
Dynamical response of double parabolically graded quantum wells

L. Wendler
Anna-Siemsen-Straße 66, D-07745 Jena, Germany

T. Kraft
Fachbereich Physik, Martin-Luther-Universita¨t Halle, Friedemann-Bach-Platz 6, D-06108 Halle, Germany

~Received 11 April 1996!

The collective charge-density excitations, the intra- and intersubband plasmons, and their manifestation in
far-infrared transmission spectroscopy are studied for coupled quantum wells. We calculate self-consistently
the ground state in the Hartree approximation and the density response in the random-phase approximation. We
investigate the plasmons in symmetric coupled quantum wells in dependence on the coupling between the two
wells and study the effects of deviation from the spatial symmetry. It is shown that the intersubband coupling
forms a hybrid-type mode spectrum. The strong hybridization of the collective intrasubband motion with the
lowest-frequency intersubband transition presses one branch in the single-particle intrasubband continuum and
the higher-frequency intersubband modes form doublets. The optical transmission spectra of these samples
with a grating coupler above the electron system show a strong exchange of oscillator strength between the
modes.@S0163-1829~96!08735-8#

I. INTRODUCTION

The quasi-two-dimensional electron gas~Q2DEG! has re-
ceived an extraordinary amount of attention from semicon-
ductor physics for many years.1 This is somewhat because of
its technological importance in microelectronic and optoelec-
tronic devices but also due to the fact that the study of the
Q2DEG has revealed remarkable phenomena associated with
electron-electron interactions under reduced dimensions. The
excitation spectrum of the electron gas gives important in-
sights in the electron-electron interaction mechanisms and
thus the need to understand the fundamental interaction pro-
cesses stimulates theoretical and experimental research of the
collective excitations of the Q2DEG. Far-infrared~FIR!
transmission spectroscopy and inelastic light scattering ex-
periments have both yielded detailed informations about the
collective charge-density excitations~CDE’s!, the plasmons,
which exist through direct and image parts of the Coulomb
interaction. In addition, collective spin-density excitations
~SDE’s!, which are manifestations of the exchange and cor-
relation parts of the Coulomb interaction in Q2DEG’s and
single-particle excitations~SPE’s; electron-hole pair excita-
tions!, are observable in inelastic light scattering. The split-
ting between the different excitations is a measure of the
different electron-electron interaction mechanisms.

The most important collective excitation of the Q2DEG is
the plasmon. Q2D plasmons have been investigated theoreti-
cally, e.g., Refs. 1–10 and experimentally, e.g., Refs. 11–18.
Caused by the size quantization, the collective excitation
spectrum becomes split in intrasubband plasmons, connected
with electron motion within one subband and intersubband
plasmons, connected with electron transitions between two
different subbands. For usual electron densities the Q2D in-
tersubband plasmons have frequencies above the correspond-
ing single-particle transition frequencies. This frequency
shift is caused by many-particle effects and consists of two
parts. The first part is the so-called depolarization shift, is

always positive, and is caused by resonance screening and
thus described within the framework of the random-phase
approximation~RPA!. The second part, which is beyond the
RPA, is the so-called excitonic shift, which is a negative
contribution to the frequency shift of an intersubband plas-
mon and caused by exchange-correlation effects. Decreasing
the density of the electron gas, it becomes possible that the
excitonic shift becomes larger in magnitude than the depo-
larization shift and thus, the intersubband plasmon has a fre-
quency below the corresponding subband separation
frequency.19,20

A peculiarity arises if the bare confining potential has a
perfect parabolic shape. In this case, the generalized Kohn’s
theorem21,22 predicts that in a FIR experiment, the Q2DEG
absorbs radiation only at the bare harmonic oscillator fre-
quency, which is the unrenormalized subband separation fre-
quency, independent of the electron-electron interaction and
the number of electrons in the parabolic quantum well
~PQW!. This collective intersubband resonance~collective
intersubband transition, dimensional resonance! is called
Kohn’s mode~or sometimes fundamental mode! and corre-
sponds to the center-of-mass motion of all confined elec-
trons. From the point of view of many-particle physics the
generalized Kohn’s theorem predicts the exact cancellation
of the renormalization of the subband separation frequency
~self-energy effect! with the depolarization and the excitonic
shift of this mode. Deviations from the perfect parabolicity
will break Kohn’s theorem with the result that the frequency
of Kohn’s mode now becomes density dependent and higher
intersubband resonances become visible.23 For this reason,
optical measurements are useful in characterizing the spatial
shape of the confining potential. While the collective excita-
tions of single quantum wells~SQW’s! have been exten-
sively studied, there have been only a few theoretical studies
of double quantum wells~DQW’s!.24,25 But in recently per-
formed experiments on DQW’s interesting physical effects
were observed. Deccaet al.26 showed that the excitonic shift
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to the intersubband SDE vanishes in a DQW in the high-
density limit, i.e., the SDE’s and SPE’s cannot be distin-
guished in inelastic light scattering spectra. Further, Hartung
et al.27 observed in FIR transmission spectra of DQW’s a
strong exchange of oscillator strength between two collective
intersubband resonances.

The aim of the present paper is to investigate the Q2D
plasmons and their optical manifestation in double paraboli-
cally graded quantum wells~DPQW’s!, i.e., two coupled
quantum wells, with parabolic shape, in dependence on the
coupling of the two wells and study the effects when the two
wells become asymmetric coupled. The work is performed
by self-consistent calculations of the ground state in the Har-
tree approximation and the density response in the frame-
work of the random-phase approximation. In Sec. II we cal-
culate the ground-state properties of the Q2DEG in DPQW’s
and in Sec. III we develop the method to calculate the den-
sity response of the electron system. In Sec. IV we investi-
gate the dispersion relation of the Q2D plasmons for differ-
ent DPQW’s, i.e., we study the influence of the coupling of
the two wells, deviations from the parabolic shape and spa-
tial asymmetry of the confining potential. In Sec. V we cal-
culate the optical transmission spectra of semiconductor
samples containing the above electron systems and a grating
coupler on top to couple the FIR radiation to the collective
excitations of the Q2DEG. Finally, in Sec. VI we summarize
our results.

II. GROUND STATE

A. General

We consider two different quantum-well-structures:~i! a
single truncated PQW~SPQW! and ~ii ! two coupled trun-
cated PQW’s, i.e., forming the DPQW with conduction-band
edges schematically illustrated in Fig. 1. These wells have a
finite width w, a depthV1 of the parabola, and an addition-
ally barrier of heightV2 due to the conduction-band edge
discontinuity at the heterointerface between the
Ga12yAl yAs QW and the Ga12xAl xAs barrier (y,x), i.e.,
the conduction-band edge acts as the bare confining potential
V0(z)5Ec(z). Such structures may be realized by molecular
beam epitaxy by appropriately grading the aluminium con-
tent of the Ga12yAl yAs layer during growth. To describe the
electrons in the host semiconductor, we use the effective-
mass approximation assuming a uniform effective mass
me . We also take the static dielectric constant«s to be uni-
form across the sample, i.e., neglect image effects. In actual
GaAs-Ga12xAl xAs heterostructures these inhomogeneity ef-
fects have only a small influence on the electronic ground-
state properties of the system.28 Electrons from the donors in
the adjacent Ga12xAl xAs barriers enter the QW and form
the Q2DEG in the SPQW and the DPQW. The interacting
electrons of the Q2DEG will screen the bare potential, so
that the so-called effective potential~self-consistent potential
or total potential! Vef f(z) arises, which can be separated into
the bare potential V0(z) and the Hartree potential
VH(z)52eF(z), due to the electrostatic potential of the
mobile electrons of the Q2DEG and the spatial fixed ionized
donors, and the exchange-correlation potentialVxc(z). The
last one we neglect in this paper. This is possible for the

usual electron densities. Within the approximations made
above the one-electron motion is given by the effective
Schrödinger equation

S 2
\2

2me
¹21Vef f~z! DCKki

~x!5EK~ki!CKki
~x!. ~1!

With respect to the translational symmetry in thex-y plane
the single-particle wave functionCKki

(x) is

^xuKki&5CKki
~x!5

1

AA
eiki•xiwK~z! ~2!

and the associated eigenvalues, the Q2D subbands, read

EK~ki!5EK1
\2ki

2

2me
, K50,1,2,. . . . ~3!

FIG. 1. Schematic arrangement of the bare potential of a SPQW
~a! and of a DPQW~b!.
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Herein,xi5(x,y) and ki5(kx ,ky) are the 2D position and
wave vector in thex-y plane, respectively,ki5ukiu andA is
the unit area in this plane assuming Born–von Ka´rmán
boundary conditions. In the following, we suppose spin de-
generacy and omit the spin index. The spin summation is
assumed to be included when necessary without any explicit
indication. The bottoms of the subbandsEK and the envelope
wave function are obtained from the one-dimensional Schro¨-
dinger equation

S 2
\2

2me

d2

dz2
1Vef f~z! DwK~z!5EKwK~z!, ~4!

where the envelope wave functions are orthonormalized ac-
cording to

E
2`

`

dzwK* ~z!wK8~z!5dKK8 ~5!

and the effective potential isVef f(z)5V0(z)1VH(z). The
bare potentialV0(z), resulting from the tailoring of the
conduction-band edge, depends on the Al concentration at
the positionz, and the Hartree potential results from the elec-
trostatic interaction of the electrons with themselves and
from the ionized impurity charges, and thus, is given by
Poisson’s equation

d2

dz2
VH~z!52

e2

«0«s
@n0~z!2ND

1~z!#. ~6!

In this equation the electron charge is2e, «0 is the permit-
tivity in vacuum and the ground-state~equilibrium! electron
number density atT50 K is given by

n0~z!5(
K

n0
~K !~z!, ~7!

n0
~K !~z!5

me

p\2uwK~z!u2~EF2EK!Q~EF2EK!, ~8!

wheren0
(K)(z) is the contribution of theKth subband to the

electron density profile,Q(x) is the Heaviside unit step func-
tion with Q(x)51 for x.0 andQ(x)50 for x,0, and the
Fermi energyEF is determined from the electron number
density~number of electrons per unit area, sheet carrier con-
centration!

n2DEG5(
K

NK , ~9!

NK5
me

p\2 ~EF2EK!Q~EF2EK!, ~10!

whereNK is the sheet carrier concentration of theKth sub-
band. The Fermi wave vectors of the different subbands are
given by

kF
~K !5HA2me~EF2EK!/\2 if EF.EK

0 if EF<EK
~11!

and the corresponding Fermi velocities arevF
(K)

5\kF
(K)/me .

The self-consistent solution of Eqs.~4!–~10! gives the
subband energies, the charge-density profile, the Fermi en-
ergy, and the effective potential. To solve Poisson’s equation
we have to specify our model. We assume that the QW’s as
well as the barrier of thicknessb between the two wells and
the spacer layers of finite thicknessl s are undoped. The
Ga12xAl xAs layers embedding the SPQW or the DPQW are
assumed to be uniformly doped with donors. The donor lev-
els are all supposed to lie at an energyEb below the conduc-
tion band. The donors are completely ionized in the deple-
tion regions of thicknessl d to the right and left from the
QW’s. Because the donors outside the depletion layers are
neutral, the Fermi level of the whole heterojunction can
therefore be identified with the donor energy level atz→0
andz→zE to the left and right of the depletion layers. If we
put EF50 as reference level, we haveVef f(0)
5Vef f(zE)5Eb , acting as boundary condition in solving
Poisson’s equation. The charge density is now equal to

ND
1~z!5H eND

1, 0,z,zd1

0, zd1,z,zd2

eND
1, zd2,z,zE

~12!

where ~i! for the SPQW structure we havezd15 l d ,
zd25 l d1 l s1w1 l s, andzE5zd21 l d and~ii ! for the DPQW
structures we havezd15 l d , zd25 l d1 l s1w11b1w21 l s,
andzE5zd21 l d .

Integrating Eq.~6! twice from z50 to z5zE , using the
continuity ofVH(z) andd/dz VH(z) at the boundaries of the
sample,n0(z)→0 for z→0 and z→zE and the boundary
conditionsVef f(0)5Vef f(zE)5Eb , we obtain

VH~z!52
e2

«0«s
E
0

z

dz8~z2z8!n0~z8!1eND
1H 1

2 z
2, 0<z<zd1

1
2 l d

21~z2zd1!l d, zd1<z<zd2
1
2 l d

21~zd22zd1!l d1
1
2 ~z2zd2!

21~z2zd2!l d, zd2<z<zE .

~13!
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The charge neutrality of the sample*0
zEdz@n0(z)

2ND
1(z)#50, givesn2DEG52l dND

1 .
For the bare potential we use the following model poten-

tials, depicted in Fig. 1:~i! SPQW,

V0~z!5H V11V2, 0,z, z̄1
1
2 meV

2~z2zm!2, z̄1,z, z̄2

V11V2, z̄2,z,

~14!

wherez̄15 l d1 l s , z̄25 z̄11w andzm5 z̄11w/2; ~ii ! DPQW

V0~z!55
V11V2, 0,z, z̄1
1
2 meV1

2~z2zm1!
2, z̄1,z, z̄2

V11V2, z̄2,z, z̄3
1
2 meV2

2~z2zm2!
2, z̄3,z, z̄4

V11V2, z̄4,z,

~15!

wherez̄15 l d1 l s , z̄25 z̄11w1, z̄35 z̄21b, and z̄45 z̄31w2.
The variation of the different parameter allows to describe
with Eq. ~15! different types of DPQW’s.

Now we have to solve the Schro¨dinger equation with the
effective potential self-consistently. Such a fully self-
consistent procedure would given2DEG and the depletion
length l d as results,29 which may be different on the right-
and left-hand side of the QW. To simplify the numerical
handling, without restrictions for the generality of the results,
we assume that the depletion lengthl d is considered as an
input parameter and identical on both sides. This simplifica-
tion gives quite satisfactory results because our goals are the
dynamical properties of these systems and not high accuracy
‘‘first’’ principle model calculations of the subband energies
of given systems.

B. Numerical results

In our calculations we use the following set of param-
eters:«s512.87,me50.06624m0 typical for GaAs, where
m0 is the bare electron mass. We assume that the parabolic
potentials are truncated atV15150 meV atz̄1 and z̄2 in the
case of the SPQW and atz̄1 andz̄4 in the case of the DPQW.
Further, the barrier height of the square well potential is
V2575 meV at these positions. For the thickness of the
spacer layers we assumel s55 nm and the thickness of the
depletion layers is assumed to bel d55 nm. Thus, the con-
fining frequencyV of the parabolic potential of a SPQW is
related to the widthw via V5@8V1 /(mew

2)#1/2 and we use
\V529.22 meV.

Further, we investigate three different DPQW’s: the sym-
metric DPQW, the symmetric truncated DPQW, and the
asymmetric truncated DPQW. For the symmetric DPQW
each PQW is symmetric with respect tozm1 andzm2, respec-
tively, and the two PQW’s are identical:w5w15w2540
nm and V5V15V25@8V1 /(mew

2)#1/2 and we use
\V529.22 meV. Then,zm15 z̄11w/2, zm25 z̄31w/2, and
V0( z̄1)5V0( z̄2)5V0( z̄3)5V0( z̄4)5V1 is valid. We investi-
gate the symmetric DPQW for different barrier thicknesses
b in the range fromb51 nm to b510 nm. The single
PQW’s of the symmetric truncated DPQW are not symmet-

ric with respect tozm1 andzm2, respectively. They are trun-
cated atz̄1, z̄2, z̄3, and z̄4, so thatV0( z̄1)5V0( z̄4)5V1, but
V0( z̄2)5V0( z̄3)ÞV1 is valid. We consider two PQW’s with
the same curvatureV5V15V25@8V1 /(mew̄

2)#1/2 and use
\V529.22 meV. Here,w̄540 nm is the width of the corre-
sponding single symmetric PQW which determines the posi-
tions zm15 z̄11w̄/2 and zm25 z̄42w̄/2. Further, we use
w5w15w2530 nmÞw̄ from which together withl s , l d,
and b the positionsz̄1, z̄2, z̄3, and z̄4 are fixed. For the
barrier thickness we chooseb51 nm. For the asymmetric
truncated DPQW the single PQW’s are not symmetric with
respect tozm1 and zm2, respectively, and further they are
truncated atz̄1, z̄2, z̄3, and z̄4, so thatV0( z̄1)5V0( z̄4)5V1,
but V0( z̄2)ÞV0( z̄3)ÞV1 is valid. The curvatures of the
single PQW’s of the asymmetric truncated DPQW are iden-
tical, as in the case of the symmetric truncated DPQW, but
the widths of the single PQW’s are different:w1532 nm
Þw2530 nm. Thus, we have in this casezm15 z̄11w̄/2 and
zm25 z̄42w̄/2 and we chooseb51 nm.

The Schro¨dinger equation is solved numerically with the
help of the difference method. Starting from an arbitrary po-
tential ~here, we use the bare potential! we solve the Schro¨-
dinger equation, i.e., find eigenfunctions and eigenenergies,
determine the Fermi energy and the sheet carrier concentra-
tions of the subbands and then obtain the Hartree potential.
With this solution we solve the Schro¨dinger equation again
and obtain a new solution. We repeat this cycle until conver-
gence, i.e., self-consistency, is reached. We test the conver-
gence of the procedure by the subband energies and demand
u(EK( i11)2EK( i ))/EK( i )u<1025 meV, wherei is the number of
the iteration.

1. Single parabolic quantum wells

In Fig. 2 we show the bare potential, the effective poten-
tial, and the five lowest subband energies measured from the
Fermi energy (EF50), for two different electron densities. It
is seen from Fig. 2 that with increasing density the bottom of
the PQW becomes flatter and the subband separation de-
creases. Thus, the contribution of the Hartree potential to
Vef f(z) increases with increasing electron concentration:
Vef f(z) deforms inz̄1,z, z̄2 from a nearly parabolic shape
to a more and more rectangular shape and bendsVef f(z) in
the regionsz, z̄1 andz. z̄2. The five lowest subband ener-
giesEK are plotted versus the electron density in Fig. 3. It is
seen that with increasing density of the Q2DEG in
the SPQW the subband separation frequency
VKK85(EK2EK8)/\ decreases nearly linearly:V1054.46
31013 s21 for n2DEG513107 cm22, V1054.1931013

s21 for n2DEG5131011 cm22 andV1053.1431013 s21 for
n2DEG5531011 cm22. Thus, at low electron concentrations
the lowest subband separation frequency is nearly equal to
the bare harmonic oscillator frequencyV105V of an effec-
tive parabolic potentialVef f(z)5(meV

2/2)z2. Deviations re-
sult from the hard walls and the finite height of the barriers.
The electron density profile calculated from Eq.~7! is de-
picted in Fig. 4. Because the SPQW is mirror symmetric at
z5zm there are two different sets of envelope wave functions
wK(z): even parity states~symmetric wave functions!
w0(z), w2(z), w4(z), . . . and odd parity states~antisymmet-
ric wave function! w1(z), w3(z), w5(z), . . . .
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2. Double parabolic quantum wells

The corresponding results are plotted for the three differ-
ent DPQW’s in Figs. 5, 7, and 8. Because the electrons can
tunnel through the barrier between the two PQW’s
~‘‘coupled PQW’s’’! the degeneracy of the energy levels be-
comes lifted and thus, the subbands of the DPQW’s arise as
doublets. First, we consider the symmetric DPQW. The bare
potential, the effective potential and the six lowest subband
energies measured from the Fermi energy, are plotted in Fig.
5~a! for n2DEG5131011 cm22. The splitting of these sub-
bands,E0 andE1, E2 andE3, E4 andE5, is very small and not
to be drawn in Fig. 5~a!. In Fig. 6 the splitting of the doublet
E12E0 is plotted versus the barrier thicknessb for three
different densities of the Q2DEG. It is seen that the level
splitting decreases with increasing barrier thickness and with
increasing electron density. The second dependence is a re-
sult of the increasing Coulomb repulsion of the electrons in
the two QW’s with increasing number of electrons. The six

lowest subband energiesEK are plotted versus the electron
density in Fig. 7~a!. It is seen that for the chosen density
range two subbands,E0 andE1 ~the lowest doublet!, are oc-
cupied. From the density profilen0(z), plotted in Fig. 8~a!
for two different sheet carrier concentrationsn2DEG , it be-
comes obvious that the relative thick barrier between the two
QW’s more or less separates the two electron systems.

For the symmetric truncated DPQW, which we consider
now, the barrier thickness between the two QW’s is much
smaller and thus, the separation of the doublets increases.
This is seen from Fig. 5~b!, where we have plotted the bare
and effective potential and the six lowest subband energies.
It becomes obvious that the splitting of the doublets is larger
for the higher subbands as for the lower subbands. Again thisFIG. 2. Bare potential~solid line!, effective potential~dashed

lined!, subband energies~dashed-dotted line!, and Fermi energy
~dotted line! of a SPQW for two different electron number densi-
ties: ~a! n2DEG5131011 cm22, ~b! n2DEG5531011 cm22. The
Fermi energy~dotted line! is chosen to beEF50.

FIG. 3. Subband energies of the SPQW in dependence on the
electron number density. The Fermi energy~solid line! is chosen to
beEF50.

FIG. 4. Electron density profiles of the SPQW for
n2DEG5131011 cm22 ~solid line! and n2DEG5531011 cm22

~dashed line!.
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splitting decreases with increasing electron density, as seen
from Fig. 7~b!. It is seen from Fig. 8~b!, where the density
profile for the symmetric truncated DPQW is plotted, that the
electrons of both QW’s tunnel through the barrier and thus,
form one Q2DEG.

The spatial symmetry is broken in the case of the asym-
metric truncated DPQW, which is now under consideration.
The bare and effective potential and the six lowest subbands
are plotted for this DPQW in Fig. 5~c!. The asymmetry in-
creases the splitting of the doublets@cf. with Fig. 5~b!#,
which decreases with increasing electron concentration, as
seen from Fig. 7~c!. The density profile, plotted in Fig. 8~c!,
manifests the asymmetry of the confining potential.

III. DENSITY RESPONSE OF THE Q2DEG
IN SPQW’S AND DPQW’S

In this section we calculate the response of an electron
gas, quantum-confined in a one-dimensional potential acting
in the z direction of the sample, to an external applied po-
tential on a quantum-mechanical level, i.e., we consider the
density response. Here, we develop the RPA, using the self-
consistent field~SCF! method.30 The obtained result for the
dispersion relation of the Q2D plasmons allows the calcula-
tion of the dispersion curves in conjunction with the self-
consistent calculated ground state of the SPQW’s and
DPQW’s.

The single-particle Hamiltonian of the Q2DEG in the
presence of the perturbation is written asH5H01H1, where
H0 is the unperturbed single-particle Hamiltonian in the Har-
tree approximation, which satisfies the effective Schro¨dinger
equation H0uKki&5EK(ki)uKki& @cf. Eq. ~4!# and H1
5Vsc(x,t) is the self-consistent potential. The self-consistent
potential is a sum of the external potentialVext(x,t) and the
induced potentialVind(x,t). The source of the induced po-
tential is the induced electron densitynind(x,t) resulting
from the redistribution of the electrons of the Q2DEG in the
presence ofVext(x,t). Assuming that the external potential is
switched on adiabatically at t52`, we have
Vext(x,t)5Vext(x,v)exp@2i(v1id)# with d→01, the SCF
method relates the induced electron density to the self-
consistent potential by

nind~x,v!5E d3x8P~1!~x,x8uv!Vsc~x8,v!, ~16!

whereP(1)(x,x8uv) is the irreducible~proper! RPA polariza-
tion function of the Q2DEG:

P~1!~x,x8uv!5
1

A(
qi

eiqi•~xi2xi8!P~1!~qi ;z,z8uv!, ~17!

where

P~1!~qi ;z,z8uv!5 (
KK8

PKK8
~1!

~qi ,v!hKK8~z!hKK8
* ~z8! ~18!

and

FIG. 5. Bare potential~solid line!, effective potential~dashed
lined!, subband energies~dashed-dotted line!, and Fermi energy
~dotted line! of a DPQW: ~a! symmetric DPQW,~b! symmetric
truncated DPQW,~c! asymmetric truncated DPQW. The Fermi en-
ergy ~dotted line! is chosen to beEF50.

54 11 441DYNAMICAL RESPONSE OF DOUBLE PARABOLICALLY . . .



PKK8
~1!

~qi ,v!5
2

A(
ki

nF„EK8~ki!…2nF„EK~ki1qi!…

\~v1 id!1EK8~ki!2EK~ki1qi!
~19!

is the RPA matrix polarization function. Here, we have de-
fined

hKK8~z!5wK~z!wK8
* ~z!. ~20!

In the density-response scheme retardation effects are ne-
glected and thus, the induced potential, which is an induced
Hartree potential, is related to the induced density by Pois-
son’s equation. Neglecting image effects, describing the di-
electric screening of the background within the«s approxi-
mation, and exploiting the translation symmetry in thex-y
plane by two-dimensional Fourrier series, one obtains

Vsc~qi ,zuv!5Vext~qi ,zuv!

1
e2

2«0«sqi
E dz8E dz9e2qiuz2z8u

3P~1!~qi ;z8,z9uv!Vsc~qi ,z9uv!. ~21!

Performing matrix elements of this equation with the enve-
lope wave functions of Eq.~4! and defining the collective
excitations in the usual form as resonances of the Q2DEG to
Vext, i.e., collective excitations exist under the condition
Vext50 while VscÞ0, the dispersion relation of the Q2D
plasmons results

det@dK1KdK2K82VK1K2K8K
s

~qi!PKK8
~1!

~qi ,v!#50. ~22!

The Coulomb matrix element is defined by

VK1K2K8K
s

~qi!5
e2

2«0«sqi
f K1K2K8K
C

~qi!, ~23!

where the form factor is given by

f K1K2K8K
C

~qi!5E dzE dz8hK1K2
* ~z!e2qiuz2z8uhK8K

* ~z8!.

~24!

The real part of the RPA matrix polarization function is6

RePKK8
~1!

~qi,v!5
mekF

~K !

p\2qi
$2h̄K8K11sgn~ h̄K8K1!

3Q~h̄K8K121!Ah̄K8K1
2

21%

1
mekF

~K8!

p\2qi
$h̄KK822sgn~ h̄KK82!

3Q~h̄KK82
2

21! Ah̄KK82
2

21% ~25!

and the imaginary part reads

ImPKK8
~1!

~qi ,v!5
me

p\2qi
$kF

~K !Q~12h̄K8K1
2

!A12h̄K8K1
2

2kF
~K8!Q~12h̄KK82

2
!A12h̄KK82

2 , ~26!

with

h̄K8K65
v6VKK8

qivF
~K8!

6
qi

2kF
~K8!

. ~27!

The RPA matrix polarization function has the
symmetry properties PKK8

(1) (qi ,v)5PKK8
(1) (2qi ,v),

RePKK8
(1) (qi ,v)5RePK8K

(1) (qi ,2v), and ImPKK8
(1) (qi ,v)

5ImPK8K
(1) (qi ,2v). Further, for the Coulomb matrix

elements VK1K2K3K4
s (qi)5VK2K1K3K4

s (qi)5VK1K2K4K3
s (qi)

5VK2K1K4K3
s (qi)5 VK3K4K1K2

s (qi) is valid, because the wave

functions of bound states are always pure real functions. On
account of these properties we can restrict the further con-
siderations to the quadrantv.0 and qi.0 in the v-qi
plane.

The regions in thev-qi plane, where ImPKK8
(1) (qi ,v)Þ0

define the regions, where the single-particle excitations exist,
i.e., SPE’s have a continuous excitation spectrum, the single-
particle continuum. According to the size quantization the
SPE’s are split in single-particle intrasubband excitations and
single-particle intersubband excitations, associated with in-
coherent electron motion within one and between two differ-
ent subbands, respectively. Nonvanishing ImPKK8

(1) (qi ,v) in-
dicates that damping is possible even in the absence of
collisions, i.e., the Q2D plasmons become Landau damped
inside the single-particle continua. The boundaries of these
continua are given by

v1,2
KK85U6\kF

~K8!

me
1

\qi
2

2me
1VKK8U ~28!

and

v3,4
KK85U6\kF

~K !

me
2

\qi
2

2me
1VKK8U. ~29!

FIG. 6. Subband separationE12E0 as a function of the barrier
thicknessb of the DPQW for three different electron number den-
sities: n2DEG513107 cm22 ~solid line!, n2DEG5131011 cm22

~dashed line!, andn2DEG5531011 cm22 ~dotted line!.
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FIG. 7. Subband energies of the symmetric DPQW~a!, the sym-
metric truncated DPQW~b!, and the asymmetric truncated DPQW
~c! in dependence on the electron number density. The Fermi en-
ergy ~solid line! is chosen to beEF50.

FIG. 8. Electron density profiles of the symmetric DPQW~a!,
the symmetric truncated DPQW~b!, and the asymmetric truncated
DPQW ~c! for n2DEG5131011 cm22 ~solid line! and
n2DEG5531011 cm22 ~dashed line!.
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The single-particle continua of a Q2DEG assuming four sub-
bands (K50,1,2,3) from which two are occupied are plotted
in Fig. 9. According to the different single-electron motions
within the occupied subbands, 0↔0, 1↔1 @Fig. 9~a!#, and
between the different subbands considered here, 0↔1 @Fig.
9~b!#, 1↔2, 0↔2, 1↔3, and 0↔3 @Fig. 9~c!# seven single-
particle intra- and intersubband continua arise. Each single-
particle (K2K8) intersubband continuum starts atqi50 at
the corresponding subband separation frequencyVKK8. Be-
cause the RPA scheme considers the response of non-
interacting electrons on the self-consistent potential, the dif-
ferent SPE’s are independent.

In difference to the SPE’s, the Q2D plasmons are accom-
panied in general by different collective intra- and intersub-
band transitions~coherent electron motion!, i.e., intersub-
band coupling ~ISC! is present and thus, the resulting
spectrum is of hybrid type concerning the associated intra-
and intersubband transitions. If the confining potential is spa-
tial symmetric it follows VK1K2K3K4

s 50 if K11K2

1K31K45odd number and thus, the dispersion relation
separates in one describing symmetric Q2D plasmons

det@dmndK2K2VK212mK2K12nK
s ~qi!xK12nK

~1! ~qi ,v!#50

~30!

and the other describes antisymmetric Q2D plasmons

det@dmndK2K2VK21~2m11!K2K1~2n11!K
s ~qi!

3xK1~2n11!K
~1! ~qi ,v!#50, ~31!

where we have used the symmetry properties ofVK1K2K3K4
s

and have defined

xKK8
~1!

~qi ,v!5
PKK8

~1!
~qi ,v!1PK8K

~1!
~qi ,v!

11dKK8
~32!

and it is n,m50,1,2, . . . . Equation~30! describes Q2D
plasmons which are connected with the collective electron
transitions between states with the same parity~even parity
modes!, whereas Eq.~31! describes Q2D plasmons con-
nected with collective electron transitions between states
with opposite parity~odd parity modes!.

In the case of weak ISC one can apply the diagonal ap-
proximation:VK1K2K3K4

s 5dK1K3dK2K4VK1K2K1K2
s . In this case

the dispersion relation, Eq.~22!, reads

12VKK8KK8
s

~qi!xKK8
~1!

~qi ,v!50, ~33!

which describes~i! for K5K8 the (K2K) intrasubband
plasmonvp

KK , if the collective electron transition is within
the subbandEK and~ii ! for KÞK8 the (K2K8) intersubband

plasmonvp
KK8 if the collective intersubband transition is be-

tween the subbandsEK8↔EK .
The classification of the modes in intra- and intersubband

plasmons is strictly valid only for vanishing ISC. Starting
from this picture the ISC results in a hybrid-type spectrum.
In many cases the ISC is weak and then each resulting
branch of hybrid~coupled or mixed! mode is dominated by
one collective electron motion only. In this case it is profit-

able to denote the modes byvp
KK8.

FIG. 9. Single-particle continua of a Q2DEG for a four-subband
model assuming that two subbands are occupied: single-particle
(020) and (121) intrasubband continua~a!, single-particle
(120) intersubband continuum~b!, and single-particle (221),
(220), (321), and (320) intersubband continua~c!.

11 444 54L. WENDLER AND T. KRAFT



Fortunately, the number of algebraic equations determin-
ing the dispersion curves of the Q2D plasmons is restricted
to a small number K,K850,1,2,. . . ,N21, because
PKK8
(1) (qi ,v)→0 if uK2K8u becomes a large number. Fur-

ther, PKK8
(1) (qi ,v)50 if both inequalities, EF<EK and

EF<EK8 are valid and in typical Q2D structures only one or
two subbands are occupied. Thus, it is possible to restrict to
a finite numberN of subbands, i.e., one can use a multisub-
band model (N-subband model!. For practical calculations
we use in the case of the SPQW a two-subband model:
K,K850,1 and for the DPQW’s a four-subband model:
K,K850,1,2,3. For a two-subband model Eq.~22! takes the
form

U12V0000
s x00

~1! V0010
s x10

~1! V0011
s x11

~1!

V1000
s x00

~1! 12V1010
s x10

~1! V1011
s x11

~1!

V1100
s x00

~1! V1110
s x10

~1! 12V1111
s x11

~1!
U50,

~34!

which splits for a mirror-symmetric effective confining po-
tential in

@12V0000
s ~qi!x00

~1!~qi ,v!#@12V1111
s ~qi!x11

~1!~qi ,v!#

2V0011
s ~qi!V1100

s ~qi!x00
~1!~qi ,v!x11

~1!~qi ,v!50, ~35!

describing the symmetric Q2D plasmons and in

12V1010
s ~qi!x10

~1!~qi ,v!50 ~36!

describing the antisymmetric modes. Please note that
x11
(1)50 if only the lowest subband is occupied, i.e., in the

electric quantum limit~EQL!. In this case Eq.~35! describes
(020) intrasubband plasmons, accompanied by collective
electron motion in subbandE0(ki) and Eq.~36! describes
(120) intersubband plasmons, accompanied by collective
electron motions between subbandsE0(ki) andE1(ki).

In the case of a four-subband model, assuming two sub-
bands to be occupied, the Q2D plasmon dispersion relation
reads

U12V0000
s x00

~1! V0010
s x10

~1! V0020
s x20

~1! V0030
s x30

~1! V0011
s x11

~1! V0021
s x21

~1! V0031
s x31

~1!

V1000
s x

~1! 12V1010
s x10

~1! V1020
s x20

~1! V1030
s x30

~1! V1011
s x11

~1! V1021
s x21

~1! V1031
s x31

~1!

V2000
s x00

~1! V2010
s x10

~1! 12V2020
s x20

~1! V2030
s x30

~1! V2011
s x11

~1! V2021
s x21

~1! V2031
s x31

~1!

V3000
s x00

~1! V3010
s x10

~1! V3020
s x20

~1! 12V3030
s x30

11 V3011
s x11

~1! V3021
s x21

~1! V3031
s x31

~1!

V1100
s x00

~1! V1110
s x10

~1! V1120
s x20

~1! V1130
s x30

~1! 12V1111
s x11

~1! V1121
s x21

~1! V1131
s x31

~1!

12V2100
s x00

~1! V2110
s x10

~1! V2120
s x20

~1! V2130
s x30

~1! V2111
s x11

~1! 12V2121
s x21

~1! V2131
s x31

~1!

V3100
s x00

~1! V3110
s x10

~1! V3120
s x20

~1! V3130
s x30

~1! V3111
s x11

~1! V3121
s x21

~1! 12V3131
s x31

~1!

U50,

~37!

which separates in the determinantal dispersion relation

U12V0000
s x00

~1! V0020
s x20

~1! V0011
s x11

~1! V0031
s x31

~1!

V2000
s x00

~1! 12V2020
s x20

~1! V2011
s x11

~1! V2031
s x31

~1!

V1100
s x00

~1! V1120
s x20

~1! 12V1111
s x11

~1! V1131
s x31

~1!

V3100
s x00

~1! V3120
s x20

~1! V3111
s x11

~1! 12V3131
s x31

~1!

U50 ~38!

describing the symmetric Q2D plasmons and those determining the antisymmetric Q2D plasmons

U12V1010
s x10

~1! V1030
s x30

~1! V1021
s x21

~1!

V3010
s x10

~1! 12V3030
s x30

~1! V3021
s x21

~1!

V2110
s x10

~1! V2130
s x30

~1! 12V2121
s x21

~1!
U50, ~39!

if the effective confining potential is mirror symmetric.
Equations~37!–~39! describe hybrid-type modes, i.e., Eq.
~37! determines seven branches of dispersion curves of
(020) and (121) intrasubband plasmons and (120),
(221), (220), (321), and (320) intersubband plasmons,
denoted byvp

00, vp
11, vp

10 ,vp
21, vp

20, vp
31, andvp

30, respec-
tively. Equation~38! describes the four symmetric branches
vp
00, vp

11, vp
20, andvp

31, and Eq.~39! determines the three

antisymmetric branchesvp
10, vp

21, andvp
30. That means we

denote each branch by the mainly contributing collective
intra- or intersubband transition as long as the ISC is weak.

IV. SELF-CONSISTENT CALCULATION
OF Q2D PLASMONS IN SPQW’S AND DPQW’S

In this chapter we represent numerical results of the RPA
dispersion relations of the Q2D plasmons using the self-
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consistent calculated ground state of the SPQW’s and
DPQW’s.

A. Q2D plasmons of SPQW’s

In the case of the SPQW’s considered in Sec. II B the
RPA dispersion relations are given in general by Eqs.~30!
and ~31!. Because only the lowest subband is occupied it is
sufficient to use a two-subband model and thus, we have to
use Eq.~35! with x11

(1)50 for the symmetric Q2D plasmon
vp
00 and Eq.~36! to determine the dispersion curve of the

antisymmetric Q2D plasmonvp
10.

The full RPA dispersion curves of the Q2D plasmons of a
SPQW are plotted in Fig. 10 in dependence on the wave
vector componentqi . Note, that for both chosen electron
densities only one subband is occupied. Within this model

each plotted branch is accompanied by only one type of col-
lective electron transition:vp

00 is associated by collective
electron motion in the lowest subband and thus, is a pure
(020) intrasubband plasmon andvp

10 is associated by col-
lective electron transition between the two subbands under
consideration and thus, is a pure (120) intersubband plas-
mon. The dispersion curve of the intrasubband plasmon
starts atqi50 andv50 and enters for larger wave vectors
the single-particle (020) intrasubband continuum. Because
of the symmetry the intrasubband plasmonvp

00 is not Landau
damped within the single-particle (120) intersubband con-
tinuum @see Fig. 10~b!#. Further, it is seen from Fig. 10 that
the (120) intersubband plasmon starts forqi50 above the
subband separation frequencyV10,vp

10. This frequency
shift,Dp

105vp
10(qi50)2V10 is the depolarization shift. This

many-particle effect arises because each electron ‘‘feels’’ a
field which is different from the unscreened field~resonance
screening!, i.e., if the electron gas oscillates in the mode
vp
10 the arising induced electron density changes the Hartree

potential. The both collective modes,vp
00 and vp

10, under
consideration are plotted in dependence on the electron num-
ber density of the Q2DEG in Fig. 11. The fully self-
consistent calculations of the ground state and the response
show thatvp

00 (qiÞ0) has an increasing frequency with in-
creasing density. This increase is larger than that of the upper
boundaryv1

00 of the (020) SPE continuum. The corre-
sponding dispersion curves of the (120) intersubband plas-
monvp

10 are depicted in Figs. 11~b! and 11~c!. It is seen from
Fig. 11~b! that forqi50 the modevp

10 is nearly pinned at a
frequency slightly above the subband separation frequency
V10(n2DEG50)[V of the bare confining potential in the
plotted range ofn2DEG . This is nothing else but the mani-
festation of the generalized Kohn’s theorem22 in the spec-
trum of the Q2D plasmons. For a bare perfect parabolic po-
tential the generalized Kohn’s theorem gives exactly that far-
infrared light is absorbed by the quantum-confined electron
gas at the confining frequencyV of the bare parabolic po-
tential, independent from the electron-electron interaction
and the number of electrons in the PQW. Thus, the only
dipole-active mode isvp

10 and is called Kohn’s mode. The
small deviation appearing in Fig. 11~b! results from the de-
viation of the chosen truncated SPQW from a perfect SPQW.
This theorem, considered from the viewpoint of many-
particle physics, states the exact cancellation of the Hartree
renormalization~tadpole self-energy diagrams! of the sub-
band separation frequencyDV105V10(0)2V10(n2DEG)
with the depolarization shift Dp

105vp
10(qi50)

2V10(n2DEG): vp
10(qi50)5V10(0) only if Dp

105DV10.
Whereas Kohn’s theorem states that the absorption spectrum
has only one peak atv5V, the mode spectrum of the freely
oscillating Q2DEG consists of all types of Q2D modes. The
mode spectrum of a Q2DEG is universal, i.e., the types of
the appearing modes are independent from the concrete
shape of the confining potential. The confining potential only
influences details of this mode spectrum. Please note that for
qi50 the single-particle (120) continuum degenerates to
the linev1

105v2
105V10. It is seen thatv1

10 decreases with
increasing electron densityn2DEG and thus, with increasing
n2DEG the depolarization shiftDp

10 increases. From Fig.

FIG. 10. Dispersion relation of the Q2D plasmons of the SPQW
calculated self-consistently in RPA in dependence on the wave vec-
tor component qi : ~a! n2DEG5131011 cm22, ~b! n2DEG
5531011 cm22. The hatched areas correspond to the single-

particle continua with boundariesv1,2
KK8 andv3,4

KK8.
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11~c!, wherevp
10 is plotted in dependence on the electron

density, it becomes obvious that forqiÞ0 the frequency of
vp
10 depends on the electron density, i.e., it decreases with

increasing electron concentration. It is seen that the bound-
aries of the SPE continuumv1

10 andv2
10 decrease more rap-

idly with increasing electron density asvp
10.

B. Q2D plasmons of DPQW’s

1. Symmetric DPQW

Let us now discuss the Q2D plasmons of the symmetric
DPQW. In this case we use a four-subband model. The full
RPA dispersion curves of the symmetric DPQW@cf. Figs.
5~a!, 7~a!, and 8~a! for the ground state# calculated from Eq.
~38!: vp

00, vp
11, vp

20, vp
31, and from Eq.~39!: vp

10, vp
21, and

vp
30 are plotted in Figs. 12~a!–12~c!. In the case considered

here two subbands are occupied and thus, two branches of
intrasubband plasmons appear:vp

00 and vp
11. These two

branches are accompanied by the collective electron transi-
tions 0↔0, 1↔1 and 0↔2, 1↔3, which are coupled due
to ISC effects. Because the frequencies of the (220) and
(321) intersubband plasmons are large in comparison to the
frequencies of the intrasubband plasmons, we can separate
these collective motions from the intrasubband motion in
subbandsE0 andE1. Thus, in a very good approximation the
branchesvp

00 andvp
11 are determined by the following dis-

persion relation:

U12V0000
s x00

~1! V0011
s x11

~1!

V1100
s x00

~1! 12V1111
s x11

~1!U50. ~40!

If we expandx00
(1)(qi ,v) andx11

(1)(qi ,v) in the lowest order
of qi , we obtain

x00
~1!~qi ,v!5

N0qi
2

mev
2 ~41!

and

x11
~1!~qi ,v!5

N1qi
2

mev
2 . ~42!

Using both expressions in Eq.~40! we find

vp
65H e2qi

2me«0«s
FN0f 0000

C ~qi!1N1f 1111
C ~qi!

2

6S @N0f 0000
C ~qi!1N1f 1111

C ~qi!#
2

4

2N0N1$ f 0000
C ~qi! f 1111

C ~qi!2@ f 1100
C ~qi!#

2% D 1/2G J 1/2.
~43!

Because forqi→0 f 0000
C (qi)' f 1100

C (qi)' f 1111
C (qi)→1 is

valid, we find from Eq.~43!

vp
15S n2DEGe2qi

2me«0«s
D 1/2, ~44!

vp
250. ~45!

FIG. 11. Dispersion relation of the (020) intrasubband plas-
mon vp

00 ~solid line! for qi513105 cm21 ~a! and of the (120)

intersubband plasmonvp
10 ~solid line! for qi50 ~b! and for

qi513105 cm21 ~c! of the SPQW calculated self-consistently in
RPA in dependence on the electron number density. The hatched
areas correspond to the single-particle continua with boundaries
v1
00 ~dashed line! ~a!, v1

10 ~dashed line! andv2
10 ~dotted line! ~b! and

~c!.
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From Eq. ~44! it becomes obvious that in the long-
wavelength approximation~LWA ! the modevp

1 behaves

like an ~uncoupled! (020) intrasubband plasmon with den-
sity n2DEG5N01N1, whereasvp

2→0 is valid. In the case of
the diagonal approximation, i.e., neglecting the ISC in
Eq. ~40! by setting the nondiagonal elements equal to zero
and using Eqs. ~41! and ~42! the results vp

1[vp
00

5@N0e
2qi/(2me«0«s)#

1/2 and vp
2[vp

115@N1e
2qi/

(2me«0«s)#
1/2 would appear. But the strong ISC makes the

diagonal approximation inadequate, and thus we denote the
intrasubband branches byvp

6 instead of vp
00 and vp

11.
Whereas the modevp

1 is outside of the SPE continua,vp
2

appears within the single-particle intrasubband continuum.
Thus,vp

2 is highly damped by the resonant and collisionless
mechanism of the Landau damping and not plotted in Fig.
12~a!. The antisymmetric modevp

10 is associated with all
antisymmetric intersubband transitions, but dominated by the
collective transition 0↔1. Thus, this branch is an intersub-
band mode with a nonvanishing depolarization shift@see in-
set of Fig. 12~a!#. The single-particle (020), (120), and
(121) continua overlap nearly entirely. It is important to
note thatvp

1 crossesvp
10 because of the different symmetries

of these modes. The frequency of the intersubband mode
vp
10 is very small because of the small subband separation

frequencyV10. For V10 one obtainsV1052.298633109

s21 at n2DEG5131011 cm22 and V1059.4176731010

s21 atn2DEG5531011 cm22 which is very small compared
to the other subband separation frequencies. This is seen
from Fig. 12~b!, where the SPE continua start atqi50 from
the associated subband separation frequencies. Further, from
this figure it is seen that the (221) and (220) SPE con-
tinua on the one side and the (321) and (320) SPE con-
tinua on the other side nearly overlap. It is seen from Fig.
12~b! that the frequencies of the symmetric modevp

20 and of
the antisymmetric modevp

21 are nearly the same. This is also
true becauseV20'V21 is valid. As long as the DPQW is
mirror symmetric the modesvp

20 and vp
21 are independent

and thus may cross. The fully self-consistent calculated RPA
dispersion curves ofvp

30 andvp
31 are plotted in Fig. 12~c!.

The modevp
30 is antisymmetric andvp

31 is symmetric and
thus both modes are not coupled. But the ISC between the
collective transitions 0↔3 and 1↔2 on the one side and
1↔3 and 0↔2 on the other side results in a repelling of
these modes. As a result the modesvp

21 andvp
20 appear be-

low the single-particle (320) intersubband continuum. Be-
cause the region free of Landau damping@see Fig. 12~b!# is
restricted on small wave vectors, the modesvp

21 andvp
20 can

only exist in this small range ofqi .
In Fig. 13 we compare the dispersion curvesvp

00 of the
SPQW, calculated for n2DEG50.531011 cm22 and
n2DEG5131011 cm22, with vp

1 of the symmetric DPQW,
calculated forn2DEG5131011 cm22. It is seen that for
small wave vectorsvp

1 of the DPQW approaches the disper-
sion curve ofvp

00 of the SPQW with the higher density and
for larger wave vectors the dispersion curve calculated with
the smaller electron density is asymptotically approached.
This result may be interpreted from the fact that the strength
of the ISC depends on the wave vector. For small wave
vectors the ISC is very strong, so thatvp

1}(N01N1)
1/2, i.e.,

vp
15vp

00(n2DEG) is identical to the (020) intrasubband
plasmon of a SPQW with the samen2DEG as that of the

FIG. 12. Dispersion relation of the Q2D plasmons of the sym-
metric DPQW calculated self-consistently in RPA in dependence on
the wave vector componentqi for n2DEG5131011 cm22: ~a! vp

1

and vp
10, ~b! vp

21 and vp
20, ~c! vp

31 and vp
30. The hatched areas

correspond to the single-particle continua.
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DPQW. Please note that for the symmetric DPQW the tun-
neling probability between the two QW’s is very weak.
Thus, we have two separated PQW’s to a good approxima-
tion, each filled byn2DEG/2 electrons per unit area. With
increasing wave vector the ISC decreases and thus,
vp

1→vp
1(N0) which gives vp

15vp
00(n2DEG/2), i.e., be-

comes identical to the (020) intrasubband plasmon of a
SPQW withn2DEG/2. This result gives rise to the interpreta-
tion from the different point of view of two separated
Q2DEG’s only coupled via the Coulomb coupling. For
qi→0 the two electron systems oscillate strongly coupled
and thus, with the densityn2DEG/21n2DEG/2 but for larger
qi the Coulomb coupling decreases and thus, the relevant
density isn2DEG/2. It should be remarked that the here ob-
tained results for two coupled PQW’s of finite width gener-
alize the results of Ref. 24 in which the plasmons of two
Coulomb coupled strict 2DEG’s without tunneling are inves-
tigated. In this paper the modevp

2 was found to be outside
the intrasubband continua if the two 2DEG’s are separated
larger than a critical value. This is not the case for the here
considered parameters of the DPQW.

2. Symmetric truncated DPQW

Now we investigate the symmetric truncated DPQW. Be-
cause also in this case two subbands are occupied we use
again the four-subband model. As shown in the self-
consistent calculations of the ground-state properties, here
the splitting of the doublets due to the tunneling from one
PQW to the other is larger, so that the subband separation
frequenciesVKK8 are well separated.

The fully self-consistent calculated RPA dispersion
curves of the Q2D plasmons of the symmetric truncated
DPQW@cf. Figs. 5~b!, 7~b!, and 8~b! for the ground state# are
plotted in Figs. 14 and 15 and are calculated from Eq.~38!:

vp
00, vp

11, vp
20, vp

31, and from Eq.~39!: vp
10, vp

21, andvp
30.

Again the strong ISC causes that the collective intrasubband
motion 0↔0 and 1↔1 is strongly coupled so that instead of
the denotationvp

00 andvp
11 we usevp

6 . The numerical cal-
culations show that onlyvp

1 appears outside the intrasub-
band (020) and (121) SPE continua. It becomes obvious
that in comparison to Fig. 12~a! the frequency ofvp

10 crosses
vp

1 at a larger value ofqi . This crossing occurs as long as
the DPQW is mirror symmetric. From Figs. 15~a! and 15~b!,
where the higher-frequency intersubband plasmons are plot-
ted for two different electron densities, it is seen that these
modes are well separated. For the lower density the mode
vp
21 appears in the small region between the (220) and

(221) SPE continuum, whereas it is above of these two
continua for the larger electron density. A similar behavior is
observed forvp

31 @cf. Fig. 15~a! with 15~b!#. It is seen that
with increasing electron density the separation between the
modes decreases. This is caused by the fact that with increas-
ing electron density the coupling between the electrons in
both wells of the DPQW decreases and thus the subband
separation frequenciesVKK8 of these doublets decrease.

3. Asymmetric truncated DPQW

In the following we will discuss in detail the asymmetric
truncated DPQW. For the calculation of the Q2D plasmon
dispersion relation we use a four-subband model from which
the two lowest subbands are occupied. Because in this case
the effective potential is spatially not mirror symmetric the
dispersion curves are calculated from Eq.~37!. Thus, all col-
lective intra- and intersubband transitions become coupled.
In this case it makes sense only to denote the resulting
branches of dispersion curves byvp

00, vp
11, vp

10, vp
21, vp

20,
vp
31, andvp

30 if the ISC is not too strong. The fully self-
consistent calculated RPA dispersion curves of the Q2D
plasmons of the asymmetric truncated DPQW@cf. Figs. 5~c!,

FIG. 13. Dispersion relation of the intrasubband plasmons of the
SPQW and of the symmetric DPQW calculated self-consistently in
RPA in dependence on the wave vector componentqi : vp

00 of the
SPQW for n2DEG50.531011 cm22 ~solid line! and for
n2DEG5131011 cm22 ~dotted line!, and vp

1 of the DPQW for
n2DEG5131011 cm22 ~dashed line!.

FIG. 14. Dispersion relation of the Q2D plasmonsvp
1 andvp

10

of the symmetric truncated DPQW calculated self-consistently in
RPA in dependence on the wave vector componentqi for
n2DEG5131011 cm22. The hatched areas correspond to the single-
particle continua.
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7~c!, and 8~c! for the ground state# are depicted in Figs. 16
and 17. As seen from Fig. 16 the ISC results in a resonance
splitting ~anticrossing! of the modesvp

1 andvp
10. Here, we

keep the denotationvp
1 and vp

10 for comparison with the
dispersion curves of the two other DPQW’s under consider-
ation. The resonance splitting isvp

102vp
00'131011 s21.

The both independent branchesvp
1 andvp

10 of a symmetric
truncated DPQW become hybrid-type modes~coupled or
mixed modes! in the anticrossing range. For small wave vec-
tors the lower-frequency branch behaves likevp

1 and the
higher-frequency branch likevp

10. The opposite is valid for
larger wave vectors. The dispersion curves of the higher-
frequency intersubband plasmons are plotted in Figs. 17~a!
and 17~b! for two different electron densities. The general
feature of the dispersion curves is very similar to that of the
symmetric truncated DPQW@cf. Figs. 15~a! and 15~b!#. But
in difference to the symmetric truncated DPQW the ISC be-
tween the collective intersubband transitions 1↔2 and

0↔2 on the one hand and 1↔3 and 0↔3 on the other hand
leads to a repelling of the modevp

21 from vp
20 and ofvp

31

from vp
30. Thus, the separation between these branches in-

creases with increasing asymmetry of the bare confining po-
tential. It is important to note that for the larger electron
density the dispersion curve of the branchvp

21 is in the very
near vicinity of the upper boundaryv1

20 of the single-particle
(220) intersubband continuum with a stop-point at
qi'23103 cm21, not to be drawn in Fig. 17~b!.

V. OPTICAL PROPERTIES

In this section we consider the optical properties of
SPQW’s and DPQW’s. In particular, we examine the optical
transmission spectra in the presence of a grating coupler on
top of the samples. The grating is necessary because in far-
infrared~FIR! transmission spectroscopy the investigation of
the mode dispersion is not directly accessible. A grating with
periodicityd modulates the incident radiation@with in-plane
wave vectorki5(kx,ky)# and induces electromagnetic field
components of wave vectorskin5(kx1Gn,ky), where
Gn5(2p/d)n ; n50,61,62, . . . .Thus, the incident light is
coupled via the action of the grating coupler to the Q2D
plasmons and it is possible to study the Q2D plasmon dis-
persion relationvp

Q2D(qi) as a function of the wave
vector qi5kin5(kxn ,ky), where kxn5kx1Gn and
kx5(v/c)sinQ0 (Q0: ray angle of the incident light mea-
sured from thez axis! is the wave vector component of the
incident light beam perpendicular to the stripes forming the
grating, which are parallel to they direction. Our calculation
of the optical transmission spectra follows the method devel-
oped in Ref. 31, which is applicable for all layered systems
with grating including the optical anisotropy of that layer
which contains the Q2DEG. This method is based on the
transfer-matrix method of local optics and the modal-
expansion method to include the influence of the grating. It is

FIG. 15. Dispersion relation of the Q2D plasmonsvp
21, vp

20,
vp
31 and vp

30 of the symmetric truncated DPQW calculated self-
consistently in RPA in dependence on the wave vector component
qi for n2DEG5131011 cm22 ~a! and for n2DEG5531011 cm22

~b!. The hatched areas correspond to the single-particle continua.

FIG. 16. Dispersion relation of the Q2D plasmonsvp
1 andvp

10

of the asymmetric truncated DPQW calculated self-consistently in
RPA in dependence on the wave vector componentqi for
n2DEG5131011 cm22. The hatched areas correspond to the single-
particle continua.
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shown that the combination of both methods results in a
generally computationally efficient and stable formalism of
the optical response of multilayer systems filled by isotropic
and anisotropic media with grating.31 As shown in Ref. 31
the use of local optics provides an excellent approximation to
describe the long-wavelength response of the Q2DEG as
long as the size quantization is incorporated in the theory.

To model the QW structures considered in this paper we
use a four-layer system:n51, . . . ,4.Each layer is, in gen-
eral, characterized by its thicknessdn5uzn2zn21u and by its
local dielectric tensor«ab

(n)(x,v), wherea,b5x,y,z. Here,
zn is the position of the interface between thenth and
(n11)th layer. Note, that the parameters used herezn of the
layer system are not identical to the parametersz̄1 , . . . ,z̄4
used by the calculation of the ground-state properties of the
Q2DEG in Sec. II. Here, we use the parameters for the whole
sample, because we want to describe the optical properties of
the whole structure, modeled as a multilayer system with
grating, whereas in Sec. II only the media in the near vicinity

of the QW’s have a perceptible influence on the ground-state
properties of the Q2DEG. The median50 andn55, above
and below the multilayer system, are assumed to be filled by
vacuum with«0(v)5«5(v)51. The layerz1,z,z0 con-
tains the rectangular-groove grating of heighth[d1, period-
icity d5a1b and mark-to-space ratiot5a/b. In the grating
region we have«ab(x,v)5«j(v)dab , where j5a if
md,x,md1a and j5b if md1a,x,(m11)d;
m50,61,62, . . . . Here, we assume a silver grating,
described by «a(v)512vp

2/@v(v1 ig)# for the filled
stripes, wherevp55.6931015 s21 is the plasma frequency
and g57.59631013 s21 is the phenomenological damping
constant, and for the spacing between the stripes we assume
«b51. The semiconductor layersn52 and n54,
z2,z,z1 and z4,z,z3, respectively, are filled by Ga

12xAl xAs, described in the framework of the
«s-approximation by«s25«s4512.21, assumingx50.25.
The layer n53, z3,z,z2 forming the SPQW or the
DPQW, i.e., which contains the Q2DEG, is described by
the local dielectric tensor«ab

(3)(v): «xx
(3)(v)5«yy

(3)(v)Þ0,
«zz
(3)(v)Þ0, but «xy

(3)(v)5«yx
(3)(v)5«xz

(3)(v)5«zx
(3)(v)

5«yz
(3)(v)5«zy

(3)(v)50. The layern53 is identical to the
region of the SPQW and of the DPQW with a thickness of
d35a2DEG , wherea2DEG is the effective thickness of the
Q2DEG described below, whiled2 andd4 are not necessar-
ily equal to l d1 l s . This four-layer system is schematically
drawn in the inset of Fig. 18. The nonvanishing components
of the macroscopic local dielectric tensor are given for a
QW, described by a two-subband model assuming that only
the lowest subband is occupied, by10

«xx
~3!~v!5«yy

~3!~v!5«s3S 12
v0
2

vS v1
i

t i
D D , ~46!

«zz
~3!~v!5«s3S 12

v0
2f 10

v22V10
2 1

i

t'

vD . ~47!

Herein, we have defined the plasma frequency by
v05@n2DEGe

2/(me«0«s3a2DEG)#
1/2, wherea2DEG is the ef-

fective layer thickness of the Q2DEG andt i , t' are the
phenomenological longitudinal and transverse relaxation
times, respectively. Further,f 10 is the oscillator strength,
given in Appendix A. In the case of a four-subband model
one obtains~see Appendix A!:

«xx
~3!~v!5«yy

~3!~v!5«s3S 12
v0
2

vS v1
i

t i
D D , ~48!

FIG. 17. Dispersion relation of the Q2D plasmonsvp
21, vp

20,
vp
31, andvp

30 of the asymmetric truncated DPQW calculated self-
consistently in RPA in dependence on the wave vector component
qi for n2DEG5131011 cm22 ~a! and for n2DEG5531011 cm22

~b!. The hatched areas correspond to the single-particle continua.
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«zz
~3!~v!5«s3S 12

v0
2f 10

v22V10
2 1

i

t'

v

2 (
K52

3 F ~v0
~0!!2f K0

v22VK0
2 1

i

t'

v

1
~v0

~1!!2f K1

v22VK1
2 1

i

t'

vG D ,
~49!

where f KK8 is given in Appendix A. It is important to note
that for mirror-symmetric QW’s f KK850 if
K1K85even number. Further, we have defined
v0
(0)5@N0e

2/(me«0«s3a2DEG)#
1/2 and v0

(1)5@N1e
2/

(me«0«s3a2DEG)]
1/2. The parameters used in the numerical

calculation are«s3512.87, corresponding to«s of GaAs,
t i51310211 s andt'51310212 s.

The quantity which is usually extracted from FIR trans-
mission experiments is the relative change in the transmis-

sionDT/T512T(Y)/T(X), whereT is the power transmis-
sion coefficient depending onX and Y. Here, we use
X5n2DEG and Y50. Further, we assume that only the
zeroth-order diffracted wave is a propagating wave above
and below the sample, i.e., kzn

(0)5@v2/c2

2(v/csinQ012pn/d)2#1/2 is real and positive forn50, but
all higher-order diffracted waves (n561,62, . . . ) are as-
sumed to be evanescent and thus, not propagating in thez
direction, i.e., itsz component of the wave vectorkzn

(0) is pure
imaginary. This is the usual situation realized in experi-
ments. The case that higher-order diffracted waves become
propagating, e.g., by increasing the period of the grating, is
not considered in this paper. The reader who is interested in
this question, i.e., in the occurrence of Wood anomalies or
more specifics of Rayleigh anomalies, is directed to Refs. 31
and 32. For the numerical calculations we have used the
following parameters for the grating:h510 nm,d51 mm,
and t50.5 and for the layer thicknesses:d250.1 mm,
d451 mm, andd35a2DEG is the effective thickness of the
considered QW~see Appendix A!. Further, we assume per-
pendicularly incident light (Q050°).

The relative transmission2DT/T of the semiconductor
sample containing the SPQW under consideration is plotted
in Fig. 18~a! in the frequency range of the intrasubband plas-
monvp

00. The largest peak in the2DT/T spectrum results
from the excitation of the intrasubband plasmon at
qi5kx156.283104 cm21. The small minima at higher fre-
quencies result from the excitation of intrasubband plasmons
with higher wave vectorsqi5kxn : kx251.2563105 cm21,
kx351.8853105 cm21, and kx452.5133105 cm21. The
relative transmission spectra are plotted in the frequency
range of the intersubband plasmonvp

10 in Fig. 18~b! for two
different electron densities. Because2DT/T is calculated in
the framework of local optics, the intersubband plasmon ex-
cited atqi5kxw, unu>1 is dispersionless and thus, peaks at
frequencies different fromvp

10(qi50) are absent in the plot-
ted spectra. It is seen that this peak occurs at nearly the same
frequency for both electron densities as a result of Kohn’s
theorem~see discussion in Sec. IV A!. Thus, we obtain that
the generalized Kohn’s theorem is relatively insensitive~or
stable! to the used approximations: finite height of the para-
bolic well which is terminated by square barriers, approxi-
mations made performing the numerical calculations and the
use of simple local optics. Similar results for the optical
properties of SPQW’s were found in Refs. 23 and 33, where
the optical absorption in the absence of a grating coupler is
calculated. It is important to note that in the absence of a
grating coupler normally incident light cannot excite a nor-
mal mode neither Q2D intra nor intersubband plasmons. This
is true, because the wave vector of the intrasubband plasmon
is always larger than the wave vector of light, propagating in
a media with the background dielectric constant«s . This is
also true for the Q2D intersubband plasmon because the non-
radiative normal modes lie to the right of the light line. Due
to the polariton effect the collective intersubband transition
is accompanied by a radiative virtual mode with a branch
appearing to the left of the light line. To excite this radiative
intersubband plasmon az component of the external electric
field is necessary, which is equal to zero in the case of nor-
mally incident light. In the case with grating coupler, there

FIG. 18. Calculated relative change in the optical transmission
in the frequency range of the intrasubband plasmonvp

00 ~a! and in
the frequency range of the intersubband plasmonvp

10 ~b! of the
SPQW.
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always exists a nonvanishingz component of the electric
field, which is connected with the higher-order diffracted
waves withkxn , unu>1 and so it is possible to excite both
the radiative and the nonradiative intersubband plasmon at
wave vectorsqi5kxn , unu>1. The height of the peak in Fig.
18~b! increases with increasing electron density because the
oscillator strengthf 10 as well asv0 increase in this case. We
obtain f 1051.08424 and v051.5231013 s21 for
n2DEG5131011 cm22 and f 1051.08545 and v0
53.1931013 s21 for n2DEG5531011 cm22. Because of the
approximations madef KK8 is no more a true oscillator
strength fulfulling thef -sum rule. It is noticeable that the
position of the maximum agrees very well with
vp
10(qi50). This is true because for the considered model

the ISC betweenvp
00 and vp

10 is zero and thus, the local
macroscopic dielectric tensor, in which intra- and intersub-
band processes are decoupled, is suitable to describe the dy-
namical response of the Q2DEG.

In Fig. 19~a! we present the relative transmission
2DT/T of semiconductor samples containing the symmetric
DPQW, the symmetric truncated DPQW and the asymmetric
truncated DPQW. The peaks associated with the excitation
of the intrasubband plasmonvp

1 at qi5kx1 dominate the
spectra for the three different DPQW’s. The peaks resulting
from the excitation ofvp

1 at higher wave vector components
at v'4.831012 s21 and atv'5.531012 s21 and that re-
sulting from the excitations of the lowest-frequency intersub-
band plasmonvp

10 at v'5.731012 s21 ~occur only in the
case of the symmetric and asymmetric truncated DPQW’s!
are very small in magnitude.

Figures 19~b!–19~d! show the relative transmission spec-
tra of the symmetric DPQW~b!, the symmetric truncated
DPQW~c! and of the asymmetric truncated DPQW~d! in the
frequency range of the higher-frequency intersubband plas-
mons. The peak in Fig. 19~b! corresponds to the excitation of

FIG. 19. Calculated relative change in the optical transmission in the frequency range of the intrasubband plasmonvp
1 and the

intersubband plasmonvp
10 ~a! for the symmetric DPQW~solid line!, for the symmetric truncated DPQW~dashed line!, and for the

asymmetric truncated DPQW~dotted line!; and in the frequency range of the higher-frequency intersubband plasmons of the symmetric
DPQW ~b!, of the symmetric truncated DPQW~c!, and of the asymmetric truncated DPQW~d!.
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the intersubband plasmonvp
30 at qi5kx1. This is true be-

cause the symmetric modesvp
20 andvp

31 are not dipole-active
( f 205 f 3150) andvp

21 has a very small oscillator strength
f 2151.2631023 compared tof 3051.08 atn2DEG5131011

cm22. An increasing electron density increases the peak
height and slightly shifts its position.

From Fig. 19~c! it becomes obvious that for the symmet-
ric truncated DPQW the oscillator strength of the mode
vp
21 increases so that it becomes observable in the2DT/T

spectrum. It is seen that the oscillator strengthf 10 increases
more rapidly with increasing electron density thanf 21. Thus,
as dipole selection rule for FIR optical transmission spectros-
copy on symmetric and symmetric truncated DPQW’s we
obtain that only intra- and antisymmetric intersubband plas-
mons absorb FIR light.

The corresponding relative transmission spectrum of the
sample with the asymmetric truncated DPQW is plotted in
the frequency range of the higher-frequency intersubband
plasmons in Fig. 19~d!. In this case all intersubband plas-
mons,vp

21, vp
20, vp

31, andvp
30, can be excited by FIR radia-

tion. But it is seen that the peaks associated with the excita-
tion of vp

21 andvp
30 have a much larger magnitude than those

of vp
20 andvp

31. With increasing electron density the peak
height at the positions ofvp

20 andvp
30 is larger than that of

vp
21 andvp

31. In Fig. 20 the oscillator strengthsf KK8 of the
higher-frequency intersubband plasmons are plotted in de-
pendence on the electron density of the Q2DEG. From this
figure it becomes obvious that the modesvp

21 andvp
20 ‘‘ex-

change’’ oscillator strength: the oscillator strengthf 21 in-
creases whilef 20 decreases with increasing electron density
up to n2DEG'0.831011 cm22 and the opposite is valid
above this density. This is a typical effect induced by the
ISC. Such an exchange of oscillator strength in dependence
on the gate voltage, which effectively changes the electron
concentration, was observed by Hartunget al.27 in FIR trans-
mission spectroscopy on asymmetric coupled quantum wells,
i.e., in a very similar situation as the here considered. It is

seen that the use of local optics provides reasonable results
for the relative transmission when using the dielectric tensor
including size quantization and ISC between the intersub-
band modes. This is true as long as the LWA for the disper-
sion relation is a satisfactory approximation.

For the asymmetric truncated DPQW the absolute values
of the peak positions do not very well agree with those of the
modes, calculated from the dispersion relation. This is true
because for the DPQW’s the effective thicknessa2DEG used
in the numerical calculations is not a very well defined quan-
tity. But nevertheless, the theoretical calculated relative
transmission spectra give all qualitative features in an excel-
lent way and the quantitative results are in a good approxi-
mation even for DPQW’s with two occupied subbands,
where ISC effects become important.

VI. SUMMARY

In this paper we have investigated the dynamical response
of double parabolically graded quantum wells, both symmet-
ric and asymmetric coupled parabolic quantum wells, to ex-
amine:~i! the Q2D plasmons and~ii ! the optical properties.
In the framework of the random-phase approximation a fully
self-consistent procedure is employed to calculate the ground
state and the dynamical response.

We have shown that for double parabolically graded
quantum wells with a narrow barrier, so that tunneling is
possible, strong intersubband coupling results in a hybrid-
type mode spectrum. Applying a four-subband model with
the two lowest-lying subbands to be occupied, we find that
the collective intrasubband motion has two branches. It is
shown that only the higher-frequency branch is observable
because the lower-frequency branch appears strongly Landau
damped in the single-particle intrasubband continuum. This
is quite different from the intrasubband plasmons of a
Q1DEG, where both intrasubband plasmon branches are ob-
servable and free of Landau damping.34–36 As long as the
two parabolic quantum wells are symmetric coupled, the
lowest-frequency intersubband mode crosses the dispersion
curve of the upper intrasubband mode. Breaking this symme-
try, anticrossing of the dispersion curves and thus resonance
splitting occurs which is a result of the intersubband-
coupling effect.

In the framework of a four-subband model with two oc-
cupied subbands, four higher-frequency intersubband plas-
mon modes result. These modes are associated with the col-
lective intersubband motion 1↔2, 0↔2, 1↔3, and 0↔3.
The frequencies of these branches occur as doublets for
thicker barriers, which become degenerate if tunneling is
suppressed. In this case the collective electron motion in the
two separated quantum wells is coupled only via the Cou-
lomb coupling between the oscillating charges. With de-
creasing barrier thickness the splitting of both doublets in-
creases and the intersubband coupling decreases too. Further,
an increasing electron density reduces the splitting of both
doublets. This results because Coulomb repulsion of the
electrons in both quantum wells increases with increasing
electron density. This effectively increases the separation of
the two quantum wells.

Regarding the optical properties of coupled parabolic
quantum wells, we find as the dipole selection rule that as

FIG. 20. Oscillator strength of the intersubband plasmons of the
asymmetric truncated DPQW in dependence on the electron number
density.
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long as the quantum systems are spatial symmetric only the
upper branch of the intrasubband plasmons and the antisym-
metric intersubband plasmons are dipole active and thus ap-
pear in the transmission spectra. Breaking this symmetry all
plasmon modes appear in the transmission spectrum. Vary-
ing the electron density, this results in an exchange of oscil-
lator strength between the modes due to the intersubband
coupling.
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APPENDIX: MACROSCOPIC DIELECTRIC TENSOR

The nonlocal RPA dielectric tensor of a Q2DEG is calcu-
lated in Ref. 10 to be

«ab~x,x8uv!5«s~x!d~x2x8!dab2
1

«0v
2Pab~x,x8uv!,

~A1!

where the RPA polarization tensorPab(x,x8uv) is given by

Pab~x,x8uv!5
1

A(
qi

eiqi•~xi2xi8!Pab~qi ;z,z8uv!, ~A2!

Pab~qi ;z,z8uv!5 (
KK8

Pab
KK8~qi ,v!ja

KK8~z!jb
KK8~z8!*

5Pba* ~qi ;z,z8uv! ~A3!

with

Pxx
KK8~qi ,v!52(

ki
S \2e2

4me
2PKK8

~1!
~qi ,kiuv!~2kicosw1qi!

2

1
2e2

meA
nF„EK~ki!…D , ~A4!

Pxz
KK8~qi ,v!5 i(

ki

\2e2

4me
2 PKK8

~1!
~qi ,kiuv!~2kicosw1qi!

52Pzx
KK8~qi ,v!, ~A5!

Pyy
KK8~qi ,v!52(

ki
S \2e2

4me
2PKK8

~1!
~qi ,kiuv!~2kisinw!2

1
2e2

meA
nF„EK~ki!…D , ~A6!

Pzz
KK8~qi ,v!52(

ki
S \2e2

4me
2 PKK8

~1!
~qi ,kiuv!

1
e2\

me
2AVKK8

nF„EK~ki!…D . ~A7!

Herein is

ja
KK8~z!5~12daz!hKK8~z!1dazgKK8~z! ~A8!

and

gKK8~z!5wK~z!
d

dz
wK8
* ~z!2wK8

* ~z!
d

dz
wK~z!. ~A9!

The wavelength of the incident FIR light~external field! is
large compared to the effective thicknessa2DEG of the
Q2DEG so that we can consider the dynamical properties in
the optical limitqi→0: Pab(0;z,z8uv). Further, this makes
it possible to average the physical quantities over the effec-
tive layer thickness. For the induced current it follows
jopt5 1/a2DEG*0

a2DEGdzj ind:

j a
opt~qi ;zuv!5(

b
Ab
opt~qi ;zuv!

1

a2DEG
E
0

a2DEG
dz

3E
0

a2DEG
dz8Pab~0;z,z8uv!. ~A10!

Equation~A10! is an approximation because it is assumed
that the total vector potential varies only slowly over
a2DEG . This is strictly true only for the external field. Be-
causeA5Aext1A ind we neglect the rapid fluctuations in
A ind. From Eq.~A10! it follows the optical, i.e., macroscopic
polarization tensor

Pab
opt~v!5

1

a2DEG
E
0

a2DEG
dzE

0

a2DEG
dz8Pab~0;z,z8uv!.

~A11!

Using Eqs.~A3!–~A7! in ~A11! it follows

Pxx
opt~v!5Pyy

opt~v!52
e2

mea2DEG
(
K

NK, ~A12!

Pzz
opt~v!52

e2v2

mea2DEG
(
K51

`

(
K8,K

2meVKK8
\

NK1NK8

v22VKK8
2 zKK8

2 ,

~A13!

where

zKK85E
0

a2DEG
dz zhKK8~z!. ~A14!

It becomes obvious that the averaging decouples intra- and
intersubband transitions. But all the possible collective intra-
subband transitions are coupled as well as all the possible
collective intersubband transitions. If the confining potential
is symmetric,zKK850 if K1K85even number. Then, for a
QW assuming a two-subband model with one occupied sub-
band it follows that

«xx
opt~v!5«yy

opt~v!5«sS 12
v0
2

vS v1
i

t i
D D , ~A15!

«zz
opt~v!5«sS 12

v0
2f 10

v22V10
2 1

i

t'

vD , ~A16!

where

f 105
2meV10

\
z10
2 ~A17!
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is the oscillator strength of the collective intersubband tran-
sition 0→1 andv0

25n2DEGe
2/(me«0«sa2DEG) is the plasma

frequency. Here, we have introduced the phenomenological
longitudinal and transverse relaxation timest i and t' , re-
spectively. The results~A15! and ~A16! are valid for all
SQW’s independent from the potential shape. The depen-
-dence of«ab

opt(v) from the potential shape of the QW is via
zKK8 only. Similar results were given in Refs. 4 and 37.

For a QW assuming a four-subband model with two oc-
cupied subbands we obtain from Eq.~A11!

«xx
opt~v!5«yy

opt~v!5«sS 12
v0
2

vS v1
i

t i
D D , ~A18!

«zz
opt~v!5«sS 12

v0
2f 10

v22V10
2 1

i

t'

v

2 (
K52

3 F ~v0
~0!!2f K0

v22VK0
2 1

i

t'

v

1
~v0

~1!!2f K1

v22VK1
2 1

i

t'

vG D ,
~A19!

where

f KK85
2meVKK8

\
zKK8
2 ~A20!

is the oscillator strength of the collective intersubband tran-
sition K8→K and (v0

(0))25N0e
2/(me«0«sa2DEG),

(v0
(1))25N1e

2/(me«0«sa2DEG). Please note that for sym-
metric confining potentials f KK850 if K1K8
5even number.

The effective thicknessa2DEG of the QW is a parameter,
which cannot be determined directly by the average proce-
dure itself described above. In the case of a two-subband
model with one occupied subband, as one suitable possibil-
ity, we determinea2DEG in such a way that the zero of
«zz
opt(v) corresponds tovp

10(qi50). The result isa2DEG
52z10

2 /a1010, where the matrix elementa1010 is given by

aKK8KK85*0
a2DEGdz*0

a2DEGdz8hKK8(z)uz2z8uhKK8(z8). In
the case of a four-subband model with two occupied sub-
bands the determination ofa2DEG in the above described
way is not possible. In this case we usea2DEG
5Max@a2DEG

KK8KK8#, wherea2DEG
KK8KK852zKK8

2 /aKK8KK8.
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