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The electronic structure of quantum wells, wires, and dots is conventionally described by the envelope-
function eight-bandk–p method~the ‘‘standardk–p model’’! whereby coupling with bands other than the
highest valence and lowest conduction bands is neglected. There is now accumulated evidence that coupling
with other bands and a correct description of far-from-G bulk states is crucial for quantitative modeling of
nanostructure. While multiband generalization of thek–p exists forbulk solids, such approaches fornano-
structuresare rare. Starting with a pseudopotential plane-wave representation, we develop an efficient method
for electronic-structure calculations of nanostructures in which~i! multiband coupling is included throughout
the Brillouin zone and~ii ! the underlying bulk band structure is described correctly even for far-from-G states.
A previously neglected interband overlap matrix now appears in thek–p formalism, permitting correct inter-
valley couplings. The method can be applied either using self-consistent potentials taken fromab initio
calculations on prototypesmall systems or from the empirical pseudopotential method. Application to both
short- and long-period (GaAs)p /(AlAs) p superlattices~SL! recovers~i! the bending down~‘‘deconfinement’’!
of the Ḡ(G) energy level of~001! SL at small periodsp; ~ii ! the type-II–type-I crossover atp'8 SL, and~iii !
the even-odd oscillation of the energies of theR̄/X̄(L) state of~001! SL andḠ(L) state of~111! SL. Intro-
ducing a few justified approximations, this method can be used to calculate the eigenstates of physical interest
for large nanostructures. Application to spherical GaAs quantum dots embedded in an AlAs barrier~with
;250 000 atoms! shows a type-II–type-I crossover for a dot diameter of 70 Å, with an almost zeroG-X
repulsion at the crossing point. Such a calculation takes less than 30 min on an IBM/6000 workstation model
590. @S0163-1829~96!03439-X#

I. INTRODUCTION: THE NEED
FOR A BETTER k –p METHOD FOR NANOSTRUCTURES

Most electronic-structure calculations of semiconductor
nanostructures are performed today using the ‘‘standard
model,’’ namely, the four-band~eight-band, including spin!
k–p envelope-function approach.1–8 In this approach the
electronic statescNS of the nanostructure~NS! are expanded
in the zero-wave-vector (G-point! Bloch wave functions
un,G(r ) of the underlying bulk solids and the expansion co-
efficientsFn(r ) ~‘‘envelope functions’’! for band indexn are
assumed to be slowly varying spatial functions. Thus

cNS~r !5 (
n51

Nb

Fn~r !un,G~r ![ (
n51

Nb H(
k
bn,ke

ik–rJ un,G~r !,

~1!

where the sum over the wave vectork extends over the first
Brillouin zone~BZ! of the underlying crystal. In the standard
model, the sum over bandsn includes the top three valence
bands and the single lowest conduction band. While exten-
sions of thek–p method to include many bands (Nb@4)
have appeared forbulk solids,3,9,10 practical multiband ap-
proaches for nanostructures are rare and difficult to
implement.7,11,12

While eminently successful in describing states in wide
(>100 Å! quantum wells, the standard model encounters
some limitations in short-period superlattices, films, and
dots. These limitations can be appreciated by contrasting its
predictions with those of the more exact ‘‘direct diagonaliza-

tion’’ approach.13–19 In the latter approach one expands the
wave function in a large basis of plane waves

cNS~r !5(
k

Nk

Cke
ik–r ~2!

and solves the single-particle equation for the nanostructure
atomistic potentialVNS(r ),

H 2
1

2m0
¹21VNS~r !J cNS~r !5eNScNS~r !. ~3!

Using efficient algorithms,13,14 it permits applications to
O(103) atom nanostructures. Unlike Eq.~1!, the sum overk
in Eq. ~2! is not restricted to the BZ. Unlike the standard
model, this ‘‘plane-wave basis direct diagonalization ap-
proach’’ permits coupling between all bands and is able to
describe the bulk band structure throughout the BZ, not just
near one specialk point. Such direct single-particle calcula-
tions of the electronic properties of small quantum structures
~superlattices, films, and dots! have produced features that
escaped the standard four-bandk–p approach. For~001!
(GaAs)p /(AlAs) p superlattices, these include~i! the even-
odd oscillations15,16 of the energies of theL-folded states
R̄(L) andX̄(L) with the periodp, ~ii ! the redshift15,16 ~‘‘de-
confinement’’! of the Ḡ(G) conduction band at short periods,
~iii ! the interaction, repulsion, and crossing of the two lowest
conduction bandsḠ(G) and Ḡ(Xz) (G folded andXz folded,
respectively! at a critical superlattice periodpc;8211,16

~iv! the significantquantitativeoverestimation by the stan-
dard model of the position of theḠ(G) conduction band with
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respect to direct diagonalization,16 ~v! significantquantita-
tiveunderestimation by the standard model of the position of
the second heavy-hole state~hh2! and split-off bands for
binding energies> 200 meV16, and incorrect out-of-plane
dispersion and incorrect positionp of the avoided crossing,16

~vi! omission of the spin splitting for the in-plane dispersion
of the valence bands, and~vii ! overestimation of the mass
anisotropymi /m' at Ḡ for both electrons and holes.16

While it was generally expected4 that the standard model
will fail for small nanostructures~e.g., short-period superlat-
tices!, direct diagonalization studies16 have shown that the
situation is not so simple. For example, the first heavy-hole
~hh1! and the first light-hole~lh1! valence-band energies of
(GaAs)p /(AlAs) p ~001! superlattices are accurately de-
scribed by the standard model even down to thep51 mono-
layer superlattice limit, while the conduction bands folded
from G andX are poorly described even atp'20. This is so
because the standardk–p model describes poorly the energy
of the zinc-blendeX1c state which has a significant projec-
tion in the superlattice conduction band. On the other hand,
the coupling between the foldedX1v andG15v states at the
superlatticevalenceband~also described poorly! happens to
be weak, so its misrepresentation is inconsequential. Incor-
rect description of intervalley coupling of folded states is
also the reason for the significant errors made by thek–p
model in describing the values of the superlattice miniband
effective-mass tensor, the deformation potential,17 and the
wave-function localization18 of InP/GaP superlattices.

In isolated GaAs or Si quantumfilms, the direct diagonal-
ization approach reveals a thickness-independent ‘‘zero con-
finement state’’ at the valence-band maximum,19 which is
missed by the standardk–p model. Furthermore, in isolated
quantumdots of Si and CdSe,20–22 accurate description of
the observed band gap vs size dependence requires a many-
band approach.

Common to all of the failures of the standard model are
~i! the neglect of intervalley~e.g.,G-X) couplings and~ii ! the
poor description of the bulk band structure over most of the
first Brillouin zone. While both goals can be accomplished
by the plane-wave direct diagonalization approach using a
pseudopotential description of the nanostructure potential
VNS(r ) @Eqs.~2! and~3!#, the numberNk of the plane-wave
basis functions increases in this approach too rapidly with
system size. More importantly, there is no simple physical
principle ~other than a systematic change ofNk) telling us
how to reduce the size of the basis set without introducing a
significant error. Thus onlyO(103)2O(104) atom systems
can be conveniently described, even using linear-in-size ma-
trix diagonalization techniques in which only eigenvalues in
a desired energy window are sought.14 There are some im-
portant questions in nanostructure physics that require con-
sideration of larger numbers of atoms. For example, while in
~i! ~001! (AlAs) p /(GaAs)p superlattices, the type-II–type-I
transition occurs at23 pc;8211 ~32–44 atoms/supercell!,
and in~ii ! AlAs-embedded GaAswire it occurs at the diam-
eter D>52 Å (;2000 atoms/supercell!, in ~iii ! AlAs-
embedded GaAsdots, this transition is estimated to occur at
D>70 Å (;250 000 atoms/supercell!, well outside the
reach of direct diagonalization approach. The representation
of Eq. ~1! ~where bulk Bloch functions$un,G% are used in-
stead of individual plane waves! is more attractive for such

1042106 atom systems, since in this limit the number of
basis functions used to describe the envelope function
Fn(r ) can besystem-size independent. More specifically, one
could limit the sum to those (n,k) values that are physically
needed to give good convergence, rather than using all states.
However, the standardk•p method cannot be used here since
it does not describe theG and X states together, hence it
cannot describe their couplings. Thus one must find effective
ways to include couplings between energetically close bulk
bands and to describe correctly the bulk band structure in the
full BZ, not just nearG.

In this paper, we present an efficient method, that extends
the current four-bandk–p model to anNb-band model. The
method accurately describes the band structure over the
whole BZ and allows couplings between states of different
BZ valleys. We find thatNb515 bands~30 with spin! is
adequate in most cases. Our formalism is different from the
standardk–p formalism in that~i! the value ofk in the sec-
ond equality of Eq.~1! is not required to be close toG and
~ii ! intervalley coupling,~e.g., betweenG and X) is pre-
sented.

As an illustration of our method, we have applied it to an
; 250 000-atom system consisting of a GaAs quantum dot
embedded in an AlAs matrix. The critical diameter for the
G-X crossing is found to be 70 Å. This calculation takes less
than 30 min on an IBM 6000/590 workstation for each quan-
tum dot. That this is a relatively short computational time
can be appreciated by noting that even using the standard
model, calculation of a three-dimensional nanostructure
poses a difficult computational task.6

II. THE GENERAL MANY-BAND k –p FORMALISM

A. Bulk crystals

Consider first a pure crystalA with a local periodic po-
tentialVA(r ) and HamiltonianĤA52(1/2m0)¹

21VA. The
single-particle equation is

ĤAcnk
A ~r !5enk

A cnk
A ~r !, ~4a!

where

cnk
A ~r ![unk

A ~r !eik–r. ~4b!

Since$unk
A (r )% for k50 is a complete basis set, we can ex-

pand thekÞ0 wave functions by thek50 basis~‘‘ u0 repre-
sentation’’! as

cnk
A ~r !5(

m

Nb

bm~nk!uum,0
A eik–r&. ~5!

Inserting~5! into Eq.~4! and usingĤAun,0
A 5en,0

A un,0
A we find

the secular equation

(
m

Nb

$HA~n,m,k!2dn,mep,k
A %bm~pk!50. ~6!

Herep is the band index and the Hamiltonian matrix element
is

HA~n,m,k!5Fen,0A 1
k2

2m0
Gdn,m2 ik–PA~n,m!, ~7!
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wherem0 is the real electron mass. The momentum matrix
element is

PA~n,m!5^um,0
A u¹uun,0

A &. ~8!

Thus, given thek50 eigenvalues$en,0
A % and thek50 mo-

mentum matrix$PA(n,m)% one can solve Eq.~6! and find
the full kÞ0 dispersion relationen,k

A over the first BZ.
Due to the completeness of the basisun,0

A , we have

ĤAuun,0
A eik–r&5 (

m51

Nm

HA~n,m,k!uum,0
A eik–r&. ~9!

HereNm is introduced for future use in Sec. III. For now
Nm5Nb5`. If NmÞ`, Eq. ~9! is only an approximation.

B. Nanostructures

Consider now a heterostructure~superlattice, embedded
quantum dot, etc.! consisting of materialA and materialB.
We will assume thatA andB have the same lattice period
R and that they are in the same crystalline orientation. We
further assume that the potentialVNS(r ) of this nanostructure
can be constructed from the periodic atomistic potentials
VA(r ) andVB(r ) of materialsA andB as

Vw
NS~r !5 (

RPA

Nc

w~r2R!VA~r !1 (
RPB

Nc

w~r2R!VB~r !. ~10!

The sum over the lattice vectorsR runs overNc primary cells
in A andB. Each lattice vector belongs to a single primary
cell and each primary cell belongs to eitherA or B. The
crystalline potentialsVA(r ) andVB(r ) can be obtained either
from self-consistent bulk band-structure calculations24 or
from empirically fitted screened pseudopotentials.26,25 The
functionw(r2R) describes the spatial arrangement of ma-
terial ~including theA/B interface!. w(r2R) occupies a re-
gion of roughly one primary cell and satisfies, for anyr and
for RPAøB, the relation (Rw(r2R)51. This gives
*w(r )d3r5Vc , whereVc is the volume of a primary cell.
Using Eq. ~10!, it is easy to prove that the nanostructure
Hamiltonian is

ĤNS5 (
RPA

w~r2R!ĤA1 (
RPB

w~r2R!ĤB[ĤPA1ĤPB,

~11!

where the superscripts PA and PB stand for partA and part
B, respectively.

We expand the wave functionscNS(r ) of the nanostruc-
ture in terms ofA-type k50 basis functions

cNS~r !5
1

ANc
(
n51

Nb H(
k
bnke

ik–rJ un,0A ~r !, ~12!

whereNc is the total number of primary cells in the system,
k is the supercell wave vector, and the sum overk extends
over the first BZ. In thisu0 representation, the nanostructure
wave function is expanded in terms ofzero-wave-vector
Bloch functions of the constituent bulk solids. The advantage
of theu0 representation is that the nanostructure Hamiltonian
can be written analytically via thek–p formalism, thus pro-

viding insights for further analysis and approximations. The
disadvantage of this approach is that manyG-point Bloch
basis functions may be needed for representing even bulk
wave functions atkÞ0. ThusNb cannot be restricted to a
conveniently small number. We will see, however, that the
need for a relatively large value ofNb can be overcome if
before the diagonalization of the secular problem we convert
theu0 representation to auk representation. The latter means
that one replaces in Eq.~12! un,0 by un,k , namely,

cNS~r !5
1

ANc
(
n51

Nb H(
k
bnk8 e

ik–rJ un,kA ~r !. ~13!

Since un,k
A (r )eik–r is the eigenstatecnk

A (r ) of bulk A @Eq.
~4b!#, the uk representation implies that the nanostructure
wave function is written as a linear combination of bulk
bands

cNS~r !5
1

ANc
(
n51

Nb

(
k
bnk8 cnk

A ~r !. ~14!

This approach has been used by Dandrea and Zunger27 and
by Xia and Baldereschi,28 where superlattice wave functions
were expanded using Eq.~14! with cnk

A (r ) being replaced by
the ~virtual crystal! Bloch function of theA-B alloy. The
advantage of thisuk representation is that the number of
bandsNb can be reduced to a small value. Here we will
develop the formalism using theu0 representation~for ana-
lytical simplicity!, but we will later revert to theuk represen-
tation for computational compactness.

The secular equation for the expansion coefficients$bnk%
and the nanostructure eigenvalueseNS can be written in the
u0 representation as

(
k

(
n51

Nb

$HA
NS~mk8,nk!2dm,ndk8,ke

NS%bnk50. ~15!

We will drop from now on the index ‘‘0’’ from
un,0 unless needed explicitly. HereHA

NS(mk8,nk)[

(1/Nc)^um
Aeik8–ruĤNSuun

Aeik–r& is the Hamiltonian matrix of
ĤNS in the basis set of Eq.~12!. SinceĤNS has partA and
part B @Eq. ~11!#, we will compute the respective matrix
elements separately. ApplyingĤPA to the basis function of
Eq. ~12! and using Eq.~9! we have

ĤPAuun
Aeik–r&5 (

RPA
w~r2R! (

p51

Nm

HA~n,p,k!uup
Aeik–r&.

~16!

Multiplying Eq. ~16! by ^um
Aeik8–ru, we get the matrix ele-

ments of partA of HA
NS(mk8,nk) in anA-type basis as

HA
PA~mk8,nk![

1

Nc
^um

Aeik8–ruĤPAuun
Aeik–r&

5 (
p51

Nm

HA~n,p,k!SA~p,m,k82k!CA~k82k!.

~17!

Here theinterband overlapin materialA is
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SA~p,m,k!5E up
A~r !um

A* ~r !w~r !e2 ik–rd3r ~18!

and thestructure factorof materialA is

CA~k!5
1

Nc
(
RPA

e2 ik–R. ~19!

Note that because of the factorw(r )exp(2ik–r ), we have
SA(p,m,k)Þdp,m despite the orthonormality betweenup

A and
um
A The same formalism gives for the matrix elements of part
B of the Hamiltonian in theB-type basis set

HB
PB~mk8,nk![

1

Nc
^um

Beik8–ruĤPBuun
Beik–r&

5 (
p51

Nm

HB~n,p,k!SB~p,m,k82k!CB~k82k!.

~20!

In Eqs.~17! and~20!, the subscriptsA or B denote the basis
functions, while the superscripts PA and PB denote the
Hamiltonian defined in Eq.~11!. Because$un

A(r )% and
$um

B(r )% each represent a complete basis, they can be inter-
transformed via a unitary transformation

un
A~r !5 (

m51

Nb

Ũ~m,n!um
B~r ! ~21!

and

Ũ~m,n!5E
PC
um
B* ~r !un

A~r !d3r ~22!

where PC stands for integration over one primary cell. Thus
the matrix elementHA

PB of the Hamiltonian ĤPB in an
A-type basis of Eq.~12! can be obtained fromHB

PB in Eq.
~20! by

HA
PB~mk8,nk![

1

Nc
^um

Aeik8–ruĤPBuun
Aeik–r&

5 (
p8,p51

Nb

Ũ* ~p8,m!HB
PB~p8k8,pk!Ũ~p,n!.

~23!

Finally, the matrix elementsHA
NS(mk8,nk) in Eq. ~15! of the

total nanostructure Hamiltonian in anA-type basis is

HA
NS~mk8,nk![

1

Nc
^um

Aeik8–ruĤNSuun
Aeik–r&

5HA
PA~mk8,nk!1HA

PB~mk8,nk!, ~24!

where the two terms are given by Eqs.~17! and ~23!. Note
that thisHA

NS(mk8,nk) is not explicitly Hermitian because
k,k8 and n,m are treated differently in Eqs.~17! and ~20!.
However, as long asNb5`, it can be shown that
HA
NS(mk8,nk) is indeed Hermitian.
We have seen that, unlike the standard model, a correct

description of interband coupling requires that Eqs.~17! and
~20! include an interband overlap matrixSA(B)(p,m,k). This

matrix @Eq. ~18!# has to be evaluated for all needed supercell
wave vectorsk inside a 2BZ region. This 2BZ region is a
k-space region that looks like the BZ, but is twice as large in
each direction@e.g., for a fcc lattice, the boundary point of
the 2BZ in the~001! and ~111! directions are the 2X and
2L k points#.

In the current formalism, we have ignored the strain and
spin-orbit coupling. However, such effects can be described
using terms similar to those in the standardk–p model.

In summary, for nanostructure atomistic potentials of the
type shown in Eq.~10!, the secular equation in aG-like basis
set of Eq.~12! is given by Eqs.~17!, ~23!, and ~24!. The
above formalism is exact if the number of bandsNb equals
infinity. We now study the effects of finiteNb on the bulk
band structure and on the energies of nanostructures.

III. FINITE- Nb ANALYSIS

There are a number of errors related to the truncation of
the sum overG-like bands to a finite numberNb .

~a! The bulk dispersion relationep,k
A of Eq. ~6! is inaccu-

rate ifNb in that equation is truncated. We refer to this as the
k–p bulk band structure error.

~b! The bulk eigenfunction appearing in Eq.~9! is not
satisfied if a finiteNm5Nb is used. We refer to this error as

FIG. 1. Comparison of ‘‘exact’’k–p results with direct plane-
wave pseudopotential~PWP! calculations for the GaAs/AlAs~001!
superlattice. The exactk–p is defined here as usingNb565,
Nm5369, and direct evaluations ofSA(B)(p,m,k) for some k
points. The small differences are due to interpolation of
SA(B)(p,m,k) for the otherk points.
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the eigenfunction equation error.
~c! The transformation matrixŨ(m,n) betweenun

A(r ) and
um
B(r ) @Eqs.~21! and ~22!# is not unitary ifNb is truncated.
In this case, $un

B(r )% cannot be connected exactly to
$un

A(r )%. We refer to this as theunitary connection error. In
what follows, we will first assess the effects of these three
errors, then we will suggest ways to fix them,within a trun-
cated basis set.

A. „GaAs…p /„AlAs…p superlattices: An ‘‘exact’’ k –p result

Before we reduce the number of bands in thek–p basis,
we first illustrate our exactk–p formalism of Sec. II for
(GaAs)p /(AlAs) p ~001! superlattices. This will be used as a
benchmark for subsequent approximations. We consider a
superlattice with an abrupt interface, which means that in Eq.
~10! we havew(z)51/uRu for 2R/2,z,R/2 and zero else-
where@z is the ~001! coordinate#. The potentialVw

NS gener-
ated from Eq.~10! ~in whichVA andVB are superpositions of
screened atomic pseudopotentials25! is used as the input po-
tential for the plane-wave direct diagonalizations.

To get an exact result~i.e., equal to the direct plane-wave
diagonalization!, the threek–p errors ~a!–~c! noted above
must first be removed. To this end, we have taken a few
special treatments in ourk–p implementations and in the
plane-wave calculations.

First, we have used a special polyhedron zone@described
in Appendix A ~Ref. 26!# to select the plane-wave basis in
the plane-wave direct diagonalization calculations.~This
zone is only used in this section for the current purpose of
comparison.! There are 65 basis functions and 65 Bloch
bands and we have used all of them in ourk–p calculation,
soNb565. This special zone method ensures that the plane-
wave basis set will not change when thek point moves in-
sides the first BZ. As a result, theNb565 k–p band structure
is exactly the same as the direct diagonalization plane-wave
band structure. This removes the band structure error~a!.
The use in ourk–p method of all theG Bloch states available
in a given plane-wave calculation also removes the unitary
connection error~c!.

Second, to avoid the eigenfunction equation error~b!, we
have usedNm@Nb in Eqs.~9! and~17!. ~In practice, we have
usedNm5369, which gives a well-converged result.! The
k–p Hamiltonian matrixHA

NS is defined by Eqs.~24!, ~23!,
~20!, and~17!. TheSA(B)(p,m,k) matrix is evaluated directly
by its definition of Eq.~18! for somek points and via inter-
polations for otherk points.

The exactk–p results for the superlattice are shown in
Fig. 1 where they are compared with the results of plane-
wave direct diagonalizations. The two results are the same,
except for very small errors introduced by the interpolation
of the SA(B)(p,m,k) matrix. This establishes an exactk–p
method whose results equal those obtained in a direct plane-
wave diagonalization.

B. k–p for bulk GaAs: Truncated expansion

We will now systematically reduce the number of bands
Nb to see the effects on thek–p bulk band structures. Figure
2 depicts the error in theX1c band energy of bulk GaAs as a
function of ~i! the numberNk of individual plane waves in
the expansion of Eq.~2! and, independently,~ii ! the number
Nb of G-point Bloch functions in thek–p expansion of Eqs.
~6! and~7!. In both cases, we use the local empirical pseudo-
potential fitted recently25 to bulk GaAs. To obtain solutions
of thek–p problem of Eqs.~5! and~6!, we first performed a
converged plane-wave pseudopotentialG-point bulk calcula-
tion, obtaining$un

A(r )%, $en,0
A %, and$PA(n,m)%. These quan-

tities are then used in Eqs.~6! and ~7! to solve thek–p
problem. We see from Fig. 2 that reducing the bulk band
structure error to 1 meV requires; 500 plane waves in the
expansion of Eq.~2! ~Ref. 29! or 150G Bloch bands in the
expansion of Eq.~5!. Use of only;10 Bloch bands gives an
error of 300 meV. For applications to large nanostructures, it
would be desirable to reduceNb to a small value, say, to
10–20 bands, while keeping the error below, say, 5 meV.

We next examine thek–p band structure of bulk GaAs
throughout the zone~not justX1c as in Fig. 2!, as obtained
with different basis sizes. The results~Figs. 3 and 4! show
that whenNb>15 the k–p band structure is qualitatively

FIG. 2. Convergence of the
bulk GaAsX1c state energy vs the
number of plane-wave basis func-
tions ~solid lines, pseudopotential
calculation! and the number of
unG states~dashed line,k–p calcu-
lation!.
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similar to that obtained by exact direct diagonalization, but
that when less than 15G Bloch bands are used, the band
structure suddenly becomes much worse. Note in particular
how for 8 or 5G bands the energy of theX1c band as ob-
tained ink–p is ;20 eV too high and the curvature~hence
effective mass! of the valence band reverses sign. The situ-
ation is similar for AlAs and Si~not shown!.

To show how manyG Bloch states$unG% are needed to
describe the directly calculatedX Bloch stateunX of bulk
GaAs, we plot in Fig. 5 the closure quantity

Pn~Nb!5 (
m51

Nb

z^umGuunX& z2 ~25!

for n51, . . . ,8,wheren51 is the lowestX1v valence band,
n54 is the highestX3v valence band, andn55,6,7,8 are the
lowest four conduction bands, respectively. Here
Pn(Nb)51 means that thenth X-point Bloch state can be
described exactly by the firstNb G-point Bloch states. As we
can see from Fig. 5, there is a sudden drop ofPn(Nb) for
Nb less than 15. This is consistent with the band-structure
results in Figs. 3 and 4. The situation is qualitatively similar
for AlAs and Si ~not shown!. We conclude that 15 zero-
wave-vector bulk bands~30 with spin! are needed for a
qualitativelycorrect description of the dispersion relation in
bulk solids, while about 150 bands are needed for aquanti-
tativelyconverged (<122 meV! description. We will even-
tually @Sec. IV A# find ways to obtain aquantitativedescrip-
tion using only 15 bands.

C. k–p for „GaAs…p /„AlAs…p superlattices:
Truncated expansion

Having tested thek–p convergence for the bulk solids, we
next examine how thek–p errors in the bulk lead to errors in
the superlattice made of these bulk solids. As discussed at
the beginning of Sec. III,k–p calculations with finite-Nb

values can lead to three error types. We will focus our atten-
tion in this section on thek–p band-structure error~a!. As in
Sec. III A, in this section too the eigenfunction equation er-
ror ~b! will be removed by usingNm5369, much larger than
Nb . The unitary connection error~c! cannot be removed eas-
ily. For the purpose of the comparisons made in this section,
we deliberately setŨ(n,m)5dn,m . Since this ansatz is now
common to allNb values, one could hope that the unitary
connection error~c! could be partially canceled out when we
compare results for differentNb values.

Figure 6 compares the exactk–p results@shown by pluses
with Nm5369 andŨ(n,m) of Eq. ~22!# with results of~i!
Nm565 and Ũ(n,m) of Eq. ~22! ~diamonds! and ~ii !
Nm5369 and Ũ(n,m)5dn,m ~squares!. In this figure,
Nb565 is used in all three calculations. By comparing the
pluses and diamonds in Fig. 6, we can see that the eigenfunc-
tion equation error~b! for Nm565 is rather small~about 3
meV!. By comparing the pluses and squares, however, we
see that the error caused by settingŨ(n,m)5dn,m is large,
about 18 meV.@This does not mean that the typical unitary

FIG. 3. Comparison of bulk GaAsk–p band structure with different numberNb of G-like basis functions~dashed lines!. The solid lines
are theNb565 results, which equal the plane-wave results using the polyhedron zone of Appendix A.
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connection error~c! in our final k–p nanostructure calcula-
tion will be ;18 meV. There, a better approximation of
Ũ(n,m), instead ofŨ(n,m)5dn,m , will be used. As a re-
sult, the unitary connection error~c! will be much smaller
than 18 meV.#

Convergence ofk–p superlattice eigenvalues withNb are
shown in Figs. 7–9. Here theNb565 results serve as the
references andNm5369 andŨ(n,m)5dn,m are used for all
calculations. WhenNb changes from 65 to 44, theX-folded
conduction-bandḠ(Xz) state moves up by more than 50 meV
~this is consistent with the bulk band-structure errors re-
ported in Figs. 3–4!. When Nb is further reduced, the
Ḡ(Xz) state continues to move up. FromNb521 to 15, the
change is relatively small, while fromNb515 to 11, the
change is large. Similar trends in the error of theL-folded
conduction stateX̄/R̄ are shown in Fig. 9. The large change
below Nb515 is consistent with the results found for the
bulk band structure~Figs. 3 and 4! andPn(Nb) ~Fig. 5!. We
see that the basis-set truncation error in superlattice energies
parallels the errors in the bulk. The above analysis further
shows thatNb515 is a turning point, i.e., forNb,15 G
bands, the band structure cannot be describedeven qualita-
tively. Thus, in the rest of this paper, we will useNb515
G bands for GaAs and AlAs. We next develop a formalism
appropriate to many-band coupling where atruncated
Nb5Nm515 basis set is used.

IV. THE FINITE- Nb FORMALISM

A. Fixing the k–p bulk band-structure error

The above study shows that thek–p error in the bulk band
structure carries over to the nanostructure. So our first task
here is to reduce thek–p bulk band-structure error~a! of
band-edge states forNb515 to less than 5 meV from; 300
meV ~see theX andL points in Figs. 3 and 4!.

The effects of removing higher-energy bands on the ener-
gies of lower states can be described as Lo¨wdin folding.30

This is a procedure that modifies the elements of the Hamil-
tonian matrix so that the eigenvalues of the submatrix
spanned by the lower-energy states equal the eigenvalues of
the original full matrix. As a result, the effects of the trun-
cation to finiteNb bands can be compensated by a replace-
ment of the bare electronic massm0 in Eq. ~7! with ‘‘mass
parameters’’mn

A . Furthermore, to fit the dispersion in both
the G-X and theG2L directions, we need a nonspherical
correction term. This term comes from a higher-order Lo¨w-
din folding effect ~i.e., a fourth-order term ink):
f (k)53(kx

41ky
41kz

4)2k4. @Here f (k)50 for the ~111! di-
rection andf (k)52k4 for the~001! direction.# Thus we have
revised Eq.~7! to

HA~n,m,k!5Fen,0
A 1

1

2mn
A k

21an
Af ~k!Gdn,m2 ik–PA~n,m!,

~26!

where en,0
A and PA(n,m) are unchanged from Eq.~7!. For

Nb515, due to the degeneracy, we have eight independent

FIG. 4. Errorsen(Nb)2en(Nb565) in the GaAsk–p band-
structure energy due to reducedNb . These errors are zero at the
G point; the curves for different bands are shifted for clarity.

FIG. 5. CompletenessPn(Nb) in describing thenth X point
state in GaAs in terms ofNb G point basis states.Pn51 means an
exact description of theX point staten in terms ofNb G states.
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mn
A values and eight independentan

A values. These are used
to fit the two lowest conduction-band and the highest
valence-band energies. The fittedk–p bulk band structures of
GaAs and AlAs are shown in Figs. 10~a! and 10~b!, while the
errors, relative to a direct plane-wave diagonalization calcu-
lation, are shown in Fig. 11. The fitting parametersmn

A(B) and
an
A(B) are listed in Table I. Themn

A(B)’s are close to 1 and the
an
A(B)’s are small. The physically important bottom of
conduction-band states (n55 in Fig. 11!, especially near the
G,X,L points, have typical errors of only;3 meV, much
better than the unfitted error of;300 meV seen in Figs. 3~a!
and 4.

In this work we have calculated the quantitiesen,0
A of Eq.

~7!, PA(n,m) of Eq. ~9!, andSA(n,m,k) of Eq. ~18! using
the empirical pseudopotential plane-wave method25,26 ~so as
to ensure accurate eigenenergies and wave functions!. These
quantities can also be obtained from self-consistent calcula-
tions such as the local-density approximations~LDA ! pro-
vided that the LDA errors in the band structureen,0

A were
subsequently corrected. If nonlocal pseudopotentials are used
in the LDA or in the empirical pseudopotential calculation,22

its effects could also be represented by the mass parameters
$mn% and thef (k) term in Eq.~26!.

B. Fixing the unitary connection error

Having fixed the bulk band structure, we return now to
the eigenfunction equation error~b! and unitary connection
error ~c!. As shown in Fig. 6, the eigenfunction equation
error ~b! is small, at least whenNb5Nm565. Thus no at-
tempt is made to correct it here. We will useNb5Nm515
throughout the rest of the work. As also shown in Fig. 6, the
unitary connection error~c! could be large if we let
Ũ(n,m) be dn,m . The Ũ(n,m) calculated from Eq.~22! is
not unitary for truncatedNb , thus it cannot be used directly.
Appendix B describes a simple procedure~Löwdin orthogo-
nalization!, with minimum modifications ofŨ(n,m), con-
verting it to an unitary matrix. The resultingŨ(n,m) is then
used in Eq.~23!. Treated in this way, the unitary connection
error ~c! becomes rather small.

C. A special method to calculateSA„B…„n,m,k…

The overlap matrixSA(B)(n,m,k) in Eqs. ~17! and ~20!
needs to be calculated from its definition Eq.~18! for all the
nanostructure wave vector k inside the 2BZ. Direct calcula-
tion of the overlap matrix could be time consuming. For
one-dimensional superlattices one can use a numerically
accurate interpolation scheme as done in Sec. III. However,
for three-dimensional systems~e.g., quantum dots!,
SA(B)(n,m,k) needs to be precalculated for numerousk val-
ues. In the following, we will introduce an alternative, easier
approach to calculate this overlap matrix.

Substituting the Fourier expansionw(r )5@Vc /
(2p)3]*W(k)eik–rd3k of the weight functionw(r ) into Eq.
~18! and using the factun

A(r1R)5un
A(r ), we get

SA~n,m,k!5(
G
OA~n,m,G!W~k2G!. ~27!

Here$G% are the reciprocal lattice vectors of the crystal lat-
tice vector$R% and the overlap matrixOA is defined as

OA~n,m,G!5E
PC
un
A~r !um

A* ~r !e2 iG–rd3r . ~28!

This matrix OA(n,m,G) is different from theSA(n,m,k)
matrix in two respects:~i! w(r ) is dropped from the integral
in Eq. ~28!, and ~ii ! OA is defined only at the reciprocal
latticeG, whileSA is defined for all supercell wave vectorsk
inside the 2BZ. If we have a smoothw(r ), so that its Fourier
transformW(k) has nonzero values only inside a finite re-
gion ~e.g., inside the 2BZ!, then only a finite number ofG
vectors will contribute to the summation in Eq.~27!.

The overlap matrixOA(B)(n,m,G) plays a role in the rep-
resentation of thek-space periodicity of the Bloch state in
the k–p formalism. Suppose thatG52kX . Then to ensure
the periodicity of the Bloch function between the2X and
X points,OA(n,m,2X) must satisfy Eq.~31! in the follow-
ing. This k-space periodicity of the Bloch states has an im-
portant practical consequence for calculations on nanostruc-
tures. In the case ofX and 2X k points, we can either
choose the2X or the X states as basis functions, but not

FIG. 6. Comparison between differentk–p calculations
using different approximations for the GaAs/AlAs~001! superlat-
tice. The diamonds denote the exactk–p (Nm5369) and are the
same as the diamonds in Fig. 1. Pluses truncatedNm565; squares
Nm5369, butŨ(n,m) approximated asdn,m . Nb565 for all three
calculations.
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both, so as to avoid double counting. To ensure that both
choices yield the same result and, more importantly, that the
k52kX point ~when2X is chosen! couples properly with
the k5kX22p/L points ~whereL is the length of the sys-
tem!, we needun,2X

A to behave likeun,X
A exp(i2kXr). More

precisely, we need to have

un,2G/2
A ~r !5eiunun,G/2

A ~r !eiG–r. ~29!

This is the periodic condition of Bloch states between
k52G/2 andk5G/2. Hereeiun is an arbitrary phase factor.
Let UA(n,m,k) be an unitary transformation that diagonal-

izes the matrixHA(n,m,k) of Eq. ~26!. In the k–p formal-

ism, we then haveun,k
A 5(p51

Nb UA(p,n,k)up
A . Substituting

this into Eq.~29! gives

(
p51

Nb

UA~p,n,2G/2!up
A~r !

5eiun(
p51

Nb

UA~p,n,G/2!up
A~r !eiG–r. ~30!

Multiplying both sides byum
A* (r ), integrating over a primary

cell, and using Eq.~28!, we have

FIG. 7. Effects of reducingNb on the energies ofk–p GaAs/AlAs ~001! superlattice conduction bands. An abruptw(r ) is used and the
SA(B)(n,m,k) is calculated directly from Eq.~18! for a primary set ofk points and then interpolation for the otherk points.
Ũ(n,m)5dn,m andNm5369 are used in all calculations. The squares are the same results as the squares in Fig. 6~a!.
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UA~n,m,2G/2!5eium(
p51

Nb

UA~p,m,G/2!OA~p,n,2G!.

~31!

This equation is automatically satisfied forNb5`, but
is no longer exactly true for a finiteNb . To satisfy it
for G/25kX and for G/25kL , we need to modify
OA(B)(n,m,2kX) and OA(B)(n,m,2kL) from their original
values given by Eq.~28!. This modification is described in
Appendix B. ForOA(B)(n,m,G) evaluated at otherG’s, the
direct result of Eq.~28! could be used in Eq.~27! without
any change.

Once Ũ(n,m) and OA(B)(n,m,G) are obtained,
the Hamiltonian matrixHA

NS(mk8,mk) can be readily calcu-
lated from Eq.~24!. However, because the approximations

are made in conjunction with the finiteNb , the
HA
NS(mk8,mk) calculated from Eqs.~24!, ~23!, ~20!, and~17!

is not exactly Hermitian. This non-Hermitian error can be
measured by

a5 (
mk8,nk

uHA
NS~mk8,nk!2HA

NS* ~nk,mk8!uY
(

mk8,nk
uHA

NS~mk8,nk!u. ~32!

We find that a is of the order of 0.531023 for our
GaAs/AlAs systems.@Had we usedŨ(n,m)5dn,m , this a
would be ten times larger.# To circumvent this non-

FIG. 8. Effects of reducingNb on thek–p GaAs/AlAs~001! superlattice valence bands. The calculation conditions are the same as in Fig.
7. The squares are the same as the squares in Fig. 6~b!.

11 426 54LIN-WANG WANG AND ALEX ZUNGER



Hermitian problem, we simply symmetrize the matrix as
@HA

NS(mk8,nk)1HA
NS*(nk,mk8)#/2 and then diagonalize the

symmetrized matrix.

D. Choice of the interfacial potential

In Sec. IV C, the calculation ofSA(B)(n,m,k) required a
smoothw(r ) function @with zeroW(k) outside 2BZ#. How-
ever, in reality, the interface could be sharper thanVw

NS(r )
calculated from suchw(r ) via Eq. ~10!. Here we will intro-
duce an interfacial potential to restore the sharpness of the
interface fromVw

NS(r ):

VIF~r !5Vsharp
NS ~r !2Vw

NS~r !, ~33!

where the superscript IF stands for interface.
VIF(r ) defined in Eq.~33! is localized at the interface and

is the interfacial potential for the whole system. We first
break it down to its constituents belonging to each primary
cell of the interface. Let us first define an interface primary
cell of A(B) as a primary cell for materialA(B) that has at
least oneB(A) neighboring primary cell. We will useR to
denote one interfacial primary cell and its position and
A/I (B/I ) to denote the domain of the interfacial primary
cell. To break downVIF(r ), we have

VIF~r !5 (
RPA/I

VA~r2R,R!1 (
RPB/I

VB~r2R,R!, ~34!

where VA(B)(r ,R) is the interfacial potential contribution
from interfacial primary cellR. It should only depend on the

FIG. 9. Effects of reducingNb on thek–p GaAs/AlAs ~001! superlatticeR̄/X̄(L) conduction bands. The calculation conditions are the
same as in Fig. 7.

FIG. 10. Fittedk–p band structures of~a! bulk GaAs and~b!
AlAs usingNb515.
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local atomic arrangements surroundingR. We will further
break downVA(r ,R) into its contribution from the neighbor-
ing B-type primary cells. Suppose that anA-type primary
cell R hasm(R) neighboring primary cells of typeB; then

VA~r ,R!5 (
i

m~R!

Vg i
A ~r !, ~35!

where the subscriptg i indicates the position of the neighbor-
ing primary cell. Considering only the nearest neighbors of a
fcc primary cell of the zinc-blende lattice, we have 12 pos-

sible positiong i . Their Vg i
A (r ) are connected by symmetry

operations so only one of them needs to be studied here@say,
g i5xy, the neighboring position of~110!a/2#.

Suppose the matrix element ofVg i
A (r ) in the A-type G

Bloch basis is

Hg i
A ~m,n,k![E um

A* ~r !Vg i
A ~r !un

A~r !e2 ik–rd3r ; ~36!

then the Hamiltonian matrix ofVIF(r ) under this basis is

HA
IF~mk8,nk![

1

Nc
^um

Aeik8–ruVIF~r !uun
Aeik–r&

5 (
RPA/I

(
i51

m~R!

Hg i
A ~m,n,k82k!

1

Nc
e2 i ~k82k!R

1 (
RPB/I

(
i51

m~R!

Hg i
B8~m,n,k82k!

3
1

Nc
e2 i ~k82k!R. ~37!

HereHg i
B8 isHg i

B in theun
A basis~instead of theun

B basis!; thus

Hg i
B8~n,m,k!5 (

p,p851

Nb

Ũ* ~p,n!Hg i
B ~p,p8,k!Ũ~p8,m!. ~38!

Finally, after adding the interfacial potential term, the total
Hamiltonian matrix is

HA
tot~mk8,nk!5HA

NS~mk8,nk!1HA
IF~mk8,nk!. ~39!

ThisHA
tot(mk8,nk) will be diagonalized to get the nanostruc-

ture eigenenergies.
In the above formalism, a different choice ofVg i

A(B)(r )

corresponds to a different choice of interfaces. In Appendix
C,31 we have chosen a very simple model to describe
Vg i
A(B)(r ) @in conjunction with a description ofW(r )#. To

determine the interfacial potential, we have adjusted the pa-
rameters in this simple model, so that ourk–p results of this
VIF agree with the direct plane-wave diagonalization results
of a pseudopotential interface model.31

E. Summary of practical equations

In summary, in order to solve the generalized multiband
k–p problem@Eqs.~24! and~39!# for a system of interest, the
following inputs are needed:~i! HA(B)(n,m,k) of Eq. ~26!,
which require en,0

A(B) mn
A(B) an

A(B) , and PA(B)(n,m). ~ii !
OA(B)(n,m,G) of Eq. ~27! for a few specialG points
(G5G,2X, . . . !, ~iii ! Ũ(n,m) of Eq. ~23!; ~iv! W(k) of Eqs.
~27! and ~C6!, which requiresa1, a2, andkc ; and ~v! the
interfacial potentialaxy

A(B)(n) of Eq. ~C5!, which requires
a1, . . . ,a5, f L(n), and f X(n). These input parameters for
GaAs and AlAs are listed in Tables I and II and the matrices
are stored in a file transfer protocol~FTP! site.32 The key
equations to be used to solve a general nanostructure prob-
lem are Eqs.~17!, ~23!, ~24!, ~26!, ~27!, ~37!–~41!, ~C2!, and
~C4!–~C7!.

FIG. 11. Errors ek–p2ePWP in band energies of the fitted
(Nb515) k–p band structures of Fig. 10 for~a! bulk GaAs and~b!
AlAs compared with the direct PWP results. The curves for differ-
ent bands are shifted for clarity~they should all be zeros at theG
point!. These errors are much smaller than the unfitted errors of
Nb515 shown in Fig. 4.

TABLE I. Fitted mass parameters and coefficientsan
A(B) of the

f (k) terms in Eq.~26!. The unit of mass parameters is electron mass
and the unit ofan

A(B) is hartree bohrs4. The parameters are the same
for the partners of a degenerate set.

Band indexn mn(GaAs) mn(AlAs) an(GaAs) an(AlAs)

1 1.0089 1.0015 -0.0035 0.0108
2,3,4 1.0509 1.0665 0.0055 -0.0110
5 1.1074 1.1713 -0.0038 0.0695
6,7,8 1.0593 1.0793 0.0095 0.0511
9,10 1.0145 1.0003 0.0096 0.0103
11 1.1964 1.4057 0.0239 0.0267
12,13,14 1.1370 1.1297 0.0298 -0.0115
15 1.0855 1.1668 0.0095 0.0050
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V. RESULTS FOR NANOSTRUCTURES USING
THE MULTIBAND k –p METHOD

A. Superlattices in theu0 represenation

The comparisons between the multibandk–p and the di-
rect plane-wave diagonalization results for the superlattice
energy levels are shown in Figs. 12 and 13. As we can see,
the trends in the results of the direct diagonalization and the
multibandk–p are similar. The even-odd oscillations in the
multiband k–p results are apparent; the oscillation ampli-
tudes are in fact close to those obtained in the plane-wave
calculations. These oscillations are missed in previous stan-

dard k–p calculations.16 The only large difference between
the multibandk–p and the plane-wave results occurs at the
monolayer limitp51, at which our model for the interfacial
terms breaks down. For all otherp’s, the largest error is
about 15 meV. On average, the error is much smaller. For
p&10 the average error is;5 meV, while for largerp, the
average error is about 2–3 meV~close to the bulk band-
structure error!. Overall, the multibandk–p performs very
well. This can be contrasted with the standardk–p model,16

where ~i! some of the superlattice states are completely
missed,~ii ! some of the trends in the energy vs period curves
are very different from the plane-wave results, and~iii ! there
are no even-odd oscillations.

B. Superlattice with reduced k points
and in the uk representation

In Sec. IV we treatedHA
tot(mk8,nk) @Eq. ~39!# in the u0

representation, retaining allk points. However, for three-
dimensional nanostructures~e.g., quantum dots!, this matrix
could be too large for direct diagonalization. We will next
test methods that reduce the number ofk points and the
number of bands in the basis-set expansion. After all, this is
the reason we use thek–p formalism: as discussed in the
Introduction, the basis set can be drastically reduced for large
systems compared with the plane-wave calculations.

One advantage of using the basis of Eq.~12! is that for
very large systems, the sum overk can be restricted. This is
so because the larger the system, the smoother the envelope
function of un(r ), so we can use a fixed number of Fourier

TABLE II. Interfacial parameters$ai% of Eq. ~C5! in eV and
a1, a2, andkc of Eqs.~C6! and ~C7! in a.u.

a1 a2 a3 a4 a5 a1 a2 kc

-0.001 -0.018 0.030 -0.087 0.270 2.263 -0.510 0.567

FIG. 12. GaAs/AlAs~001! superlattice multibandk–p energy
levels ~dashed lines! compared with the results of direct PWP cal-
culation ~solid lines and diamonds!.

FIG. 13. GaAs/AlAs~111! superlattice multibandk–p energy
levels ~dashed lines! compared with the results of direct PWP
calculation~solid lines and diamonds!.
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components in Eq.~1! or ~12!. In practice, we will select a
fixed number ofk points around the bottom of the physically
interesting band-structure valleys~e.g.,G, X, andL), regard-
less of the size of the nanostructure.

In Fig. 14 we show the results for the~001!
(GaAs)p /(AlAs) p superlattices using a fixed number ofk
points in the basis set of Eq.~12!. As can be seen, if we have
Dk5(25, . . . ,0, . . .,5)(2p/L) ~whereL is the length of
the supercell! around G ~i.e., k5kG1Dk) and
Dk5(23, . . . ,0, . . . ,3)(2p/L) around X, then the fixed
k-point basis introduces an error of only 3 meV for the band-
edgeG- and X-folded states. Thus, in a three-dimensional
~quantum dot! calculation, we could use the (25, . . . ,5) and
(23, . . . ,3) as thecutoff spherical diameters aroundG and
X to selectk points in the basis. A similar diameter exists for
the L point. Using these diameters, we need typically only
1000–2000k points for a three-dimensional system.

We next reduce the number of bands in the basis. As
shown in Fig. 7, reducing the number of band in theun,G
basis will introduce large errors. The most effective approach
is to first change the Hamiltonian matrix from the$un,G%
basis@Eq. ~12!# to the$unk% basis@Eq. ~13!# andthenreduce
the number of bands in the$unk% basis. Projection analysis

16

tells us that the nanostructure eigenstates consist mostly of
only a fewunk bandsn. Thus, using the$unk(r )% basis, we
can dramatically reduce the number of statesn at eachk
point.

When we change the basis from theu0 representation to
theuk representation, we also have a choice of usingunk

A or
unk
B or using amixtureof unk

A and unk
B @in theu0 representa-

tion, usingun
A or un

B for all the 15 bands will give the same
results; see Eqs.~23! and ~24! and Appendix B#. Within the
k–p formalism, this general basisunk

a can always be repre-
sented by theG-point basis set$un

A%:

unk
a 5 (

m51

Nb

Ua~m,n,k!um
A . ~40!

Ua(m,n,k) can be obtained for eachk independently, so
computationally, this is not very demanding. Getting
Ua(m,n,k) involves a diagonalization ofHA(B)(m,n,k) of
Eq. ~26! and the use of the unitary transformation matrix
Ũ(m,n), which connectsun

B with un
A. If some states of both

unk
A and unk

B are used for a samek, then orthogonalization
among them is necessary, so that the resultingUa(m,n,k) is
orthonormal among differentn’s. OnceUa(m,n,k) is ob-
tained, the Hamiltonian matrix under the new basis setunk

a is

Ha
tot~mk8,nk!5 (

p,p851

Nb

Ua* ~p8,m,k8!HA
tot~p8k8,pk!

3Ua~p,n,k!. ~41!

Note that the number of bands (m,n) in Ha
tot(mk8,nk) could

be much smaller thanNb515. ThusHa
tot(mk8,nk) can be

diagonalized directly for three-dimensional systems.
To test the accuracy of the various reduced basis sets

$unk
a % in our multibandk–p method, we show in Fig. 15 a

comparison between results using all the 15unk bands and a
reduced number ofunk bands. For theG- andX-folded low-
est conduction bands, we illustrate the results using~a! six
lowest bands of GaAs plus the fifth band of AlAs,~b! the
five lowest bands of GaAs plus the fifth band of AlAs, and
~c! the fifth band of GaAs fork points aroundG and the fifth
band of AlAs for k points aroundX ~so there is only one
state for eachk point!. From Fig. 15 we see that the~a! and
~b! basis sets are quite accurate, with small errors for long
superlattices and; 7 meV error for short superlattices. The
single band basis~c! is not as accurate as~a! and~b! for short
period superlattices. However, for long superlattices, it is
still very good. Since our method is aimed primarily at large
nanostructures, such as long period superlattices, and since
the number of basis functions in set~c! is 6–7 times smaller
than in set~a! or ~b!, we will use set~c! in our following
calculations of large, three-dimensional quantum dots.

A hybrid approach of theu0 and uk representation was
recently developed by Froyen.33 There the Hamiltonian ma-
trix elements under the hybrid basis function are directly
evaluated for a few$k,k8% points. The matrix elements of
other$k,k8% points are interpolated using thek-space power
expansions around these directly calculated$k,k8% points.

C. Embedded GaAs quantum dots: A 250 000-atom problem

We now apply the current method to study a Ga-centered
spherical GaAs quantum dot embedded in an AlAs matrix.
We would like to determine the dot size beyond which the
conduction-band minimum reverts from theX1c(AlAs) state

FIG. 14. Reducedk-point multibandk–p GaAs/AlAs ~001! su-
perlattice energy levels~dashed lines and pluses! compared with the
full k-point multibandk–p results~solid lines and squares!.
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to theG1c(GaAs) state.
23 At the ~anti!crossing point, there

could be aG-X coupling. The computational difficulty of this
problem is that in a supercell description, very thick AlAs
barriers are needed to avoid overlap of neighboring GaAs
quantum-dot wave functions.23 We have calculated GaAs
quantum dots up to 160 Å in diameter, while the size of
AlAs matrix is kept at 50350350 primary cells. This cor-
responds to a 250 000 atoms.

TheCA(B)(k) structure factor defined in Eq.~19! and its
counterparts for the interfacial potentials in Eq.~37! were
calculated using fast Fourier transforms.k-point selection
spheres are placed at theG point and the threeX points using
slightly larger diameters of (26, . . . ,0, . . . ,6! and
(24, . . . ,0, . . . ,4! than the ones used in Fig. 14. There are
2260k points in total. When the selectedk point is inside the
sphere of theG point,u5,k

GaAs is used in the basis set. When the
selectedk point is inside the spheres of theX point, u5,k

AlAs is

used in the basis set. So, the total number of basis function is
also 2260. The total CPU time for calculating the matrix
Ha
tot(mk8,nk) and diagonalizing it is less than 30 min on an

IBM/6000 workstation model 590. The calculation takes
about 100 megabyte memory, mainly to host the
226032260 double precision complex matrix
Ha
tot(mk8,nk).34

The results are shown in Fig. 16. The crossover diameter
between type-I and type-II behavior is found to be 70 Å.
However, surprisingly, we find no coupling between theG-
andX-induced states. Due to the spherical shape of the quan-
tum dot, the threeX-point states are degenerated. They have
a different symmetry representation than the single degener-
atedG state. Thus theG andX states do not couple in this
case. To get aG-X coupling, some other shapes~e.g., disk!
of the quantum dot, or a spherical dot with an As atom at its
origin, is needed. In addition, pressure-dependent rather than
size-dependent eigenenergy curves might be needed to find
small G-X anticrossing since smooth curves are available
only in the pressure-dependent case.

VI. COMPARISON WITH OTHER METHODS

In this section we summarize briefly the similarities and
differences of the current method with alternative ap-
proaches.

A. Comparison with the standard k–p model

Formally, our method differs from the standardk–p
model by the use of au0 basis of pureA @Eq. ~12!# leading to
the appearance of an overlap matrixSA(n,m,k) @Eq. ~18!# in
the evaluation of the Hamiltonian matrix in Eq.~17!. Be-
sides, due to the use of many bands, our wave vectork is
restricted to reside inside the BZ. Thus, unlike the standard
k–p model, our Hamiltonian equation cannot be formally
changed to a differential equation.

Practically, we include many-band~15 for GaAs/AlAs!
rather than four-band coupling and a bulk band structure that
is accurate over theentire BZ. As a result, we are able to
reproduce the energetic features of short period superlattices
~Figs. 12 and 13! missed by the standard model.16

B. Comparison with direct plane wave diagonalization

In the direct plane-wave diagonalization@Eqs. ~2! and
~3!#, the basis functions are classified according to momen-
tum alone, not band index, so there is no intuitive way to
select the variationally most important states. Instead, one
has to increase systematically the basis size. In contrast, in
the u0 representation, and more so in theuk representation,
one can preselect basis functions on the basis of their likely
coupling in the nanostructure band edge states. This is de-
cided based on the proximity of the energy of a given bulk
basis function to the band edges.

We have recently developed the ‘‘folded spectrum
method’’ ~FSM! ~Ref. 14! to efficiently solve for the band-
gap edge states of nanostructures. The FSM provides exact
solutions of the plane-wave diagonalization, so the FSM so-
lutions are superior to the currentk–p approach~if the cur-
rent k–p Hamiltonian is developed from the plane-wave
pseudopotential Hamiltonian!. The problem with the FSM is
that when the system is much larger than a few thousand

FIG. 15. Reduced bandk–p GaAs/AlAs ~001! superlattice
conduction-band energy levels~dashed lines and pluses! compared
with the all bandk–p results~solid lines and squares!. The one-band
calculation in~c! uses the fifth GaAs state fork points close toG
and the fifth AlAs state fork points close toX.
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atoms, the FSM is too time consuming. In such cases, the
currentk–p method can be used as a substitute. The FSM is
well suited to solve for random alloys,35 rough interfaces,36

and isolated quantum dots.14,22 In cases of three-dimensional
nanostructures with shallow barriers~e.g., materialA embed-
ded in materialB quantum dots!, usually larger systems
(.10 000 atoms! are needed. The current method is de-
signed to solve just such problems.
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APPENDIX A: CREATING A PLANE-WAVE BASIS
FROM A POLYHEDRON

In the conventional plane wave basis calculation of Eqs.
~2! and ~3!, a sphere of radiusGcut5A2Ecut ~where
Ecut56.5 Ry! is used to select the plane-wave basis$G%.
This sphere contains 65 plane-wave functions at thek5G
point. When thek point moves away fromG, the number of
plane-wave basis functions enclosed within thek-centered
radius-Gcut sphere may also change. Thek–p formalism with
Nb565 cannot reproduce this change of the plane-wave ba-
sis set. As a result, there is a 20 meV energy difference
between theNb565 k–p results and the plane-wave calcula-
tions at theX andL points.~Using a smoothEcut technique
described in Ref. 26, the band structure of the plane-wave
calculation is smooth, despite the possible sudden change of

the number of the plane-wave functions.! We need to elimi-
nate this difference, so that we can produce an exactk–p
result that could be compared with the results of the direct
plane-wave diagonalization. To this end, instead of using a
conventionalGcut-radius sphere centered at thek point, we
will use a special polyhedron zone to select the plane-wave
basis. This zone is also centered at thek point whenk is
away fromG. It has a shape of Wigner-Seitz primitive cell of
thereal-spacecrystal lattice. Thus, its surfaces are parallel to
the planes of the reciprocal lattice. Whenk5G, these sur-
faces are in the middle of two neighboring parallel
reciprocal-lattice planes. The advantage of this special poly-
hedron zone is that whenk moves within the first BZ, this
polyhedron will not cut through any reciprocal lattice points,
thus the plane-wave basis will not be changed. Conse-
quently, theNb565 k–p band structure is exactly the same
as obtained in direct plane-wave diagonalization. This zone
is used only in Sec. III.

APPENDIX B: THE CORRECTION OF
Ũ„n,m… AND OA„n,m,G…

In the following, we discuss separately the correction of
Ũ(n,m) and the correction ofOA(n,m,G).

When Nb515, the Ũ(n,m) defined in Eq.~22! is no
longer unitary. The following procedure will be used to
make it unitary. Assume thatŨ8(n,m) is the original result
calculated from Eq.~22!. Define

M ~n,m!5 (
p51

Nb

Ũ8* ~p,n!Ũ8~p,m!. ~B1!

FIG. 16. Lowest conduction-band energy levels of spherical GaAs quantum dots embedded in AlAs matrix vs dot size. The inset shows
theG-X crossing.
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BecauseM (n,m) is positive definite, we can compute the
quantityM21/2(n,m). Then, the unitary matrixŨ(n,m) to be
used in Eq.~23! is

Ũ~n,m!5 (
p51

Nb

Ũ8~n,p!M21/2~p,m!. ~B2!

Equation~31! needs to be satisfied byOA(p,n,G). But
for Nb515, this equation is usually not satisfied by
OA(p,n,G) calculated from Eq.~28!. To make it so, the
following procedure is used. LetOA8(n,m,G) denote the
original matrix calculated by Eq.~28!. We then construct
I A8 as

I A8~n,m,G!5 (
p,p851

Nb

UA~p,n,2G/2!OA8~p,p8,G!

3UA* ~p8,m,G/2!. ~B3!

If OA8 satisfies Eq.~31!, then I A8 should equaldn,me
2 iun.

For Nb515, this is not the case. For our GaAs and AlAs
systems, we found that for the first six bands ofG52kX and
the first eight bands ofG52kL , the corresponding subspace
of I A8 is very close todn,me

2 iun ~with the amplitude of the
diagonal elements to be.0.95). But for higher-energy
bands, the amplitude of the diagonal elements inI A8 is very
small. So, to satisfy Eq.~31! for the most important bands
n ~the first six forG52kX and the first eight forG52kL)
and without changingI A8 too much, we have modified
I A8(n,m,G) to I A(n,m,G) as

I A~n,m,G!5H I A8~n,n,G!

uI A8~n,n,G!u
dn,m if n or m,6~or 8!

I A8~n,m,G!, otherwise.
~B4!

After this step,OA(n,m,G) is calculated as

OA~n,m,G!5 (
p,p851

Nb

UA* ~n,p,2G/2!I A~p,p8,G!

3UA~m,p8,G/2!. ~B5!

ThisOA satisfies Eq.~31! for the most important bands and
is also close to theOA8 calculated from Eq.~28!. Special care
must be exercised for degenerated bands in Eq.~31!. In prac-
tice, we have taken a k slightly off theX or L points, so that
the exact degeneracy is lifted.

APPENDIX C: MODELING THE Vg i

A
„r … POTENTIAL

Here we use simple models to approximateVg i
A (r ) and

Hg i
A (m,n,k). Because of the symmetry, it is suffice to discuss

oneg i direction, say,g i5xy. We would first like to control
the spatial width ofVxy

A (r ) by w(r ) in Eq. ~10!; thus

Vxy
A ~r !5vxy

A ~r !w~r !, ~C1!

where vxy
A (r1R)5vxy

A (r ) is a periodic function of crystal
latticeR. It is easy to prove that theHxy

A defined in Eq.~36!
is

Hxy
A ~m,n,k!5 (

p51

Nb

@hxy
A ~p,n!SA~p,m,k!

1SA~n,p,k!hxy
A ~m,p!#/2, ~C2!

where

hxy
A ~n,m!5E

PC
un
A* ~r !um

A~r !vxy
A ~r !d3r . ~C3!

The merit of Eqs.~C1!–~C3! is that thek dependence of
Hxy
A (m,n,k) has been shifted toSA(m,n,k), which we al-

ready know @Eqs. ~18! and ~27!#. What remains is a
k-independent matrixhxy

A (n,m), which we are going to de-
scribe. Using a very simple model, we will keep only the
diagonal part ofhxy

A (n,m); hence

hxy
A ~n,m!5axy

A ~n!dn,m . ~C4!

In our GaAs/AlAs system, we have the following expres-
sion foraxy

A(B)(n):

axy
GaAs~n!5a1dn,21a1dn,31a2dn,41a3dn,51a4f L~n!,

axy
AlAs~n!5a5f X~n!, ~C5!

where n52,3,4 are theG-point top of the valence-band,
px , py , and pz states, respectively.n55 is the bottom of
conduction-band state.f L(n)[ z^unG

GaAsuu5L
GaAs& z2, except for

n,6, where f L(n)[0. f X(n)[ z^unG
AlAsuu5X

AlAs&u2, except for
n,6, where f X(n)[0. So we have five parameters to de-
scribe the interfacial potential: two parameters (a1 ,a2) are
needed to describe its effects on the top of the GaAs valence
bands atG, one (a3) for its effects on the GaAs conduction-
band minimum atG, one (a4) for its effects on the lowest
GaAs conduction band atL, and one (a5) for its effects on
the bottom of the AlAs conduction band atX.

FIG. 17. Fourier components ofw(r ) in the ~001! and ~111!
directions.
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Because the width of the interfacial potential is controlled
by w(r ) through Eq.~C1!, to get a sharp interface, it is also
necessary to changew(r ). Note thatw(r ) need not be a
spherical function. Thus we can expressedW(k) as a general
function

W~k!5e2[k2a11 f ~k!/k2a2]F~ uku!, ~C6!

where f (k)53(kx
41ky

41kz
4)2k4, as defined in the text, and

F(uku) is defined as

F~ uku!55
1 for uku,kc

1

2
1
1

2
cos@~ uku2kc!/~2A3/a2kc /p!# for kc,uku,2A3p/a

0 for uku.2A3p/a.

~C7!

So there are three parametersa1, a2, and kc to describe
W(k). W(k) is nonzero only foruku within 2A3p/a, where
a is the fcc lattice constant. This means that only
OA(B)(n,m,G) for G52kX,2kL ,(110)(2p/a) and their
symmetric counterparts are needed as input matrices
in Eq. ~27!. Further numerical tests show that ignor-
ing OA(B)(n,m,G) for G5(110)(2p/a) only introduces a
small error of ;1–2 meV. Thus, we will ignore
OA(B)(n,m,G) at this G point, although including it is

straightforward.
The different choices of the above parameters$an% and

a1 ,a2 ,kc yield different choices of the interfaces. The final
parameters are determined such that the resultingk–p eigen-
energies of a few superlattices can be close to that of the
direct plane-wave diagonalization calculations based on an
atomic pseudopotential interface model.31 The parameters
$ai%, a1, a2, andkc are listed in Table II andW(k) is shown
in Fig. 17.

*Present address: Biosym/MSI, 9685 Scranton Road, San Diego,
CA 92121.
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