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Classical chaos and ballistic transport in a mesoscopic channel
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We study transport properties in the classical ballistic regime of a two-dimensional electron channel with
sinusoidealrippled boundaries. We calculate the transmission coefficient, the average number of collisions,
and the mean path length, as a function of ripple amplitude. The Poiptaigeof the associated dynamical
system(the infinitely long channglexhibit the generic transition to chaos as the amplitude of the ripples is
increased. The chaotic nature of the finite channel is manifested by the fractal character of a response function.
Transport features and dynamical properties are correlated. We compare our results with those that consider
collisions with randon{rough boundaries. A criterion is proposed to distinguish between regular and chaotic
dynamics by measuring classical resistiviifg0163-182@06)02240-0

I. INTRODUCTION relate the transport properties of the finite channel with the
dynamical properties of the infinite channel. Based on this,
The development of nanostructure technology and the adwve obtain a criterion that allows a distinction between regu-
vances in the theory of dynamical systems has led to thé&r and chaotic motion by measuring the classical resistivity
search for signatures of chaos in the transport properties ¢ the channel.
mesoscopic samples. Important results have recently been
obtained in quantum transport, i.e., in phenomena where the Il. CLASSICAL TRANSPORT PROPERTIES

wave nature of electrons plays a fundamental role. For ex- | .
ample, measurements of magnetoresistance in ballistic mi- Figure 1 specifies the geometry of the channel. The top

crostructures in the shape of a “chaotic” billiard and the Profile is given byY=d+asin(2mX/b). L is the length of the
circle showed clear distinctions in the power spectrum ofchannel. It is convenient to write the profile in dimensionless
universal conductance fluctuations and in the line shape dfoordinates asy=Y/b=y+vsin(2nx), where x=X/b,

the weak localization pea This line of investigation per- »=a&/b, y=d/b, and [=L/b. Assuming the simplest con-
tains to the very prolific field of quantum chaos, the study of

the quantum manifestations of classical chasthis paper, 5 b 1 a
however, we address another important aspect, namely, the | ‘ l /
search for signatures of chaos in classical transport proper- T
ties. The classical counterpart of universal quantum fluctua- d
tions of conductance has been studied in Refs. 4 and 5. Clas- ¥ A <% x

sical resistivity of ballistic cavities with either regular or l

chaotic dynamics of electrons was analyzed in Ref. 6, where
it was shown that dynamical chaos is responsible for the (a)
well-known additive property for resistors connected in se-
ries. Within the framework of the classical billiard-ball
model! various effects in narrow electronic channels can be
understood if the number of transverse channels is large
enough(even 3 may be sufficienf~12

The present work is concerned with classical ballistic
transport through a two-dimensional channel formed be-
tween a sinusoiddrippled and a flat boundarysee Fig. 1
Certain features of the quantum-classical correspondence of
this system have been studied in Ref. 13. The trajectories are
deterministic but not integrable, hence there is regular and
chaotic scattering at the boundaries. As the amplitude of the (p) X = 1/4
ripple is increased the electron dynamics changes from regu-
lar to mixed and to global chaos. Transport characteristics of FIG. 1. Geometry of the rippled channel and real-space trajec-
the channel that can be measured experimentally, e.g., resisries of an electroria) transmitted to the right antb) executing
tivity, depend on these distinct dynamical regimes. We corfibrational motion in adiabatic regime.
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nection to the lead, the initial distribution is given by
p(ag)=(no/2d)cosx,, oY)

where ag is the angle of incidencksee Fig. 1a)] andng is
the number of electron@ypically 1¢) injected on the left-
hand side.

The trajectory of each electrqall with the same magni-
tude of velocity defined by its initial condition ¥, ag) is
followed, keeping a record of the number of collisions with
the boundaries and the length it travels before it leaves the
channel to the right or to the left. The transmissivitythe
mean number of collisions for transmitted particlég), and
the mean path lengtti\;) are computed for a given set of
geometrical parameters(y, ). (A} ({(N)) is the total path
length (sum of all collision$ of all the transmitted particles
divided by the number of transmitted particles. Transmissiv-
ity is the flux of transmitted particles divided by the incom-
ing flux.

Consider a channel with few periods of ripples. We shall
look at two prototypical shapes. The combinatips 5 and
=2 produces a short and wide channel, i.e., its length is
2/5 its width. For brevity we shall refer to it as a SW chan-
nel. The combinationy=0.1 andl=2 produces a long and
narrow (LN) channel; its length is 20 times its width.

The associated dynamical system is a rippled channel of
infinite length. We use the top profile= v+ vsin(2ax) as a
surface of section to obtain Poincapéots (x,,p,), where
Xn (Pn) is the value of thex coordinate(momentum right
after thenth collision. TennysoH has explored the dynam-
ics of an approximate version of this map, which is valid for
small values ofv/y. The various types of dynamics are re-
vealed in the Poincarplots as we vary the value of. In
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Ref. 15 a complete panorama of the dynamics of this system . -
is given. Figures @) and Zb) and Figs. 8&) and 3b) cor- FIG_.2. Pomcar_emaps for electro_ns moving in the narrow chan-
respond to two dynamical regimes of LN and SW channels"® (7=0-1). (@ »=0.001 andb) »=0.02.
respectively. We have chosen the common initial value of
x=1/4 in order to obtain all the possible types of trajectoriesnset of Figs. 4a) and 5. For LN channels the mean path
allowed by the system even though the transmission quantlength does not exceed the flat channel value as long as the
ties were calculated with an initial distribution E) placed ripple is less than=0.05, which is half the channel's aver-
atx=0. age width.(\;) increases substantially beyond this value.
The classical ballistic regime is realized at low tempera-Throughout this steady increase the dynamics is qualitatively
tures in nanostructures where the size of the sampdesuch  the same; all accessible orbits are chaotic, surrounding a
that \p<L=<L,, where\r is the electron wavelength and large inaccessible resonance isldhdn this dynamical re-
L. is the mean free patfsee, e.g., the review in Ref).7 gime the gradual decrease W(v) is simply due to the
Collisions with the boundaries in mesoscopic systems magradual increase of the boundary slope. For SW channels
alter considerably the distances traveled before exiting. Td\;) oscillates asv increases but does not exceed the flat
take this into account, the ballistic condition must requirechannel value except in the neighborhood of the peak at
that L, exceeds not onlf but also the mean path length »=0.9. Thus, unless the ripples are very large the mean path
(N\y). Numerical calculations of mean paths are therefordength of the rippled channel ghorterthan the flat channel
necessary in order to obtain an estimate for how large thealue. Figures éb) and 3b) plot the mean number of colli-
device can be and still consider the motion as ballistic. Figsions of transmitted particledN,(v)) for LN and SW chan-
ures 4a) and 5a) plot the mean path lengths for the trans- nels, respectively. The specularity parameter, the probability
mitted particles as a function of the ripple amplituddor  of specular reflection, can be as large as B¢k, e.g., Ref.
LN and SW channels, respectively. Note that for both SW16), which means that diffusive scattering is expected after
and LN channels, the mean path length approaches the valabout ten collisions. According to this criterion and to Figs.
wl/2 (which can be obtained analytical®y as the channels 4(b) and %b) there is no loss of memory for particles trans-
become flat. Hence the mean path length is about 50% largenitted in SW channels and some diffusive scattering is ex-
than the length of the flat channel. The appearance of smallpected for realistic LN channels. As regards the transmissiv-
ripples decreases the mean paths for both LN and SW chaity T(v»), one would naturally expect it to decay as the
nels, but the effect is more drastic for SW chanrieke the amplitude of the ripple increases. Such is the case for the LN
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FIG. 4. Transport characteristics for the LN channel vs ripple
amplitude:(a) dimensionless mean free paftlh) mean number of
collisions for transmitted particles, arid) transmissivity. The inset
of (a) is a zoom of the mean path length neer 0.

do notcross thep,, axisx=0. They correspond to particles

. i . 0.6 0.8 10 .y X
00 02 04 X trapped within the widest part of the channel. Another ex-

n . . . .
ample of nonaccessible orbits is the unstable, period-one or-

FIG. 3. Poincarenaps for electrons moving in the wide channel bit of the hyperbolic f'X_ed pomt)(“_'p“) =(3/4,0). This orbit
(y=5.0).(a) »=0.001 andb) »=0.01. For symmetry and to show corresponds to a particle bouncing up and damactlygt
a more detailed map in casa) we plot thep axis from 0 to 1. the narrowest part of the channel wighactlyzero velocity
in the x direction. Reversibility of motion implies that this
channel[Fig. 4(c)] but for the SW channel, Fig.(§ shows orbit is_ aneachablg, inaccessible from any initial condition
that the decrease is not monatonic. In Sec Il B we shalPf the injected particles.

discuss the mechanism responsible for this behavior. For sufficiently small values of, e.g,»=0.001, the Poin-
careplots are one-dimensional pendulumlilse=e Fig. 2a)],

hence the motion is regular. The elliptic orbits correspond to
1. DYNAMICAL ORIGIN OF TRANSPORT PROPERTIES particles colliding almost perpendicularly with the walls in

The Poincareplots were generated to reveal the variousthe neighborhood of the maximum width of the channel, i.e.,

types of orbits produced by the dynamical system, while théPoux=1/4. They execute librational motidsimilar to the
transmission quantities were obtained by following the traP€ndulum’s oscillations about the the stable equilibrium
jectories of each of the 2(articles injected at the left lead pomt)_, moving adiabatically forwarq and backward. For a
with a cosine distribution Eq). Explicitly, this was accom-  Certain initial anglex, atx=0, the trajectory makes an angle
plished by distributing homogeneously along thexis 100 Bo (with the vertica) in the neighborhood ot=1/4. As the

“sources.” Each source injected 1000 particlesys with a particle moves forward in this librational mode, the angles
cosine distribution. Bn (n=1,2,...) decrease gradually until the particle reaches

the turning pointXy, where8y=0 [Fig. 1(b)]. For a given

set of geometrical parameters there is a critical momentum

p.=sin(B.) corresponding to the largest amplitude of libra-
The 1@ initial conditions corresponding to the injected tional motion atx=1/4 [see Figs. @) and 2b)]. B can be

particles would fall on the various types of “accessible” estimated from the condition of adiabatic invariance

orbits in the Poincarelots (x,,p,). Accessible orbits are ) )

those orbits in the Poincanglots that can be reached from Y1 ¥SIN2mXy)]cos By) =[y+ vSiN(2mX ) ]cOK Brn),

the initial conditions of the injected particles. One type of 2

orbit not accessible are those ellipsgbe first-order reso- written for two arbitrary pointsX,, ,8,) and &.,,8my)- If we

nance islands centered)at 0.25 in Figs. 2a) and 2b)] that  setB,= 3. and B,,= Bn, thenx,=1/4 andx,,=xy is near

A. Long and narrow channel
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FIG. 6. Number of collisiond;(«,) for the particle transmitted
through the SW channeh(=5) vs initial anglea,. The solid and
dashed lines are for the rippled<€0.222) and flat {=0) chan-
nels.

0.0 0.2 0.4 0.6 0.8 1.0 repellerst® The fractality of such functions is usually taken
as the signature of chaotic scatteririg'®

For the range 0.0E5v<<0.025, the accessible chaotic re-
egion outside the chaotic separattand withp,,>0) does not
contribute to reflection because Kolmogorov-Arnon’'d-Moser
(KAM) curves forbid its connection with the chaotic separa-
trix and with the chaotic region for negatiyg,. There is a
critical value ofv (=~0.025) for which the last KAM curve is
destroyed and then all chaotic regions are connected. After
this value ofr one would expect the transmission curve to
1 decay faster since more and more initial conditions fall on

Be=(2vly)™. () the chaotic sea and hence the probability of being reflected
increases sharply. This is not the case, as Fig\ ghows.

This parametric dependence Bf gives also good esti- Poincareplots in this range o indicate that there is a com-
mates for the magnitude ¢, . The slightly wavy horizontal ~peting mechanism, namely, the number of librational orbits
lines on Fig. 2a) belong to particles translating slowly to the accessible to the initial conditions also decreases, and hence
right (p,>0) or to the left ,<0). The separatrix divides fewer particles are reflected by libration, agcreases. Thus
two types of motion: translational and librational. The ap-the slope of the curv&(v) remains roughly constant during
pearance of the smallest ripple changes the topology of théhis change in the dynamics.
phase space, allowing for the reflection of particles.

For perturbative values af, e.g.,»=0.001, the contribu-
tion to reflection comes only from initial conditions falling
on thep,>0 plane in the accessible elliptical orbits. As Here the most notorious feature is the nonmonotonic de-
increases in the range<Ov <0.01 theaccessible librational cay of T(v) [Fig. 5c)]. The motion of the associated dy-
orbits occupy a larger region, hence the number of reflectedamical systenithe infinite channglbecomes chaotic even
particles increases, producing a monotonic decrease ifor small values ofv (see Fig. 3 However, the Poincare
T(»). Initial conditions falling on the separatrix can also be plots provide no clue for understanding the nonmonotonic
reflected, but for this range of small valuesiothe separa- decay ofT(v) because the channel is so short and wide that
trix is so thin that its contribution to reflection is negligible. the great majority of particles transmit with zero or one col-

As the ripple amplitude is further increased, the separatrifision. Instead, we shall analyze the response function
becomes chaotic with some sizable wifisee Fig. 20)]. For  N(«g), which is the number of collisions for a transmitted
this range of values of (0.015s» <0.025)reflection is  particle injected with initial anglex,. For flat SW channels
due also to initial conditions on the chaotic separatrix. Nu-(»=0) N;(«,) is a stepwise functiofdashed line on Fig.)6
merical experiments shdwthat the particles on the separa- with two infinite maxima atey=+90° and a wide central
trix dwell for a long time in the neighborhood of the hyper- transmission window wittN;=0. For rippled SW channels,
bolic fixed point &,p)=(0,3/4), which is an example of a other peaks and secondary transmission windows appear
chaotic repeller(see, e.g., Refs. 6, 17, and)1®lots of the (solid lines in Fig. 6. Figures Ta)—7(c) plot N;(«g) in the
total number of collisiondN, as a function of initial angle region to the right of the central window for
ay reveal the fractal structure associated with theser=0.3183<1/w, v=0.4775=1.5/7, and v=0.6366= 2/,

FIG. 5. Transport characteristics for the SW channel vs rippl
amplitude:(a) dimensionless mean free pat) mean number of
collisions for transmitted particles, arid) transmissivity.

3/4. Substitution of these values into Eg) gives, to the first
order,

B. Short and wide channel
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creasq Fig. 5(c)]. This interval is the largest secondary win-

18 V=04 N _ dow and it continues to grow as increases, reaching a
[ : maximum width at around =0.37. Beyond this value the

12 — 0 5'5 : 6'0 : 6'5 increase, the secondary window continues to fragment, “pul-
verizing,” until at aroundv=0.4775<1.5/7 the window is
T < “closed” against the transmitted particldsee Fig. Tb)].
6 -
| that at v=1.5/7 another wide region, forbidden for the
F‘ J transmitted particles, appears in the interval Z@7,<<82°.
0 . | | | , | These two forbidden regions provide the second minima of
80
0 tation, and disappearance of the transmission windows—
T r . T , - . oscillates withy. Thus the overall decay of the transmission
is due to the narrowing of the central transmission window
Alerhand and denoted as geometrical channels. Our results
show that the existence of these geometrical channels has a
noticeable effect on the transmissivity of short and wide

4 (a) Ely o i transmission window breaks into smaller windows with a
i This transmitted window appears again feor1.5/7 and
50 60 20 00 the transmissivityl (v). In Figs. 7a)—7(c) the forbidden re-
15 —
(b) whereas the nonmonotonic decay is due to the birth, growth,
channels.

1 i I pattern shown in the inset in Fig(d). As v continues to
reaches its second maximumat 2/7 [Fig. 7(c)]. Note also
o gions are shaded. This pattern—the birth, growth, fragmen-
i ] and destruction of the secondary transmission windows.
Ny These windows, intervals of measure one in the initial con-
10 — . ditions, have been discussed previously by Roukes and

IV. RANDOM VS DETERMINISTICALLY CHAQOTIC
— SCATTERING

There is a one to one correspondence between the type of
trajectories (regular or chaotic observed in the Poincare
. T r r - T - plots and the statistics of sequencesy/ofalues at the colli-
] sion points. Specifically, power spectrum calculations of the
21 — (c) - effective profile give quasiperiodic function and broadband
noise for regular and chaotic orbits, respectivelfhus cha-
t 1 T otic scattering on deterministic profiles is practically indis-
tinguishable from scattering on a random profile. We now
use this analogy to explain the parabolic decayl 6f) ob-
tained numerically for SW channdlsee Fig. 83)]. It is well
known (see, e.g., Ref. 3hat the classical resistivity of a
plate with rough surfaces increases quadraticalby{?/d?,
with the rms height of roughnegs This expansion is valid
for small ¢ ({<d) when the reflection from the rough
0 . I . I . I boundary is almost specular. The resistapee a channel is

50 60 70 80 90 expressed through the transmissivityby the well-known

o, Landauer formul@d

14 —

1-T

FIG. 7. Evolution of a secondary window of transmissicie- px - (4)
limited by arrowsg with the increase of the ripple amplitude. The
shaded regions indicate intervals that correspond to the reflect
particles.(a) v= 1/, the window is spreadingb) v=1.5/m, the
window is closedjc) v= 2/, the window is opened again. Inset: 5
fragmentation of the secondary window in the vicinity of its maxi- T(=1=«r{%, ®)
mum.

eginceTﬂl as{—0, one obtains that

where k is a proportionality constant that depends on the
respectively. These are the values for the first maximumgeometry of the channel. Assuming that the rms heigbft
second minimum, and second maximum(@{»)), respec- the roughness of the effective random profile is proportional
tively. The interval delimited by arrows in Fig.(& is a  to the amplitude of the ripples, we conclude that the para-
secondary transmission window, born at around0.235, bolic dependence of (v) in the vicinity of v=0 is consis-
which is whereT(v) starts to level off after a steady de- tent with the chaotic character of the electron motion.
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1000 in SW channels is that the number of collisions in the SW
channel is not large enough to provide a statistical average
over the ensemble of effective random profiles. Numerical
experiments with wide channels demonstrate that the expo-
nente in v slowly approaches 2 as the lendtbf the chan-
nel increases.

An experimentally measurable quantity is the resistivity
p of the channel. According to Eq&) and(6), we conclude
that p increasegin the region of smally) proportionally to
v*2 for regular and ta/? for chaotic dynamics of electrons in
the channel. Qualitatively different behavior for the weak
localization peak in the magnetoresistance of ballistic micro-
structures in the shape of a stadium and a circle has been
observed recently in experimehfs and explained
theoretically?® Note that experimentg are concerned with a
quantum effec{weak localization pegkin systems that are
classically chaotic or regular. Here we propose a criterion
L La6 i that is related to the measurement of classical resistivity of a
R~ v~ classical ballistic channel.

0.998

g - . V. CONCLUSION
[~

4+ — We have carried out classical calculations of transmission,

(b) mean path length, and mean number of collisions for an ini-

tial cosine distribution of 10and 16 electrons injected into

0 [ R I B an electron conducting channel with a periodically modu-

0 2 4 6 8 10 lated profile. Two distinct representative geometries were
v (104 analyzed in detail, namely, short-wide channels and long-

narrow channels. The curves for mean path lengths and mean
number of collisions may be used to estimate the validity of

FIG. 8. (a) Transmissivity of the SW channel vs ripple ampli- the ballistic regime. The dynamical system exhibits the ge-

tude. Inset: reflectivity vs ripple amplitude for &njected par- Neric transition to chaos as the ripple amplitude) (n-
ticles. (b) Reflectivity of the LN channel vs ripple amplitude for creases. The contribution of the regular and chaotic regions

10f injected particles. to reflection and transmission was identified. The Poincare
plots were most useful for understanding transmission fea-
tures for the LN channel essentially because the particles
In contrast, the dynamics is almost completely regular fordwell, on the average, for a sufficiently long time.
LN channels even as the ripple amplitude increases to about The number of collisions as a function of initial angle
»=0.015. The phase space is dominated by KAM tori in aN:(«) proved to be a very useful response function for un-
pendulumlike fashion and the analogy with scattering at thélerstanding features of the transmission curves for both nar-
random boundary fails. The motion of electrons with anglegow and wide channels. The curves fdf(ag) show win-
ao— /2 can be considered in the adiabatic approximationdows of transmission and reflection in between high sharp
The reflected electrons move almost perpendicularly to th@eaks of reflection or transmission that depend strongly on
boundaries with small longitudinal velocity,<cosx~pB, the initial conditiona, and possess fractal structure associ-
and produce a backward flux ated with the chaotic repellers of the system. The main con-
tribution to the mean number of collisions and mean path
length comes from initial conditions in these windovs

d (5 5 geomerical channelsThe nonmonotonic decay of the trans-
R=1-T= n_f Bop(m/2— Bo)dBo= B¢, (6)  mission of particles in SW channels results from the birth,
070 growth, and fractalization of secondary transmission win-
dows.
which is proportional ta/*?[see Eq(3)]. Thus the transmis- Based on analytical and numerical calculations, we pro-

sivity of a channel with regular dynamics of particles decayspose a criterion to distinguish between regular and chaotic
faster than that for a channel with chaotic dynamics. In Figsdynamics of electrons in the rippled channel by measuring its
8(a) (insey and 8b) we plot the reflectivityR=1—T vs »  classical resistivity as a function of ripple amplitude. For

for the initial distribution of 16 particles?> The curve the case of regular dynamiggv) e »*? and for the chaotic
R(v) for the SW channel fits the dependerRév)~ 1?24  dynamicsp(v)=v? in the region of smalb.

and that of the LN channel fitR(v)~ »*¢ Our analysis Finally, we remark that the quantum study of this system
here predictsy? (random and »*®° (regulaj, respectively. is of interest as a means of exploring the correspondence
For LN channels the agreement between analytical and nibetween classical and quantum transport and dynamical
merical results is very good. The reason for the discrepancproperties in both integrable and chaotic regirhies.
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