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The electronic structure of quantum wells, wires, and dots is conventionally described by the envelope-
function eight-band<-p method(the “standardk-p model”) whereby coupling with bands other than the
highest valence and lowest conduction bands is neglected. There is now accumulated evidence that coupling
with other bands and a correct description of far-frbniulk states is crucial for quantitative modeling of
nanostructure. While multiband generalization of the exists forbulk solids, such approaches faano-
structuresare rare. Starting with a pseudopotential plane-wave representation, we develop an efficient method
for electronic-structure calculations of nanostructures in whiicimultiband coupling is included throughout
the Brillouin zone andii) the underlying bulk band structure is described correctly even for far-FFastates.

A previously neglected interband overlap matrix now appears irktheformalism, permitting correct inter-
valley couplings. The method can be applied either using self-consistent potentials takeakfronitio
calculations on prototypsmall systems or from the empirical pseudopotential method. Application to both
short- and long-period (GaAg)(AlAs) , superlattice¢SL) recovers(i) the bending dowit“deconfinement’)

of theI'(I") energy level 0f001) SL at small period$; (ii) the type-ll-type-I crossover @t~8 SL, and(iii )

the even-odd oscillation of the energies of REX(L) state of(001) SL andI'(L) state of(111) SL. Intro-

ducing a few justified approximations, this method can be used to calculate the eigenstates of physical interest
for large nanostructures. Application to spherical GaAs quantum dots embedded in an AlAs (wther
~250 000 atomsshows a type-ll-type-l crossover for a dot diameter of 70 A, with an almost BeXo
repulsion at the crossing point. Such a calculation takes less than 30 min on an IBM/6000 workstation model
590.[S0163-182306)03439-X

. INTRODUCTION: THE NEED tion” approacht*=*°In the latter approach one expands the
FOR A BETTER k -p METHOD FOR NANOSTRUCTURES wave function in a large basis of plane waves

Most electronic-structure calculations of semiconductor N -~
i : PN =2 Ceel* 2)
nanostructures are performed today using the “standard =k
model,” namely, the four-bandeight-band, including spjn
k-p envelope-function approach® In this approach the and solves the single-particle equation for the nanostructure
electronic stategS of the nanostructuréNS) are expanded atomistic potential/™%(r),
in the zero-wave-vector I{-point) Bloch wave functions 1
un,'r('r) of the uqderlylng bulk sphds’ and the expansion co- _ V24 VNS(r) b yNS(r) = eNSyNS(r). 3)
efficientsF,(r) (“envelope functions’) for band indexh are 2mg

assumed to be slowly varying spatial functions. Thus Using efficient algorithm&314 it permits applications to

0(10% atom nanostructures. Unlike E(l), the sum ovek
Np , in Eq. (2) is not restricted to the BZ. Unlike the standard
PNS(r) =, Fo(Dugp(r)= 2 {Z bn,ke'k'r}un,r(f)y model, this “plane-wave basis direct diagonalization ap-
n=t n=1 ok (1) proach” permits coupling between all bands and is able to
describe the bulk band structure throughout the BZ, not just
near one specid point. Such direct single-particle calcula-
tions of the electronic properties of small quantum structures

Brillouin zone(BZ) of the underlying crystal. In the standard (superlattices, films, and dothiave produced features that
model, the sum over bandsincludes the top three valence escaped the standard four-bakep approach. For(001)

bands and the single lowest conduction band. While exten; : : : )
sions of thek-p method to include many banddgs4) (GaAs),/(AlAs) , superlattices these includgi) the even

odd oscillation$>!® of the energies of thé -folded states

Np

where the sum over the wave vectoextends over the first

have appeared fabulk solids®®1° practical multiband ap- . . - 1516 /v
proaches for nanostructuresare rare and difficult to R(L). andX(L) with the periodp, ({l)theredshlfﬁ (de;-
implement’12:12 confinement’) of theI'(I") conduction band at short periods,

While eminently successful in describing states in wide(iil) the interaction, repulsion, and crossing of the two lowest
(=100 A) quantum wells, the standard model encountergonduction band§(I') andI'(X,) (I' folded andX, folded,
some limitations in short-period superlattices, films, andrespectively at a critical superlattice periog,~8—11°
dots. These limitations can be appreciated by contrasting itdv) the significantquantitative overestimation by the stan-
predictions with those of the more exact “direct diagonaliza-dard model of the position of th&(I") conduction band with
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respect to direct diagonalizatidh,(v) significantquantita-  10*—10° atom systems, since in this limit the number of
tive underestimation by the standard model of the position obasis functions used to describe the envelope function
the second heavy-hole stateh?) and split-off bands for F,(r) can besystem-size independentore specifically, one
binding energies= 200 meV!®, and incorrect out-of-plane could limit the sum to thosen(k) values that are physically
dispersion and incorrect positignof the avoided crossinf,  needed to give good convergence, rather than using all states.
(vi) omission of the spin splitting for the in-plane dispersion However, the standadd p method cannot be used here since
of the valence bands, ardii) overestimation of the mass it does not describe thE€ and X states together, hence it
anisotropym; /m, at T for both electrons and holé§. cannot describe their couplings. Thus one must find effective
While it was generally expectédhat the standard model Wways to include couplings between energetically close bulk
will fail for small nanostructurege.g., short-period superlat- bands and to describe correctly the bulk band structure in the
tices, direct diagonalization studi¥shave shown that the full BZ, not just nearl".
situation is not so simple. For example, the first heavy-hole In this paper, we present an efficient method, that extends
(hh1) and the first light-holglh1) valence-band energies of the current four-ban#-p model to anN,-band model. The
(GaAs),/(AlAs), (001) superlattices are accurately de- method accurately describes the band structure over the
scribed by the standard model even down togkel mono-  Whole BZ and allows couplings between states of different
layer superlattice limit, while the conduction bands foldedBZ valleys. We find thatN,=15 bands(30 with spin is
from I andX are poorly described even pt=20. This is so adequate in most cases. Our formalism is different from the
because the standakdp model describes poorly the energy standardk-p formalism in that(i) the value ofk in the sec-
of the zinc-blendeX,, state which has a significant projec- ond equality of Eq(1) is not required to be close #© and
tion in the superlattice conduction band. On the other handi) intervalley coupling,(e.g., betweerl’ and X) is pre-
the coupling between the folde,, andI';5, states at the sented.
superlatticevalenceband(also described poorjyhappens to As an illustration of our method, we have applied it to an
be weak, so its misrepresentation is inconsequential. Incor= 250 000-atom system consisting of a GaAs quantum dot
rect description of intervalley coupling of folded states isembedded in an AlAs matrix. The critical diameter for the
also the reason for the significant errors made bykhe I'-X crossing is found to be 70 A. This calculation takes less
model in describing the values of the superlattice minibandhan 30 min on an IBM 6000/590 workstation for each quan-
effective-mass tensor, the deformation poteritighnd the tum dot. That this is a relatively short computational time
wave-function localizatiof¥ of InP/GaP superlattices. can be appreciated by noting that even using the standard
In isolated GaAs or Si quantufilms the direct diagonal- model, calculation of a three-dimensional nanostructure
ization approach reveals a thickness-independent “zero corposes a difficult computational ta8k.
finement state” at the valence-band maximtinhich is
missed by the standaid p model. Furthermore, in isolated Il. THE GENERAL MANY-BAND k -p FORMALISM
quantumdots of Si and CdS&°2? accurate description of
the observed band gap vs size dependence requires a many-
band approach. Consider first a pure cryst#{l with a local periodic po-
Common to all of the failures of the standard model aretential VA(r) and HamiltoniarHA= —(1/2my) V2+VA. The
(i) the neglect of intervalleye.g.,I'-X) couplings andii) the  single-particle equation is
poor description of the bulk band structure over most of the ~
first Brillouin zone. While both goals can be accomplished HAYA(T) = emabi(r), (4a)
by the plane-wave direct diagonalization approach using a
pseudopotential description of the nanostructure potentia‘T’
VNS_(r) [Egs.(2) and(3)], the numbeN, of the plane-wave YA =UA (e, (4b)
basis functions increases in this approach too rapidly with
system size. More importantly, there is no simple physicaSince{u4,(r)} for k=0 is a complete basis set, we can ex-
principle (other than a systematic change M) telling us  pand thek# 0 wave functions by th&=0 basis(* u, repre-
how to reduce the size of the basis set without introducing sentation’) as
significant error. Thus onlyD(10%) —O(10%) atom systems
can be conveniently described, even using linear-in-size ma- .
trix diagonalization techniques in which only eigenvalues in ﬁk(r):% bm(nk)|u’n*we'k . ®)
a desired energy window are soudhfThere are some im- .
portant questions in nanostructure physics that require cornserting(5) into Eq.(4) and usingH
sideration of larger numbers of atoms. For example, while irthe secular equation
(i) (00D (AlAs),/(GaAs), superlatticesthe type-ll-type-|
transition occurs &t p,~8—11 (32—44 atoms/supercgll
and in(ii) AlAs-embedded GaAwire it occurs at the diam-
eter D=52 A (~2000 atoms/supercgll in (i) AlAs- ) ) o .
embedded GaAdots this transition is estimated to occur at _Herep is the band index and the Hamiltonian matrix element
D=70 A (~250000 atoms/supercgllwell outside the 'S
reach of direct diagonalization approach. The representation
of Eq. (1) (where bulk Bloch functiongu, r} are used in- HA(n,m,k)=
stead of individual plane waves more attractive for such

A. Bulk crystals

here

Np

A A
Un’

Np

;{HA<n,m,k>—5n,me’;,k}bm<pk>=o. (6)

2

eﬁ’0+2k—%}5n’m—ik‘PA(n,m), (7)
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wheremy is the real electron mass. The momentum matrixviding insights for further analysis and approximations. The
element is disadvantage of this approach is that mdmpoint Bloch
basis functions may be needed for representing even bulk

PA(N,m) = (up o VIufo)- (8)  wave functions ak+0. ThusN, cannot be restricted to a
conveniently small number. We will see, however, that the
need for a relatively large value &, can be overcome if
before the diagonalization of the secular problem we convert
theug representation to a, representation. The latter means
that one replaces in E@12) u, ¢ by u, , namely,

Thus, given the&k=0 elgenvalues{en of and thek=0 mo-
mentum matrix{P”(n,m)} one can solve Eq(6) and find
the full k=0 dispersion relatior/, '« over the first BZ.

Due to the completeness of the batss‘p%0 we have

N N
SALGA aikery A ik 1 4
HAunge" )= 2 HAmWlunee™). @) NS = ,21{2 anE'“] (o). 13
Here N,, is introduced for future use in Sec. lll. For now

Since u} (1)e'*" is the eigenstates;(r) of bulk A [Eq.
(4b)], the uy representation implies that the nanostructure

wave function is written as a linear combination of bulk
B. Nanostructures bands

Np=Np=00. If N,#, Eqg.(9) is only an approximation.

Consider now a heterostructufeuperlattice, embedded
guantum dot, etg.consisting of materiah and materiaB.
We will assume thalA and B have the same lattice period
R and that they are in the same crystalline orientation. We
further assume that the potentidfS(r) of this nanostructure  This approach has been used by Dandrea and Ztihged
can be constructed from the periodic atomistic potential®y Xia and BalderescHf, where superlattlce wave functions

VA(r) andVB(r) of materialsA andB as were expanded using E€L4) with ¢,(r) being replaced by
the (virtual crysta) Bloch function of theA-B alloy. The

Ne Ne advantage of thia, representation is that the number of
V()= w(r—=R)VA(N+ > w(r—=R)VE(r). (10  bandsN, can be reduced to a small value. Here we will

ReA ReB . . .

develop the formalism using th&, representatiorifor ana-

The sum over the lattice vectoRsruns ovem, primary cells  lytical simplicity), but we will later revert to the, represen-
in A andB. Each lattice vector belongs to a single primarytation for computational compactness.
cell and each primary cell belongs to eith&ror B. The The secular equation for the expansion coefficig g}
crystalline potentialy’A(r) andV8(r) can be obtained either and the nanostructure eigenvalué$ can be written in the
from self-consistent bulk band-structure calculatféner Ug representation as
from empirically fitted screened pseudopotentfdfs> The
function w(r —R) describes the spatial arrangement of ma- N N _
terial (including theA/B interface. w(r —R) occupies a re- ; ngl {HAYMK ,NK) = 6 08 € Foy= 0. (15)
gion of roughly one primary cell and satisfies, for angnd
for ReAUB, the relation Sgw(r—R)=1. This gives We will drop from now on the index “0” from
Sw(r)d3r=0Q., whereQ, is the volume of a primary cell. Uno unless needed explicitly. HereH)XY(mk ,nk)=
Using Eq.(10), it is easy to prove that the nanostructure (1/N.){ury, Aglk’ r|HN5|u e'k") is the Hamiltonian matrix of

1 M
VRN 2 2 P (14

Np

Hamiltonian is HNS in the basis set of Eq12). SinceHNS has partA and
part B [Eq. (11)], we will compute the respective matrix
ANS= > w(r—R)HA+ > w(r—R)HB=HPA+HPB, elements separately. Applying” to the basis function of
ReA ReB Eqg. (12) and using Eq(9) we have
(11
Nm

where the superscripts PA and PB stand for paend part "I PAI Anikery _ A Ajik-r
B, respectively. H™une >—F§A wir R)pzl HAnp. o lupe™).

We expand the wave functiong'S(r) of the nanostruc- (16)

ture in terms ofA-type k=0 basis functions o Aik! i
Multiplying Eq. (16) by (une'™® |, we get the matrix ele-

1 M ments of partA of HYS(mk',nk) in an A-type basis as
YN(r) = ——= (2 bnke"“] or), (12
\/—n— PA 1 ALk 1| ALi

| | | PAMK ,nk)= - (uAe’ T APA e )
whereN; is the total number of primary cells in the system, Nc
k is the supercell wave vector, and the sum okextends Npp
over the firs_t BZ.In thisug repr_esentation, the nanostructure = HA(n,p,k)S(p,m,k’ —K)CA(k’ — k).
wave function is expanded in terms akro-wave-vector =1

Bloch functions of the constituent bulk solids. The advantage
of theug representation is that the nanostructure Hamiltonian
can be written analytically via thk-p formalism, thus pro- Here theinterband overlagn materialA is

17
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SA(p,m,k)= J up(ruRs (Nw(rye ™*d  (18) " “Exact”K-p vs Plane Wave Pseudopotential
GaAs/AlAs (001) superlattices
and thestructure factorof materialA is —_—
1 .
CAk) = — e kR 19 -3.60 [ o exact k-p| |
"0 NchA 19 + PWP
Note that because of the facter(r)exp(—ik-r), we have -3.65 - .
SA(p,m,k) # dp,m despite the orthonormality betweaﬁ and
u’,; The same formalism gives for the matrix elements of part a70 - |
B of the Hamiltonian in theB-type basis set <
©
1 N . - - i
HEB(mK ,nk)= —(uBe'* "|HPBuBe' ) L 375
NC > 1
2 .
Nm 3
=2 HB(n,p,k)SP(p,m,k’ —Kk)CB(k' ~k). 5 -5.60 1
p=1 T
I
(20 -5.65 | =
In Egs.(17) and(20), the subscript®\ or B denote the basis
functions, while the superscripts PA and PB denote the 570 |
Hamiltonian defined in Eq.11). Because{uA(r)} and ™ )
{uﬁ(r)} each represent a complete basis, they can be inter-
transformed via a unitary transformation -5.75 - .
N i 1 ! 1 | | [ H |
A_Eb~B 0 1 2 3 4 5 6 7 8 9 10
Un(r)= 2, U(m,mur(r) (21) (GaAs)p/(AlAs), Superilattice Period p
and FIG. 1. Comparison of “exact’k-p results with direct plane-
wave pseudopotenti@PWP calculations for the GaAs/AIA§01)
G(m,n)=f uﬁ*(r)u;\(r)d3r (22) superlattice. The exack-p is defined here as usindl,= 65,
PC N,,=369, and direct evaluations o®*®(p,m,k) for some k

oints. The small differences are due to interpolation of

where PC stands for integration over one primary cell. Thu AB)(p,m.k) for the otherk points

the matrix elementH>® of the HamiltonianH"® in an

. . PB .
A-type basis of Eq(12) can be obtained fromg™ in EQ.  mayix [Eq. (18)] has to be evaluated for all needed supercell

(20) by wave vectors inside a 2BZ region. This 2BZ region is a
1 . k-space region that looks like the BZ, but is twice as large in
HRB(mk',nk)E _<ugeik’-f|HPB|uﬁeik'f> each directiore.g., for a fcc lattice, the boundary point of
Nc the 2BZ in the(001) and (111) directions are the 2 and
Np 2L k pointg].
= > U*(p’,m)HEB(p’k’,pk)G(p,n). In the current formalism, we have ignored the strain and
p’p=1 spin-orbit coupling. However, such effects can be described
(23) using terms similar to those in the stand&rgh model.
In summary, for nanostructure atomistic potentials of the
Finally, the matrix elementslyS(mk’,nk) in Eq. (15) of the  type shown in Eq(10), the secular equation infalike basis

total nanostructure Hamiltonian in aktype basis is set of Eq.(12) is given by Eqgs.(17), (23), and (24). The
above formalism is exact if the number of bardg equals
HRS(mk/,nk)Ei<ugeik’-r|ﬁNS|uﬁeik-r> infinity. We now study the effects of finitdl, on the bulk

Nc band structure and on the energies of nanostructures.

=HIAMK ,nk)+HRE(mK ,nk), (24)

where the two terms are given by Eq47) and (23). Note lll. FINITE- N, ANALYSIS

that this H,Ts(mk’,nk) is not explicitly Hermitian because There are a number of errors related to the truncation of
k.k’ andn,m are treated differently in Eqg17) and (20). the sum ovell -like bands to a finite numbeX,, .
However, as long asN,=c, it can be shown that (a) The bulk dispersion relatio’g’k of Eq. (6) is inaccu-

HXS(mk’,nk) is indeed Hermitian. rate if Ny, in that equation is truncated. We refer to this as the
We have seen that, unlike the standard model, a corredt-p bulk band structure error.
description of interband coupling requires that E4s) and (b) The bulk eigenfunction appearing in E(P) is not

(20) include an interband overlap mat®¢(®(p,m,k). This  satisfied if a finiteN,,= Ny is used. We refer to this error as
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1.0 _T N
= GaAs Xic energy i
0.8 ——e—— Aplane wave basis .
i . 7 FIG. 2. Convergence of the
_____ e u
06 - A {Unr} basis bulk GaAsX,, state energy vs the

| number of plane-wave basis func-
tions (solid lines, pseudopotential
i calculationn and the number of

u,r statesdashed linek-p calcu-

7 lation).

Error in Xyc eigenvalue (eV)

o a

1 1 I | | [T

200 250 300 350 400 450 500

Number of basis functions

the eigenfunction equation error Secongto avoid the eigenfunction equation eriby, we
(c) The transformation matrild (m,n) betweeru’(r) and  have used >Ny in Egs.(9) and(17). (In practice, we have
us(r) [Egs.(21) and(22)] is not unitary ifNy is truncated. usedNy,=369, which gives a well-converged resylThe
In this case, {uB(r)} cannot be connected exactly to K-P Hamiltonian matrixH,® is defined by Eqs(24), (23),
{UA(r)}. We refer to this as thanitary connection errarin (20, and(17). TheS*®)(p,m,k) matrix is evaluated directly
what follows, we will first assess the effects of these thredV its definition of Eq.(18) for somek points and via inter-

errors, then we will suggest ways to fix thewithin a trun-  Polations for othek points. . _
cated basis set The exactk-p results for the superlattice are shown in

Fig. 1 where they are compared with the results of plane-
wave direct diagonalizations. The two results are the same,
except for very small errors introduced by the interpolation
Before we reduce the number of bands in khe basis, of the SA®)(p,m,k) matrix. This establishes an exakctp
we first illustrate our exack-p formalism of Sec. Il for method whose results equal those obtained in a direct plane-
(GaAs),/(AlAs) , (001) superlattices. This will be used as a wave diagonalization.
benchmark for subsequent approximations. We consider a
superlattice with an abrupt interface, which means that in Eq.
(10) we havew(z) =1/|R| for —R/2<z<R/2 and zero else-
where[z is the (001) coordinaté. The potential\/v’\v's gener- We will now systematically reduce the number of bands
ated from Eq(10) (in which VA andV® are superpositions of N, to see the effects on the p bulk band structures. Figure
screened atomic pseudopotenfidlss used as the input po- 2 depicts the error in th¥,. band energy of bulk GaAs as a
tential for the plane-wave direct diagonalizations. function of (i) the numbem, of individual plane waves in
To get an exact result.e., equal to the direct plane-wave the expansion of Eq2) and, independently(ji) the number
diagonalization, the threek-p errors (a)—(c) noted above Np of I'-point Bloch functions in thé-p expansion of Egs.
must first be removed. To this end, we have taken a few6) and(7). In both cases, we use the local empirical pseudo-
Specia] treatments in Olkp imp|ementati0ns and in the potential fitted recentﬁ? to bulk GaAs. To obtain solutions
plane-wave calculations. of thek-p problem of Eqs(5) and(6), we first performed a
First, we have used a special polyhedron zéaescribed converged plane-wave pseudopotenfigboint bulk calcula-
in Appendix A (Ref. 26] to select the plane-wave basis in tion, obtaining{u’(r)}, {€5 o}, and{PA(n,m)}. These quan-
the plane-wave direct diagonalization calculatiori§his tities are then used in Eq$6) and (7) to solve thek-p
zone is only used in this section for the current purpose offroblem. We see from Fig. 2 that reducing the bulk band
comparisor). There are 65 basis functions and 65 Blochstructure error to 1 meV requires 500 plane waves in the
bands and we have used all of them in &up calculation, expansion of Eq(2) (Ref. 29 or 150I" Bloch bands in the
soN,=65. This special zone method ensures that the planeexpansion of Eq(5). Use of only~10 Bloch bands gives an
wave basis set will not change when theoint moves in-  error of 300 meV. For applications to large nanostructures, it
sides the first BZ. As a result, tid,=65k-p band structure would be desirable to redudd, to a small value, say, to
is exactly the same as the direct diagonalization plane-wav&0—20 bands, while keeping the error below, say, 5 meV.
band structure. This removes the band structure dapr We next examine th&-p band structure of bulk GaAs
The use in ouk -p method of all thd™ Bloch states available throughout the zonénot justX,. as in Fig. 2, as obtained
in a given plane-wave calculation also removes the unitaryith different basis sizes. The resuliSigs. 3 and 4 show
connection errofc). that whenNp,=15 the k-p band structure is qualitatively

A. (GaAs),/(AlAs), superlattices: An “exact” k -p result

B. k-p for bulk GaAs: Truncated expansion
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' k-p band structure at truncated N, vs Plane Wave Pseudopotential result I

N \ E(a)Nb=15

Band Energy (eV)

20 i i
L r X L r X

FIG. 3. Comparison of bulk GaAls-p band structure with different numbal, of I'-like basis functiongdashed lines The solid lines
are theN,= 65 results, which equal the plane-wave results using the polyhedron zone of Appendix A.

similar to that obtained by exact direct diagonalization, but C. k-p for (GaAs),/(AlAs), superlattices:

that when less than 15 Bloch bands are used, the band Truncated expansion

structure suddenly becomes much worse. Note in particular

how for 8 or 5I" bands the energy of th¥,. band as ob- Having tested thé&-p convergence for the bulk solids, we

tained ink-p is ~20 eV too high and the curvatufbence next examine how thk-p errors in the bulk lead to errors in
effective masgof the valence band reverses sign. The situ-the superlattice made of these bulk solids. As discussed at
ation is similar for AlAs and Sinot shown. the beginning of Sec. lllk-p calculations with finiteNy

To show how manyl” Bloch statesiu,r} are needed to values can lead to three error types. We will focus our atten-
describe the directly calculated Bloch stateu,y of bulk  tion in this section on th&-p band-structure errgia). As in

GaAs, we plot in Fig. 5 the closure quantity Sec. lll A, in this section too the eigenfunction equation er-
Np ror (b) will be removed by usingN,,= 369, much larger than
P.(Np) = E K Unnr| Uy [2 (25) .Nb' The unitary connection errdc) _cannot be re_mov_ed eas-

m=1 ily. For the purpose of the comparisons made in this section,

we deliberately set)(n,m) =6, . Since this ansatz is now

n=4 is the highesKs, valence band, and=5,6,7,8 are the common to allN, values, one cpuld hope that the unitary
lowest four conduction bands, respectively. HereCONNection errofc) cogld be partially canceled out when we
P.(N,)=1 means that theth X-point Bloch state can be Ccompare results for differert, values.

described exactly by the first, T-point Bloch states. As we ~ Figure 6 compares the exactp results[shown by pluses
can see from Fig. 5, there is a sudden drogPgfN,,) for ~ with N, =369 andU(n,m) of Eq. (22)] with results of (i)

N, less than 15. This is consistent with the band-structuréN,,=65 and U(n,m) of Eq. (22) (diamond$ and (ii)
results in Figs. 3 and 4. The situation is qualitatively similarN =369 and u(n,m)= Snm (squares In this figure,

for AlAs and Si (not shown. We conclude that 15 zero- N, =65 js used in all three calculations. By comparing the
wave-vector bulk band¢30 with spin are needed for @ jses and diamonds in Fig. 6, we can see that the eigenfunc-
qualitatively correct description of the dispersion relation in tion equation errorb) for N, =65 is rather smallabout 3

bulk solids, while about 150 bands are needed fouanti- ;
. ' L ; meV). By comparing the pluses and squares, however, we
I 1-2 . We will - ~ .
atively converged ¢ me\) description. We will even see that the error caused by settidgn,m)= &, , is large,

tually [Sec. IV A] find ways to obtain @uantitativedescrip- ) . -
tion )(Jging only 15 bandsy. q P about 18 meV[This does not mean that the typical unitary

forn=1,...,8,wheren=1 is the lowes,, valence band,
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FIG. 5. Completenes®,(N,) in describing thenth X point
. state in GaAs in terms dfl, I" point basis state?,=1 means an
FIG. 4. Errors €,(Np) — €,(Np=65) in the GaAsk-p band- o, 50¢ description of thi point staten in terms ofN, I' states.
structure energy due to reducdl. These errors are zero at the
I" point; the curves for different bands are shifted for clarity.
IV. THE FINITE- N, FORMALISM

A. Fixing the k-p bulk band-structure error

connection errokc) in our final k-p nanostructure calcula- )
tion will be ~18 meV. There, a better approximation of The abovelstudy shows that thep error in the bulk pand
G(n m), instead ofG(n m)=o will be used. As a re- structure carries over to the nanostructure. So our first task
e - nm: T here is to reduce th&-p bulk band-structure errofa) of
;:’:r’] tthe r::g{t/fry connection errc) will be much smaller band-edge states fd\,= }5 tq Ies_s than 5 meV from 300
. . ) meV (see theX andL points in Figs. 3 and 4

Convergence ok-p superlattice eigenvalues with, are The effects of removing higher-energy bands on the ener-
shown in Figs. 7-9. Here thd,=65 results serve as the gies of lower states can be described asvilinn folding
references antll,,= 369 andU(n,m)= 4, , are used for all This is a procedure that modifies the elements of the Hamil-
calculations. Whem, changes from 65 to 44, thé-folded  tonian matrix so that the eigenvalues of the submatrix

conduction-band’(X,) state moves up by more than 50 meV spanned by the lower-energy states equal the eigenvalues of

(this is consistent with the bulk band-structure errors rethe original full matrix. As a result, the effects of the trun-
ported in Figs. 3-¥ When N, is further reduced, the cation to finiteN, bands can be compensated by a replace-

I'(X,) state continues to move up. Froky=21 to 15, the ment of the bare electronic masg, in Eq. (7) with “mass
change is relatively small, while fro\l,=15 to 11, the parameters”m’ . Furthermore, to fit the dispersion in both

change is large. Similar trends in the error of thdolded the I'-X and thel’—L directions, we need a nonspherical

. — correction term. This term comes from a higher-ordewLo
conduction stat&X/R are shown in Fig. 9. The large change ;. folding effect (ie., a fourth-order gterm ink):

below N,=15 is consistent with the results found for the f(k)=3(k§+k§+k‘2‘)—k4. [Here f(k)=0 for the (111 di-

bulk band structuréFigs. 3 and #andP,(N) (Fig. 5. We . 2y g
see that the basis-set truncation error in superlattice energie:%\(;rsoeréagdf((?l;)tg 2K” for the (001) direction] Thus we have
parallels the errors in the bulk. The above analysis further q
shows thatN,=15 is a turning point, i.e., foN,<15T 1
bands, the band structure cannot be describegh qualita-  HA(N,m,k)=| e} o+ 5 2k2+ahf(k) |8y m—ik-PA(n,m),
tively. Thus, in the rest of this paper, we will udg,=15 Mh 26)
I' bands for GaAs and AlAs. We next develop a formalism

appropriate to many-band coupling where tauncated where Gﬁ,o and PA(n,m) are unchanged from Eq7). For

N,=N,,=15 basis set is used. N,=15, due to the degeneracy, we have eight independent




11 424
“Exact” k-p vs Nm- truncated k-p
GaAs/AlAs (001) superlattice
T T T T T T T T T
¢ exact k.p
-3.60 - + Kep; Nm=65 i
o kep; LNJ(n,m)=<‘3nym
-3.65 [ s
P,
°\Te(I)
3707 .
>
L o
@ B375F  cB S~__§ 8 -
[ a 1
> t | 1 { 1 1 1 1 1
9 T T T T T T T T T
P VB
G -5.60 - _ ]
5 L (D)
-5.65 - o .
D u—
P Ly2(T)
-5.70 | s
oo o
575 - P—a/ﬁ/ﬁ .
a
1 ] t 1 | 1 1 | |

0 1 2 3 4 5 6 71 8 9 10
(GaAs)p/(AlAs), Superlattice Period p

FIG. 6. Comparison between differenk-p calculations
using different approximations for the GaAs/AlAB01) superlat-
tice. The diamonds denote the ex&cp (N,,=369) and are the
same as the diamonds in Fig. 1. Pluses truncllget 65; squares
Nm=369, butU(n,m) approximated as, ,,. N,=65 for all three
calculations.

m} values and eight independeaft values. These are used
to fit the two lowest conduction-band and the highes

valence-band energies. The fitteg bulk band structures of
GaAs and AlAs are shown in Figs. @) and 1@b), while the

errors, relative to a direct plane-wave diagonalization calcu-

lation, are shown in Fig. 11. The fitting paramete®® and
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B. Fixing the unitary connection error

Having fixed the bulk band structure, we return now to
the eigenfunction equation err@ip) and unitary connection
error (c). As shown in Fig. 6, the eigenfunction equation
error (b) is small, at least wheiN,=N,,=65. Thus no at-
tempt is made to correct it here. We will udg=N,=15
throughout the rest of the work. As also shown in Fig. 6, the
unitary connection error(c) could be large if we let
U(n,m) be &, . TheU(n,m) calculated from Eq(22) is
not unitary for truncated\,, thus it cannot be used directly.
Appendix B describes a simple procedl(lté)yuvdin orthogo-
nalization), with minimum modifications ofU(n,m), con-
verting it to an unitary matrix. The resulting(n,m) is then
used in Eq(23). Treated in this way, the unitary connection
error (c) becomes rather small.

C. A special method to calculateS*®(n,m,k)

The overlap matrixS*®)(n,m,k) in Egs. (17) and (20)
needs to be calculated from its definition Eg8) for all the
nanostructure wave vector k inside the 2BZ. Direct calcula-
tion of the overlap matrix could be time consuming. For
one-dimensional superlattices one can use a numerically
accurate interpolation scheme as done in Sec. Ill. However,
for three-dimensional systemge.g.,, quantum dofs
SA®)(n,m,k) needs to be precalculated for numerdusal-
ues. In the following, we will introduce an alternative, easier
approach to calculate this overlap matrix.

Substituting the Fourier expansionw(r)=[Q./
(2m) 3] SW(k)e'*"d3k of the weight functionw(r) into Eq.

(18) and using the factif(r + R)=u’(r), we get

SA(n,m,k)=% OA(n,m,G)W(k—G). 27)

Here{G} are the reciprocal lattice vectors of the crystal lat-

ftice vector{R} and the overlap matri0” is defined as

OA(n,m,G)=f us(rub* (re e ddr. (28)
PC

ap® are listed in Table I. Then},®’s are close to 1 and the This matrix @A(n,m,G) is different from theS*(n,m,k)
ah®’s are small. The physically important bottom of matrix in two respectsti) w(r) is dropped from the integral

conduction-band states €5 in Fig. 1), especially near the
I',X,L points, have typical errors of only3 meV, much
better than the unfitted error 6£300 meV seen in Figs.(8)
and 4.

In this work we have calculated the quantitis—%) of Eq.
(7), PA(n,m) of Eq. (9), andS*(n,m,k) of Eq. (18) using
the empirical pseudopotential plane-wave mefid®i(so as
to ensure accurate eigenenergies and wave fungtidhese

in Eq. (28), and (i) @ is defined only at the reciprocal
lattice G, while S" is defined for all supercell wave vectdes
inside the 2BZ. If we have a smoo#i(r), so that its Fourier
transformW(k) has nonzero values only inside a finite re-
gion (e.g., inside the 2BY. then only a finite number o6&
vectors will contribute to the summation in EQ7).

The overlap matrix?*(®)(n,m,G) plays a role in the rep-
resentation of thé-space periodicity of the Bloch state in

guantities can also be obtained from self-consistent calculahe k-p formalism. Suppose thab=2ky. Then to ensure

tions such as the local-density approximatidh®A) pro-
vided that the LDA errors in the band structuflfé0 were

the periodicity of the Bloch function between theX and
X points, O*(n,m,2X) must satisfy Eq(31) in the follow-

subsequently corrected. If nonlocal pseudopotentials are uséilg. Thisk-space periodicity of the Bloch states has an im-

in the LDA or in the empirical pseudopotential calculatfén,

portant practical consequence for calculations on nanostruc-

its effects could also be represented by the mass parametdrges. In the case oK and —X k points, we can either

{m,} and thef(k) term in Eq.(26).

choose the— X or the X states as basis functions, but not



54 PSEUDOPOTENTIAL-BASED MULTIBANDk-p METHOD . .. 11 425

k-p with reduced N,
, Lowest conduction bands of GaAs/AlAs (001) superlattices
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FIG. 7. Effects of reducin®\, on the energies df-p GaAs/AlAs (001) superlattice conduction bands. An abrugtr) is used and the
§A(B)(n,m,k) is calculated directly from Eq(18) for a primary set ofk points and then interpolation for the othé&r points.
U(n,m)= &, n» andN,,=369 are used in all calculations. The squares are the same results as the squares(@. Fig. 6

both, so as to avoid double counting. To ensure that botiyes the matrixd”(n,m,k) of Eq. (26). In thek-p formal-
choices yield the same result and, more importantly, that thf=Sm we then haveu ENb UA(p.n.K)UA. Substitutin

k= —kyx point (when —X is choseh couples properly with 2207 (P kU g
the k=ky—2#/L points (whereL is the length of the sys-
tem), we needuﬁy,x to behave Iikeuﬁ'xeprkar). More

precisely, we need to have

this into Eq.(29) glves

Np

El UA(p,n, — G/2)us(r)
=

ul oo(r)=eu . (r)ei®r. (29 N _
noer el =gl > UA(p,n,G2)up(r)e’® . (30)
p=1

This is the periodic condition of Bloch states between
k= —G/2 andk=G/2. Heree'’n is an arbitrary phase factor. Multiplying both sides by* (r), integrating over a primary
Let UA(n,m,k) be an unitary transformation that diagonal- cell, and using Eq(28), we have



11 426 LIN-WANG WANG AND ALEX ZUNGER 54

k-p with reduced Ny,
Highest valence bands of GaAs/AlAs (001) superlattices
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FIG. 8. Effects of reducind)l,, on thek-p GaAs/AlAs(001) superlattice valence bands. The calculation conditions are the same as in Fig.
7. The squares are the same as the squares in (Bg. 6

N are made in conjunction with the finiteN,, the
UA(N,m,—G/2)=e’m > UA(p,m,G/2)O*(p,n,—G). H\S(mk’,mKk) calculated from Eqg24), (23), (20), and(17)
p=1 31) is not exactly Hermitian. This non-Hermitian error can be

measured by

This equation is automatically satisfied fdd,=cc, but

is no longer exactly true for a finitd,. To satisfy it

for G/2=ky and for G/2=k, , we need to modify a= > |H§S(mk’,nk)—HRS*(nk,mk’)|/
O*®(n,m,2ky) and O*®)(n,m,2k,) from their original mk’,nk

values given by Eq(28). This modification is described in NS

Appendix B. ForO*(®(n,m,G) evaluated at othe®’s, the > [HAS(mK ,nk)|. (32
direct result of Eq(28) could be used in Eq27) without mk',nk

any change.

Once U(n,m) and OA®(n,m,G) are obtained, We find that « is of the order of 0.%10° 2 for our
the Hamiltonian matri>H§S(mk’,mk) can be readily calcu- GaAs/AlAs systems[Had we usedJ(n,m)= 6, , this
lated from Eq.(24). However, because the approximationswould be ten times largdr.To circumvent this non-
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FIG. 9. Effects of reducindN, on thek-p GaAs/AlAs (001) superlatticeR/X(L) conduction bands. The calculation conditions are the

same as in Fig. 7.

(a) GaAs

15 Fitted Band Energies (eV)

Np =

(b) AlAs

FIG. 10. Fittedk-p band structures ofa) bulk GaAs and(b)

AlAs using N,=15.

Hermitian problem, we simply symmetrize the matrix as
[HNS(mk’,nk) + HN**(nk,mk’)]/2 and then diagonalize the
symmetrized matrix.

D. Choice of the interfacial potential

In Sec. IV C, the calculation o8*®)(n,m,k) required a
smoothw(r) function [with zeroW(k) outside 2BZ. How-
ever, in reality, the interface could be sharper thlﬁ?(r)
calculated from suchv(r) via Eq. (10). Here we will intro-
duce an interfacial potential to restore the sharpness of the
interface fromV\(r):

VIF(r) = Vi dr) = VaXr), (33)

where the superscript IF stands for interface.

V'F(r) defined in Eq(33) is localized at the interface and
is the interfacial potential for the whole system. We first
break it down to its constituents belonging to each primary
cell of the interface. Let us first define an interface primary
cell of A(B) as a primary cell for materiah(B) that has at
least oneB(A) neighboring primary cell. We will us® to
denote one interfacial primary cell and its position and
A/1(B/1) to denote the domain of the interfacial primary
cell. To break downV'7(r), we have

VF(r)= Z“ VA(r—R,R)JrREB” VB(r—R,R), (34)

ReA

where VA®)(r R) is the interfacial potential contribution
from interfacial primary celiR. It should only depend on the
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sible positionvy; . Theirv’;i(r) are connected by symmetry

operations so only one of them needs to be studied[lsase
v; =Xy, the neighboring position afL10a/2].

Suppose the matrix element M’;(r) in the A-type I’
Bloch basis is

Hﬁi(m,n,k)zf Upr (DV5 (NuR(ne " rd;  (36)

then the Hamiltonian matrix 0¢'F(r) under this basis is

HIAF(mk’,nk)s <Uﬁeik"r|V'F(l’)|uﬁeik">

1
Nc
m(R)

1 .
HA (m,n,k’ —k) —e (K ~WR
RGZA/I |=21 7‘( )Nc

m(R)
+ > > HE(mnk -k
ReB/l i=1 !

Xie—uk’—km_
C

37

HereHEi' is HY in theuy basis(instead of theu; basig; thus

Np

HS (nmk)= 2 U*(p,mHS(p.p"k)U(p’,m). (39
p.p’'=1

Finally, after adding the interfacial potential term, the total

point). These errors are much smaller than the unfitted errors oHamiltonian matrix is

N,=15 shown in Fig. 4.

local atomic arrangements surroundi®y We will further
break dowrvVA(r,R) into its contribution from the neighbor-
ing B-type primary cells. Suppose that @atype primary
cell R hasm(R) neighboring primary cells of typB; then

m(R)

VA(r,R) = 2 VA (1), (35)

where the subscripy; indicates the position of the neighbor-

ing primary cell. Considering only the nearest neighbors of a

H(mk’ ,nk)=HNS(mk ,nk)+HF(mk' ,nk). (39

This HY(mk’,nk) will be diagonalized to get the nanostruc-
ture eigenenergies.

In the above formalism, a different choice Wf®(r)
corresponds to a different choice of interfaces. In Appendix
C3! we have chosen a very simple model to describe
V‘y\i(B)(r) [in conjunction with a description ofV(r)]. To
determine the interfacial potential, we have adjusted the pa-
rameters in this simple model, so that éup results of this
V'F agree with the direct plane-wave diagonalization results

fcc primary cell of the zinc-blende lattice, we have 12 pos-Of a pseudopotential interface mod@l.

TABLE |. Fitted mass parameters and coefficieaf$® of the

f(k) terms in Eq{(26). The unit of mass parameters is electron mass

E. Summary of practical equations

In summary, in order to solve the generalized multiband

and the unit oiaﬁ(B) is hartree bohr& The parameters are the same k-p problem[Eqgs.(24) and(39)] for a system of interest, the

for the partners of a degenerate set.

Band indexn m,(GaAs) m,(AlAs) a,(GaAs) a,(AlAs)

1 1.0089 1.0015 -0.0035 0.0108

2,34 1.0509 1.0665 0.0055 -0.0110
5 1.1074 1.1713 -0.0038 0.0695

6,7,8 1.0593 1.0793 0.0095 0.0511

9,10 1.0145 1.0003 0.0096 0.0103

11 1.1964 1.4057 0.0239 0.0267

12,13,14 1.1370 1.1297 0.0298 -0.0115
15 1.0855 1.1668 0.0095 0.0050

following inputs are neededi) HA®)(n,m,k) of Eq. (26),
which require €, mi® af®  and PA®(n,m). (ii)
O*®)(n,m,G) of Eq. (27) for a few specialG points
(G=TI,2X,...), (iii) U(n,m) of Eq. (23); (iv) W(k) of Egs.

(27 and (C6), which requiresaq, a,, andk.; and(v) the
interfacial potentialaj®(n) of Eq. (C5), which requires

ai, ... As, f (n), andfy(n). These input parameters for
GaAs and AlAs are listed in Tables | and Il and the matrices
are stored in a file transfer protocFTP) site®? The key
equations to be used to solve a general nanostructure prob-

lem are Eqs(17), (23), (24), (26), (27), (37)—(41), (C2), and
(CH—(C7).
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TABLE Il. Interfacial parameterga;} of Eq. (C5) in eV and

ay, a,, andk; of Egs.(C6) and(C7) in a.u. GaAs/AlAs (111) superlattice k-p energy levels
-3.0 T T T T
al a2 a3 a4 a5 CYl az kC
-0.001 -0.018 0.030 -0.087 0.270 2.263 -0.510 0.567 32r (a) T conduction states -

V. RESULTS FOR NANOSTRUCTURES USING
THE MULTIBAND k -p METHOD

A. Superlattices in theu, represenation 38

evels (eV)

The comparisons between the multibdag and the di- 4.0

rect plane-wave diagonalization results for the superlattice = ! ! ! L
o -5.5

energy levels are shown in Figs. 12 and 13. As we can see,5
the trends in the results of the direct diagonalization and the‘g
multibandk-p are similar. The even-odd oscillations in the w
multiband k-p results are apparent; the oscillation ampli- 56
tudes are in fact close to those obtained in the plane-wave
calculations. These oscillations are missed in previous stan-

y

sk (b) T valence states

GaAs/AlAs (001) superlattice k-p energy levels

58 ! L ) L
0 5 10 15 20

(GaAs)p /(AlAs)p Superlattice Period p

(a) I conduction states

b FIG. 13. GaAs/AlAs(111) superlattice multiband-p energy
levels (dashed lines) compared with the results of direct PWP
calculation(solid lines and diamondls

dardk-p calculationst® The only large difference between
- the multibandk-p and the plane-wave results occurs at the
| 1 ! L monolayer limitp=1, at which our model for the interfacial
terms breaks down. For all othgrs, the largest error is

% B2 7 about 15 meV. On average, the error is much smaller. For
g p=10 the average error is5 meV, while for largemp, the

2 34r . average error is about 2—3 mel¢lose to the bulk band-

3 structure error Overall, the multibandk-p performs very

. 36f i well. This can be contrasted with the standirg model®

o where (i) some of the superlattice states are completely
2 a8l § missed (i) some of the trends in the energy vs period curves
u are very different from the plane-wave results, &iid there

40 l . . ' are no even-odd oscillations.

B. Superlattice with reduced k points
and in the u, representation

In Sec. IV we treatedY(mk’,nk) [Eq. (39)] in the ug
representation, retaining ak points. However, for three-
dimensional nanostructurés.g., quantum dotsthis matrix
7 could be too large for direct diagonalization. We will next
test methods that reduce the numberkopoints and the
number of bands in the basis-set expansion. After all, this is

5.7 F

(¢) T valence states

5.8 ! ! . ) the reason we use the-p formalism: as discussed in the
0 5 10 15 20 Introduction, the basis set can be drastically reduced for large
(GaAs)p /(AlAs)p Superlattice Period p systems compared with the plane-wave calculations.

One advantage of using the basis of EtR) is that for
FIG. 12. GaAs/AlAs(001) superlattice multiband-p energy  Very large systems, the sum ovecan be restricted. This is
levels (dashed linescompared with the results of direct PWP cal- SO because the larger the system, the smoother the envelope
culation (solid lines and diamongls function ofu,(r), so we can use a fixed nhumber of Fourier
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Reduced k-points k-p calculations
GaAs/AlAs (001) superlattices
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I | 1

| 1 1 1 1

L) valence state's'
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FIG. 14. Reduced-point multibandk-p GaAs/AlAs (001) su-

perlattice energy levelglashed lines and plusesompared with the

full k-point multibandk -p results(solid lines and squargs

components in Eql) or (12). In practice, we will select a
fixed number ok points around the bottom of the physically

interesting band-structure valle{s.g.,I", X, andL), regard-
less of the size of the nanostructure.

In Fig. 14 we show the

results for th&001)

(GaAs),/(AlAs), superlattices using a fixed number lof

points in the basis set of E(L2). As can be seen, if we have

Ak=(-5,...,0,...,5)(2n/L) (wherelL is the length of

the

supercell

around I' (i.e., k=kr+Ak) and

Ak=(-3,...,0,...,3)(Z/L) around X, then the fixed
k-point basis introduces an error of only 3 meV for the band-nanostructures, such as long period superlattices, and since

edgel'- and X-folded states. Thus, in a three-dimensionalthe number of basis functions in gg) is 6—7 times smaller
(quantum dotcalculation, we could use the-(5, . .. ,5) and

(—3,...,3) as thecutoff spherical diameters arouddand

X to seleck points in the basis. A similar diameter exists for

54

When we change the basis from thg representation to
the u, representation, we also have a choice of usifigor
ub, or using amixtureof us, and W, [in the u, representa-
tion, usingu’y or u® for all the 15 bands will give the same
results; see Eq$23) and(24) and Appendix B. Within the
k-p formalism, this general basis;, can always be repre-
sented by thd -point basis sefu’}:

Np
ud = 21 Ue(m,n,k)u’ . (40)
=
U%(m,n,k) can be obtained for eack independently, so
computationally, this is not very demanding. Getting
U%(m,n,k) involves a diagonalization dfiA®®)(m,n,k) of
Eg. (26) and the use of the unitary transformation matrix
U(m,n), which connectsi® with u4. If some states of both
uh, andu?, are used for a samie, then orthogonalization
among them is necessary, so that the resultiigm,n,k) is
orthonormal among differem’s. Once U%(m,n,k) is ob-
tained, the Hamiltonian matrix under the new basisugets

Np
HO(mK ,nk)= >, U (p’,mk )H(p'k’,pk)
p.p'=1

XU%p,n,k). (41

Note that the number of bands(n) in H'(mk’,nk) could
be much smaller thai,=15. ThusH%(mk’,nk) can be
diagonalized directly for three-dimensional systems.

To test the accuracy of the various reduced basis sets
{uf} in our multibandk-p method, we show in Fig. 15 a
comparison between results using all theul,g bands and a
reduced number afi,, bands. For thd - and X-folded low-
est conduction bands, we illustrate the results ugagsix
lowest bands of GaAs plus the fifth band of AlA®) the
five lowest bands of GaAs plus the fifth band of AlAs, and
(c) the fifth band of GaAs fok points around™ and the fifth
band of AlAs fork points aroundX (so there is only one
state for eaclk point). From Fig. 15 we see that tHa) and
(b) basis sets are quite accurate, with small errors for long
superlattices and- 7 meV error for short superlattices. The
single band basik) is not as accurate da) and(b) for short
period superlattices. However, for long superlattices, it is
still very good. Since our method is aimed primarily at large

than in set(a) or (b), we will use set(c) in our following
calculations of large, three-dimensional quantum dots.
A hybrid approach of thei, and u, representation was

the L point. Using these diameters, we need typically onlyyecently developed by Froyéh There the Hamiltonian ma-
1000—-200 points for a three-dimensional system.

We next reduce the number of bands in the basis. Agyaiyated for a fewk,k'} points. The matrix elements of
shown in Fig. 7, reducing the number of band in ther

basis will introduce large errors. The most effective apbroac

is to first change the Hamiltonian matrix from tHe, 1}

basis[Eq. (12)] to the{u,,} basis[Eq. (13)] andthenreduce
the number of bands in tHe,,} basis. Projection analysfs
tells us that the nanostructure eigenstates consist mostly of We now apply the current method to study a Ga-centered
only a fewu,, bandsn. Thus, using thdu,,(r)} basis, we
can dramatically reduce the number of statesat eachk

point.

trix elements under the hybrid basis function are directly

other{k,k’} points are interpolated using thespace power

I%xpansions around these directly calculafled’} points.

C. Embedded GaAs quantum dots: A 250 000-atom problem

spherical GaAs quantum dot embedded in an AlAs matrix.
We would like to determine the dot size beyond which the
conduction-band minimum reverts from tg.(AlAs) state
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used in the basis set. So, the total number of basis function is
Reduced uk bands k-p calculations also 2260. The total CPU time for calculating the matrix
GaAs/AlAs (001): conduction bands H®(mk ,nk) and diagonalizing it is less than 30 min on an
. . , T . . . . IBM/6000 workstation model 590. The calculation takes
35 ¢ (a) 6 GaAs bands + 5th AlAs band about 100 megabyte memory, mainly to host the
2260x 2260 double precision complex matrix
36 | —8—  Allband k.p 4 toty o 17 34
\ ---t---  Reduced band k.p H, (MK',nk). - ,
a7l : The results are shown in Fig. 16. The crossover diameter
’ between type-I and type-ll behavior is found to be 70 A.
38L However, surprisingly, we find no coupling between fhe
andX-induced states. Due to the spherical shape of the quan-
39| tum dot, the thre&-point states are degenerated. They have
a different symmetry representation than the single degener-
-4.0 ! ! ' L L L L L atedI” state. Thus thé@" and X states do not couple in this
a5l ' ' ' ' ' ' ' case. To get &'-X coupling, some other shapés.g., disk
< of the quantum dot, or a spherical dot with an As atom at its
L a6l origin, is needed. In addition, pressure-dependent rather than
R?) size-dependent eigenenergy curves might be needed to find
@ gL small I'-X anticrossing since smooth curves are available
2 only in the pressure-dependent case.
> 38f
g VI. COMPARISON WITH OTHER METHODS
39|
w In this section we summarize briefly the similarities and
-4.0 ! ! ! ! ! ! L ! differences of the current method with alternative ap-
-35 [ +‘\I T T T T T T I_ proaCheS
a6l A. Comparison with the standard k-p model
Formally, our method differs from the standarkl-p
37 model by the use of g, basis of pureA [Eq. (12)] leading to
the appearance of an overlap mat®Xn,m,k) [Eq. (18)]in
B8 the evaluation of the Hamiltonian matrix in E¢L7). Be-
30l sides, due to the use of many bands, our wave véctisr
' restricted to reside inside the BZ. Thus, unlike the standard
4.0 , . . , . , , - k-p model, our Hamiltonian equation cannot be formally
0 5 0 15 20 25 30 35 40 changed to a differential equation.
(GaAs)p/(AlAs)p Superlattice Period p Practically, we include many-bandl15 for GaAs/AIAg

rather than four-band coupling and a bulk band structure that
FIG. 15. Reduced band-p GaAs/AlAs (001) superlattice IS accurate over thentire BZ. As a result, we are able to
conduction-band energy leveldashed lines and plusesompared reproduce the energetic features of short period superlattices
with the all banck - p results(solid lines and squaresThe one-band ~ (Figs. 12 and 1Bmissed by the standard modél.
calculation in(c) uses the fifth GaAs state fér points close td"
and the fifth AlAs state fok points close toX. B. Comparison with direct plane wave diagonalization

3 . ] In the direct plane-wave diagonalizatig&qgs. (2) and
to the I';(GaAs) staté? At the (antjcrossing point, there (3)], the basis functions are classified according to momen-

could be &’-X coupling. The computational difficulty of this tym alone, not band index, so there is no intuitive way to
problem is that in a supercell description, very thick AIAS ggject the variationally most important states. Instead, one
barriers are needed to avoid overlap of neighboring GaAg5s to increase systematically the basis size. In contrast, in
quantum-dot wave functiorfS. We have calculated GaAs the , representation, and more so in the representation,
quantum dots up to 160 A in diameter, while the size ofgne can preselect basis functions on the basis of their likely
AlAs matrix is kept at 550X 50 primary cells. This cor-  coupling in the nanostructure band edge states. This is de-

responds to a 250 000 atoms. o _ cided based on the proximity of the energy of a given bulk
The CA®)(k) structure factor defined in E419) and its  pasis function to the band edges.
counterparts for the interfacial potentials in E§7) were We have recently developed the “folded spectrum

calculated using fast Fourier transformspoint selection  method” (FSM) (Ref. 14 to efficiently solve for the band-

spheres are placed at thepoint and the threX points using  gap edge states of nanostructures. The FSM provides exact

slightly larger diameters of £6,...,0,...,6 and solutions of the plane-wave diagonalization, so the FSM so-

(=4,...,0,...,4than the ones used in Fig. 14. There are|utions are superior to the currektp approach(if the cur-

2260k points in total. When the selecté&doint is inside the  rent k-p Hamiltonian is developed from the plane-wave
GaAs;

sphere of thd" point,ugy is used in the basis set. When the pseudopotential HamiltonianThe problem with the FSM is

selectedk point is inside the spheres of tiepoint, ué',fs is  that when the system is much larger than a few thousand
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FIG. 16. Lowest conduction-band energy levels of spherical GaAs quantum dots embedded in AlAs matrix vs dot size. The inset shows
theI'-X crossing.

atoms, the FSM is too time consuming. In such cases, ththe number of the plane-wave functiong/e need to elimi-
currentk-p method can be used as a substitute. The FSM isate this difference, so that we can produce an ekapt
well suited to solve for random alloys rough interfaces®  result that could be compared with the results of the direct
and isolated quantum dot$2?In cases of three-dimensional plane-wave diagonalization. To this end, instead of using a
nanostructures with shallow barridesg., materiaA embed-  conventionalG.-radius sphere centered at tkepoint, we
ded in materialB quantum dots usually larger systems will use a special polyhedron zone to select the plane-wave
(>10000 atomp are needed. The current method is de-basis. This zone is also centered at th@oint whenk is

signed to solve just such problems. away fromI'. It has a shape of Wigner-Seitz primitive cell of
thereal-spacecrystal lattice. Thus, its surfaces are parallel to
ACKNOWLEDGMENTS the planes of the reciprocal lattice. WhersT", these sur-

faces are in the middle of two neighboring parallel
The authors would like to thank Dr. A. Franceschetti, Dr.reciprocal-lattice planes. The advantage of this special poly-
S. Froyen, and Dr. D. Wood for many helpful discussions.hedron zone is that whelk moves within the first BZ, this
This work was supported by the office of Energy Researchpolyhedron will not cut through any reciprocal lattice points,
Material Science Division, U.S. Department of Energy, un-thus the plane-wave basis will not be changed. Conse-

der Grant No. DE-AC02-83CH10093. guently, theN,=65 k-p band structure is exactly the same
as obtained in direct plane-wave diagonalization. This zone
APPENDIX A: CREATING A PLANE-WAVE BASIS is used only in Sec. Il
FROM A POLYHEDRON
In the conventional plane wave basis calculation of Egs. APPENDIX B: THE CORRECTION OF
(2) and (3), a sphere of radiusG.,=2E.; (where U(n,m) AND Oa(n,m,G)

ECL.“:6'5 RY is US.Ed to select the plane-vyave balE; In the following, we discuss separately the correction of
This sphere contains 65 plane-wave functions atkkd” G(n m) and the correction of)(n,m,G)

point. When thek point moves away fronh’, the number of ' ~ AV TS i
plane-wave basis functions enclosed within theentered When N,=15, the U(n,m) defined in Eq.(22) is no
radiusG,,, sphere may also change. Tkep formalism with ~ 1Onger unitary. The following procedure will be used to
N, =65 cannot reproduce this change of the plane-wave pdhake it unitary. Assume thz_i]l "(n,m) is the original result
sis set. As a result, there is a 20 meV energy differenc&alculated from Eq(22). Define

between theéN,=65 k -p results and the plane-wave calcula-

tions at theX andL points.(Using a smoottE; technique N
described in Ref. 26, the band structure of the plane-wave M (n,m)= E U’*(p n)U’(p m). (B1)
calculation is smooth, despite the possible sudden change of ' p=1 ’ ’
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BecauseM(n,m) is positive definite, we can compute the 1 ——= . :
quantityM ~Y4(n,m). Then, the unitary matrii (n,m) to be
used in Eq(23) is 08l

"*..._(001) direction
Np

U(n,my=> U’(n,p)M~Y4p,m). (B2)
p=1
=z (111) direction

Equation(31) needs to be satisfied b®*(p,n,G). But
for Np=15, this equation is usually not satisfied by

OA(p,n,G) calculated from Eq(28). To make it so, the 02+ .
following procedure is used. LefOA'(n,m,G) denote the
original matrix calculated by Eq(28). We then construct o5 5 v v v —
1" as Wave Vector Ikl in the unitof 12'2m/a
, Np , FIG. 17. Fourier components a@f(r) in the (001) and (111)
1A (n,m,G)= >, UA(p,n,—G2)O" (p,p’,G) directions.
p.p'=1
X UM (p’,m,G/2). (B3)  where vxy(r+R) ny(l’) is a perlodlc function of crystal
) , . lattice R. It is easy to prove that thiel’ y defined in Eq/(36)
If O* satisfies Eq(31), thenI” should equals, ne 'n. s

For N,=15, this is not the case. For our GaAs and AlAs
systems, we found that for the first six bandsz# 2ky and

the first eight bands a&= 2k, , the corresponding subspace ny(m,n k)= E [h V(P n)SA(p,m,k)
of 1" is very close tos, e '’ (with the amplitude of the
diagonal elements to be-0.95). But for higher-energy +SA(n,p, k)h W(m, p)1/2, (C2)

bands, the amplitude of the diagonal elements*inis very
small. So, to satisfy Eq(31) for the most important bands Where
n (the first six forG=2ky and the first eight folG=2k,)
. . A’ . g
a/gd without crlanglngl too much, we have modified hA (n'm):f uﬁ*(r)uﬁ(r)vﬁy(r)d%. (3
™ (n,m,G) to I1”(n,m,G) as PC

IA'(n n.G) The merit of Eqgs.(C1)—(C3) is that thek dependence of
. A,;gn‘m if n or m<6(or 8) ny(m,n,k) has been shifted t&*(m,n,k), which we al-
I*(n,m,G)=1 [1" (n,n,G)] ready know [Egs. (18) and (27)]. What remains is a

|A’(n,m,G)’ otherwise. k-independent matrihfy(n,m), which we are going to de-

(B4) scribe. Using a very simple model, we will keep only the
diagonal part oh y(n,m); hence
After this step,0*(n,m,G) is calculated as

. by (N m) =2 () - (C4)
b
A _ A _ A '
O (n,m,G)—p pE,Zl U™(n.p,=G/2)1%(p.p".G) In our GaAs/AlAs system, we have the following expres-
' sion foraj{®(n):
XUA(m,p’,G/2). (B5)

GaA —
This O satisfies Eq(31) for the most important bands and @y (") =810n2+ 210031 820h 4+ 83505 aufL(N),
is also close to thé*' calculated from Eq(28). Special care

must be exercised for degenerated bands in(E). In prac- aly(n)=asfx(n), (CH)
tice, we have takea k slightly off theX or L points, so that ]
the exact degeneracy is lifted. where n=2,3,4 are thel'-point top of the valence-band,

Px, Py, andp, states, respectlvely) 5 is the bottom of

conduction-band statef, (n)=[(uSF*JuS**9[?, except for

n<6, wheref, (n)=0. fx(n)—|<uA'A3|uA'AS'>|2 except for
Here we use simple models to approximatg(r) and n<_g WrTGF_Efx(fn)_ ? So V\{el have five parameters to de-
A o s : scribe the interfacial potential: two parametess @,) are

H 7i(m’n_' K). !Because of the symmetry, It_ 'S s.ufﬂce 0 dISCUSS’needed to describe itspeffects on theptop of th:eaEl G(afﬁ)\s valence

one vy, direction, say,y, xy. We would first like to control - 4o af’, one @) for its effects on the GaAs conduction-

the spatial width ofv;y(r) by w(r) in Eq. (10); thus band minimum af’’, one @,) for its effects on the lowest

A A GaAs conduction band &t, and one &s) for its effects on

Vi(r) = o5 (rw(r), (CD)  the bottom of the AlAs conduction band %t

APPENDIX C: MODELING THE Vil(r) POTENTIAL
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Because the width of the interfacial potential is controlled W(k) :e—[k2a1+f(k)/k2a2]|:(|kl), (C6)
by w(r) through Eq.(C1), to get a sharp interface, it is also
necessary to change(r). Note thatw(r) need not be a
spherical function. Thus we can expresyé(k) as a general wheref (k) =3(k;+kj+k;) —k?, as defined in the text, and

function F(|k|) is defined as
1 for |k|<k,
1 1
F(lk)= §+Eco$(|k|—kc)/(2\/§/a—kclw)] for k.<|k|<2\3w/a (C7)

0 for |k|>2\3m/a.

So there are three parameters, a,, and k. to describe straightforward.

W(k). W(k) is nonzero only foik| within 2\/37/a, where The different choices of the above parametgg} and

a is the fcc lattice constant. This means that onlyaq,a,,k; yield different choices of the interfaces. The final
O"®(n,m,G) for G=2ky,2k, ,(110)(2r/a) and their parameters are determined such that the resultipgeigen-
symmetric counterparts are needed as input matricesnergies of a few superlattices can be close to that of the
in Eq. (27). Further numerical tests show that ignor- direct plane-wave diagonalization calculations based on an
ing OA®(n,m,G) for G=(110)(2n/a) only introduces a atomic pseudopotential interface modelThe parameters
small error of ~1-2 meV. Thus, we wil ignore {a}, a,, a,, andk. are listed in Table Il an&V(k) is shown
O*®)(n,m,G) at this G point, although including it is in Fig. 17.
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