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Signal propagation along an electron waveguide with a nearby screening metal plane is investigated. It is
mediated by one-dimensional intrasubband plasma oscillations or space-charge waves. The signals therefore
propagate much slower than the velocity of light. A transmission-line model and a characteristic impedance are
theoretically derived. Discontinuities~changing width of an electron waveguide, junction to a bulk conductor,
and elastic electron scatterer! are modeled as changes in characteristic impedance and insertions of equivalent
series elements. In the limit of short waveguide sections, the two versions of the Landauer formula for
conductanceG5G0T andG5G0T/(12T) are obtained. In the limit of many subbands, the velocity of light
is reached.@S0163-1829~96!03540-0#

I. INTRODUCTION

Recent development in semiconductor processing has
made it possible to fabricate structures with dimensions com-
parable to the electron wavelength, in particular electron
waveguides. Several switches based on the one-dimensional
~1D! nature of electron gases in these thin semiconductor
wires have been suggested. Some examples of these electron
waveguide devices are Aharonov-Bohm interferometers,1 di-
rectional couplers,2 the quantum stub transistor,3 and the
Y-branch switch.4

These devices are thought of as one possibility of ap-
proaching terahertz switching frequencies.5 When cascading
at high frequencies, the delay due to signal propagation has
to be considered. Since the devices are based on electron
waveguides, the first part of the leads from their source and
drain will necessarily be formed by electron waveguides. Of-
ten, the cross-section geometry around an electron wave-
guide is similar to the geometry of a microstrip transmission
line: a conductor~the electron waveguide! close to a con-
ducting plane~Fig. 1!. In the split gate configuration,6 for
example, the conducting plane consists of the gate metal.
Although the cross section is very similar to the microstrip,
the propagating modes are very different. At the bulk con-
ductor of a microstrip the boundary condition of vanishing
longitudinal electric field at the conductor yields a TEM
mode ~if all dielectrics surrounding the conductor have the
same dielectric constant!, propagating close to the speed of
light.

In contrast, at an electron waveguide, although this also is
a conductor, the field does not vanish. This is due to the
‘‘quantum inductance’’ related to the inertia of the electrons.
The phenomenon appears when the 1D density of free
charges is drastically reduced, as in a 1D structure. Many
authors have described the resulting intrasubband plasmons,
their dispersion relations, and their interaction with light, us-
ing, for example, the random-phase approximation7 or a hy-
drodynamic theory.8 This article instead focuses on signal
propagation, important in cascading of electron waveguide
devices. It develops a transmission-line model including
equivalent characteristic impedances and scattering matrices

for different kinds of junctions. It might be seen as an at-
tempt to extend the linear-response theory into the high-
frequency regime. To simplify, the action of the electromag-
netic forces on the electrons is analyzed with classical
mechanics. The only quantum-mechanical effect considered
is density of states and the Pauli exclusion principle. It turns
out that signals in these plasma waveguides, as they will be
called here, have a velocity hundreds of times slower and a
characteristic impedance hundreds of times higher compared
to the corresponding values of a TEM waveguide formed
only by macroscopic conductors.

II. SINGLE-MODE WAVE PROPAGATION

Let us consider an electron waveguide without any scat-
tering under a perfectly conducting plane~Fig. 1!. We will
restrict ourselves to the case where the wavelength of the
electron is much shorter than the signal wavelength, so the
electron motion can be analyzed classically. Expressed in the

FIG. 1. ~a! 1D plasma waveguide formed by an electron wave-
guide under an infinite conducting metal plane.~b! Population prob-
ability of the states as a function ofk vector at a given time and
point. At T50 K all states betweenkb andkf are filled. All other
states are empty.Dkb andDkf are deviations from the equilibrium
Fermi levelkF .
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quantum-mechanical wave vector, Newton’s equation of mo-
tion can be written

dk5
F

\
dt, ~1!

where t is the time,k the wave vector of the electron, and
F is the force applied to the electron by the electromagnetic
field. Now letk(t,z) be a function of time and a coordinate
z along the electron waveguide. Differentiating, we obtain

dk5
]k

]t
dt1

]k

]z
dz. ~2!

Combining~1! and ~2! we get
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where\k/m is the velocity of the electron andm is its ef-
fective mass.

The above equation can easily be used to relate variations
in charge and current in a degenerately populated 1D sub-
band. When the temperature isT50K all backward traveling
states with k.kb and all forward traveling states with
k,kf are filled with electrons and all other states are empty
as in Fig. 1. Then the charge per unit lengthr and current
I in the electron waveguide are

r52
q

p
~kf2kb! ~4!

and

I52
\

2m

q

p
~kf

22kb
2!. ~5!

The electron charge is denoted2q. Assuming small varia-
tions around the Fermi levelkF as in Fig. 1,

Dkf5kf2kF , Dkb5kb1kF , ~6!

the deviations in charge is

Dr5r2r052
q

p
~Dkf2Dkb!, ~7!

where

r052
q

p
2kF ~8!

is the equilibrium charge. The small signal current expressed
in Dkf andDkb is

I'2
\kF
m

q

p
~Dkf1Dkb!. ~9!

To get a relation betweenDr and I we apply~3! to kb and
kf . For their difference and sum,~3! yields
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Using the expressions~6!, ~7!, and ~9! for deviations,~10!
and ~11! can be expressed in charge and current
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where we have used the expressions for the Fermi velocity
and the resistance of a single-mode quantum point contact

vF5
\kF
m

, R05
\p

q2
'13 kV. ~14!

Equation ~12! is the equation of continuity and~13! is
equivalent to the phenomenological equation of motion~6!
in the hydrodynamic approach of Mendoza and Schaich.8

However, there the parameter corresponding tovF
2 was ob-

tained by fitting the dispersion to that of the random-phase
approximation. It is interesting to note that in absence of
electromagnetic forcesF50, a signal would propagate with
a velocity ofu5vF according to~12! and~13!, as expected.

Maxwell’s equations can be used to calculate the electro-
magnetic forceF, given a cross-section geometry and charge
and current distributions. If the distance to the metal plane is
larger than the wavelength of the plasma wave or if there is
no such plane, as in an etched and epitaxially overgrown
electron waveguide,9 the force will depend heavily on the
wavelength. To simplify, let us now assume that the charge
and current vary slowly withz so that this is not the case.
Then, the forceF(t,z) can be calculated locally from
Dr(t,z) and I (t,z):

F52qEz5qS ]V
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]t
, ~15!

whereEz is the longitudinal component of the electric field
in the electron waveguide.V andĀ are the electric and mag-
netic potentials.Cg andLg , defined in~15!, are the capaci-
tance and inductance per unit length for the given geometry.
If we insert the expression for the force on the electron~15!
into ~13! and rearrange we get
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The corresponding equation for a TEM waveguide is

L
]I

]t
52

1

C

]Dr

]z
. ~17!

One could say that the inductance and capacitance have been
modified by the reduced density of states

L tot5Lg1
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,
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The modification ofL is related to the mass inertia of the
electrons.Ctot is the electrochemical capacitance10 per unit
length defined as

1

Ctot
52

1

q
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dr
, ~19!

where m is the electrochemical potential. This is easily
shown using~8! and ~14!:
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whereV is the electrostatic potential,EF is the Fermi energy,
andCg is the electrostatic~conventional! capacitance

1

Cg
5
dV

dr
. ~21!

Solving the telegraph equations~16! and ~12! for propaga-
tion velocity, using~18! we get

u5A 1

L totCtot
5A 1

Cg
1
R0vF
2

Lg1
R0

2vF

. ~22!

This equation is illustrated in Fig. 2.Cg was calculated for a
rectangular In0.53Ga0.47As electron waveguide buried in InP,
assuming cosine-shaped electron wave functions. The cross-
section geometry is seen in the inset figure.Lg was neglected
since it is much smaller thanR0/2vF . Note that these veloci-

ties are orders of magnitude lower than the velocity for the
corresponding TEM wave in a waveguide formed by bulk
conductorsuB5c/Ae r'8.53107 m/s. As seen in the figure,
u is, however, always larger than the Fermi velocity. Even
for these quite low velocities, the assumption of a wave-
length much longer than the distance to the metal plane is
valid up into the terahertz region, yielding low dispersion in
this frequency range.

The most natural way to increase the propagation velocity
is to decrease the dimensions of the electron waveguide. A
thinner electron waveguide yields lowerCg and gives larger
subband separation, which allows a highervF ~proportional
to electron density! in an electron waveguide before the sec-
ond subband is populated. Another way to decreaseCg is to
increase the distance to the metal plane. The velocity is,
however, still quite low, so to further decrease signal delays
between cascaded electron waveguide devices one has to
couple the signal to a conventional electromagnetic wave-
guide. Therefore, it is crucial to study the reflection and
transmission at discontinuities.

Before we derive the scattering matrices for three differ-
ent types of junctions we will derive the relations between a
few important variables: current, charge, and voltage. First,
we let these quantities have exponential temporal and spatial
dependenceej (vt7bz), where the upper~lower! sign, as in the
following, corresponds to waves traveling in the positive
~negative! z direction. The equation of continuity~12! then
yields

I56
v

b
Dr56uDr. ~23!

The electrostatic voltage can be related to the charge using
DV5Dr/Cg . For an electron waveguide, however,m is a
more natural variable thanV. Let us therefore define a con-
venient ‘‘electrochemical voltage’’

DW52
1

q
Dm5

Dr

Ctot
. ~24!

At the last equality,~19! was used. It can be shown, in a
straightforward but mathematically lengthy way, that the en-
ergy transport isP5IDW if both the kinetic energy of the
electrons and the electromagnetic energy is included. For a
bulk conductor, where the density of states is high,
Dm52qDV so that

DWB5DVB . ~25!

These conditions makeDW a suitable generalization of
DV. Dividing ~24! by ~23! we get

DW

I
56

1

uCtot
56Z0 , ~26!

whereZ0 is the equivalent characteristic impedance

Z05
1

uCtot
5AL tot

Ctot
. ~27!

FIG. 2. Plasma wave velocityu and characteristic impedance
Z0 @Eqs. ~22! and ~27!# for an In0.53Ga0.47As electron waveguide
buried in InP as in the inset drawing. The curves are discontinued
where the electron density~proportional to Fermi velocityvF) is so
high that it populates the second subband.u is always larger than
vF andZ0 is always larger thanR0/2 ~dashed lines!.
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Note that this definition coincides with the conventional one
for bulk waveguides since thereCtot5Cg andL tot5Lg . Z0 is
low for high Fermi velocities and wide electron waveguides,
as can be seen in Fig. 2.

III. SCATTERING MATRIX FOR JUNCTION
BETWEEN A TEM WAVEGUIDE

AND A SINGLE-MODE PLASMA WAVEGUIDE

To model the interface between a TEM waveguide and a
plasma waveguide, we assume that the end of the bulk con-
ductor constitutes an electron reservoir with an electrochemi-
cal potentialmB that governskf , the wave vector of the
fastest electron injected into the electron waveguide~see Fig.
3!. This is the situation if the electrons thermalize in the bulk
conductor much before they have traveled one TEM wave-
length in this conductor. This is likely since this wavelength
is long due to the high velocity there. We also assume that
the junction is adiabatic from an electron-wave point of
view, i.e., the transmission coefficient of the electron injec-
tion is unity. These are the same assumptions as are gener-
ally used to derive conductance quantization.11 Finally, we
assume that the junction is sudden in comparison with the
plasma wavelength. Thus the first boundary condition is

mB5
\2kf

2

2m
2qS rQ

Cg
1V0D , ~28!

whereV0 is the potential in the electron waveguide when the
charge thererQ is zero. The second boundary condition is
current continuity

I B5I Q . ~29!

When only small signals are considered and~28! is divided
by 2q the equation turns into

DVB52
DmB

q
52

\2kF
qm

Dkf1
DrQ
Cg

. ~30!

Dkf can be expressed in current and charge using~7! and~9!.
Inserting the resulting expression in~30!, we obtain

DVB5
R0

2
I Q1SR0vF

2
1

1

Cg
DDrQ . ~31!

The parenthesis is 1/Ctot according to~18!, and using~24! we
get

DVB5
R0

2
I Q1DWQ , ~32!

which is the boundary condition~24! expressed in current
and voltages.

To derive the scattering matrix, we first assume that a
waveDVB

1 impinges from the TEM waveguide on the left-
hand side onto the electron waveguide,DVB

2 is reflected
back, andDWQ

2 is transmitted. Using the boundary condi-
tions ~32! and ~29! together with~26! with Z05ZB for the
TEM waveguide andZ05ZQ for the electron waveguide re-
membering~25!, one obtains the first two elements of the
scattering matrix for the junction,S11 andS12. In the same
way, assuming the incident waveWQ

1 coming from the
plasma waveguide, one obtains the other two elements. The
whole matrix becomes

SBQ5S ZQ1R0/22ZB
ZB1ZQ1R0/2

2ZB
ZB1ZQ1R0/2

2ZQ
ZB1ZQ1R0/2

ZB1R0/22ZQ
ZB1ZQ1R0/2

D , ~33!

relating incident and outgoing waves

S DVB
2

DWQ
2D 5SBQS DVB

1

DWQ
1D . ~34!

This is the same scattering matrix as in the junction between
two conventional transmission lines with characteristic im-
pedancesZB and ZQ with an inserted series resistance of
R0/2'6.5 kV as in Fig. 3. Note that in the limit of long
wavelengths or short waveguide sections, this model yields
the expected12 total dc resistance ofR0 of an electron wave-
guide without scattering, as measured between the two res-
ervoirs. The dissipation associated with the resistance is in
accordance with the assumption of an electrochemical poten-
tial mB . The existence ofmB implies that electrons from the
electron waveguide are thermalized in the bulk conductor.

If we want to use ordinary waveguides for signaling be-
tween our electron waveguide devices, it is important to
match the impedances to maximize transmission at the junc-
tions. It is probably very difficult to transform the low im-
pedance of the TEM waveguide~typically 50V) to the high
ZQ ~around 20 kV as in Fig. 2!, but if this can be done the
transmission to and from the plasma waveguide should be
good, especially ifZQ@R0/2 so that there is little dissipation.
If impedance matching is not possible it will be necessary to

FIG. 3. ~a! Junction between a TEM waveguide formed by a
bulk conductor on the left-hand side and a 1D plasma waveguide
formed by an electron waveguide on the right-hand side.~b! In the
end of the bulk conductor an electrochemical potentialmB is as-
sumed. This level governskf in the first part of the electron wave-
guide. ~c! The junction can be modeled by two transmission lines
with different characteristic impedances and an inserted series re-
sistance ofR0/2.

54 11 487SIGNAL PROPAGATION IN ELECTRON WAVEGUIDES: . . .



make the electron waveguide sections much shorter than the
plasma wavelength and the ordinary conductors much
shorter than the wavelength there. Then reflections cancel
and all components can be thought of as lumped. For ex-
tremely high frequencies this is not possible either. Then,
cascading will be impossible since less than 1% of the power
is transmitted to a plasma waveguide, ifZB550 V. The
‘‘optimum’’ is achieved when the plasma waveguide has a
characteristic impedance aroundR0/2. This is the case when
Cg@2/(R0vF).

IV. SCATTERING MATRIX FOR JUNCTIONS BETWEEN
DIFFERENT SINGLE-MODE PLASMA WAVEGUIDES

Another type of discontinuity is between two sections of
plasma waveguides with different geometries causing differ-
ences invF andCg and therefore also inCtot andZ0. See
Fig. 4. To calculate the scattering matrix for this case we
assume that the transition region is much shorter than the
plasma wavelength, but much longer than the electron wave-
length, so that there are no electron reflections. The first
boundary condition is current continuity

I 15I 2 . ~35!

Since the electrons are not scattered, it is also natural to
assume the electrochemical potential to be continuous,

DW15DW2 . ~36!

These boundary conditions are analogous to those of a junc-
tion between two waveguide sections in transmission-line
theory, where the current and voltage are continuous. See
Fig. 4. These conditions yield a scattering matrix

SQQ5S Z22Z1
Z11Z2

2Z1
Z11Z2

2Z2
Z11Z2

Z12Z2
Z11Z2

D . ~37!

The validity of ~36! must, however, be examined. Assuming
a constant effective mass, but allowing az dependence for
the voltage in the absence of electronsV0(z) and forCg(z)
andLg(z), ~15! is modified
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The equilibrium of the electrochemical potential
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has to be constant along the electron waveguide. This can be
used in~38! to eliminateV0 andr0. The resulting expression
for the force is inserted into~11! and we get
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Using ~9!, ~14!, and~18! we can write this as
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Integrating this from point 1 to point 2 and applying~6!, ~7!,
and ~18! we get

2
]

]tE1
2
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Dr2
Ctot,2

2
Dr1
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. ~42!

The right-hand side is a difference between electrochemi-
cal voltages, so if the left-hand side can be shown to be
small, ~36! is verified. Taking the absolute value of~42! at a
specific frequency, we get

uDW22DW1u<U E
1

2

vL tot~z!
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Z0~z!
dzU5U E

1

2

v
DW~z!

u~z!
dzU

5U E
1

2 2p

l~z!
DW~z!dzU, ~43!

where~26! and ~27! have been used. Equation~43! implies
that ~36! is a good approximation as long as the transition
region is much shorter than the plasma wavelength, and for
this case the scattering matrix~37! is verified.

V. SCATTERING MATRIX FOR PLASMA WAVE
AT ELECTRON REFLECTION SITE IN A
SINGLE-MODE PLASMA WAVEGUIDE

A third kind of discontinuity is depicted in Fig. 5. It oc-
curs in a plasma waveguide where there is some kind of
imperfection, reflecting the electrons with a probabilityRe .
In the reflection and transmission the electrons conserve their
energy, i.e., the electrons impinging on the imperfection
from electron waveguide 1, having wave vectors 0,k,kf1
are reflected with a probabilityRe into left going states
2kf1,k,0. In transmissions, however, the momentum is
not conserved since there is a difference in electrostatic po-
tential caused by charge differences. Instead, the electrons

FIG. 4. ~a! Junction between two 1D plasma waveguides formed
by electron waveguides with different widths.~b! The junction can
be modeled by a transmission-line equivalent consisting of two sec-
tions with different characteristic impedances.
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are transmitted with a probabilityTe512Re into states with
k,kf2, wherekf2 can be determined by energy conservation

\2kf2
2

2m
2q

r2
Cg

5
\2kf1

2

2m
2q

r1
Cg

. ~44!

Using small signal analysis~6! and ~7!, assuming that the
steady states are the same on both sides we get

Dkf22Dkf151
q

\vF

Dr22Dr1
Cg

~45!

and similarly for electrons from electron waveguide 2

Dkb22Dkb152
q

\vF

Dr22Dr1
Cg

. ~46!

The charge for the electron distribution in Fig. 5 can be
written in analogy with~7!:

Dr152
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52
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52
q

p
@~12Re!Dkf22~11Re!Dkb2# ~48!

for the two sides of the discontinuity respectively. Using~45!
and ~46!, we can eliminateDkf2 andDkb2 from ~48!. If we
now subtract~47! from the resulting equation and simplify
we get

Dr22Dr152
2q2

pCgvF\
~Dr22Dr1!

12Re

q

p
~Dkf11Dkb1!. ~49!

Here we can solve forDr22Dr1 and simplify using~14!
and ~18!:

Dr22Dr15CtotR0RevF
q

p
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The current through the discontinuity can be expressed as
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modifying ~9! bearing Fig. 5 in mind. Combining~50! and
~51! we get

Dr22Dr152Ctot

Re

12Re
R0I . ~52!

If we divide this byCtot and use~24!, we get

DW22DW152RsI , ~53!

where

Rs5
Re

12Re
R05

Re

Te
R0 . ~54!

Now we have put the boundary condition in a convenient
form. Together with current continuity as in~35! this is
equivalent to the boundary condition at an inserted series
resistance in a transmission line~see Fig. 5!. This yields a
scattering matrix

SR5S Rs

2ZQ1Rs

2ZQ
2ZQ1Rs

2ZQ
2ZQ1Rs

Rs

2ZQ1Rs

D . ~55!

It is interesting to note thatRs is the same resistance as
derived for a four-probe measurement~relating potential and
current within the electron waveguide!.12 If we now put the
electron waveguide with electron scatterer between two bulk
conductors and combine its transmission-line model with our
model for the two junctions to TEM waveguides~see Fig. 5!,
we may gain some insight into howRs is related to the

FIG. 5. ~a! 1D plasma waveguide formed by an electron wave-
guide with imperfection causing an electron reflection.~b! Popula-
tion probability of the states as a function ofk vector on both sides
of the junction. The forward traveling states on the left-hand side
havek,kf1. These electrons are reflected into backward traveling
statesk.2kf1 with a probabilityRe . The other part of the popu-
lation probability of the backward traveling states is formed by
transmission from the right-hand side. The corresponding diagram
on the right-hand side can be drawn after analogous contemplations.
~c! The imperfection can be modeled by a transmission line with an
inserted series resistance ofR0Re /Te . ~d! Transmission-line
equivalent of the electron waveguide with imperfection between
bulk conductors.
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resistance in a two-probe measurement. Since the three re-
sistances are in series, the total resistance is

Rtot5
R0

2
1Rs1

R0

2
5
R0

Te
, ~56!

which coincides with what we measure in a two-probe
measurement.12

One practical implication of the derived scattering matrix
is that plasma waveguides used to communicate between dif-
ferent devices should have highZQ ~low Cg andvF) in com-
parison withR0, because then the plasma wave propagates
well even where there is elastic scattering in the electron
waveguide. This model should also be useful in designing
quantum interference devices for high frequencies. A short
Aharonov-Bohm interferometer could, for example, be mod-
eled as an elastic scatterer.ZQ should then be low so that the
interferometer efficiently can impede an incoming plasma
wave even if the electron reflection is not complete.

VI. MULTIMODE WAVE PROPAGATION

If there is more than one populated subband but no scat-
tering between the subbands,~12! and~13! are still valid for
each separate subband:
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]I m
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, ~57!
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whererm ,I m ,vm are the charge, current, and Fermi velocity
of subbandm and

Fmn5
q

Cmn

]Drn
]z

1qLmn

]DI n
]t

~59!

is the force on the electrons in subbandm caused by charge
and current in subbandn, which may depend on the indices
since the wave functions have different extensions. These
equations are useful to analyze the propagation in conductors
of intermediate widths, which could, for example, form a
transition between a bulk conductor and a single-mode elec-
tron waveguide in junctions similar to the one in Fig. 3. This
kind of transition region could possibly help matching the
impedance. The scattering matrix of such a junction is, how-
ever, beyond the scope of this article. Here we will only look
at the signal propagation in these waveguides and show that
for very many subbands~as in a bulk conductor! we obtain
the velocity of light.

If the wave is periodic asej (vt2bz) and we make the sim-
plification thatFmn , Cmn5Cg , andLmn5Lg are the same
for all combinations of indices, we can combine~57!–~59!
into

S v2

b2 2vm
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Im5S 12

v2

b2CgLgD(
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Usingu5v/b anduB51/ACgLg we get

~u22vm
2 !
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2 D(

n
I n . ~61!

The right-hand side is independent of the indexm so the
currents in two subbandsl andm are related by

I l5
u22vm

2

u22v l
2

v l
vm

Im. ~62!

This means that the direction of the current in a subband
depends on whether the subband Fermi velocity is higher or
lower thanu. If ~62! is inserted into the right-hand side of
~61!, we get

uB
2

uB
22u2

5
2

R0Cg
(
n

vn
u22vn

2 , ~63!

from which equation we can get the velocitiesu of the
propagating modes. The equation is illustrated in Fig. 6. We
see that there is one solution foru between each subband
Fermi velocityvn and that there is one solution with a higher
velocity than all the Fermi velocities. When more subbands
are added, the right-hand side of~63! increases for highu so
that the fastest solutionuN moves towarduB . Thenu@vN
andvn

2 can be neglected on the right-hand side of~63!. The
velocity of the fastest mode is then given by

1

u2
'

1

uB
2 1

1

2

R0Cg
(
n
vn

. ~64!

Here we see that for a bulk conductor~with very many sub-
bands!, u'uB as expected. To reach a velocity of
u50.9uB , however, quite many subbands are needed. For a
conductor with equal width and thickness at a distance from
the metal plane six times the thickness of the conductor, we
get Cg'200 pF/m if the dielectric is InP. Then we need a
sum of subband Fermi velocities of

(
n
vn'531010 m/s. ~65!

This means that roughly 106 1D subbands in a semiconduc-
tor with vF'105 m/s are needed to reach this velocity. For a

FIG. 6. Left- and right-hand sides of Eq.~63! for three popu-
lated subbands with Fermi velocitiesv1, v2, andv3. The intersec-
tions give the velocities (u1, u2, and u3) for the plasma modes.
uB is the propagation velocity for a bulk conductor. The velocity
scale is logarithmic.
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gold wire wherevF51.43106 m/s, about 105 modes are
needed, which is achieved when the cross-section area is
A'10215 m2. This is a very small cross section, which ex-
plains why ordinary transmission-line theory can be used
even in metal wires of rather small dimensions.

VII. DISCUSSION

Using a simple approach where the electrons are acceler-
ated by the electromagnetic field they collectively cause, we
have calculated the small signal propagation velocity in elec-
tron waveguides and found that it is very low compared to
the velocity of light. Transmission-line equivalents have
been given to visualize the scattering for the plasma waves at
various junctions. One interesting consequence is the strong
reflections at junctions between bulk conductors and electron
waveguides. Another result concerns reflections at elastic

scatterers. These reflections are shown to be unexpectedly
small when the equivalent characteristic impedance of the
plasma waveguide is high. This could reduce the ability to
switch high-frequency signals in an electron waveguide de-
vice. It would also be interesting to calculate the effects of
nonlinearities neglected in~13! and the dispersion present at
higher frequencies to see what happens to short and intense
pulses. Is there a space-charge soliton? Another direction of
development for this work is to calculate scattering for
plasma waves in general multiports. This would further help
in the design of high-frequency electron waveguide devices.
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