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We study transport properties in the classical ballistic regime of a two-dimensional electron channel with
sinusoideal~rippled! boundaries. We calculate the transmission coefficient, the average number of collisions,
and the mean path length, as a function of ripple amplitude. The Poincare´ plots of the associated dynamical
system~the infinitely long channel! exhibit the generic transition to chaos as the amplitude of the ripples is
increased. The chaotic nature of the finite channel is manifested by the fractal character of a response function.
Transport features and dynamical properties are correlated. We compare our results with those that consider
collisions with random~rough! boundaries. A criterion is proposed to distinguish between regular and chaotic
dynamics by measuring classical resistivity.@S0163-1829~96!02240-0#

I. INTRODUCTION

The development of nanostructure technology and the ad-
vances in the theory of dynamical systems has led to the
search for signatures of chaos in the transport properties of
mesoscopic samples. Important results have recently been
obtained in quantum transport, i.e., in phenomena where the
wave nature of electrons plays a fundamental role. For ex-
ample, measurements of magnetoresistance in ballistic mi-
crostructures in the shape of a ‘‘chaotic’’ billiard and the
circle showed clear distinctions in the power spectrum of
universal conductance fluctuations and in the line shape of
the weak localization peak.1,2 This line of investigation per-
tains to the very prolific field of quantum chaos, the study of
the quantum manifestations of classical chaos.3 In this paper,
however, we address another important aspect, namely, the
search for signatures of chaos in classical transport proper-
ties. The classical counterpart of universal quantum fluctua-
tions of conductance has been studied in Refs. 4 and 5. Clas-
sical resistivity of ballistic cavities with either regular or
chaotic dynamics of electrons was analyzed in Ref. 6, where
it was shown that dynamical chaos is responsible for the
well-known additive property for resistors connected in se-
ries. Within the framework of the classical billiard-ball
model,7 various effects in narrow electronic channels can be
understood if the number of transverse channels is large
enough~even 3 may be sufficient!.8–12

The present work is concerned with classical ballistic
transport through a two-dimensional channel formed be-
tween a sinusoidal~rippled! and a flat boundary~see Fig. 1!.
Certain features of the quantum-classical correspondence of
this system have been studied in Ref. 13. The trajectories are
deterministic but not integrable, hence there is regular and
chaotic scattering at the boundaries. As the amplitude of the
ripple is increased the electron dynamics changes from regu-
lar to mixed and to global chaos. Transport characteristics of
the channel that can be measured experimentally, e.g., resis-
tivity, depend on these distinct dynamical regimes. We cor-

relate the transport properties of the finite channel with the
dynamical properties of the infinite channel. Based on this,
we obtain a criterion that allows a distinction between regu-
lar and chaotic motion by measuring the classical resistivity
of the channel.

II. CLASSICAL TRANSPORT PROPERTIES

Figure 1 specifies the geometry of the channel. The top
profile is given byY5d1asin(2pX/b). L is the length of the
channel. It is convenient to write the profile in dimensionless
coordinates asy[Y/b5g1nsin(2px), where x[X/b,
n[a/b, g[d/b, and l[L/b. Assuming the simplest con-

FIG. 1. Geometry of the rippled channel and real-space trajec-
tories of an electron~a! transmitted to the right and~b! executing
librational motion in adiabatic regime.
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nection to the lead, the initial distribution is given by

r~a0!5~n0/2d!cosa0 , ~1!

wherea0 is the angle of incidence@see Fig. 1~a!# andn0 is
the number of electrons~typically 105) injected on the left-
hand side.

The trajectory of each electron~all with the same magni-
tude of velocity! defined by its initial condition (y0, a0) is
followed, keeping a record of the number of collisions with
the boundaries and the length it travels before it leaves the
channel to the right or to the left. The transmissivityT, the
mean number of collisions for transmitted particles^Nt&, and
the mean path lengtĥl t& are computed for a given set of
geometrical parameters (n, g, l ). ^l t& (^Nt&) is the total path
length ~sum of all collisions! of all the transmitted particles
divided by the number of transmitted particles. Transmissiv-
ity is the flux of transmitted particles divided by the incom-
ing flux.

Consider a channel with few periods of ripples. We shall
look at two prototypical shapes. The combinationg55 and
l52 produces a short and wide channel, i.e., its length is
2/5 its width. For brevity we shall refer to it as a SW chan-
nel. The combinationg50.1 andl52 produces a long and
narrow ~LN! channel; its length is 20 times its width.

The associated dynamical system is a rippled channel of
infinite length. We use the top profiley5g1nsin(2px) as a
surface of section to obtain Poincare´ plots (xn ,pn), where
xn (pn) is the value of thex coordinate~momentum! right
after thenth collision. Tennyson14 has explored the dynam-
ics of an approximate version of this map, which is valid for
small values ofn/g. The various types of dynamics are re-
vealed in the Poincare´ plots as we vary the value ofn. In
Ref. 15 a complete panorama of the dynamics of this system
is given. Figures 2~a! and 2~b! and Figs. 3~a! and 3~b! cor-
respond to two dynamical regimes of LN and SW channels,
respectively. We have chosen the common initial value of
x51/4 in order to obtain all the possible types of trajectories
allowed by the system even though the transmission quanti-
ties were calculated with an initial distribution Eq.~1! placed
at x50.

The classical ballistic regime is realized at low tempera-
tures in nanostructures where the size of the sampleL is such
that lF!L&Le , wherelF is the electron wavelength and
Le is the mean free path~see, e.g., the review in Ref. 7!.
Collisions with the boundaries in mesoscopic systems may
alter considerably the distances traveled before exiting. To
take this into account, the ballistic condition must require
that Le exceeds not onlyL but also the mean path length
^l t&. Numerical calculations of mean paths are therefore
necessary in order to obtain an estimate for how large the
device can be and still consider the motion as ballistic. Fig-
ures 4~a! and 5~a! plot the mean path lengths for the trans-
mitted particles as a function of the ripple amplituden for
LN and SW channels, respectively. Note that for both SW
and LN channels, the mean path length approaches the value
p l /2 ~which can be obtained analytically15! as the channels
become flat. Hence the mean path length is about 50% larger
than the lengthl of the flat channel. The appearance of small
ripples decreases the mean paths for both LN and SW chan-
nels, but the effect is more drastic for SW channels@see the

inset of Figs. 4~a! and 5#. For LN channels the mean path
length does not exceed the flat channel value as long as the
ripple is less thann50.05, which is half the channel’s aver-
age width. ^l t& increases substantially beyond this value.
Throughout this steady increase the dynamics is qualitatively
the same; all accessible orbits are chaotic, surrounding a
large inaccessible resonance island.15 In this dynamical re-
gime the gradual decrease inT(n) is simply due to the
gradual increase of the boundary slope. For SW channels
^l t& oscillates asn increases but does not exceed the flat
channel value except in the neighborhood of the peak at
n.0.9. Thus, unless the ripples are very large the mean path
length of the rippled channel isshorter than the flat channel
value. Figures 4~b! and 5~b! plot the mean number of colli-
sions of transmitted particleŝNt(n)& for LN and SW chan-
nels, respectively. The specularity parameter, the probability
of specular reflection, can be as large as 0.9~see, e.g., Ref.
16!, which means that diffusive scattering is expected after
about ten collisions. According to this criterion and to Figs.
4~b! and 5~b! there is no loss of memory for particles trans-
mitted in SW channels and some diffusive scattering is ex-
pected for realistic LN channels. As regards the transmissiv-
ity T(n), one would naturally expect it to decay as the
amplitude of the ripple increases. Such is the case for the LN

FIG. 2. Poincare´ maps for electrons moving in the narrow chan-
nel (g50.1). ~a! n50.001 and~b! n50.02.
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channel@Fig. 4~c!# but for the SW channel, Fig. 5~c! shows
that the decrease is not monotonic. In Sec III B we shall
discuss the mechanism responsible for this behavior.

III. DYNAMICAL ORIGIN OF TRANSPORT PROPERTIES

The Poincare´ plots were generated to reveal the various
types of orbits produced by the dynamical system, while the
transmission quantities were obtained by following the tra-
jectories of each of the 105 particles injected at the left lead
with a cosine distribution Eq.~1!. Explicitly, this was accom-
plished by distributing homogeneously along they axis 100
‘‘sources.’’ Each source injected 1000 particles~rays! with a
cosine distribution.

A. Long and narrow channel

The 105 initial conditions corresponding to the injected
particles would fall on the various types of ‘‘accessible’’
orbits in the Poincare´ plots (xn ,pn). Accessible orbits are
those orbits in the Poincare´ plots that can be reached from
the initial conditions of the injected particles. One type of
orbit not accessible are those ellipses@the first-order reso-
nance islands centered atx50.25 in Figs. 2~a! and 2~b!# that

do notcross thepn axis x50. They correspond to particles
trapped within the widest part of the channel. Another ex-
ample of nonaccessible orbits is the unstable, period-one or-
bit of the hyperbolic fixed point (xn ,pn)5(3/4,0). This orbit
corresponds to a particle bouncing up and downexactlyat
the narrowest part of the channel withexactlyzero velocity
in the x direction. Reversibility of motion implies that this
orbit is unreachable, inaccessible from any initial condition
of the injected particles.

For sufficiently small values ofn, e.g,n50.001, the Poin-
caréplots are one-dimensional pendulumlike@see Fig. 2~a!#,
hence the motion is regular. The elliptic orbits correspond to
particles colliding almost perpendicularly with the walls in
the neighborhood of the maximum width of the channel, i.e.,
aboutx51/4. They execute librational motion~similar to the
pendulum’s oscillations about the the stable equilibrium
point!, moving adiabatically forward and backward. For a
certain initial anglea0 atx50, the trajectory makes an angle
b0 ~with the vertical! in the neighborhood ofx51/4. As the
particle moves forward in this librational mode, the angles
bn (n51,2, . . .! decrease gradually until the particle reaches
the turning pointXN , wherebN.0 @Fig. 1~b!#. For a given
set of geometrical parameters there is a critical momentum
pc5sin(bc) corresponding to the largest amplitude of libra-
tional motion atx51/4 @see Figs. 2~a! and 2~b!#. bc can be
estimated from the condition of adiabatic invariance

@g1nsin~2pxn!#cos~bn!5@g1nsin~2pxm!#cos~bm!,
~2!

written for two arbitrary points (xn ,bn) and (xm ,bm). If we
setbn5bc andbm5bN , thenxn51/4 andxm5xN is near

FIG. 3. Poincare´ maps for electrons moving in the wide channel
(g55.0). ~a! n50.001 and~b! n50.01. For symmetry and to show
a more detailed map in case~a! we plot thep axis from 0 to 1.

FIG. 4. Transport characteristics for the LN channel vs ripple
amplitude:~a! dimensionless mean free path,~b! mean number of
collisions for transmitted particles, and~c! transmissivity. The inset
of ~a! is a zoom of the mean path length nearn50.
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3/4. Substitution of these values into Eq.~2! gives, to the first
order,

bc.~2n/g!1/2. ~3!

This parametric dependence ofbc gives also good esti-
mates for the magnitude ofbc . The slightly wavy horizontal
lines on Fig. 2~a! belong to particles translating slowly to the
right (pn.0) or to the left (pn,0). The separatrix divides
two types of motion: translational and librational. The ap-
pearance of the smallest ripple changes the topology of the
phase space, allowing for the reflection of particles.

For perturbative values ofn, e.g.,n50.001, the contribu-
tion to reflection comes only from initial conditions falling
on thepn.0 plane in the accessible elliptical orbits. Asn
increases in the range 0,n &0.01 theaccessible librational
orbits occupy a larger region, hence the number of reflected
particles increases, producing a monotonic decrease in
T(n). Initial conditions falling on the separatrix can also be
reflected, but for this range of small values ofn the separa-
trix is so thin that its contribution to reflection is negligible.

As the ripple amplitude is further increased, the separatrix
becomes chaotic with some sizable width@see Fig. 2~b!#. For
this range of values ofn (0.015&n &0.025) reflection is
due also to initial conditions on the chaotic separatrix. Nu-
merical experiments show15 that the particles on the separa-
trix dwell for a long time in the neighborhood of the hyper-
bolic fixed point (x,p)5(0,3/4), which is an example of a
chaotic repeller~see, e.g., Refs. 6, 17, and 18!. Plots of the
total number of collisionsNc as a function of initial angle
a0 reveal the fractal structure associated with these

repellers.15 The fractality of such functions is usually taken
as the signature of chaotic scattering.17–19

For the range 0.015&n,0.025, the accessible chaotic re-
gion outside the chaotic separatrix~and withpn.0) does not
contribute to reflection because Kolmogorov-Arnon’d-Moser
~KAM ! curves forbid its connection with the chaotic separa-
trix and with the chaotic region for negativepn . There is a
critical value ofn ('0.025) for which the last KAM curve is
destroyed and then all chaotic regions are connected. After
this value ofn one would expect the transmission curve to
decay faster since more and more initial conditions fall on
the chaotic sea and hence the probability of being reflected
increases sharply. This is not the case, as Fig. 4~c! shows.
Poincare´ plots in this range ofn indicate that there is a com-
peting mechanism, namely, the number of librational orbits
accessible to the initial conditions also decreases, and hence
fewer particles are reflected by libration, asn increases. Thus
the slope of the curveT(n) remains roughly constant during
this change in the dynamics.

B. Short and wide channel

Here the most notorious feature is the nonmonotonic de-
cay of T(n) @Fig. 5~c!#. The motion of the associated dy-
namical system~the infinite channel! becomes chaotic even
for small values ofn ~see Fig. 3!. However, the Poincare´
plots provide no clue for understanding the nonmonotonic
decay ofT(n) because the channel is so short and wide that
the great majority of particles transmit with zero or one col-
lision. Instead, we shall analyze the response function
Nt(a0), which is the number of collisions for a transmitted
particle injected with initial anglea0. For flat SW channels
(n50) Nt(a0) is a stepwise function~dashed line on Fig. 6!
with two infinite maxima ata05690° and a wide central
transmission window withNt50. For rippled SW channels,
other peaks and secondary transmission windows appear
~solid lines in Fig. 6!. Figures 7~a!–7~c! plot Nt(a0) in the
region to the right of the central window for
n50.3183'1/p, n50.4775'1.5/p, and n50.6366'2/p,

FIG. 5. Transport characteristics for the SW channel vs ripple
amplitude:~a! dimensionless mean free path,~b! mean number of
collisions for transmitted particles, and~c! transmissivity.

FIG. 6. Number of collisionsNt(a0) for the particle transmitted
through the SW channel (g55) vs initial anglea0. The solid and
dashed lines are for the rippled (n50.222) and flat (n50) chan-
nels.
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respectively. These are the values for the first maximum,
second minimum, and second maximum of^T(n)&, respec-
tively. The interval delimited by arrows in Fig. 7~a! is a
secondary transmission window, born at aroundn50.235,
which is whereT(n) starts to level off after a steady de-

crease@Fig. 5~c!#. This interval is the largest secondary win-
dow and it continues to grow asn increases, reaching a
maximum width at aroundn50.37. Beyond this value the
transmission window breaks into smaller windows with a
pattern shown in the inset in Fig. 7~a!. As n continues to
increase, the secondary window continues to fragment, ‘‘pul-
verizing,’’ until at aroundn50.4775'1.5/p the window is
‘‘closed’’ against the transmitted particles@see Fig. 7~b!#.
This transmitted window appears again forn.1.5/p and
reaches its second maximum atn52/p @Fig. 7~c!#. Note also
that at n51.5/p another wide region, forbidden for the
transmitted particles, appears in the interval 70°,a0,82°.
These two forbidden regions provide the second minima of
the transmissivityT(n). In Figs. 7~a!–7~c! the forbidden re-
gions are shaded. This pattern—the birth, growth, fragmen-
tation, and disappearance of the transmission windows—
oscillates withn. Thus the overall decay of the transmission
is due to the narrowing of the central transmission window
whereas the nonmonotonic decay is due to the birth, growth,
and destruction of the secondary transmission windows.
These windows, intervals of measure one in the initial con-
ditions, have been discussed previously by Roukes and
Alerhand8 and denoted as geometrical channels. Our results
show that the existence of these geometrical channels has a
noticeable effect on the transmissivity of short and wide
channels.

IV. RANDOM VS DETERMINISTICALLY CHAOTIC
SCATTERING

There is a one to one correspondence between the type of
trajectories~regular or chaotic! observed in the Poincare´
plots and the statistics of sequences ofy values at the colli-
sion points. Specifically, power spectrum calculations of the
effective profile give quasiperiodic function and broadband
noise for regular and chaotic orbits, respectively.15 Thus cha-
otic scattering on deterministic profiles is practically indis-
tinguishable from scattering on a random profile. We now
use this analogy to explain the parabolic decay ofT(n) ob-
tained numerically for SW channels@see Fig. 8~a!#. It is well
known ~see, e.g., Ref. 20! that the classical resistivityr of a
plate with rough surfaces increases quadratically,r}z2/d2,
with the rms height of roughnessz. This expansion is valid
for small z (z!d) when the reflection from the rough
boundary is almost specular. The resistancer of a channel is
expressed through the transmissivityT by the well-known
Landauer formula21

r}
12T

T
. ~4!

SinceT→1 asz→0, one obtains that

T~z!512kz2, ~5!

where k is a proportionality constant that depends on the
geometry of the channel. Assuming that the rms heightz of
the roughness of the effective random profile is proportional
to the amplitude of the ripplesn, we conclude that the para-
bolic dependence ofT(n) in the vicinity of n50 is consis-
tent with the chaotic character of the electron motion.

FIG. 7. Evolution of a secondary window of transmission~de-
limited by arrows! with the increase of the ripple amplitude. The
shaded regions indicate intervals that correspond to the reflected
particles.~a! n51/p, the window is spreading;~b! n51.5/p, the
window is closed;~c! n52/p, the window is opened again. Inset:
fragmentation of the secondary window in the vicinity of its maxi-
mum.
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In contrast, the dynamics is almost completely regular for
LN channels even as the ripple amplitude increases to about
n50.015. The phase space is dominated by KAM tori in a
pendulumlike fashion and the analogy with scattering at the
random boundary fails. The motion of electrons with angles
a0→p/2 can be considered in the adiabatic approximation.
The reflected electrons move almost perpendicularly to the
boundaries with small longitudinal velocityvx}cosa0'b0
and produce a backward flux

R512T.
d

n0
E
0

bc
b0r~p/22b0!db0.bc

3 , ~6!

which is proportional ton3/2 @see Eq.~3!#. Thus the transmis-
sivity of a channel with regular dynamics of particles decays
faster than that for a channel with chaotic dynamics. In Figs.
8~a! ~inset! and 8~b! we plot the reflectivityR512T vs n
for the initial distribution of 106 particles.22 The curve
R(n) for the SW channel fits the dependenceR(n);n2.24

and that of the LN channel fitsR(n);n1.46. Our analysis
here predictsn2 ~random! and n1.5 ~regular!, respectively.
For LN channels the agreement between analytical and nu-
merical results is very good. The reason for the discrepancy

in SW channels is that the number of collisions in the SW
channel is not large enough to provide a statistical average
over the ensemble of effective random profiles. Numerical
experiments with wide channels demonstrate that the expo-
nente in ne slowly approaches 2 as the lengthl of the chan-
nel increases.

An experimentally measurable quantity is the resistivity
r of the channel. According to Eqs.~5! and~6!, we conclude
that r increases~in the region of smalln) proportionally to
n3/2 for regular and ton2 for chaotic dynamics of electrons in
the channel. Qualitatively different behavior for the weak
localization peak in the magnetoresistance of ballistic micro-
structures in the shape of a stadium and a circle has been
observed recently in experiments1,2 and explained
theoretically.23 Note that experiments1,2 are concerned with a
quantum effect~weak localization peak! in systems that are
classically chaotic or regular. Here we propose a criterion
that is related to the measurement of classical resistivity of a
classical ballistic channel.

V. CONCLUSION

We have carried out classical calculations of transmission,
mean path length, and mean number of collisions for an ini-
tial cosine distribution of 105 and 106 electrons injected into
an electron conducting channel with a periodically modu-
lated profile. Two distinct representative geometries were
analyzed in detail, namely, short-wide channels and long-
narrow channels. The curves for mean path lengths and mean
number of collisions may be used to estimate the validity of
the ballistic regime. The dynamical system exhibits the ge-
neric transition to chaos as the ripple amplitude (n) in-
creases. The contribution of the regular and chaotic regions
to reflection and transmission was identified. The Poincare´
plots were most useful for understanding transmission fea-
tures for the LN channel essentially because the particles
dwell, on the average, for a sufficiently long time.

The number of collisions as a function of initial angle
Nt(a0) proved to be a very useful response function for un-
derstanding features of the transmission curves for both nar-
row and wide channels. The curves forNt(a0) show win-
dows of transmission and reflection in between high sharp
peaks of reflection or transmission that depend strongly on
the initial conditiona0 and possess fractal structure associ-
ated with the chaotic repellers of the system. The main con-
tribution to the mean number of collisions and mean path
length comes from initial conditions in these windows~or
geomerical channels!. The nonmonotonic decay of the trans-
mission of particles in SW channels results from the birth,
growth, and fractalization of secondary transmission win-
dows.

Based on analytical and numerical calculations, we pro-
pose a criterion to distinguish between regular and chaotic
dynamics of electrons in the rippled channel by measuring its
classical resistivityr as a function of ripple amplituden. For
the case of regular dynamicsr(n)}n3/2 and for the chaotic
dynamicsr(n)}n2 in the region of smalln.

Finally, we remark that the quantum study of this system
is of interest as a means of exploring the correspondence
between classical and quantum transport and dynamical
properties in both integrable and chaotic regimes.13

FIG. 8. ~a! Transmissivity of the SW channel vs ripple ampli-
tude. Inset: reflectivity vs ripple amplitude for 106 injected par-
ticles. ~b! Reflectivity of the LN channel vs ripple amplitude for
106 injected particles.
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