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The collective charge-density excitations, the intra- and intersubband plasmons, and their manifestation in
far-infrared transmission spectroscopy are studied for coupled quantum wells. We calculate self-consistently
the ground state in the Hartree approximation and the density response in the random-phase approximation. We
investigate the plasmons in symmetric coupled quantum wells in dependence on the coupling between the two
wells and study the effects of deviation from the spatial symmetry. It is shown that the intersubband coupling
forms a hybrid-type mode spectrum. The strong hybridization of the collective intrasubband motion with the
lowest-frequency intersubband transition presses one branch in the single-particle intrasubband continuum and
the higher-frequency intersubband modes form doublets. The optical transmission spectra of these samples
with a grating coupler above the electron system show a strong exchange of oscillator strength between the
modes[S0163-182806)08735-9

[. INTRODUCTION always positive, and is caused by resonance screening and
thus described within the framework of the random-phase
The quasi-two-dimensional electron g&2DEQG has re- approximation(RPA). The second part, which is beyond the
ceived an extraordinary amount of attention from semiconRPA, is the so-called excitonic shift, which is a negative
ductor physics for many yeatsThis is somewhat because of contribution to the frequency shift of an intersubband plas-
its technological importance in microelectronic and optoelecimon and caused by exchange-correlation effects. Decreasing
tronic devices but also due to the fact that the study of thehe density of the electron gas, it becomes possible that the
Q2DEG has revealed remarkable phenomena associated wigxcitonic shift becomes larger in magnitude than the depo-
electron-electron interactions under reduced dimensions. THarization shift and thus, the intersubband plasmon has a fre-
excitation spectrum of the electron gas gives important inquency below the corresponding subband separation
sights in the electron-electron interaction mechanisms anttequency'®%?°
thus the need to understand the fundamental interaction pro- A peculiarity arises if the bare confining potential has a
cesses stimulates theoretical and experimental research of therfect parabolic shape. In this case, the generalized Kohn'’s
collective excitations of the Q2DEG. Far-infrard@IR)  theoremi'?? predicts that in a FIR experiment, the Q2DEG
transmission spectroscopy and inelastic light scattering exabsorbs radiation only at the bare harmonic oscillator fre-
periments have both yielded detailed informations about theuency, which is the unrenormalized subband separation fre-
collective charge-density excitatiof€DE's), the plasmons, quency, independent of the electron-electron interaction and
which exist through direct and image parts of the Coulombthe number of electrons in the parabolic quantum well
interaction. In addition, collective spin-density excitations (PQW). This collective intersubband resonan@mllective
(SDE’s), which are manifestations of the exchange and corintersubband transition, dimensional resonanise called
relation parts of the Coulomb interaction in Q2DEG’s andKohn’s mode(or sometimes fundamental mgdand corre-
single-particle excitation§SPE’s; electron-hole pair excita- sponds to the center-of-mass motion of all confined elec-
tions), are observable in inelastic light scattering. The split-trons. From the point of view of many-particle physics the
ting between the different excitations is a measure of th@eneralized Kohn’s theorem predicts the exact cancellation
different electron-electron interaction mechanisms. of the renormalization of the subband separation frequency
The most important collective excitation of the Q2DEG is (self-energy effegtwith the depolarization and the excitonic
the plasmon. Q2D plasmons have been investigated theoreshift of this mode. Deviations from the perfect parabolicity
cally, e.g., Refs. 1-10 and experimentally, e.g., Refs. 11-18uwill break Kohn's theorem with the result that the frequency
Caused by the size quantization, the collective excitatiorof Kohn’s mode now becomes density dependent and higher
spectrum becomes split in intrasubband plasmons, connectéutersubband resonances become visiBlEor this reason,
with electron motion within one subband and intersubbandptical measurements are useful in characterizing the spatial
plasmons, connected with electron transitions between twehape of the confining potential. While the collective excita-
different subbands. For usual electron densities the Q2D irtions of single quantum well§SQW'’s) have been exten-
tersubband plasmons have frequencies above the corresporsively studied, there have been only a few theoretical studies
ing single-particle transition frequencies. This frequencyof double quantum well$DQW’s).?*2° But in recently per-
shift is caused by many-particle effects and consists of twdormed experiments on DQW'’s interesting physical effects
parts. The first part is the so-called depolarization shift, isvere observed. Decaet al ?® showed that the excitonic shift
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to the intersubband SDE vanishes in a DQW in the high-

density limit, i.e., the SDE’s and SPE’s cannot be distin- T, s w Is la,
guished in inelastic light scattering spectra. Further, Hartung k —L
et al®’ observed in FIR transmission spectra of DQW's a (a)
strong exchange of oscillator strength between two collective Vo
intersubband resonances.

The aim of the present paper is to investigate the Q2D L

plasmons and their optical manifestation in double paraboli- 1
cally graded quantum well$DPQW’S), i.e., two coupled
guantum wells, with parabolic shape, in dependence on the
coupling of the two wells and study the effects when the two
wells become asymmetric coupled. The work is performed vy
by self-consistent calculations of the ground state in the Har-
tree approximation and the density response in the frame-
work of the random-phase approximation. In Sec. Il we cal-
culate the ground-state properties of the Q2DEG in DPQW'’s 2
and in Sec. lll we develop the method to calculate the den- ! ' L o R T
sity response of the electron system. In Sec. IV we investi- 0 241 #z1  Zm Z2 %Zd2 ’E
gate the dispersion relation of the Q2D plasmons for differ- 4
ent DPQW's, i.e., we study the influence of the coupling of lgls w3 b w2 lgly
the two wells, deviations from the parabolic shape and spa- [—\ —
tial asymmetry of the confining potential. In Sec. V we cal- (b)
culate the optical transmission spectra of semiconductor
samples containing the above electron systems and a grating
coupler on top to couple the FIR radiation to the collective
excitations of the Q2DEG. Finally, in Sec. VI we summarize
our results.

Energy

Energy

Il. GROUND STATE \'21
A. General

We consider two different quantum-well-structuréig:a
single truncated PQWSPQW and (ii) two coupled trun- | | L\ Ly, Z
cated PQW'’s, e, for_mlng the D_PQ_\N with conduction-band 0 23171 2ml Z2 23 Zm2 %4 Zq2%E
edges schematically illustrated in Fig. 1. These wells have a
finite width w, a depthV, of the parabola, and an addition-
ally barrier of heightV, due to the conduction-band edge  FIG. 1. Schematic arrangement of the bare potential of a SPQW
discontinuity at the heterointerface between the(a and of a DPQWb).
Ga; _yAl /As QW and the Ga Al ,As barrier ff<x), i.e.,
the conduction-band edge acts as the bare confining potential
Vo(2)=E(2). Such structures may be realized by molecular
beam epitaxy by appropriately grading the aluminium con-usual electron densities. Within the approximations made
tent of the Ga_ Al yAs layer during growth. To describe the above the one-electron motion is given by the effective
electrons in the host semiconductor, we use the effectiveSchralinger equation
mass approximation assuming a uniform effective mass
m.. We also take the static dielectric constagtto be uni- %2
form across the sample, i.e., neglect image effects. In actual ~om
GaAs-Gg _,Al ,As heterostructures these inhomogeneity ef- €
fects have o_nIy a small influence on the electronic grom_JndWith respect to the translational symmetry in thg plane
state p.ropertles of the systé’ﬁw'Electrons from the donorsin ¢ single-particle wave functioW . (x) is
the adjacent Ga_,Al ,As barriers enter the QW and form I
the Q2DEG in the SPQW and the DPQW. The interacting
electrons of the Q2DEG will screen the bare potential, so I
that the so-called effective potentiaelf-consistent potential <X|KkH>:lPKkH(X) = \/_Kelk” Mle(2) @
or total potential V;1(z) arises, which can be separated into
the bare potentialVo(z) and the Hartree potential ang the associated eigenvalues, the Q2D subbands, read
Vy(z)= —ed(z), due to the electrostatic potential of the
mobile electrons of the Q2DEG and the spatial fixed ionized 21,2
donors, and the exchange-correlation potentigl(z). The Ex(kp) =&+ _H'
last one we neglect in this paper. This is possible for the 2me

V2 Veri(2) | Wi (0= &k Wigg (0. (D)

K=0,1,2,.... 3)
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Herein,x=(x,y) andk;=(k,,k,) are the 2D position and

wave vector in thec-y plane, respectivelyk;=k| andA is n2DEG:; N, 9)
the unit area in this plane assuming Born—vonri{an

boundary conditions. In the following, we suppose spin de-

generacy and omit the spin index. The spin summation is Mg

assumed to be included when necessary without any explicit Nk =22 (Er= &) O (B~ &), (10
indication. The bottoms of the subbanfjsand the envelope

wave function are obtained from the one-dimensional SchrowhereNy is the sheet carrier concentration of tkéh sub-

dinger equation band. The Fermi wave vectors of the different subbands are
given by
h? d? 5
- 2 _ — )
( 2me dzz"‘Veff(Z))QDK(Z) Ekex(2), 4 k(K= V2Me(Ep— &)/t |-f Er>& 11
0 if Ep<&g
where the envelope wave functions are orthonormalized ac-
cording to and the corresponding Fermi velocities are(
=1k&/m,.
B The self-consistent solution of Eq§)—(10) gives the
dzo* (2) 0w (2)= Swv) 5 subband energies, the charge-density profile, the Fermi en-
Jloo ek(2)ex(2)= Ok © ergy, and the effective potential. To solve Poisson’s equation

) o we have to specify our model. We assume that the QW's as
and the effective potential i¥/¢1{(z)=Vo(2)+V(2). The el as the barrier of thickneds between the two wells and
bare potentialVy(z), resulting from the tailoring of the {phe spacer layers of finite thickness are undoped. The
conduction-band edge, depends on the Al concentration &a,_ Al As layers embedding the SPQW or the DPQW are
the positiorz, and the Hartree potential results from the elec-355umed to be uniformly doped with donors. The donor lev-
trostatic interaction of the electrons with themselves angyg gre all supposed to lie at an eneBybelow the conduc-
from the ionized impurity charges, and thus, is given bytion pand. The donors are completely ionized in the deple-

Poisson’s equation tion regions of thicknessy to the right and left from the
QW’s. Because the donors outside the depletion layers are
42 o2 neutral, the Fermi level of the whole heterojunction can
EVH(Z): — ——[no(2)—Np(2)]. (6) therefore be identified wit_h the donor energy levelzat0
€08s andz— z¢ to the left and right of the depletion layers. If we

In this equation the electron charge-ie, e, is the permit- Put Ef=0 as reference level, we haveVe(0)

tivity in vacuum and the ground-statequilibrium) electron = Vet#(Ze)=Ey, acting as boundary condition in solving
number density aT =0 K is given by Poisson’s equation. The charge density is now equal to

eNp, 0<z<zy
N5(2)=14 O, Zg1<Z<Zgp (12)
eNy, zg<z<zg

no<z>=; n§(2), (7

(K)(5)— Ve 2(E. _ _
"o (?) Wﬁ2|¢K(Z)| (Er—£dO(Er—E0), ® where (i) for the SPQW structure we havey,=ly,
Zgp=lgt+lstw+lg, andzg=z4,+14 and(ii) for the DPQW
wherengK)(z) is the contribution of th&Kth subband to the structures we havey,=ly, zg,=14+Is+wW;+b+wsy+Iy,
electron density profile® (x) is the Heaviside unit step func- andzg=z4,+14.
tion with ®(x)=1 for x>0 and®(x)=0 for x<0, and the Integrating Eq.(6) twice from z=0 to z=z¢, using the
Fermi energyEr is determined from the electron number continuity ofV,(z) andd/dz Vj;(z) at the boundaries of the
density(number of electrons per unit area, sheet carrier consample,nyg(z) —0 for z—0 and z—zg and the boundary

centration conditionsVq¢¢(0) = Ves¢(zg) = E, wWe obtain
172, 0szszy
e (2 1,2
Vy(2)=— s f dz'(z—2")ng(z')+eNS{ 315+ (z—2z42)lq, Zp=<z<2z4, (13
0esJ0

112 1
34+ (zga—zg)l g+ 3 (2= 29) 2+ (2— 2go)l g, Za2<Z<Zg.
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The charge neutrality of the samp|eféEd A ny(2) ric with respect taz,,,; andz,,,, respectively. They are trun-

—N3(2)]1=0, givesnpea=2IgN3 . cated atzy, z,, z3, ar!dz_4, so thatVo(z_1_)=Vo(z_4)=V1, but
For the bare potential we use the following model poten-Yo(Zz) =Vo(zs) # V, is valid. We conS|der£N20 EzQW s with
tials, depicted in Fig. 1)) SPQW, the same curvatur@ =, =Q,=[8V,/(mew") ] and use

70 =29.22 meV. Herew=40 nm is the width of the corre-
sponding single symmetric PQW which determines the posi-
tions z,,=z;+w/2 and z,,=2z,—W/2. Further, we use
Vo(2) =9 1mQ%(z—z,)% 71<2<2z, (14 ~W=w;=w,=30 nm#w from which together withi, |4,
and b the positionsz,, z,, z3, andz, are fixed. For the
barrier thickness we choode=1 nm. For the asymmetric
wherez;=l4+1g, Z,=2,+w andz,=z;+w/2; (i) DPQW truncated DPQW the single PQW's are not symmetric with
respect tozy,; and z,,, respectively, and further they are

V1+V2, o< Z<Z—1

Vi+V,, 2,<2,

truncated at,, z,, z3, andz,, so thatVy(z;) =Vo(z4) =V,

(VitVe, 0<z<z but Vo(z,) #Vo(z3) #V; is valid. The curvatures of the
%meﬂf(Z—Zml)z, 2,<z<z, single PQW'’s of the asymmetric truncated DPQW are iden-
— — tical, as in the case of the symmetric truncated DPQW, but
Vo(2)=4 VitVa 2223 (19 the widths of the single PQW'’s are differemt;; =32 nm
I meO2(z—2mp)2 25<2<74 #W,=30 nm. Thus, we have in this cagg; =z, +Ww/2 and
_ Zm2=12,—W/2 and we choose=1 nm.
\ Vit Va, 241, The Schrdinger equation is solved numerically with the

wherezy=l4+lg, Zy=2,+ Wy, Zz=2,+ b, andz,=zz+w,. help of the difference method. Startiqg from an arbitra[y po-
The variation of the different parameter allows to describe€ntial (here, we use the bare potentiale solve the Schro
with Eq. (15) different types of DPQW's. dinger _equatlon, e, find eigenfunctions and eigenenergies,
Now we have to solve the Schdinger equation with the dgtermme the Fermi energy and the .sheet carrier concen;ra-
effective potential self-consistently. Such a fully self- ions of_ the su.bbands and then obta_m the Hartr_ee pote_nt|al.
consistent procedure would giveypee and the depletion With thls_ solution we §olve the Schﬂmggr equatlon_ again
length 4 as result2? which may be different on the right- and obtgm a new soll_Jtlon. We repeat this cycle until conver-
and left-hand side of the QW. To simplify the numerical 98Nce, i-€., self-consistency, is reached. We t_est the conver-
handling, without restrictions for the generality of the results €€ of the procedure by the subband energies and demand
we assume that the depletion lendthis considered as an |(5(KI_ )__5(K'))/5(K')|$1075 meV, wherei is the number of
input parameter and identical on both sides. This simplificathe iteration.
tion gives quite satisfactory results because our goals are the
dynamical properties of these systems and not high accuracy 1. Single parabolic quantum wells
“first” principle model calculations of the subband energies

of given systems. In Fig. 2 we show the bare potential, the effective poten-

tial, and the five lowest subband energies measured from the
Fermi energy E=0), for two different electron densities. It
is seen from Fig. 2 that with increasing density the bottom of
In our calculations we use the following set of param-the PQW becomes flatter and the subband separation de-
eters:e,=12.87, m,=0.06624n, typical for GaAs, where creases. Thus, the contribution of the Hartree potential to
my is the bare electron mass. We assume that the parabolié:¢(z) increases with increasing electron concentration:
potentials are truncated &t =150 meV atz; andz, in the  V¢t(2) deforms inz;<z<z, from a nearly parabolic shape
case of the SPQW and &t andz, in the case of the DPQW. to a more and more rectangular shape and b&hggz) in
Further, the barrier height of the square well potential isthe regionsz<z, andz>z,. The five lowest subband ener-
V,=75 meV at these positions. For the thickness of thegieséy are plotted versus the electron density in Fig. 3. Itis
spacer layers we assurhe=5 nm and the thickness of the seen that with increasing density of the Q2DEG in
depletion layers is assumed to hg=5 nm. Thus, the con- the SPQW the subband separation frequency
fining frequencyQ of the parabolic potential of a SPQW is Qyx:=(E«—Ekr)/h decreases nearly linearly,=4.46
related to the widtlw via Q=[8V,/(mw?)]¥?and we use X103 s™! for n,pgg=1x%10" cm™2, Q,,=4.19x10"
7.0=29.22 meV. s~ 1for nypee=1%x10"cm~? andQ,,=3.14x 10 s~ * for
Further, we investigate three different DPQW'’s: the sym-n,peg=5x 10" cm™2. Thus, at low electron concentrations
metric DPQW, the symmetric truncated DPQW, and thethe lowest subband separation frequency is nearly equal to
asymmetric truncated DPQW. For the symmetric DPQWthe bare harmonic oscillator frequenfl,,=() of an effec-
each PQW is symmetric with respectzg, andz,,,, respec- tive parabolic potentia¥¢(z) = (M.Q?/2)z2. Deviations re-
tively, and the two PQW'’s are identicalv=w;=w,=40  sult from the hard walls and the finite height of the barriers.
nm and Q=0,;=0,=[8V,;/(mw?)]*2 and we use The electron density profile calculated from E@) is de-
£Q0=29.22 meV. Thenz,,=z,+W/2, z,,=23+w/2, and picted in Fig. 4. Because the SPQW is mirror symmetric at
Vo(z1) =Vo(z,) =Vo(z3) = Vo(z4) =V, is valid. We investi- 2=z, there are two different sets of envelope wave functions
gate the symmetric DPQW for different barrier thicknessespy(z): even parity states(symmetric wave functions
b in the range fromb=1 nm to b=10 nm. The single ¢o(2), ¥2(2), ¢4(2), ... and odd parity statéantisymmet-
PQW's of the symmetric truncated DPQW are not symmet+ic wave function ¢,(2), ¢3(2), ¢5(2), . . .

B. Numerical results
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FIG. 2. Bare potentialsolid ling), effective potentialldashed
lined), subband energie&ashed-dotted line and Fermi energy
(dotted ling of a SPQW for two different electron number densi-
ties: (@) Nypeg=1X10" cm™2, (b) Nypec=5%x10" cm~2. The
Fermi energy(dotted ling is chosen to b&=0.

2. Double parabolic quantum wells

The corresponding results are plotted for the three differ-
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FIG. 3. Subband energies of the SPQW in dependence on the
electron number density. The Fermi enefgglid line) is chosen to
be E|:= 0

lowest subband energie& are plotted versus the electron
density in Fig. 7a). It is seen that for the chosen density
range two subbandg, and&; (the lowest doublgt are oc-
cupied. From the density profiley(z), plotted in Fig. 8a)

for two different sheet carrier concentrationgyeg, it be-
comes obvious that the relative thick barrier between the two
QW’s more or less separates the two electron systems.

For the symmetric truncated DPQW, which we consider
now, the barrier thickness between the two QW’s is much
smaller and thus, the separation of the doublets increases.
This is seen from Fig. ®), where we have plotted the bare
and effective potential and the six lowest subband energies.
It becomes obvious that the splitting of the doublets is larger
for the higher subbands as for the lower subbands. Again this

4.0
N D N B
r

3.0 —

2.5 p-

ent DPQW's in Figs. 5, 7, and 8. Because the electrons can
tunnel through the barrier between the two PQW'’s
(“coupled PQW's") the degeneracy of the energy levels be-
comes lifted and thus, the subbands of the DPQW'’s arise as
doublets. First, we consider the symmetric DPQW. The bare
potential, the effective potential and the six lowest subband
energies measured from the Fermi energy, are plotted in Fig.
5(a) for n,peg=1x10'" cm~2. The splitting of these sub-
bands&, andé&y, & andé&s, £, and&s, is very small and not

to be drawn in Fig. &). In Fig. 6 the splitting of the doublet
E1— &y Is plotted versus the barrier thicknebsfor three
different densities of the Q2DEG. It is seen that the level
splitting decreases with increasing barrier thickness and with

increasing electron density. The second dependence is a re- FIG. 4.

ng (1017cm_3)
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Electron density profiles of the SPQW for

sult of the increasing Coulomb repulsion of the electrons im,p.g=1x10" cm~2 (solid line and n,pec=5x%10' cm~2
the two QW'’s with increasing number of electrons. The six(dashed ling
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FIG. 5. Bare potentialsolid line), effective potentialldashed
lined), subband energie@ashed-dotted ling and Fermi energy
(dotted ling of a DPQW: (a) symmetric DPQW,(b) symmetric
truncated DPQW(c) asymmetric truncated DPQW. The Fermi en-
ergy (dotted ling is chosen to b&=0.

splitting decreases with increasing electron density, as seen
from Fig. 7b). It is seen from Fig. &), where the density
profile for the symmetric truncated DPQW is plotted, that the
electrons of both QW's tunnel through the barrier and thus,
form one Q2DEG.

The spatial symmetry is broken in the case of the asym-
metric truncated DPQW, which is how under consideration.
The bare and effective potential and the six lowest subbands
are plotted for this DPQW in Fig.(6). The asymmetry in-
creases the splitting of the doubldisf. with Fig. 5b)],
which decreases with increasing electron concentration, as
seen from Fig. ). The density profile, plotted in Fig.(8,
manifests the asymmetry of the confining potential.

Ill. DENSITY RESPONSE OF THE Q2DEG
IN SPQW'S AND DPQW’S

In this section we calculate the response of an electron
gas, quantum-confined in a one-dimensional potential acting
in the z direction of the sample, to an external applied po-
tential on a quantum-mechanical level, i.e., we consider the
density response. Here, we develop the RPA, using the self-
consistent field SCH method® The obtained result for the
dispersion relation of the Q2D plasmons allows the calcula-
tion of the dispersion curves in conjunction with the self-
consistent calculated ground state of the SPQW's and
DPQW's.

The single-particle Hamiltonian of the Q2DEG in the
presence of the perturbation is writtentds- H,+H, where
Hy is the unperturbed single-particle Hamiltonian in the Har-
tree approximation, which satisfies the effective Sdinger
equation Ho|Kk))=&c(k))|Kk)) [cf. Eq. (4)] and H;
=V3%(x,t) is the self-consistent potential. The self-consistent
potential is a sum of the external potentiéi*(x,t) and the
induced potentiaV'™d(x,t). The source of the induced po-
tential is the induced electron density,q(x,t) resulting
from the redistribution of the electrons of the Q2DEG in the
presence o¥/®*{(x,t). Assuming that the external potential is
switched on adiabatically att=-«, we have
VeX{(x,t) = Ve*¥(x,w)exd —i(w+id)] with —07, the SCF
method relates the induced electron density to the self-
consistent potential by

nmd(x,w)=f A3 PO x| 0) V(X' ,0),  (16)

wherePM(x,x’|w) is the irreduciblepropey RPA polariza-
tion function of the Q2DEG:

1w | ,
p<1>(xlxr|w)zzz U X PPD(qp;2,2' ), (17)
q

where

PY(qy;2,2'|w)= 2 Pl (d),@) 7xk (2) 75 (2)) (18)
KK’

and
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2 N (& (k) —neEx(ky+ap))
P@’(q”""):KE h F+}'<5 Jﬂg |<F —Kfs‘ Hkql =0
ik f(o+i8)+E (k) —E(ky+ay) 1.8
(19
1.8
is the RPA matrix polarization function. Here, we have de- S .
fined o 1.4
g
@ 1.2
WKK’(Z):QDK(Z)QD;r(Z)- (20 8 1.0
In the density-response scheme retardation effects are ne- S 0.8
glected and thus, the induced potential, which is an induced °‘|° 0.6l
Hartree potential, is related to the induced density by Pois- 5 B
son’s equation. Neglecting image effects, describing the di- ~ 0.4
electric screening of the background within the approxi- 0.2
mation, and exploiting the translation symmetry in the ) L
plane by two-dimensional Fourrier series, one obtains 01 P
VSe(qy,zlw) =Ve*(q),z| )
e? , FIG. 6. Subband separatidh— &, as a function of the barrier
t s q”f dZ’f dz’e =7 thicknessb of the DPQW for three different electron number den-
0¢s

sities: Nypeg=1x10" cm™2 (solid line), N,peg=1Xx 10" cm~2
xPD(q;2,2'|0)V3(q,2'| ). (21)  (dashed ling andnypeg=5x 10" cm~2 (dotted line.

Performing matrix elements of this equation with the enve-wjith

lope wave functions of Eqé4) and defining the collective

excitations in the usual form as resonances of the Q2DEG to 0+

VeXt je. collective excitations exist under the condition Toke= — K q”, )
VveX'=0 while V°#0, the dispersion relation of the Q2D T 2k
plasmons results

(27)

The RPA matrix polarization function has the
; (1) —_p@
def 3y i Vi () Picr (0, 0)]=0. (22 Symmetry - properties - Py, (G, @) =P (=0).),
ReP (0, w)=ReP (g, —w), and InP. .. (q,)
=ImPf<l,)K(qH ,—w). Further, for the Coulomb matrix
. e . elements V§1K2K3K4(QH):V§2K1K3K4(QH):V§1K2K4K3(QH)
Vic k()= meleK/K(qH), (23 =Vi,k,k,k, (A = Vi, k() is valid, because the wave
functions of bound states are always pure real functions. On
account of these properties we can restrict the further con-
siderations to the quadrant>0 and ;>0 in the w-q|

The Coulomb matrix element is defined by

where the form factor is given by

f(K:leK’K(qH):f dzf dz 77”21Kz(2)ew”|272,I’7:2«(2')- plane. . . (1)
(24) The regions in theo-q; plane, where IR, (q,w)#0
_ o o define the regions, where the single-particle excitations exist,
The real part of the RPA matrix polarization functiofi is i.e., SPE’s have a continuous excitation spectrum, the single-

. particle continuum. According to the size quantization the

Mk

Rep _ el — SPE'’s are split in single-particle intrasubband excitations and
ePyk(a), @)= whzqu{ 7+ SOk ) single-particle intersubband excitations, associated with in-
L coherent electron motion within one and between two differ-
XO(nrk+ =LV =1} ent subbands, respectively. Nonvanishin®{fj, (g, ) in-
K’ dicates that damping is possible even in the absence of
+mekF (ks — SO 7 ) collisions, i.e., the Q2D plasmons become Landau damped
whq USSR inside the single-particle continua. The boundaries of these
continua are given by
X0 (2w, ~ D\ —1} (25
d the imagi d AkE)  hof
and the imaginary part reads KK'_ | 4+ ,
wlvz = me + 2me+QKK (28)
m and
ImP (g, @)= thequ{k(FK)®(l—;§,K+)\/1—;i,K+
nkg  Aqf
: e~ e . ) 29
_kEZK )G)(l_;iKr_) 1_;iK’—’ (26) w3'4 - Mg 2me KK']- ( )
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(c) in dependence on the electron number density. The Fermi e
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FIG. 8. Electron density profiles of the symmetric DPQW,
the symmetric truncated DPQ\%), and the asymmetric truncated
DPPQW () for nypge=1x10" cm 2 (solid line and
Nopeg=5% 10" cm~2 (dashed ling
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The single-particle continua of a Q2DEG assuming four sub-
bands K=0,1,2,3) from which two are occupied are plotted
in Fig. 9. According to the different single-electron motions
within the occupied subbands+00, 1~ 1 [Fig. 98], and
between the different subbands considered here lQFig.
9(b)], 12, 0—~2, 13, and 60— 3 [Fig. 9c)] seven single-
particle intra- and intersubband continua arise. Each single-
particle (K—K") intersubband continuum starts @t=0 at

the corresponding subband separation frequegy . Be-
cause the RPA scheme considers the response of non-
interacting electrons on the self-consistent potential, the dif-
ferent SPE’s are independent.

In difference to the SPE’s, the Q2D plasmons are accom-
panied in general by different collective intra- and intersub-
band transitions(coherent electron motigni.e., intersub-
band coupling (ISC) is present and thus, the resulting
spectrum is of hybrid type concerning the associated intra-
and intersubband transitions. If the confining potential is spa-
tial symmetric it follows Vg x k., =0 if Ki+Kj
+Ks3+K,=o0dd number and thus, the dispersion relation
separates in one describing symmetric Q2D plasmons

def Smndi,k — Vi, + 2mik + 2nk (A1) XK 20k () @) ]=0
(30

and the other describes antisymmetric Q2D plasmons

S
def 5mn5K2K_V|<2+<2m+ 1K,K+(2n+ r(ap)

XXE<1J)r(2n+1)K(Q|\ ,0)]=0, (31

where we have used the symmetry propertiesli)l‘KszK4

and have defined
Pl (0),©) + Py (0, @)

and it isn,m=0,1,2, ... . Equation30) describes Q2D
plasmons which are connected with the collective electron
transitions between states with the same pdageten parity
modes, whereas Eq.(31) describes Q2D plasmons con-
nected with collective electron transitions between states
with opposite parityodd parity modes

In the case of weak ISC one can apply the diagonal ap-
proximation:Vi .k, = 9k,k,0k,k, Vi kK K, - IN this case
the dispersion relation, E¢22), reads

Xici (0l @) = (32

1_VSKK’KK’(qH)Xf<1}2’(qH’w):O’ (33

which describes(i) for K=K’ the (K—K) intrasubband
plasmonng, if the collective electron transition is within
the subbandy and(ii) for K#K' the (K—K") intersubband

pIasmonwFfK' if the collective intersubband transition is be-
tween the subbandS & .

The classification of the modes in intra- and intersubband
plasmons is strictly valid only for vanishing ISC. Starting
fe[om this picture the ISC results in a hybrid-type spectrum.
In many cases the ISC is weak and then each resulting
branch of hybrid(coupled or mixed mode is dominated by

one collective electron motion only. In this case it is profit-
able to denote the modes la;EK'.
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Fortunately, the number of algebraic equations determinwhich splits for a mirror-symmetric effective confining po-
ing the dispersion curves of the Q2D plasmons is restrictediential in
to a small number K,K'=0,1,2,... ,N—1, because
P (q),©)—0 if |[K—K’| becomes a large number. Fur- [1~ Vaood A1) x6o (@) J[1= Vira( e xit' () @)]

(1)
ther,gPKK,(qH (Iu()j Od ifboth I”(‘;;Sa“t'es' EFngI and ~Voou AP Vi10d A X606 (A @) X7 (0, @)=0,  (35)
<&y are valid and in typical structures only one or - . .
two subbands are occupied. Thus, it is possible to restrict tgescrlbmg the symmetric Q2D plasmons and in
a finite numbemN of subbands, i.e., one can use a multisub- 1_V§om(qH)X(1%))(qM ©)=0 (36)

band model N-subband modegl For practical calculations
we use in the case of the SPQW a two-subband modepescrlbmg the antisymmetric modes. Please note that

K,K’'=0,1 and for the DPQW's a four-subband model: X{2'=0 if only the lowest subband is occupied, i.e., in the
K,K’=0,1,2,3. For a two-subband model Eg2) takes the electric quantum limi(EQL). In this case Eq(35) describes
form (0—0) intrasubband plasmons, accompanied by collective
electron motion in subbanéy(k|) and Eq.(36) describes
1— V000X ss S o1t Sy (1-0) intersubband plasmons, accompanied by collective
s (1) 1 V5. D @ | _g electron motions between subbarfiygk) and &(k)).
100000 1010¥10 it | =0, In the case of a four-subband model, assuming two sub-
S Lok oy Saoty 1-Vixty bands to be occupied, the Q2D plasmon dispersion relation
(34 reads
|
1 1 1 1 (1 1 (1
1_V80003(§)o) 3010?((10) gozoX(zo) 80303(59,0) 3011)(11) 302])((21) 0031)(31)
(1) 1 1 1 (1) 1) 1
Viooo)( 1_V§010X(10) iozoX(zo) ioso)((so) i011X11 ZSLO2]X(21 i031X§31)
1 1 1 1 (1 (1
3000)(80) gomX(lo) 1_V3020X(20) 2030X<30) 2011)(11) 2021)(21) 3031)(31)
(1 (1 1 (1 (1 (1 _
3000)(00) 3010)(10) gozoX(zo) 1- V§030X30 3011)(11) 3021)(21) 3031)(31) =0,
(1 (1 1 (1 1 (1 (1
ilOOXOO) illo)(lo) ilZOX(ZO) i130)(30) 1_V1111X(11) i121X21> 113])(31)
1 (1 1 (1 1 1
1_V2100X5)0> 31109(10) 3120)((20) 3130X30) 2111)(11 1_V2121X(21) 313])((31)
(1 1 1 (1
V§100X00) VgllOXlO V§120X(20) V§130X30 Vglll)((ll) V§12]X21 1_V§131X31)
(37
which separates in the determinantal dispersion relation
1 1 1 1
1—V3oooX go) 0020 (20) 0011X (11) 003X (31)
1 1 1 1
3000’(50) 1_V§020>((20) 201X <11) 203X (31) _
s () s (D q_ys (D s a1 |=0 (39
1100X00 1120X20 1111X11 1131X31
s (1) s (1) S (1) 1—VS
310000 312020 311X 11 3131)(31
describing the symmetric Q2D plasmons and those determining the antisymmetric Q2D plasmons
1 1 (1
1-Vigox (10) 1030X (30) 021X 21>
VS (1) 1—VS (1) VS (1) _
301010 3030X30 so2x21 | =0, (39
1 1
3110’( 10 3130’(%0) 1- V212]X(21)

if the effective confining potential is mirror symmetric. antisymmetric branches wf)l, andwp That means we

Equations(37)—(39) describe hybrid-type modes, i.e., Eq. denote each branch by the mainly contributing collective
(37) determines seven branches of dispersion curves dhtra- or intersubband transition as long as the ISC is weak.
(0—-0) and (1-1) intrasubband plasmons and <D),

(2—1), (2-0), (3—1), and (3-0) intersubband plasmons, IV. SELF-CONSISTENT CALCULATION

denoted bngO, ol ol 'werl’ w;2301 wgl, and w?)O’ respec- OF Q2D PLASMONS IN SPQW’'S AND DPQW’S

tively. Equation(38) describes the four symmetric branches
00

11 20
wp , O p,andw

In this chapter we represent numerical results of the RPA
and Eq.(39) determines the three dispersion relations of the Q2D plasmons using the self-



11 446

w (10135_1)

w(lOlBS_l)

FIG. 10. Dispersion relation of the Q2D plasmons of the SPQ
calculated self-consistently in RPA in dependence on the wave ve
(@ Nupeg=1X10" cm™2, (b) Nypes

tor component g :
=5x10" cm~2. The hatched areas correspond to the single

L. WENDLER AND T. KRAFT 54

q)| (105cm—1)

. . - . ’ ’
particle continua with boundaries} 5 and w5’ .

8 |- —
2 b= —_
|
0-0
. NN
o 1 2 3 4 5 8 7 8
qj| (10"m~1)
8
| | | |
(b)
_n2DEG =5 X1011cm_2
e -
— w10
4 p—
1-0
2P wgo
e 0-0
0 N\
[0} 2 4 8 8 10

each plotted branch is accompanied by only one type of col-
lective electron transition‘wgO is associated by collective
electron motion in the lowest subband and thus, is a pure
(0—0) intrasubband plasmon armi,lj0 is associated by col-
lective electron transition between the two subbands under
consideration and thus, is a pure<D) intersubband plas-
mon. The dispersion curve of the intrasubband plasmon
starts atg=0 andw=0 and enters for larger wave vectors
the single-particle (6-0) intrasubband continuum. Because
of the symmetry the intrasubband plas is not Landau
damped within the single-particle (10) intersubband con-
tinuum[see Fig. 1()]. Further, it is seen from Fig. 10 that
the (1-0) intersubband plasmon starts fpr=0 above the
subband separation frequen@lo<wgo. This frequency
shift, At’= w;%(qy=0)— Q4o is the depolarization shift. This
many-patrticle effect arises because each electron “feels” a
field which is different from the unscreened fidldsonance
screening, i.e., if the electron gas oscillates in the mode
w,ljo the arising induced electron density changes the Hartree
potential. The both collective modes,)’ and w,’, under
consideration are plotted in dependence on the electron num-
ber density of the Q2DEG in Fig. 11. The fully self-
consistent calculations of the ground state and the response
show thatw° (q;#0) has an increasing frequency with in-
creasing density. This increase is larger than that of the upper
boundary w{° of the (0—0) SPE continuum. The corre-
sponding dispersion curves of the-{D) intersubband plas-
mon w,lf’ are depicted in Figs. 1it) and 11c). It is seen from

Fig. 11(b) that forq =0 the modewg,0 is nearly pinned at a
frequency slightly above the subband separation frequency
O 19(Npec=0)=Q of the bare confining potential in the
plotted range oh,peg. This is nothing else but the mani-
festation of the generalized Kohn’s theofénn the spec-
trum of the Q2D plasmons. For a bare perfect parabolic po-
tential the generalized Kohn’s theorem gives exactly that far-

Winfrared light is absorbed by the quantum-confined electron

as at the confining frequendy of the bare parabolic po-

ential, independent from the electron-electron interaction

and the number of electrons in the PQW. Thus, the only

dipole-active mode iso;° and is called Kohn's mode. The
small deviation appearing in Fig. (@ results from the de-
viation of the chosen truncated SPQW from a perfect SPQW.
This theorem, considered from the viewpoint of many-

consistent calculated ground state of the SPQW's anfarticle physics, states the exact cancellation of the Hartree

DPQW'S.

A. Q2D plasmons of SPQW'’s

renormalization(tadpole self-energy diagramsef the sub-
band separation frequencyAQ5=01¢(0)—Q1¢(N2pec)
with  the  depolarization  shift A°=w %q;=0)

.10 AT
—Q30(N2peg) wp (4)=0)=Q1(0) only if Ag"=AQ,.

In the case of the SPQW’s considered in Sec. Il B thewhereas Kohn’s theorem states that the absorption spectrum

RPA dispersion relations are given in general by EG6)

has only one peak at= (), the mode spectrum of the freely

and (31). Because only the lowest subband is occupied it isoscillating Q2DEG consists of all types of Q2D modes. The
sufficient to use a two-subband model and thus, we have thmode spectrum of a Q2DEG is universal, i.e., the types of
use Eq.(35 with X(lll)zo for the symmetric Q2D plasmon the appearing modes are independent from the concrete
wgo and Eq.(36) to determine the dispersion curve of the shape of the confining potential. The confining potential only
antisymmetric Q2D plasmomy’.
The full RPA dispersion curves of the Q2D plasmons of adj=0 the single-particle (¥ 0) continuum degenerates to

influences details of this mode spectrum. Please note that for

0 1

SPQW are plotted in Fig. 10 in dependence on the wavéhe line 1’=w3’=Q. It is seen thaw:® decreases with
vector componenty;. Note, that for both chosen electron increasing electron density,pee and thus, with increasing
densities only one subband is occupied. Within this modeh,peg the depolarization shiftArl)O increases. From Fig.
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FIG. 11. Dispersion relation of the (00) intrasubband plas-
mon wp° (solid line) for q=1x10° cm™* (a) and of the (1-0)

intersubband plasmonw;” (solid line) for g=0 (b) and for
g=1x 10° cm™? (c) of the SPQW calculated self-consistently in
RPA in dependence on the electron number density. The hatched w, =
areas correspond to the single-particle continua with boundaries
w° (dashed ling(a), »1° (dashed lingand w3’ (dotted ling (b) and

11(c), where wéo is plotted in dependence on the electron
density, it becomes obvious that fqf#0 the frequency of
w,ljo depends on the electron density, i.e., it decreases with
increasing electron concentration. It is seen that the bound-
aries of the SPE continuumi® and w3° decrease more rap-
idly with increasing electron density as;’.

B. Q2D plasmons of DPQW'’s
1. Symmetric DPQW

Let us now discuss the Q2D plasmons of the symmetric
DPQW. In this case we use a four-subband model. The full
RPA dispersion curves of the symmetric DPQW!. Figs.

5(a), 7(a), and §a) for the ground staflecalculated from Eq.
(38): 0, w3', w3, w3, and from Eq.39): ’, w3', and
3 are plotted in Figs. 12)-12(c). In the case considered
here two subbands are occupied and thus, two branches of
intrasubband plasmons appeas)’ and w,'. These two
branches are accompanied by the collective electron transi-
tions 0—0, 1—1 and 0—2, 13, which are coupled due
to ISC effects. Because the frequencies of the-03 and
(3—1) intersubband plasmons are large in comparison to the
frequencies of the intrasubband plasmons, we can separate
these collective motions from the intrasubband motion in
subband<, and&;. Thus, in a very good approximation the
branchesw)’ and w" are determined by the following dis-
persion relation:

1—V3oooX E)%)) 001X (111)
s (1) s (=0 (40
1100X00 1-Vigwxa
If we expandy{g(qy,») andx{P(q;,») in the lowest order
of g, we obtain

Noq2
X60(d) @)= mewHZ (42)
and
qu2
X (g, 0)= mesz- (42)

Using both expressions in EGA0) we find

. e?q) [ Nofgood a)) +N1f5ia4(ay)
ot =
2Mgeepes 2

p

. ( [Nofgoodqw + le(l:lll(qH)]z
= a

1/21) 1/2
_NONl{ngOdq)fglll(q)_[f(l:lO({qH)]z}) ” .

(43

Because forgj—0 fGood )~ fTiod ) ~FTiada) —1 is
valid, we find from Eq.(43)

n e2q, | 12
n (ZDEG Q> , (44)

2Meeesg

w, =0. (45)
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like an (uncoupled (0—0) intrasubband plasmon with den-
sity N;peg=No+ Ny, whereaso, — 0 is valid. In the case of
the diagonal approximation, i.e., neglecting the ISC in
Eqg. (40) by setting the nondiagonal elements equal to zero
and using Egs.(41) and (42 the results oy =w}’
=[Noe?q)/(2meeoes) 1™  and o, =w;'=[N;e’q)/
(2meeoes) 1Y would appear. But the strong ISC makes the
diagonal approximation inadequate, and thus we denote the
intrasubband branches by, instead of wp’ and wy'.
Whereas the modeg is outside of the SPE continuay,
appears within the single-particle intrasubband continuum.
Thus,w, is highly damped by the resonant and collisionless
mechanism of the Landau damping and not plotted in Fig.
12(a). The antisymmetric mode .’ is associated with all
antisymmetric intersubband transitions, but dominated by the
collective transition 8- 1. Thus, this branch is an intersub-
band mode with a nonvanishing depolarization sfsée in-

set of Fig. 12a)]. The single-particle (6-0), (1-0), and
(1—1) continua overlap nearly entirely. It is important to
note thatw; crosses»éo because of the different symmetries
of these modes. The frequency of the intersubband mode
w,ljo is very small because of the small subband separation
frequency Q,,. For Q9 one obtains(;,=2.29863< 10°

s ! at Nypeg=1%x10" cm~? and Q,,=9.41767 10

s~ atn,peg=5x10'" cm~2 which is very small compared

to the other subband separation frequencies. This is seen
from Fig. 12b), where the SPE continua startggt=0 from

the associated subband separation frequencies. Further, from
this figure it is seen that the (21) and (2-0) SPE con-
tinua on the one side and the{3) and (3-0) SPE con-
tinua on the other side nearly overlap. It is seen from Fig.
12(b) that the frequencies of the symmetric mad? and of

the antisymmetric mOder)l are nearly the same. This is also
true becausdl,~(),, is valid. As long as the DPQW is
mirror symmetric the modes;° and w3" are independent
and thus may cross. The fully self-consistent calculated RPA
dispersion curves ok}’ and w;" are plotted in Fig. 1@).

The modew;’ is antisymmetric ando" is symmetric and
thus both modes are not coupled. But the ISC between the
collective transitions 8-3 and %-2 on the one side and
1—3 and 0—2 on the other side results in a repelling of
these modes. As a result the mode and 7’ appear be-

low the single-particle (3-0) intersubband continuum. Be-
cause the region free of Landau dampjsge Fig. 1f)] is
restricted on small wave vectors, the modgs and w3’ can

only exist in this small range o .

In Fig. 13 we compare the dispersion curuegf’ of the
SPQW, calculated for n,peg=0.5x10"" cm 2 and
Nopec=1X10" cm~2, with w of the symmetric DPQW,
calculated forn,peg=1x10" cm~2. It is seen that for
small wave vector&); of the DPQW approaches the disper-

FIG. 12. Dispersion relation of the Q2D plasmons of the sym-S(;cr)r:a(r:u;\;e c;fwep 2];:2; ?:ch\i/'vs V\(’eltr!g;echlrgZegginztgdanqth
metric DPQW calculated self-consistently in RPA in dependence oé ger wave v ISPErs urvi u wi

_ -2. the smaller electron density is asymptotically approached.
the wave vector componeny for npeg=1x10" cm™2 (a) w, , X
and wgo‘ (b) wgl and wf,o, © o and wgo_ The hatched areas This result may be interpreted from the fact that the strength

p

correspond to the single-particle continua. of the ISC depgnds on the wave vector. For si/r?a}ll wave
vectors the ISC is very strong, so thﬂ;x(NO'f' N4 e,

From Eq. (44) it becomes obvious that in the long- wgzwgo(nZDEG) is identical to the (6-0) intrasubband

wavelength approximatioiLWA) the modew; behaves plasmon of a SPQW with the sammepeg as that of the

w (10135—1)

o 1 2 8 4 5 6 7 8
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FIG. 13. Dispersion relation of the intrasubband plasmons of the FIG. 14. Dispersion relation of the Q2D plasmon§ and wf,o
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RPA in dependence on the wave vector compomgntw’ of the ~ RPA in dependence on the wave vector componept for
SPQW for nopeg=0.5x10" cm™? (sol|d ling and for Nuypec=1x10'cm™2 The hatched areas correspond to the single-

Nopeg=1%x10" cm~2 (dotted ling, and w; of the DPQW for  particle continua.

p
Nopec=1X10" cm~2 (dashed ling

00 11 20 31 ) 1o w2k 30
Wy, Wy, Wy, , and from Eq.(39): w g andwp

DPQW. Please note that for the symmetric DPQW the tunAgain the strong ISC causes that the coIIectrve intrasubband
neling probability between the two QW’s is very weak. motion 0—0 and -1is strongly coupled so that instead of
Thus, we have two separated PQW's to a good approximahe denotations)’ and w;* we usew, . The numerical cal-
tion, each filled byn,peg/2 electrons per unit area. With culations show that onlyo appears outside the intrasub-
mcreasrng wave vector the ISC decreases and thugand (0-0) and (1-1) SPE continua. It becomes obvious
wp—>w (No) which gives wp—w (N,pecl2), ie., be- that in comparison to Fig. 18) the frequency ofulocrosses
comes identical to the (60) intrasubband plasmon of a w at a larger value ofj. This crossing occurs as long as
SPQW withn,pee/2. This result gives rise to the interpreta- the DPQW is mirror symmetric. From Figs. (Bband 18b),
tion from the different point of view of two separated where the higher-frequency intersubband plasmons are plot-
Q2DEG’s only coupled via the Coulomb coupling. For ted for two different electron densities, it is seen that these
q,—0 the two electron systems oscillate strongly couplednodes are well separated. For the lower density the mode
and thus, with the density,pe/2+ Nopeg/2 but for larger p ! appears in the small region between the-@ and
q; the Coulomb coupling decreases and thus, the relevarf2—1) SPE continuum, whereas it is above of these two
density isn,peg/2. It should be remarked that the here ob-continua for the larger electron density. A similar behavior is
tained results for two coupled PQW'’s of finite width gener- observed forwgl [cf. Fig. 15a) with 15(b)]. It is seen that
alize the results of Ref. 24 in which the plasmons of twowith mcreasmg electron density the separation between the
Coulomb coupled strict 2DEG’s without tunneling are inves-modes decreases. This is caused by the fact that with increas-
tigated. In this paper the mode, was found to be outside ing electron density the coupling between the electrons in
the intrasubband continua if the two 2DEG’s are separatetoth wells of the DPQW decreases and thus the subband
larger than a critical value. This is not the case for the hergeparation frequencie® .y of these doublets decrease.
considered parameters of the DPQW.

3. Asymmetric truncated DPQW

2. Symmetric truncated DPQW In the following we will discuss in detail the asymmetric

Now we investigate the symmetric truncated DPQW. Be-truncated DPQW. For the calculation of the Q2D plasmon
cause also in this case two subbands are occupied we uggspersion relation we use a four-subband model from which
again the four-subband model. As shown in the selfthe two lowest subbands are occupied. Because in this case
consistent calculations of the ground-state properties, hei@e effective potential is spatially not mirror symmetric the
the splitting of the doublets due to the tunneling from onedispersion curves are calculated from &jr). Thus, all col-
PQW to the other is larger, so that the subband separatidgctive intra- and intersubband transitions become coupled.

frequencies) . are well separated. In this case it makes sense only to denote the resulting
The fully self-consistent calculated RPA dlspersronbfal”IChG‘S of dlSpefSlO” curves by’, ', 0%, w3, w3,

curves of the Q2D plasmons of the symmetric truncatedu , and & if the ISC is not too strong The fully self-
DPQW!|cf. Figs. §b), 7(b), and &b) for the ground stateare con5|stent calculated RPA dispersion curves of the Q2D
plotted in Figs. 14 and 15 and are calculated from B8§): plasmons of the asymmetric truncated DPQ& Figs. 5c),
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¢] 1 2 3 4 5
q)| (10%em™1)

FIG. 16. Dispersion relation of the Q2D plasmang and w,’
of the asymmetric truncated DPQW calculated self-consistently in
RPA in dependence on the wave vector compongpt for
Napeg=1X 10" cm™2. The hatched areas correspond to the single-
particle continua.

0+ 2 on the one hand and23 and 0— 3 on the other hand
leads to a repelling of the mode’" from w3’ and of w}'
from wgo. Thus, the separation between these branches in-
creases with increasing asymmetry of the bare confining po-
tential. It is important to note that for the larger electron
density the dispersion curve of the brarmﬁl1 is in the very
near vicinity of the upper boundaiyfo of the single-particle
(2—0) intersubband continuum with a stop-point at
gy~2x10° cm™*, not to be drawn in Fig. 1B).

w(lOlss_l)

V. OPTICAL PROPERTIES

JFIG. 15 Dispersion relation of the Q2D plasmoa§’, wp’, In this section we consider the optical properties of
w, and o, of the symmetric truncated DPQW calculated self- SPQW’s and DPQW'’s. In particular, we examine the optical
consistently in RPA in dependence on the wave vector componertansmission spectra in the presence of a grating coupler on
q) for nypeg=1x10" cm~? (@ and for nypeg=5X%10" cm™? o of the samples. The grating is necessary because in far-
(b). The hatched areas correspond to the single-particle Cominua-infrared(FlR) transmission spectroscopy the investigation of

: - the mode dispersion is not directly accessible. A grating with
7(c), and &c) for the ground stafeare depicted in Figs. 16 periodicity d modulates the incident radiati¢gwith in-plane

anlqtt'ﬂ. f‘s t:;een from :‘:It?] 16 tZe ISC rezultlsomHa resonanGFave vectork; = (k,,k,)] and induces electromagnetic field
e oo oo o oy e SIS of Vale Ve Gl uher

_ _ p p © G,=(27/d)n;n=0,=1,%2,....Thus, the incident light is
dispersion curves of the two other DPQW's under CO”S'derCoupled via the action of the grating coupler to the Q2D
ation. The resonance splitting isy’— wp ~1x 10" ™. plasmons and it is possible to study the Q2D plasmon dis-
The both independent branche§ and wpo of a symmetric  persion relation wSZD(qH) as a function of the wave
truncated DPQW become hybrid-type modesupled or  vector aj=Kjn=(Kn.,ky), where Kky,=k.+G, and
mixed modegin the anticrossing range. For small wave vec-k = (w/c)sin®, (0,: ray angle of the incident light mea-
tors the lower-frequency branch behaves lisg and the  sured from thez axis) is the wave vector component of the
higher-frequency branch Iike,ljo. The opposite is valid for incident light beam perpendicular to the stripes forming the
larger wave vectors. The dispersion curves of the highergrating, which are parallel to thedirection. Our calculation
frequency intersubband plasmons are plotted in Figéa)17 of the optical transmission spectra follows the method devel-
and 17b) for two different electron densities. The general oped in Ref. 31, which is applicable for all layered systems
feature of the dispersion curves is very similar to that of thewith grating including the optical anisotropy of that layer
symmetric truncated DPQW\f. Figs. 1%a) and 18b)]. But  which contains the Q2DEG. This method is based on the
in difference to the symmetric truncated DPQW the ISC be+transfer-matrix method of local optics and the modal-
tween the collective intersubband transitions=2 and expansion method to include the influence of the grating. It is
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of the QW’s have a perceptible influence on the ground-state
properties of the Q2DEG. The media=0 andv=>5, above
and below the multilayer system, are assumed to be filled by
vacuum witheg(w)=e5(w)=1. The layerz;<z<z, con-
tains the rectangular-groove grating of heigktd,, period-
icity d=a+b and mark-to-space ratto=a/b. In the grating
region we havee,s(X,0)=ew)d,5, Where é=a if
md<x<md+a and ¢&=b if md+a<x<(m+1)d;
m=0,=1,=2,... . Here, we assume a silver grating,
described bysa(w)Zl—wS/[w(w-i-iy)] for the filled
stripes, wheraw,=5.69x 10" s~ ! is the plasma frequency
and y=7.596< 10" s~ is the phenomenological damping
constant, and for the spacing between the stripes we assume
ep,=1. The semiconductor layersv=2 and v=4,
7,<7z<z; and z,<z<z3, respectively, are filled by Ga
o 0.5 oo s 20 1_yAlLAs, described in the framework of the
qj (10%em™%) es-approximation bysg,=e4=12.21, assuming«=0.25.
The layer v=3, z3<z<z, forming the SPQW or the
DPQW, i.e., which contains the Q2DEG, is described by
the local dielectric tensoe)(w): e()(w)=e{)(w)#0,
sP(0)#0, but  eP(w)=e{(w)=s () =)
=e{)(w)=e8)(w)=0. The layerr=3 is identical to the
region of the SPQW and of the DPQW with a thickness of
ds=a,peg, Wherea,peg IS the effective thickness of the
Q2DEG described below, whilé, andd, are not necessar-
ily equal tol4+1. This four-layer system is schematically
drawn in the inset of Fig. 18. The nonvanishing components
of the macroscopic local dielectric tensor are given for a
QW, described by a two-subband model assuming that only
the lowest subband is occupied,'By

w(lOlgs—l)

w(lOlss_l)

eQ(w)=el)(w)=eg| 1- . (48

FIG. 17. Dispersion relation of the Q2D plasmoa§', w3’
3", and )’ of the asymmetric truncated DPQW calculated self- )
consistently in RPA in dependence on the wave vector component
g for nypeg=1x10" cm™2 (a) and for nypgg=5x 10" cm™?

(b). The hatched areas correspond to the single-particle continua.

. . . 2

shown that the combination of both methods results in a (3), \_ wof1o
generally computationally efficient and stable formalism of e, (w)=eg| 1— i | (47)
the optical response of multilayer systems filled by isotropic w?= Qi+ P
and anisotropic media with gratirfg.As shown in Ref. 31 +

the use of local optics provides an excellent approximation to

describe the |0ng-wave|ength response of the QZDEG aﬂerein, we have defined the p|asma frequency by
long as the size quantization is incorporated in the theory. ¢ =[n,yc€% (Meeoe 3aopec) 1Y Wherea,peg is the ef-

To model the QW structures considered in this paper w@ective layer thickness of the Q2DEG angl, 7, are the
use a four-layer system=1, ... ,4.Each layer is, in gen- phenomenological longitudinal and transverse relaxation
eral, characterized by its thickneds=(z,—z,_,| and by its  times, respectively. Furthef,, is the oscillator strength,
local dielectric tensoe{/}(x, ), where @,8=Xx,y,z. Here,  given in Appendix A. In the case of a four-subband model
z, is the position of the interface between th¢h and  one obtaingsee Appendix A
(v+1)th layer. Note, that the parameters used lzgref the
layer system are not identical to the paramewrs. . . ,z,
used by the calculation of the ground-state properties of the

Q2DEG in Sec. Il. Here, we use the parameters for the whole w2

sample, because we want to describe the optical properties of e(w)=eM(w)=eg| 1- ° 1\, @8
the whole structure, modeled as a multilayer system with ® w+'_)

grating, whereas in Sec. Il only the media in the near vicinity 7
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SionAT/T=1-T(Y)/T(X), whereT is the power transmis-
sion coefficient depending oX and Y. Here, we use
X=n,peg and Y=0. Further, we assume that only the
zeroth-order diffracted wave is a propagating wave above
and below the sample, ie., k®=[w?c?

— (w/csin®y+2m/d)?]? is real and positive fon=0, but

all higher-order diffracted wavesnE+1,+2,...) are as-
sumed to be evanescent and thus, not propagating iz the
direction, i.e., itz component of the wave vectbﬁ) is pure
imaginary. This is the usual situation realized in experi-
ments. The case that higher-order diffracted waves become
propagating, e.g., by increasing the period of the grating, is
not considered in this paper. The reader who is interested in
this question, i.e., in the occurrence of Wood anomalies or
more specifics of Rayleigh anomalies, is directed to Refs. 31
and 32. For the numerical calculations we have used the
following parameters for the gratingp=10 nm,d=1 um,

and t=0.5 and for the layer thicknesses,=0.1 um,
d,;=1 um, anddz=a,pgg is the effective thickness of the
considered QWsee Appendix A Further, we assume per-
pendicularly incident light @ ,=0°).

The relative transmissior- AT/T of the semiconductor
sample containing the SPQW under consideration is plotted
in Fig. 18a) in the frequency range of the intrasubband plas-
mon wp°. The largest peak in the AT/T spectrum results
from the excitation of the intrasubband plasmon at
0= ke =6.28< 10" cm™*. The small minima at higher fre-
guencies result from the excitation of intrasubband plasmons
with higher wave vectors|j=ky,: Ky,=1.256<10° cm™?,
Ky3=1.885<10° cm™ !, and k,=2.513x10° cm~*. The
relative transmission spectra are plotted in the frequency
range of the intersubband plasmanéO in Fig. 18b) for two
different electron densities. Becaus@ T/T is calculated in
the framework of local optics, the intersubband plasmon ex-

cited atq= Ky, [n|=1 is dispersionless and thus, peaks at
1

FIG. 18. Calculated relative change in the optical transmissiorfrequencies different from)po(qHZO) are absent in the plot-

in the frequency range of the intrasubband plasrmﬁ?}(a) and in
the frequency range of the intersubband plasmd;ﬂ (b) of the

SPQW.

2
(3 wOflo

8zz)(“’):833 1_—i
wz—Qio-i- Zw
3 0 1
S (0§) %o (0§”) s
K=2 i i
wz—Qﬁo-i-—w wz—Qﬁl-i-—w
T T

(49

wherefygk: is given in Appendix A. It is important to note

that for  mirror-symmetric  QW'’s
K+K'=even number. Further, we
o =[No€’/ (Mesges32z0e0) |2 and
(Meeoes3arpEG)]

fKKIZO |f
have
O)gl):[NleZ/

calculation aress3=12.87, corresponding teg of GaAs,

7=1x10 s andr, =1x10 *s.

ted spectra. It is seen that this peak occurs at nearly the same
frequency for both electron densities as a result of Kohn's
theorem(see discussion in Sec. IV)AThus, we obtain that

the generalized Kohn’s theorem is relatively insensiiioe
stable to the used approximations: finite height of the para-
bolic well which is terminated by square barriers, approxi-
mations made performing the numerical calculations and the
use of simple local optics. Similar results for the optical
properties of SPQW'’s were found in Refs. 23 and 33, where
the optical absorption in the absence of a grating coupler is
calculated. It is important to note that in the absence of a
grating coupler normally incident light cannot excite a nor-
mal mode neither Q2D intra nor intersubband plasmons. This
is true, because the wave vector of the intrasubband plasmon
is always larger than the wave vector of light, propagating in
a media with the background dielectric constagt This is

also true for the Q2D intersubband plasmon because the non-

definedradiative normal modes lie to the right of the light line. Due

to the polariton effect the collective intersubband transition

2. The parameters used in the numericalis accompanied by a radiative virtual mode with a branch

appearing to the left of the light line. To excite this radiative
intersubband plasmonzacomponent of the external electric

The quantity which is usually extracted from FIR trans-field is necessary, which is equal to zero in the case of nor-
mission experiments is the relative change in the transmismnally incident light. In the case with grating coupler, there
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FIG. 19. Calculated relative change in the optical transmission in the frequency range of the intrasubband plésmuh the
intersubband pIasmor»Fl)0 (a) for the symmetric DPQWsolid line), for the symmetric truncated DPQWdashed ling and for the
asymmetric truncated DPQWdotted ling; and in the frequency range of the higher-frequency intersubband plasmons of the symmetric
DPQW (b), of the symmetric truncated DPQV¥), and of the asymmetric truncated DPQ\).

always exists a nonvanishing component of the electric In Fig. 19a) we present the relative transmission
field, which is connected with the higher-order diffracted — AT/T of semiconductor samples containing the symmetric
waves withky,,, [n|>=1 and so it is possible to excite both DPQW, the symmetric truncated DPQW and the asymmetric
the radiative and the nonradiative intersubband plasmon atyncated DPQW. The peaks associated with the excitation
wave vectors) =Ky, [n|=1. The height of the peak in Fig. ¢ the intrasubband plasmon; at qj=ky dominate the
18(b) increases with increasing electron density because thg ectra for the three differentFI)Z)PQW’s The peaks resultin
oscillator strengthf ;5 as well aswq increase in this case. We P . v . ' P 9
obtain f;,=1.08424 and wo=1.52x108 s ! for from the excnaztlonloﬁup at higher wavezveci[or components
at w~4.8x10? s7! and atw~5.5x 10" s~ and that re-

Nopec=1X10"" cm™2 and f;,=1.08545 and wq
=3.19x 10" s~ ! for n,peg=5% 10" cm~2. Because of the sulting from the excitations of the lowest-frequency intersub-

approximations made gk, is no more a true oscillator band plasmorwil)O at w~5.7x10" s~ (occur only in the
strength fulfulling thef-sum rule. It is noticeable that the case of the symmetric and asymmetric truncated DPQW's
position of the maximum agrees very well with are very small in magnitude.

wéo(quzo). This is true because for the considered model Figures 18b)—19(d) show the relative transmission spec-
the ISC betweenw)’ and w;° is zero and thus, the local tra of the symmetric DPQWb), the symmetric truncated
macroscopic dielectric tensor, in which intra- and intersub-DPQW c) and of the asymmetric truncated DPQW in the

band processes are decoupled, is suitable to describe the dyequency range of the higher-frequency intersubband plas-
namical response of the Q2DEG. mons. The peak in Fig. 18) corresponds to the excitation of
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seen that the use of local optics provides reasonable results
1.4 I I I | for the relative transmission when using the dielectric tensor
: including size quantization and ISC between the intersub-
band modes. This is true as long as the LWA for the disper-
sion relation is a satisfactory approximation.

For the asymmetric truncated DPQW the absolute values
of the peak positions do not very well agree with those of the
modes, calculated from the dispersion relation. This is true
because for the DPQW'’s the effective thicknesgg¢ used
in the numerical calculations is not a very well defined quan-
tity. But nevertheless, the theoretical calculated relative
transmission spectra give all qualitative features in an excel-
lent way and the quantitative results are in a good approxi-
mation even for DPQW'’s with two occupied subbands,
where ISC effects become important.

0.001 0.01 0.1 1.0 10 VI. SUMMARY
n (1010cm—2)
2DEG . . . .
In this paper we have investigated the dynamical response

FIG. 20. Oscillator strength of the intersubband plasmons of theof double parabolically graded quantum wells, both symmet-
asymmetric truncated DPQW in dependence on the electron numbeic and asymmetric coupled parabolic quantum wells, to ex-

density. amine: (i) the Q2D plasmons an(i) the optical properties.
In the framework of the random-phase approximation a fully

the intersubband plasm()ﬂgo at gy=ky;. This is true be- self-consistent procedure is employed to calculate the ground

cause the symmetric modes’ andw 3" are not dipole-active ~ State and the dynamical response. _

(f,0=f3=0) and »?! has a very small oscillator strength We have shown that for double parabolically graded
fy=1.26x10"3 corr?pared tof 5= 1.08 atnypee=1Xx 101 quantum wells with a narrow barrier, so that tunneling is
cm~2. An increasing electron density increases the pea|possible, strong intersubbar_ld coupling results in a hybr_id-
height and slightly shifts its position. type mode spectrum. Applying a four-subband model with

From Fig. 19¢) it becomes obvious that for the symmet- the two lowest-lying subbands to be occupied, we find that

fic truncated DPQW the oscillator strength of the modethe collective intrasubband motion has two branches. It is

w‘2)1 increases so that it becomes observable in-theT/T shown that only the higher-frequency branch is observable

because the lower-frequency branch appears strongly Landau

spectrum. Itis seen that the oscillator strenffincreases damped in the single-particle intrasubband continuum. This
more rapidly with increasing electron density tffag. Thus, is quite different from the intrasubband plasmons of a

as dipole selection rule for FIR optical transmission spectros: .
copy on symmetric and symmetric truncated DPQW’s WesQelrSaEb(I;é ggsr(;::tgflit;izgzbggfnp%%?gog‘sblgncgis tﬁree ob-
obtain that only intra- and antisymmetric intersubband plas;[WO arabolic quantum wells are ps %metric c%u ed. the
mons absorb FIR light. P q y pled,

The corresponding relative transmission spectrum of th(l'pwest-frequency intersubband mode crosses the dispersion

sample with the asymmetric truncated DPQW is plotted inC '€ of the upper intrasubband mode. Breaking this symme-

the frequency range of the higher-frequency intersubbanHy’ anticrossing of the dispersion curves and thus resonance

plasmons in Fig. 1@). In this case all intersubband plas- splitting occurs which is a result of the intersubband-
mons,w?!, 02°, »3!, andw3’ can be excited by FIR radia- coupling effect. .

p . TP T TP Y p’ . a In the framework of a four-subband model with two oc-

. ) upied subbands, four higher-frequency intersubband plas-
tion chg wp' an;jlwgo have a much larger magnitude than those, o, modes result. These modes are associated with the col-
of wp” and wy™. With Increasing eSIg(?tron density the peak |gctive intersubband motion<:2, 052, 13, and 0-3.
height at the positions ob,” and w,” is larger than that of The frequencies of these branches occur as doublets for
w3t andw3'. In Fig. 20 the oscillator strengttigy, of the  thicker barriers, which become degenerate if tunneling is
higher-frequency intersubband plasmons are plotted in desuppressed. In this case the collective electron motion in the
pendence on the electron density of the Q2DEG. From thiswo separated quantum wells is coupled only via the Cou-
figure it becomes obvious that the mode§' and w2’ “ex-  lomb coupling between the oscillating charges. With de-
change” oscillator strength: the oscillator strendthy in-  creasing barrier thickness the splitting of both doublets in-
creases whild,, decreases with increasing electron densitycreases and the intersubband coupling decreases too. Further,
up to Nypeg~0.8x10' cm~2 and the opposite is valid an increasing electron density reduces the splitting of both
above this density. This is a typical effect induced by thedoublets. This results because Coulomb repulsion of the
ISC. Such an exchange of oscillator strength in dependenaglectrons in both quantum wells increases with increasing
on the gate voltage, which effectively changes the electromlectron density. This effectively increases the separation of
concentration, was observed by Hartwetcal >’ in FIR trans-  the two quantum wells.

mission spectroscopy on asymmetric coupled quantum wells, Regarding the optical properties of coupled parabolic

i.e., in a very similar situation as the here considered. It iguantum wells, we find as the dipole selection rule that as
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long as the quantum systems are spatial symmetric only thend
upper branch of the intrasubband plasmons and the antisym-
metric intersubband plasmons are dipole active and thus ap-
pear in the transmission spectra. Breaking this symmetry all
plasmon modes appear in the transmission spectrum. Varyrhe wavelength of the incident FIR ligltexternal field is

ing the electron density, this results in an exchange of oscillarge compared to the effective thickneaspeg of the
lator strength between the modes due to the intersubbar@2DEG so that we can consider the dynamical properties in

d d
Okk(2)= ¢K(Z)d—z¢§,(2)— @ﬁf(z)d—zw(z)- (A9)

coupling.
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APPENDIX: MACROSCOPIC DIELECTRIC TENSOR

The nonlocal RPA dielectric tensor of a Q2DEG is calcu-

lated in Ref. 10 to be

1
Saﬁ(xax |(1)):85(X)5(X_X )511,3_ Wpaﬁ(xax |w)y
(A1)
where the RPA polarization tenser, 5(x,x'| ) is given by

1 ) /
PaB(x,x’|w)=Kz e'qH'(XH*XH)PaB(qH;z,z’|w),
q)

(A2)

P.s(0:2,2' |w)= 2 P (q),0) & (205 (2/)*
KK’

=P%.(0):2,2'|w) (A3)

with

, h%e?
P (g, 0)=—2 (WP@/(Q,k||w)(2k003P+Q|)2
K| e

2e?
+ m_eAnF(gK(k|))) : (A4)

. < hZ%e?
Py (q ,w)=l; WP%&,(QH Kj|w)(2k|cosp+q))
I e

=—PX¥(q),w), (A5)

: h2e? _
P;f)lf (CIH W)= —;H (ngpi(l&’(ql ,|(\||LU)(2|(||SII’]QD)2

2e?
+ m—eAnF(f/’K(k))), (AB)

#2e? @
2mz P (@ Kjlo)

PszK’(OIu ,w)=—; (
I

2

e
+ _WnF(EK(k”)))-

(A7)
MeALlkkr

Herein is

&K (2)=(1— 8,0) Mk (2) + B0k (2)  (AB)

the optical limitg;—0: P.p(0;2,2'|w). Further, this makes
it possible to average the physical quantities over the effec-
tive layer thickness. For the induced current it follows

'=1/aspeg fSZDEGd z'"e:

. 1 a2DEG
% (a);zlw)= > AP (q);Z]w) f dz
B azpecJo

a2DEG
xf dz'P,4(0;2,7'|w). (A10)
0

Equation(A10) is an approximation because it is assumed
that the total vector potential varies only slowly over
a,peg- This is strictly true only for the external field. Be-
causeA=A*'+ A" we neglect the rapid fluctuations in
Al"d From Eq.(A10) it follows the optical, i.e., macroscopic
polarization tensor

Pol(w)= fazDEGdzfaZDEGdz’Paﬁ(o;z,z’|w).
a2pecto 0
(A11)
Using Eqgs.(A3)—(A7) in (A11) it follows
2
Por(w)=PyP(w)=— —meaZDEG; Ne, (A12)

2 2
e“w 2m QKK’ NK+ NKr
Po(w)=————— R e O
MeA2pEGK=1 K=k 0= Qe
(A13)
where
a2DEG
Zkk' = 0 dZZﬁKKr(Z). (A14)

It becomes obvious that the averaging decouples intra- and
intersubband transitions. But all the possible collective intra-
subband transitions are coupled as well as all the possible
collective intersubband transitions. If the confining potential
is symmetric,zxx =0 if K+K'=even number. Then, for a
QW assuming a two-subband model with one occupied sub-
band it follows that

opt ___opt _ _ “o
Exx (W) =gy (@)=gg| 1 - ,  (A15)
w( w+ —
7
2
wof
P w)=g[ 1-——2 2 | (Al6)
wZ—Qio-i- Ew
where
2mgQ 49
fl(,:;—zio (A17)



11 456

L. WENDLER AND T. KRAFT

is the oscillator strength of the collective intersubband tranwhere

sition 0—1 andwgz Nopece?/ (Megoes@opEs) IS the plasma

frequency. Here, we have introduced the phenomenological

longitudinal and transverse relaxation timgsand 7, , re-
spectively. The result$A15) and (A16) are valid for all

2meQyyr 5

fKK’: ﬁ ZKK' (AZO)

SQW'’s independent from the potential shape. The depen-

-dence Ofsg%t(w) from the potential shape of the QW is via

Zxk only. Similar results were given in Refs. 4 and 37.

For a QW assuming a four-subband model with two oc-

cupied subbands we obtain from E411)

opt opt a)%
8xx(w):8yy(w):83 1- I . (AL18)
w w+—)
7
2
wofio
Sggt(w)zss 1- I
wZ—QEO-I- o
L
3
S (0o (06"

K=2 | |
02020+ —w 0*—02,+—o
KO K1
T T

(A19)

is the oscillator strength of the collective intersubband tran-
siion  K'—K and (@{)2=Nye? (Mesoesa2pEG),
(0iM)?=N,e%/(Meeoesaspec). Please note that for sym-
metric  confining  potentials fxx, =0 if K+K’
=even number.

The effective thicknesa,peg Of the QW is a parameter,
which cannot be determined directly by the average proce-
dure itself described above. In the case of a two-subband
model with one occupied subband, as one suitable possibil-
ity, we determinea,pgg in such a way that the zero of
e3P (w) corresponds towp(qy=0). The result isaypeg
=22§0la1010, where the matrix elementyy,9 IS given by
QKKKK' =f82DEGde82DEGdZ’ k(22— 2| ki (2'). In
the case of a four-subband model with two occupied sub-
bands the determination @,y in the above described
way is not possible. In this case we us&,pgg

KK'KK'

KK'KK' 2
=Max aypeg |, whereaspeg =27/ @k ki -
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