

In this section an InAs/InxGa12xSb superlattice is used as
an example to demonstrate the utility of the calculational
scheme developed here. A fuller discussion of the system is
left for a separate paper.

The calculation involves an 838 EFA Hamiltonian and
the standard EFA boundary conditions.1–3 ~Observe that in
the 838 case, the conduction band is included explicitly, so
that the valence-band coupling to the first conduction band is
not included in the Luttinger parametersg8. It is this cou-
pling that is the main source of the discrepancy discovered
by Foreman15 between the conventional and Burt 636 EFA-
formalisms.! The superlattice is chosen to have 30-Å InAs
layers and 30-Å InxGa12xSb layers withx50.30 M indium
content. The superlattice is free standing and oriented in the
@001# direction. The material input parameters are the same
as those used earlier22,23 ~mainly from Refs. 24 and 25!.
Strain effects are treated using the Bir-Picus deformation-
potential theory.26 The secular equation is in the tangent
form Eq.~34! and is made Hermitian via column interchange
~Sec. IV!. Spurious exponents on the order of 2 inverse Bohr
radii were found in diagonalizing Eq.~12!, leading to expo-
nentials on the order of 10649 in Eq. ~28!.

The accuracy of the eigenvalue determination was
checked against a separate code forq50 andp/d. These two
cases possess more symmetry than at a generalq, which
allows one to halve the size of the secular determinant and to
implement numerical techniques for avoiding overflows that
are similar to those used for quantum wells.8 Both
InAs/InxGa12xSb and GaAs/AlxGa12xAs superlattices were
examined. The eigenvalues obtained in these test cases were
identical to within the machine accuracy when compared to
those obtained from the more general code tested here.

Figure 1 shows the calculated band dispersions for the
InAs/InxGa12xSb superlattice. The chosen example is a
semiconducting superlattice, with a gap in midinfrared. Its
design is not optimized for any particular use. The example

FIG. 1. Band dispersions for a 30 Å/30 Å InAs/In0.3Ga0.7Sb
superlattice calculated using the method developed in this paper.

54 11 545NUMERICALLY STABLE HERMITIAN SECULAR . . .



is included here only to demonstrate that the scheme devel-
oped here is eminently workable and possesses many useful
properties. In particular, an eigenvalue search is trivial be-
cause of the Hermiticity of the secular equation, because the
secular determinants are on the order of unity, and because
they change sign at each root.

VI. CONCLUSION

In this paper an alternative form of the EFA secular equa-
tion for superlattices was developed. The present secular
equation avoids troublesome exponentials in favor of well-
behaved hyperbolic tangents whenever wave function expo-
nents are imaginary. As a result, the method has no difficul-
ties in handling evanescent wave function components, in
particular the so-called wing solutions, which often render
the calculation impossible. The present method does not ad-
dress the issue of spurious oscillatory solutions because they
do not lead to over- and underflows, although they may lead
to physical problems.

As importantly, the generally complex secular equation is
made Hermitian by a simple interchange of rows or columns.
Its diagonalization producesN pairs of real eigenvalues. At a
root, two of the eigenvalues are zero and the corresponding
eigenvectors are associated with the Kramers degenerate
wave functions for the superlattice. Roots are easily identi-
fied since the secular determinant obtained by multiplying
distinct eigenvalues changes sign at the roots. Therefore, it is
not necessary to first find a unitary transformation to elimi-
nate the Kramers degeneracy of the startingk•p Hamil-
tonian.

When applied to the case of a carrier in a single parabolic
band~i.e., the simple Kronig-Penney model!, the present for-
malism results in a secular equation with tangents rather than
sines and cosines. The present form is more closely related to
the underlying quantum-well problem. In addition, the
present method was shown to be applicable to Burt’s EFA
formalism as implemented by Foreman. Finally, the method
was demonstrated by the example of the technologically im-
portant semiconducting InAs/InxGa12xSb type-II superlat-
tice.
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APPENDIX: INVERSE OF MATRIX M

1. Left inverse

The matrixM is given by

M5S I
H1L/2

0
H2

D S C
CKD , ~A1!

so that its left inverse is given by

M215S C
CKD 21S I

2H2
21H1L/2

0
H2

21D . ~A2!

From the orthonormality relation@Eq. ~27!#

~L KL !SH1

H2

H2

0 D S C
CKD5S I0 0

I D , ~A3!

one finds that

S C
CKD 21

5~L KL !SH1

H2

H2

0 D , ~A4!

so that

M215~L KL !SH1R/2
H2

I
0D . ~A5!

Verifying, one finds that

M21M5~L KL !SH1R/2
H2

I
0D S I

H1L/2
0
H2

D S C
CKD

5~L KL !SH1

H2

H2

0 D S C
CKD5S I0 0

I D ~A6!

is the left inverse, so that

(
L51

2N

M jL
21MLi5d i j , ~A7!

where the sum proceeds of the band indicesL and the Kro-
necker delta is with respect to exponentski .

2. Right inverse

From matrix algebra, it is known that the left inverse of a
matrix is also its right inverse.27 Nevertheless, in our case, it
is instructive to prove this fact based on orthogonality rela-
tions. Forming the required product, one obtains

S I
H1L/2

0
H2

D S C
CKD ~L KL !SH1R/2

H2

I
0D[S P1

P3

P2

P4
D .
~A8!

Explicitly,

~P2!nm5(
j
Cn jL jm50, ~A9!

which is implicit in identities~24a! and ~24b! of Smith and
Mailhiot;4

~P1!nm5~P4!mn* 5(
j ,p

Cn jL jp@~H1R/2!pm1kj~H2!pm#

5dnm , ~A10!

from ~A9! and identities~24b! and ~24d! of Smith and
Mailhiot;4 and

~P3!nm5(
p,r

(
j

@~H1L/2!np1kj~H2!np#CpjL jr @~H1R/2!rm

1kj~H2!rm#50, ~A11!

from ~A9! and identities~24b! and ~24c! of Smith and
Mailhiot.4 Therefore, Eq.~A5! is both the left and the right
inverse of matrixM .
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