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We present theoretical studies of the Raman spectra of heavily doped GaAs-AlxGa12xAs multiple quantum
wells in an attempt to understand the effects of heavy two-dimensional~2D! doping on the electronic structures
and optical properties of semiconductors. Samples of GaAs-AlxGa12xAs multiple quantum wells with
x50.2 and 0.4, well-barrier widths around 100 Å, and 2D electron densities up to more than 131013 cm22 are
examined. Intersubband and intrasubband Raman plasmon modes are calculated with an energy-dependent
effective-mass theory, which takes into account the band nonparabolicity. The screened external potential due
to impurity and electron charge distribution including the exchange and correlation effects are calculated
self-consistently within the local-density approximation. The resulting Raman spectra are found to be sensitive
to the shape of the screened potential, and they are in qualitative agreement with experimental data.
@S0163-1829~96!01039-9#

I. INTRODUCTION

Doping of semiconductor quantum wells has been of in-
terest to electronic device industries and scientific research
societies. Electrons doped in narrow quantum wells~well
widths <100 Å! form a two-dimensional electron gas
~2DEG!, and populate in confined quantum states in the
wells. There have been many investigations over the years of
properties of 2DEG related with doped quantum wells or
d-doped semiconductors.1–7 The fundamental electronic ex-
citations of doped semiconductor quantum wells are single-
particle excitations and the collective modes which include
both intrasubband and intersubband plasmons. These collec-
tive modes can interact with longitudinal-optical phonons
and single-particle excitations~leading to Landau damping
of the plasmon! when their energies nearly coincide. A gen-
eral review of the properties of collective modes and their
interaction with phonons in semiconductor quantum wells
can be found in Ref. 8.

Raman spectroscopy is the ideal tool to probe the collec-
tive electronic excitations in semiconductors, and it has been
used with great success to study heavily doped
semiconductors.9,10 The results can be fully understood in
terms of the phonon-plasmon coupled modes within the con-
tent of linear-response theory. The situation in quantum
wells is more complicated due to the existence of many sub-
bands. Depending on the polarizations of the incident and
scattered light in the measurement, the Raman scattering can
probe either the charge-density excitation~CDE! when both
polarizations are parallel, or the spin-density excitation
~SDE! when the two polarizations are perpendicular.1 The
difference between CDE and SDE energies in the Raman
spectra is called the ‘‘depolarization shift.’’ Theoretical cal-
culations of Raman spectra of low-doping quantum wells
without including the self-consistent potential have been

reported.3,11,12However, systematic theoretical studies of the
optical properties of heavily doped quantum wells have not
been fully conducted. The main differences between the low-
doping and high-doping case are as follows:~1! carrier en-
ergies of interest are high, so the nonparabolicity effect can
not be ignored;~2! the band bending due to the self-
consistent potential and exchange-correlation effects be-
comes important; and~3! higher subbands and many uncon-
fined ~above-barrier! states are needed to describe the
intersubband transitions correctly.

In this paper, we report theoretical studies of the Raman
spectra of heavily doped GaAs-AlxGa12xAs multiple quan-
tum wells in an attempt to understand 2D doping on the
electronic structures and optical properties in semiconduc-
tors. Cases of well-doped and barrier-doped multiple quan-
tum wells are studied. Samples of GaAs-AlxGa12xAs mul-
tiple quantum wells withx50.2 and 0.4, well-barrier widths
around 100 Å, and 2D electron densities up to more than
131013 cm22 are examined. Intersubband and intrasubband
Raman plasmon modes for realistic samples which involve
eight quantum wells are theoretically analyzed. The number
of quantum wells is chosen so that the total length of mul-
tiple quantum wells is comparable to the penetration depth of
the incident photon in order to maximize the signal-to-noise
ratio in the Raman measurements. In our calculations, the
energy-band nonparabolicity, the many-body-exchange cor-
relation, and the dynamic dielectric screening are all taken
into account. To simplify the computation, an ‘‘effective
Hamiltonian’’ method is developed, which is shown to im-
prove substantially the efficiency of the calculation of Ra-
man spectra compared with the direct evaluation of the
density-density correlation function. The resulting Raman
spectra are found to be sensitive to the shape of the screened
potential, which in turn depends strongly on the doping pro-
file. A comparison between theory and experiment for the
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well-doped case is presented. More detailed experimental
studies of both the well- and barrier-doped cases will be
presented elsewhere.13

II. THEORY

We shall consider Raman spectra due to charge-density
excitations of a heavily doped GaAs-Ga12xAl xAs multiple-
quantum-well system. The electronic states of the multiple
quantum well are described in an energy- and position-
dependent effective-mass approximation, which takes into
account both the nonparabolicity effect and the difference in
effective mass for the well and barrier materials. In this
model, the energy of an electron in a quantum well is de-
scribed by

E~k!5
k2

11@E~k!1hV~z!#/Eg
, ~1!

whereEg is the fundamental gap of GaAs,E(k) is the en-
ergy of the electron in the system measured with respect to
the bottom of the well, andV(z) is the quantum-well poten-
tial which is zero forz in the well andV0 in the barrier.h is
an empirical factor less than 1, which is to be determined.
Here and henceforth we use the units in which the energy is
measured in the effective rydbergs, Ry*[13.6 eV
m0 /m* (0), wherem* (0) is the effective mass of the well
material, and the distance measured in bohr (aB50.529 Å!.
For an electron in the well,V(z)50, and the above relation
is the same as that given by Bastard’s two-bandk•pmodel,14

i.e.,

E~11E/Eg!5k2. ~2!

Thus the band nonparabolicity is properly taken into account.
For an electron in the barrier material@with V(z) equal to the
band offsetV0#, Eq. ~1! leads to a nonparabolic effective
mass expression with the zone-center effective mass
„]E/@](k2)#…uE5V0

21 5m* (0)@11(21h)V0 /Eg#, which is

larger than the effective mass of the well material. Here we
have usedE5V0, the minimum energy of the electron in the
barrier material. We now determine the empirical factorh.
For GaAs,m* (0)50.065m0 (m0 is the free-electron mass!
at T5300 K, including the polaron effect.15 The band gap
for Al xGa12xAs at room temperature is given by16

Eg~x!5~1.42411.247x! eV,

and the quantum-well depth is given by

V0~x!5@Eg~x!2Eg~0!#0.65,

where the 65/35% rule has been used.17 Using the energy-
dependent effective-mass relation, we obtain an effective
mass of AlxGa12xAs to be 0.065@110.569(21h)x#m0.
Comparing this expression with the experimental value18 of
0.065(111.239x)m0, we obtainh'0.18. So Eq.~1! is suit-
able for describing electrons in AlxGa12xAs/GaAs quantum
wells even when the electron energy is higher than the bar-

rier height. This is what we need for studying collective
modes of doped AlxGa12xAs/GaAs quantum wells involv-
ing unconfined states.

For practical purposes, it is rather inconvenient to use
expression~1! for calculating electronic states of a quantum
well, since it is difficult to handle the kinetic-energy operator
corresponding to@with kz52 i (]/]z)#

E~kz!5
Eg1hV~z!

2 F S 11
4Egkz

2

@Eg1hV~z!#2
D 1/221G , ~3!

which is the solution to Eq.~1! with ki50. However, if both
kz
2 andhV0 are much less thanEg , we can approximate the
above expression by~keeping only the first order term of
hV/Eg)

E~kz!5
Eg

2 F S 11
4kz

2

Eg
D 1/221G2kz

2hV~z!/Eg . ~4!

Note that the last term~referred to asT1) is not Hermitian if
we let kz52 i (]/]z). To circumvent this difficulty, we re-
place the term byT15]Q z„hV(z)/Eg…]

W
z, where ]Q means

‘‘taking the derivative of a function to the left,’’ and]W means
‘‘taking the derivative of a function to the right.’’ The above
procedure is valid, since the expectation value ofT1 in a
state completely confined in a given material~well or barrier!
gives the right correction to its kinetic energy. We can now
solve the quantum well problem using a plane-wave basis.

For ease in computation, we consider a multiple quantum
well with well width Lw , barrier widthLb , and depthV0
placed inside a large square well of widthL
(L..Lw1Lb) and with an infinite potential barrier~see
Fig. 1!. The width L can be arbitrarily increased until the
final results are insensitive toL, at which point the results are
correct for an isolated multiple-quantum-well system. Let
Tn andfn(z) be the kinetic energies and eigenfunctions of
an electron in the infinite well withV050 andki50, viz.,

Tn5
Eg

2 F S 11
4kn

2

Eg
D 1/221G , ~5!

with kn5np/L and

fn~z!5S 2L D 1/2sin~npz/L !. ~6!

The eigenstates of the entire system with the multiple
quantum wells present and including the effects due to the
mismatch of effective masses inside and outside the quantum
wells are expanded in terms of the basis functionsfn as

j i~z!5 (
n51

N

Cn
i fn~z!. ~7!

The expansion coefficientsCn are obtained by solving the
Schrödinger equation for the system self-consistently within
the basis set~including the correction due toT1), i.e.,
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(
n8

~Tndn,n81^nuT1un8&1^nuVmqwun8&

1^nuVscun8&!Cn8
i

5Ei
0Cn

i , ~8!

whereVmqw denotes the multiple-quantum-well potential of
interest, andVsc is the screened potential due to impurities
and free carriers. A total of 200 basis functions will be used
in our calculations. We assume that the impurity charge dis-
tribution is uniform in thex-y plane and is described by a
z-dependent functionr I(z). For uniform doping within a
quantum well of widthLw , we assume

r I~z!5
en2D
Lw

g~z!,

wheree denotes the electron charge,n2D is the average layer
doping density, which equals the average 2D carrier density,
andg(z) is a hatlike function defined as

g~z!5~e~ uzu2Lw/2!/b21!21Y E ~e~ uzu2Lw/2!/b21!21dz.

~9!

The parameterb describes the spread of the impurity con-
centration around the interface. Throughout this paper, we
shall assumeb510 Å. Similarly for uniform doping within a
quantum barrier, we replaceLw by Lb in the above equation.
The carrier charge distribution is denotedre(z), which can
be calculated once the subband energiesEi(ki) and eigen-
functionsj i(z) are found. We have

re~z!52
2e

A (
i

(
ki

f @m2Ei~ki!#uj i~z!u2

[2e(
i
ni
2Duj i~z!u2, ~10!

FIG. 1. Total potential seen by an electron
~lower curve! in a multiple GaAs-AlxGa12xAs
quantum well with~a! x50.2, doped in the well,
andn2D'1.0631013 cm22, ~b! x50.2, doped in
the barrier, andn2D'1.231013 cm22, and ~c!
x50.4, doped in the barrier, andn2D
'1.3631013 cm22. The upper curve shows the
doping profile. The dashed line indicates the
Fermi level.
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whereni
2D5(ki

f @m2Ei(ki)# denotes the 2D carrier density

for subband i , m is the chemical potential, and
f (m2E)51/(e(E2m)/kBT11) is the Fermi distribution func-
tion. The subband energyEi(ki) is derived as follows. From
Eq. ~1!, by taking the derivative ofE(k) with respect toki

2

we can express the kinetic energy at finitek as the kinetic
energy atki50 plus a quadratic term inki ~ignoring higher-
order terms!. We have

E~k!'E~ki50!1
ki
2

11~2E~k!1hV!/Eg
. ~11!

Replacing the operatorV by its expectation valueVi in the
statei , E(k) by the subband energyEi(ki), andE(ki50) by
Ei
0 , we obtain

Ei~ki!'$A~Eg1hVi22Ei
0!218@Egki

21~Eg1hVi !Ei
0#

2~Eg1hVi22Ei
0!%/4. ~12!

We definer t(z)5r I(z)1re(z) to be the total charge dis-
tribution, which satisfies the charge neutrality condition

E dzr t~z!50.

The self-consistent Hartree potential seen by an electron is
given by

VH~z!52
e

e~0!
E d3r 8

r t~z8!

ur2r 8u

52p
e

e~0!
E dz8r t~z8!uz2z8u, ~13!

where the charge neutrality condition has been used and
e(0) is the static dielectric constant. In our calculations, we
usee(0)513.1823.12x, wherex is the Al mole fraction in
Al xGa12xAs. The net screened potential is the Hartree po-
tential plus the exchange correlation potential, i.e.,

FIG. 2. Raman spectra of well-doped multiple
GaAs-Al0.2Ga0.8As quantum wells with ~a!
n2D53.031012 cm22, ~b! n2D55.731012

cm22, and ~c! n2D51.0631013 cm22 per quan-
tum well. Lw5Lb5100 Å. Dashed curves: with-
out Coulomb interaction. Solid curves: full calcu-
lation.
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Vsc~z!5VH~z!1Vxc~z!,

whereVxc(z) denotes the Kohn-Sham exchange correlation
potential19 within the local-density approximation~LDA !.
Vxc(z) is a function ofre(z) with an accurate relation given
by Ceperley and Alder20 for the free-electron gas in a jellium
model. A convenient interpolation formula forVxc(z) as a
function of re can be found in Ref. 21.

The Raman intensity due to charge excitation is related to
the density-density correlation functionD(z,z8,v) by

R~v!52ImE dz dz8e2 iqz~z2z8!D~z,z8,v!, ~14!

whereD(z,z8) is expanded in terms of eigenfunctions of the
system as

D~z,z8!5 (
i , j ,k,l

Di j ,klj i~z!j j~z!jk~z8!j l~z8!. ~15!

In the random-phase approximation~RPA!, we have12

Di j ,kl5Dkl
0 d ikd j l1(

mn
Di j
0Vi j ,mn~q!Dmn,kl, ~16!

where

Di j
052(

k

f @Ej~k1q!#2 f „Ei~k!…

Ej~k1q!2Ei~k!2\v

with f (E) being the Fermi-Dirac function and

Vi j ,mn~q!5E dz dz8
2pe2

e~`!q
e2quz2z8u

3j i~z!j j~z!jm~z8!jn~z8!, ~17!

wheree(`) is the high-frequency dielectric constant. In our
calculations, we usee(`)510.92(12x)18.16x ~Ref. 18!.
Note that the indexi j (kl) labels an excitation in which the

FIG. 3. Raman spectra of barrier-doped mul-
tiple GaAs-Al0.2Ga0.8As quantum wells with~a!
n2D52.931012 cm22, ~b! n2D55.431012

cm22, and ~c! n2D51.2031013 cm22 per quan-
tum well. Lw5Lb5100 Å. Dashed curves: with-
out Coulomb interaction. Solid curves: full calcu-
lation.
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electron is excited from statei (k) to j ( l ). In this paper, we
are only concerned with intersubband plasmon transitions
with energies much higher than the optical-phonon energy;
thus plasmon-phonon coupling has been ignored. Further-
more, sinceVi j ,kl is invariant under the exchange of indices
i j→ j i and kl→ lk, we can add up thei j (kl) and j i ( lk)
components in Eq.~16! to obtain

D̄ i j ,kl5D̄kl
0 d ikd j l1 (

m<n
D̄ i j
0Vi j ,mnD̄mn,kl , i< j ;k< l ,

~18!

whereD̄ ii ,kk[Dii ,kk , D̄ ii
0[Dii

0 D̄ i j ,kl[Di j ,kl1Di j ,lk1Dji ,kl

1Dji ,lk ( i, j andk, l ), and D̄ i j
0[Di j

01Dji
0 ( i, j ). Substi-

tuting ~15! and ~18! into ~14! yields

R~v!52Im (
i< j ,k< l

D̄ i j ,klpi j* ~qz!pkl~qz!, ~19!

where pi j (qz)[*dzeiqzzj i(z)j j (z). The matrix elements
Vi j ,mn(q) andpi j (qz) are given in the Appendix.

The direct evaluation ofR(v) from Eq. ~19! for every
frequency is very time consuming. To simplify the problem,
we shall develop an ‘‘effective Hamiltonian method’’ as de-
scribed below. We first note that Eq.~16! is just the Dyson’s
equation, which can be rewritten as

D̄ i j ,kl
21 5~D̄ i j

0 !21d ikd j l2Vi j ,kl .

For the small values ofq considered here,12

Di j
0'H ni2nj

\v2Ei j
0 for iÞ j

niq
2

m*v2 for i5 j ,

~20!

and

FIG. 4. Raman spectra of barrier-doped
multiple GaAs-Al0.4Ga0.6As quantum wells
doped with ~a! n2D51.931012 cm22, ~b!
n2D54.431012 cm22, and ~c! n2D51.3631013

cm22 per quantum well. Lw5Lb5100 Å.
Dashed curves: without Coulomb interaction.
Solid curves: full calculation.
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D̄ i j
05

2Ei j
0 ~ni2nj !

~\v!22~Ei j
0 !2

for i, j ,

whereni denotes the 2D electron density in subbandi , and
Ei j
05Ej

02Ei
0 is the subband energy difference.

Introduce the scaling factor

Ai j[HA2Ei j
0 ~ni2nj ! for i, j

Ani\2q2/m* for i5 j ,

and letting D̃ i j ,kl
21 [Ai j D̄ i j ,kl

21 Akl , (D̃ i j
0 )21[Ai j (D̄ i j

0 )21Ai j ,
and Ṽi j ,kl[Ai jVi j ,klAkl ,we then have

D̃215~\v!22H̃,

where

H̃ i j ,kl[~Ei j
0 !2d ikd j l1Ṽi j ,kl .

H̃ behaves like an ‘‘effective Hamiltonian,’’ with diagonal
elements being the square of excitation energies plus the in-
teraction term. SinceH̃ is independent ofv, we only have to
find the transformation matrixS which diagonalizesH̃, and
we immediately obtain

D̃ i j ,kl5(
mn

Si j ,mn@~\v!22lmn#
21Skl,mn ,

where lmn denote themnth eigenvalue ofH̃. Finally, we
have

R~v!52Im(
m<n

@~\v1 iG!22lmn#
21u p̃mn~qz!u2, ~21!

where

p̃mn~qz![(
i j

pi j ~qz!Ai jSi j ,mn .

Note that we have introduced the broadening factorG in the
last step. The effective Hamiltonian method introduced here
not only reduces the computational effort but also makes the
results much easier to interpret. Using Eq.~21!, we can view
the Raman spectrum as a linear superposition of many inter-
subband plasmon transitions, each having a transition energy
Almn and oscillator strengthu p̃mnu2. Due to the repulsive
interactionṼ, each transition energy is shifted up from the
intersubband energyEmn

0 This shift in energy shall be called
the ‘‘Coulomb shift,’’ to be distinguished from the depolar-
ization shift.

It is easy to show from Eq.~21! that the following sum
rule holds,

E R~v!vdv5
p

2 (
m<n

u p̃mn~qz!u25
p

2 (
m<n

uAmnpmn~qz!u2.

~22!

So the integrated area ofvR(v) remains unchanged whether
we include the Coulomb interaction or not.

For heavily doped quantum wells, many subbands~in-
cluding unconfined states! are filled with electrons. Thus the
number of states (N) to be considered can be quite large, and
the dimension of the H̃ matrix @which goes like
N(N11)/2# become too large to be handled efficiently. Let
us consider the charge excitations involving only unconfined
states, i.e., with subband indexi.Nc , whereNc is the num-
ber of quantum-confined states. If both subbandsi and j are
unconfined states and their energies are close; then the elec-
tron populations are almost the same and we haveAi j'0 for
iÞ j . Furthermore if subbandsi and j are greatly separated in
energy, we haveVi j ,kl(q)'0 due to the quickly oscillating
nature of the functionj i(z)j j (z). Consequently, we can ig-
nore the matrix elementsH̃ i j ,kl when either iÞ j with
i , j.Nc or kÞ l with k,l.Nc . By keeping only the intersub-
band excitations involving at least one confined state and the
intrasubband excitations for all subbands withi<N, we can
reduce the dimension of theH̃ matrix from N(N11)/2 to
(Nc11)N2Nc(Nc11)/2.

III. RESULTS

All results shown here are obtained from Eq.~21!, with
the temperature set at 300 K and the broadening parameter
G set at 5 meV. The momentum transfer parallel to the plane
(qi) is assumed to be nearly zero, consistent with the back-
scattering geometry used in experiment. In Fig. 1, we plot
the total potential,Vmqw1Vsc seen by an electron~lower
curve! and the doping profile~upper curve! in a multiple
GaAs-AlxGa12xAs quantum well. We choose
Lw5Lb5100 Å andNw58. Both the buffer and cladding
layers are undoped AlxGa12xAs, and are assumed to be
800 Å thick. In ~a!, x50.2, and each quantum well is doped
with n2D51.0631013 cm22. In ~b!, x50.2 and each quan-
tum barrier is doped such thatn2D51.2031013 cm22. In ~c!,
x50.4 and each quantum barrier is doped such that
n2D51.331013 cm22. The doping profile is given by Eq.~9!
and the impurity distribution is plotted on top of the poten-
tial. The energy zero is taken to be the conduction-band
minimum of Al0.2Ga0.8As far away from the doped region.
The dashed line indicates the Fermi level. Due to heavy dop-
ing the potential of the entire multiple-quantum-well~MQW!
region is dramatically lowered by the self-consistent
screened potential. In the limit of zero width of the MQW
region, the system is reduced to ad-doped AlxGa12xAs sys-
tem, and the total potential approaches aV-shaped potential
as expected. In each quantum well there are two confined
subbands, which are heavily occupied. The charge-density
excitation from these occupied levels to the nearly unoccu-
pied excited states near the Fermi level leads to prominent
structures in the Raman spectra.

There are three major differences between the well-doped
and barrier-doped multiple quantum wells with the same Al
mole fractionx50.2. ~1! The potential shape at the bottom
of each quantum the well has a slight downward bowing for
well-doped case~where the electron charge distribution
nearly cancels the dopant charge distribution!, and has a
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large upward bowing for the other case~where the charge
distribution of electrons and dopants are spatially separated!.
~2! For the well-doped case all eight quantum wells have
almost the same potential minimum, whereas for the barrier-
doped case the potential minimum of the well near the center
is much lower than that of the well near the edge.~3! In the
barrier-doped case, two additional quantum wells~one on
each side! with a parabolic potential are formed at the out-
ermost doped AlxGa12xAs layers@see Figs. 1~b! and 1~c!#.
We shall refer to these quantum wells as the parabolic
Al xGa12xAs wells. All these will affect the energy separa-
tions between the lowest-lying subbands, and therefore the
peak positions of the intersubband plasmons. Thus, we ex-
pect the Raman spectra to be sensitive to the doping profile.

In Fig. 2, we show the calculated Raman spectra of mul-
tiple GaAs-Al0.2Ga0.8As quantum wells doped with~a!
n2D53.031012 cm22, ~b! n2D55.731012 cm22, and ~c!
n2D51.0631013 cm22 in each quantum well. The Fermi
levels in these structures are 75, 120, and 180 meV, respec-
tively above the lowest confined level. Both the well and
barrier widths are kept at 100 Å, andNw58. In our calcula-
tion, Nc516 ~since there are two confined levels for each
quantum well! andN548. The total potential profile for~c!
has been shown in Fig. 1~a!. In each plot, the dashed curve is
the result with the interaction (Ṽ) set to zero~noninteracting
spectrum! and the solid curve is the full result. In~a!, the
Fermi level is slightly above the minimum of the second
subband, so the lowest confined subband in each quantum
well is heavily occupied and the second subband is lightly
occupied, while the higher subbands are essentially empty.
The transition from the first to the second subband~labeled
1-2! in each quantum well leads to an intersubband transition
peak at around 600 cm21 in the noninteracting spectrum~the
dashed curve!, and its corresponding intersubband plasmon
peak is around 850 cm21 when the Coulomb interaction is
included ~solid curve!. Note that the intersubband plasmon
mode is a collective mode which is a linear combination of
the 1-2 intersubband transition~the predominant component!
and many other electronic excitations~some of them corre-
spond to forbidden transitions!. In ~b!, the first subband is
more heavily occupied, and the second subband becomes
partially occupied. The 1-2 transition is stronger than that in
~a! due to the increase in the factor (n12n2), whereni is the
2D carrier density in subbandi @see Eq.~20!#, and the Cou-
lomb shift is larger. The peak position of the 1-2 plasmon
moves to around 930 cm21. The larger factor (n12n2) also
enhances the effective interactionṼ, thus leading to a larger
Coulomb shift. Note that if the temperature considered was
zero, and the subbands were parabolic, then the factor
(n12n2) would remain constant as long as the Fermi level is
above the minimum of the second subband. However, at
room temperature, there is substantial ‘‘spillover’’ from sub-
band 1 to 2, when the Fermi level is near the minimum of
subband 2; thus, the factor (n12n2) increases from~a! to
~b!. Furthermore, the increase of energy spacing between
subbands 1 and 2 as the density increases due to the down-
ward bowing of the quantum-well potential also causes the
factor (n12n2) to increase. In~c!, the lowest two confined
subbands are heavily occupied, and some of the higher un-
confined subbands also become lightly occupied. An addi-

tional shoulder feature labeled 2-3* becomes apparent in the
noninteracting spectrum, where 3* denotes a ‘‘third’’ energy
level, which corresponding to a resonance in the unconfined
continuum states. Once the Coulomb interaction is included,
the 1-2 transition is shifted to around 1010 cm21. The shoul-
der structure also moves up to around 1100 cm21. The Cou-
lomb shift for this is smaller, since the factor (n22n3) is
smaller than (n12n2). Since many higher levels are occu-
pied, the Raman spectrum contains many intersubband plas-
mon transitions and it has a much broader feature.

In Fig. 3, we show the calculated Raman spectra of
barrier-doped multiple GaAs-Al0.2Ga0.8As quantum wells
with ~a! n2D52.931012 cm22, ~b! n2D55.431012 cm22,
and ~c! n2D51.2031013 cm22 per quantum well. Heren2D
is the total 2D density of the MQW structure divided by
Nw , although there areNw11 doped barrier regions. Here
Nc518 for ~a! and ~b!, since there are two additional con-
fined states in the parabolic AlxGa12xAs wells, and
N548. For~c!, we usedNc528, since more subband states
become occupied. The Fermi levels in these structures are
65, 90, and 170 meV, respectively, above the lowest con-
fined level. Both the well and barrier widths are kept at
100 Å. The total potential profile for~c! has been shown in
Fig. 1~b!. Without interaction, the 1-2 transition peaks at
around 500 cm21 for case~a! ~lowest density! and shifts to
lower energy@at around 400 cm21 for ~b! and 200 cm21 for
~c!# as the 2D density increases. This is caused by the change
in potential profile at the bottom of the quantum well, which
goes from a slight upward bowing at low density to a very
large upward bowing at high density@see Fig. 1~b!#. The
upward bowing tends to reduce the 1-2 energy separation,
since the wave function of level 1 is peaked at the center and
influenced most by the bowing, while the wave function of
level 2 has a node at the center, and hence is much less
affected by the bowing. The reduction in 1-2 energy spacing
tends to reduce the factor (n12n2), while the increase of the
Fermi level tends to increase it. The two competing mecha-
nisms cause (n12n2) to increase slightly from~a! to ~b!,
then decrease from~b! to ~c!. This factor, however, cannot
account for the increase of oscillator strength of the 1-2 peak
~see dashed curves! from ~b! to ~c!. It turns out that although
(n12n2) is reduced from~b! to ~c!, the number of subband
‘‘1’’ is nearly doubled in case~c!, as the large upward bow-
ing essentially divides each quantum well into two triangular
wells. This is why we chooseNc528 insted of 18. The
strength of the 1-2 transition is greatly enhanced compared
with ~b!. Furthermore, since the Fermi level is so high, many
transitions involving highers subbands contribute to the ad-
ditional structures in the noninteracting spectrum~see shoul-
der structures of the dashed curve!.

When the interaction is included, the 1-2 plasmon mode
peaks at higher wave number than the 1-2 transition, just as
in the well-doped case. In~b!, a shoulder structure due to the
2-3* transition is again present~at around 800 cm21). Fur-
thermore, a feature labeled 1* -2 is found at energies below
200 cm21. Here 1* labels the lowest confined level of the
parabolic AlxGa12xAs wells formed at outermost doped
Al xGa12xAs layers, whose energy is about 10–15 meV be-
low the second confined level~level 2! of the neighboring
GaAs quantum well. When the Coulomb interaction is in-
cluded, this transition couples with the 1-2 transition and

11 524 54YIA-CHUNG CHANG AND HUADE YAO



gives rise to a bump at around 430 cm21. This feature would
not be present if the outermost quantum barriers were not
doped. In~c!, all 1-2 transitions occur at around 200 cm21,
thus the 1* -2 transition is masked. When the Coulomb in-
teraction is included, the Raman spectrum becomes a broad
feature centered at 850 cm21. Comparing Figs. 2 and 3, we
noticed that the Raman spectra are quite different for well-
doped and barrier-doped MQW’s, even if the electron 2D
densities per quantum well are similar, indicating the sensi-
tivity of the Raman spectrum to the doping profile.

In Fig. 4, we show the calculated Raman spectra of
barrier-doped multiple GaAs-Al0.4Ga0.6As quantum wells
with ~a! n2D51.931012 cm22, ~b! n2D54.431012 cm22,
and~c! n2D51.3631013 cm22 per quantum well. The Fermi
levels in these structures are 64, 105, and 160 meV, respec-
tively above the lowest confined level. Both the well and
barrier widths are kept at 100 Å, andNw58. The total po-
tential profile for ~c! has been shown in Fig. 1~c!. Because
the quantum well is deeper, we now have three confined
levels in each quantum well. Thus we useNc528 ~four more
for confined states in parabolic AlxGa12xAs wells! and
N548. In ~a!, the lowest two levels in each quantum well are
occupied, thus both 1-2 and 2-3 transitions are present
~peaked around 700 and 1020 cm21) in the noninteracting

spectrum. With the interaction turned on they are shifted
upwards to 850 and 1050 cm21, respectively. In~b!, the 2-3
transition becomes stronger as the population in the second
subband is increased. With the interaction turned on, the sec-
ond peak gains more strength at the expense of the first peak,
and it becomes the dominant peak at around 1100 cm21. In
~c!, all three confined levels are occupied, and the transitions
from the third confined level to higher subbands~unconfined
states! lead to features at energies below 400 cm21. Also of
interest is the structure labeled 1* -2* , which corresponds to
the transition from the first subband to the second subband in
the parabolic AlxGa12xAs wells. The energy of level 1*
happens to coincides with the energy of level 2 in the GaAs
quantum wells, so the 1* -2 transition is absent here. The
Coulomb interaction shifts all these peaks upward and modi-
fies their strengths, with higher-energy transitions gaining
more strength at the expense of lower-energy transitions.

The comparison between theory and experiment is dem-
onstrated in Figs. 5 and 6. Experimental data are taken for
GaAs-Al0.2Ga0.8As multiple quantum wells withnW58.
The dashed lines in the experimental spectra indicate the
background contribution from the tail of Raman phonon sig-
nals. The sharp structures between 500 and 550 cm21 are the
GaAs second-order phonon signals, which should be omitted

FIG. 5. Raman spectra of well-doped multiple GaAs-
Al 0.2Ga0.8As quantum wells with Lw5Lb5100 Å and
n2D'3.731012 cm22. ~a! Theory; dashed curves: without Coulomb
interaction; solid curves: full calculation.~b! Experiment; the
dashed curve indicates the background from the tail of Raman pho-
non signals.

FIG. 6. Raman spectra of well-doped multiple GaAs-
Al 0.2Ga0.8As quantum wells with Lw5Lb5100 Å and
n2D'9.631012 cm22. ~a! Theory; dashed curves: without Coulomb
interaction; solid curves: full calculation.~b! Experiment; the
dashed curve indicates the background from the tail of Raman pho-
non signals.
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when compared with theoretical calculations presented here.
Since the determination of carrier concentration and the dop-
ing profile can have uncertainty up to 20%, we can match the
data more closely by adjusting the parameters used in our
calculation within this uncertainty range. In Fig. 5, the 2D
carrier density~determined by the Hall measurements! is
around 3.8531012 cm22, whereas in the theoretical calcula-
tion, we haven2D53.731012 cm22. This is obtained by
choosing a Fermi level to be 85 meV above the lowest
quantum-well state energy. The theoretical doping profile is
described by Eq.~9! with b525 Å. The more defused doping
profile used here than that in previous calculations is needed
to fit the experimental peak position of the 1-2 intersubband
plasmon. Had we usedb510 Å, the calculated results would
have been similar to that given in Fig. 2~a!, and the peak
position of the 1-2 intersubband plasmon about 50 cm21

higher. This demonstrates the sensitivity of the intersubband
plasmon position to the doping profile. This is because the
change in doping profile modifies the net screened potential
and therefore the energy separations between quantum-well
levels.

In Fig. 6, the experimental 2D density~determined by
Hall measurements! is 9.8631012 cm22, while the theoreti-
cal value used is 9.631012 cm22. At this high doping level,
many higher subbands are partially filled, and the transitions
from these subbands to higher subbands give rise to
multiple-peak structures in the Raman spectrum. The first
structure corresponding to the 1-2 intersubband plasmon is
clearly observable~peaked around 880 cm21), while the
second feature centered around 1050 cm21 is barely recog-
nizable from the experimental spectrum. If the background
~as indicated by the dashed curve! is subtracted, this feature
will become more prominent. We tentatively identify this
feature as the 2-3* intersubband plasmon. In the experimen-
tal spectrum, the strength of this feature is weaker compared
with the 1-2 plasmon mode, while in the theoretical spectrum
both the 1-2 and 2-3* plasmon modes have similar peak
heights. More theoretical and experimental works are needed
to resolve this difference.

IV. SUMMARY

We have presented systematic theoretical studies of the
Raman spectra of heavily doped GaAs-AlxGa12xAs mul-

tiple quantum wells~MQW’s!. The band nonparabolicity, the
many-body exchange correlation, and the dynamic dielectric
screening are all taken into account. We have introduced an
‘‘effective Hamiltonian method’’ which maps Dyson’s equa-
tion for the density-density correlation function into an ei-
genvalue problem for efficient numerical evaluation of the
Raman spectrum. The results are found to be sensitive to the
doping profile in the sample, with the prominent intersub-
band plasmon transition being much lower in energy in the
barrier-doped MQW than that in well-doped MQW of the
same 2D doping concentration. A close comparison between
experimental data and the theoretical simulation can there-
fore provide information about the actual dopant distribution
in these heavily doped MQW’s.
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APPENDIX MATRIX ELEMENTS

The matrix elements ofV(q) in the basis$fn% given by
Eq. ~6! are defined as

V̄i j ,mn~q!5E dz dz8
2pe2

q
e2quz2z8u

3f i~z!f j~z!fm~z8!fn~z8!.

Substituting Eq.~6! into the above equation and carrying out
the integral, we have

V̄i j ,mn~q!5
2pe2

q
@ t~ i1 j ,m1n!2t~ i1 j ,m2n!

2t~ i2 j ,m1n!1t~ i2 j ,m2n!#,

where

t~m,n![
1

L2E0
L

cos~mpz/L !e2quz2z8ucos~npz8/L !dz dz8

5
1

2p2 @12~21!ne2qL#@11~21!m1n#F mn2p2

~p22mn!21~m1n!2p2

2
mn1p2

~p21mn!21~m2n!2p2G
1

1

~m21p2!p2 ~dm,n1dm,2n!1
2

qL
dm,0dn,0
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andp[qL/p.
The matrix elements ofV(q) between the eigenstates of

the MQW system are given by

Vi j ,kl~q!5 (
mn,rs

Cm
i Cn

j Cr
kCs

l V̄mn,rs~q!.

We define

p̄mn~q!5E
0

L

dzeiqzfm~z!fn~z!.

Substituting~1! into the above, and integrating overz, yields

p̄mn~q!5s~m1n!2s~n2m!2s~m2n!1s~2m2n!,

where

s~n![
1

2LE0
L

dzei ~qz1np/L !z52
i @~21!neiqzL21#

2~qzL1np!
.

The matrix elementspi j (qz) are given by

pi j ~qz!5(
mn

Cm
i Cn

j p̄mn~qz!.
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