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Self-consistent density of states for a single- and double-quantum-well structure
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The electron energy eigenstates for an isolated and a pair of strongly coupled quantum-well structures with
a quantizing magnetic fiel@ parallel to the planes are calculated. Numerical results are presented for the
energy eigenvalues as a functionBf as well as the in-plane wave numbgr. The results show a crossover
behavior as the magnetic field is increased, with the critical magnetic field corresponding to the well width
being equal to the magnetic length. This implies that for the pair of coupled quantum wells the tunneling
between wells is suppressed in the high magnetic field regime with the electrons confined to the wells, which
is also evident from the wave functions. In the low magnetic field regime, the energy eigenvalue spectrum is
more densely distributed compared to the high magnetic field region. When plotted as a fundtjontfuod
energy spectra for both the single- and double-quantum-well systems have gaps. The eigenfunctions for the
lowest states are also presentedKp+0 andk, finite to demonstrate their dependence on this wave vector.
These results are used to obtain the partial density of states for each energy eigenvalue as a function of the
electron energy for fixed magnetic field strength. The role played by impurity scattering is included in the
self-energy, through the self-consistent Born approximation. The magnitude of the contribution from the
self-energy to the partial density of states increases with the magnetic field. The role played by the electron
tunneling between coupled wells for the self-consistent density of states is incJ@@d®k3-182806)06740-9

[. INTRODUCTION netic field and the tunneling in the DQW structure. This will
produce minigaps and saddle points in the density of states
Recently, there has been a considerable amount of intereathen B is strong. Our results for the energy eigenvalues as
in strongly coupled two-dimensional electron g@&bEG) a function ofB|; show the splitting of the originally degen-
systems. In a double-quantum-wel[DQW) structure, the erate Landau energy levels due to tunneling in the strong
tunneling between the two parallel 2DEG layers introducesnagnetic field limit. The partial density of states is obtained
several interesting features in the cyclotron resonance, magising the self-consistent Born approximation. The role
netoplasmon excitation spectrum, as well as the electricgdlayed by the impurity interaction matrix element increases
transport, all of which have no counterpart in a single 2DEGwith the magnetic field. Therefore, the self-consistency of
The effect due to tunneling could of course be adjusted byhe calculation for the density of states becomes more impor-
varying the thickness of the barrier layer separating the twaant in the high magnetic field regime. This is the first step in
quantum well{QW's). As reported recently, the role of tun- 3 calculation of the static conductivity, for a quantum-
neling has also been demonstrated in theoretical calculationge|| structure in the presence of an in-plane magnetic field
of the magnetoplasmon excitation for a magnetic field peryitn the electric field and the current along the growth
pendicular7£ the 2DEOGlllayef3sln a series of papers, Sim- a,is  Resonant tunneling experiments have also been re-
monset al.”~?and Lyd®*have reported on experiments for ported for DQWSs in a parallel magnetic fief#:15 These

:he COI’IﬁUCtIVIty and fny|_Ot|l’(§)n resor;_agce for” [I)?Wthsnuz%experiments show the effect due to tunneling on the current-
ures when a magnetic field 1S applied parallel to the voltage characteristics. The results of the present paper could
planes. In Ref. 8, the magnetic fiel] is in thez direction,

the electron gases are in tgez plane, and the electric field be applied n analyzing the re§ults of these experiments.
- ) The outline of the rest of this paper is as follows. In Sec.
E makes an anglé with B . The component of the current | '\e derive the dispersion relation for the energy eigenval-
j in the direction ofE yields the in-plane magnetoconduc- ues and eigenfunctions of a single quantum well in a mag-
tivity j*-E/E2 which exhibits several interesting features duenetic field B, parallel to the confining potential. Detailed
to magnetic field-induced anticrossing of the electron energyumerical results are given for the eigenvalue spectrum as a
bands. function of B, and the wave vector dispersion for the in-
In this paper, we are interested in calculating the singleplane wave vector for a fixed value of the magnetic field
electron wave functions, the energy eigenvalues, and thestrength. In Sec. Ill, we repeat the calculations of Sec. Il for
density of states for a single quantum well and a pair ofa pair of strongly coupled quantum wells. In Sec. IV, we
coupled quantum well§*? in the presence of a magnetic formulate the calculation of the density of states in the self-
field parallel to the planes confining the electron gases. For aonsistent Born approximation and provide numerical results
pair of coupled QWs, the guadratic energy dispersions ofor the single- and double-quantum-well structures. Sec-
electrons in a single well anticross due to the in-plane magtion V contains a summary of our results and some conclud-
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using the average value* in Eq. (1). Herej is a quantum

| < [ | { < |
> I s (@ number labeling the subbands aqg- (k, ,k,). We note that
: : for a symmetric potential withU g, —X)=Ug(X), the
4r - U Hamiltonian in this gauge is invariant und& to —B;
o R e el when we make the replacemext> —x. For Eq. (1), we
Ty B iy ST write  the wave function in the form of
2 zﬂjk*H(F)=qbiky(x)exp@knyrikzz)/\/K, where A is the cross-
LﬁJO 2L it i, - sectional area of the 2DEG, and we introduce a new variable
> I &, =\2(x//w+/uk,). Then, Eq.(1) yields
1 e i
", : P (&) [Ejlk)—Ued &) &
I S S A B yz —+ L ok (& )=0,
0 A& ho. 4 | 7Ky SRy
-0.04 -0.02 0.00 0.02 0.04 y ©)
k, (A
6 where Ej(ky)zEj(Eu)—f;zki/zm*, w.=eB/m*, /y
=fileB is the magnetic length, and,, stands for the
5 |- potential of a single wellor a DQW in the next section
Thus the electron potential in EG2) consists of a square
well potential that is symmetric abowut=0 and a magnetic
S ar parabola with its minimum at= — kylﬁ . We note that when
ls" 3| U in Eg. (2) is a constant, we have the standard equation
£ for parabolic cylinder functions. Subsequently, for the QW
o . )
i, structures we consider, the general solution of gcan be
>2r expressed in terms of two linearly independent parabolic cyl-
inder functions Dv(gky) and Vy(gky), where v=[E;(ky)
r —Eol/hwe—1/2, with Eq=0 or U, in the well or barrier
0 region, respectively. For convenience, we have given inte-

gral representations of these special functions in the Appen-
dix, which are used in our numerical calculations. These
functions have the following propertié$:

FIG. 1. Plot of the lowest scaled energy eigenvalues 0, & —>
vo=E;j(k))/fiw.—1/2 for a single quantum well. We chose D,(& )= y (3)
m* =0.0667,, Uy=213 meV, and 2=200 A. In (), v, is plot- L P
ted as a function ok, in the unit of A~* for By=10 T. In (b),

v is plotted as a function d, for k,=0. The Landau levels are at
integer values.

o, &

vx@{ @

. - . 0, & ——,
ing remarks. An Appendix is devoted to some mathematical Y

details for the parabolic cylinder function, in terms of which ) o
the eigenfunctions are expressed. whose linear combination can be used to construct the gen-

eral solution of Eq(1).
For a single quantum well, the solution inside the well,

Il. SINGLE-PARTICLE EIGENSTATES —a<x<a,is

FOR A SINGLE QUANTUM WELL

Let us first consider electrons moving in the plane in bix (x)=C(2>(ky)DV (& )+C(3)(ky)vy (&), (5
a magnetic fieldB parallel to thez axis and a one- y . o> oy
d|menS|or?aI POtentlaUeXt(X)' n the}gndau gaug(_—:‘ with vec- where vo=E;(k,)/fiw.—1/2 and, similarly, the solution in
tor potentialA=(0,B)x,0), the Schrdinger equation for an  the two barrier regions can be written as
electron has the form

2 g2 %2 (92+ 1 _ha+ 5 2 cj(1>(ky)vyl(§ky), x<-—a
o a2 o P |y OB M0 etgp, 8. xa @
y
+Uex(X) lﬁjKH(F)ZEJ(EH)%KH(F), (D) wherev;=[E;(ky) —Uol/fw—1/2. In terms of the continu-

ous boundary conditions for the wave functions and their
and, for simplicity, the spatial variation of the electron effec-derivatives, we obtain the following equation determining
tive mass in the well and barrier regions is accounted for byE;(k,) andC{’(k,):
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6——T—— T ~dD(&)  — dV, (&)
Lo . @] D, (0="— 6 Vi (0=—4 6 (8b)
A From Eg. (7), we can expres€{?(k,), ... ,C{"(k,) in
Q 4 = e = terms ofC{"(k,) which must itself be determined from the
o — g normalization condition for each eigenstate wave function
€ 3F N S - #ik (X) given by Eqs(5) and(6).
n ™ / Iyn Fig. 1(a), we present results for the scaled energy ei-
= 2 V - genvaluesvy=E;(k,)/fiw.—1/2 in a single quantum well,
;\.._—-—-\V,—-—.___/, obtalneq by solving Eq.7) as a function ok, Ior a parallel
1} \ /# - magnetic f|_eIdBH=1O T. Here, we takem*=0.067"m,,
where m, is the free-electron mass,a2200 A, and
ol—s1 T ) et Up=213 meV. For these values oB; and m*,
-0.04 -002 0.00 0.02 0.04 hw.,=17.264 meV so that all the levels shown lie below the
k (A top of the potential barrier. These calculations show that
Y when the homogeneous 2DEG is modulated by a single-
25 . ' . T . square-well potential, thekf,—dispersion relation for each
quantized energy level in the absence of an external mag-
netic field becomes hybridized with each of the originally
20 degenerate Landau levels of a homogeneous 2DEG in the
~ presence of an external magnetic field, which are indepen-
~ 15 dent ofk,. The results in Fig. () show that thek, disper-
g sion may vary from one energy level to another and that the
5 effects due to scattering from the quantum well are largest
£c10 for the high energy states whose orbital radii increase with

the Landau level index. Thus the electron motion in the well
does not follow the guiding center and the spacing between
energy levels is not constant. In Figial, we also show the
Landau levels for the homogeneous 2DEG, which are
straight lines at integer values parallel to #yeaxis when the
energy levels are scaled Byw. and 1/2 is subtracted from
B, (M the result. In Fig. (b), we display the energy eigenvalues in
a single quantum well as a function of the parallel magnetic
FIG. 2. Plot of the lowest scaled energy eigenvaluesfield B|. Here, we takéZH=0, and all the other parameters
vo=E;j(ky)/fiw,—1/2 for a double quantum well. We chose for the quantum well, i.e., the well width, the barrier height,
m* =0.066M,, Uo=213 meV, 21=200 A, and the barrier sepa- and the electron effective mass, are the same as Fig. I
rating the two wells has width=20 A. In (a), v, is plotted as a  the Jow magnetic field regime, there is considerable mixing
function ofk, in the unit of A~ for By=10 T. In(b), v, is plotted  of the | andau orbits from different Landau levels and with
as a function oB, for k,=0. different guiding centers due to the presence of the potential
barriers. This results in the densely distributed energy eigen-

Vyl(—a) —5VO(—a) —VVO(—a) 0 values at low magnetic field. As the magnetic field is in-
~ ~ ~, creased, the orbits become commensurate with the width of
vV, (-a) -D,(-a) -V,(-a) 0 the well (,,=a whenB;~6.6 T). At large magnetic fields

= where the diameter of the orbits is much less than the well
width, the mixing of the Landau levels and Landau orbits for
0 -D/ (a) ~V/ (a) D!(a) the electrons by the confining potential is negligible, thereby
0 0 giving rise to the approaching of the energy levels to Landau
levels. The separation between the energy levels within the
well in the absence of a magnetic field increases with energy

0 -Dy@ -V,

Cfl)(ky) whereas the energy levels within the magnetic parabola are
c}2>(ky) equally spaced. However, as the magnetic field is increased,
X Ci¥(k,) =0, (7) the curvature of the magnetic parabola increases and the en-
i Ry ergy levels are shifted upwards. Therefore, when ilag.
C}“)(ky) factor is included in the energy diagram of Figb}l the
energy eigenvalues increase with the magnetic field.
where, for convenience, we have introduced the following lll. SINGLE-PARTICLE EIGENSTATES
notations: FOR A DOUBLE QUANTUM WELL

~ _ -~ _ For the DQW structure where each well has widthghd
Do (¥)=Dy(&k )y Vi (X)=Vyl(k ) (83 the barrier between them is b/2<x<b/2, we have in the
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first region k<<x;) a barrier withEq=U,, in the second x;=—(2a+b/2), x,=—b/2, Xx3=b/2, andx,=(2a+b/2).
region (x;<x<X,) a quantum well withEq=0, in the third  Therefore, we obtain the eigenvalue equation determining
region X,<x<x3) a potential barrier wittEq=U, in the E;(k,) from the continuity boundary conditions of the wave
fourth region k3;<x<x,) a quantum well withE;=0, and  functions and their derivatives as

in the fifth region &>x,) a barrier withEy=U,. Here,

V,(x1) =D, (x) —V,(x) 0 0 0 0 0
V,(x) -Dj(x) —Vi(x) 0 0 0 0 0
0 D,x) V,(x) -D,(x)) -V, (x) 0 0 0
0  Dj(x Vj(x -D,(x) —V,(x) 0 0 0
0 0 0 B9 V9 -Buxa -V o | o9
0 0 0  Dj(xa V(x9 -Dj(xa —V(x9 0
0 0 0 0 0 =D, (xa) —V,(x) D, (xy)
0 0 0 0 0 D) x) —V(x) D (x)

From Eq.(9), we can write outC{?(k,), ... C¥(k,) in Jm* .
terms ofC{"(k,), which in turn has to be obtained from the Zik (BE)=E-Ej(ky)+ — Z f_mdkyrjky;j’k;
normalization condition for each wave functia;b]ky(x) of !

the eigenstate. X{\/|Zj’k’(E)|+ ReZj//(E)
In Figs. 2a) and Zb), we plot the scaled energy eigenval- ’ ’
ues vo=E;(ky)/hw,—1/2 for a pair of strongly coupled +i\/Iijk;(E)I—Rerrk;(E)}_l, (11

QWs. The solutions were obtained by solving Eg) nu-

merically as a function of the in-plane wave vecfﬁqr and
the parallel magnetic fiel®, respectively. Herem* and ,
2a are the same as Fig. 1, the barrier separating the wells has T e =2 N (MU e (%012 (12)
width b=20 A, and the middle barrier height Id,=213 YUY vy

meV. Figure 2a) is a plot of thek, dispersion for a fixed, |n this notation,N22(n) stands for thenth sheet density of
large magnetic field; =10 T. In Fig. 2b), we setk;=0. & doping, and the impurity interaction matrix element is de-
The energy diagram in Fig.(@ shows that the quadratic fined as

energy dispersions of electrons in each of the pair of quan-

with the impurity interaction vertex given by

tum wells anticross due to the in-plane magnetic field as well i B e (=
as the tunneling between the wells. This will produce mini- Ujky:J’k;(X”)_ T 2606 ,xdx‘z’iky(gky)')(_x“'(ﬁi'k§(§"§)’
gaps and saddle points in the total density of states when (13

By, is strong. The plot of the energy eigenvalues as a function . . )
of By, in Fig. 2(b) shows the splitting of the originally degen- With X, denoting the position of thath 5-doping layer. The
erate Landau energy levels due to tunneling in the Stron&ontnbunon from the term in Eq11) involving the impurity
magnetic field limit interaction matrixl“jky;j,kf increases with the magnetic field.
' y
Therefore, the self-consistency of the calculation for the den-
IV. PARTIAL DENSITY OF STATES sity of states becomes more important in the high magnetic
FOR A SINGLE- AND DOUBLE-QUANTUM-WELL field regime. Solving Eq(11) for Z,-ky(E), the partial density
STRUCTURE IN A PARALLEL MAGNETIC FIELD of statesD“g‘ (E) can be calculated from the Green’s func-

The single-particle Green’s function that includes scatter—tIon in Eq.(10) and we obtain

ing by impurities is given by 1 1 ImZ;, (E)
- —_ g = —— y
Djc(B)=ZimGjq (B)=— 2 |ziky(E)—ﬁ2k§/2m*|2'
(10 (14)
We now present numerical results for the partial density of

where the scattering self-energy from impurities can be calstates for a single QW and a DQW in a parallel magnetic
culated in the self-consistent Born approximation field.

1
ijy(E)—ﬁ2k§/2m* :

G (B)=
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the electrons are confined to the wells. Our calculations for
the wave functions support this conclusion. In the low mag-
netic field regime, the energy eigenvalue spectrum is more
04 - '\@ - densely distributed compared to the high magnetic field re-
" gion. In fact, the dimensionless energy eigenvalue spectra
expressed in units of the cyclotron enerfiw. are lines
whose slopes become steeper as the magnetic field is low-
l ered. When plotted as a function of the in-plane wave num-
| - berky, the energy spectra for both the single- and double-
l quantum-well systems have gaps. The source of the gaps is
I

0.5 T

D(E)

0.2

due to the confining potential and, in the case of the double
e well structure, to the anticrossing of the energy dispersion in
each well. The results for the energy eigenvalues are used to
0.0 S L obtain the partial density of states as a function of the elec-

0 1 2 tron energy for fixed magnetic field strength. The role played

v=EMmo-1/2 by impurity scattering is included in the self-energy, in the

self-consistent Born approximation. The magnitude of the
contribution from the self-energy to the density of states in-
creases with the magnetic field.

O.1—I

FIG. 3. The partial density of statdB,—,;H(E) (per eV) for a
DQW in a parallel magnetic fiel®,=10 T andk,=0. Here,
m*,U,,a, and the barrier width between the two welisare the
same as Fig. 2. The barrier separating the wells’ idoped at ACKNOWLEDGMENTS
X,=0 with an impurity concentration dfi2>(n=0)=10'" cm 2,
The in-plane wave vector i&,=—/a, for a half-well width
a=100 A, The curve labeled “1” is for the lowest energy eigen-
value and “2” refers to the first excited state.
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In Fig. 3, we have plotted the partial density of states in APPENDIX A
Eq. (14) for a pair of coupled QWs in a parallel magnetic
field B =10 T. The parameters used for the well width and
heightU, of the barriers on either side of the well are the
same as those in Fig. 2. The sheet density for doping i
NZ(n=0)=10" cm 2 at x,=0 and the average back-
ground dielectric constant ig,=11. For illustration, we
present results fok,= —m/a, where the half-width of the n
well is a= 1QO A anql for the two lowest energy elg_envalues V,(x)=—=T(=»)[D,(—x)—cog m»)D (x)]. (Al)
corresponding to this wave number. The broadening of the ™
peaks for the self-consistent density of states was obtained
by initializing the value oZ;y (E)~E—E;(k,)+i#/7, with When v is an integeD,(—x)=(—1)"D,(x),
the relaxation time parameter set &s 10~ sec, and iter- The integral representation bf,(x) depends on the value
ating Eq.(11) to convergence. Our results show that the line®f ¥- When»<0, we have
shape of the partial density of statmgH(E) depends on

2
. . . e e*X 14 1) t2
both the indexj of the energy eigenvalue for the specified D, (x)= J’ dt exd —xi— —|t-""1.  (A2)
wave numbek,, . 0

In this appendix, we present integral representations of
the parabolic cylinder functions, solutions of Eg), and list
gome of their properties. For arbitrapy V,(x) can be ex-
pressed in terms ob,(x) and D,(—x) in the following

way:’

I'(=v)

V. CONCLUDING REMARKS Whenv>—1, we have

In conclusion, we have derived the dispersion relation for 2 L (= ) o
the energy eigenvalues in a single-quantum-well and a DQW D ,(x) = ;ex ’4f dtet ’Zthos( Xt— —)
0

system in the presence of an in-plane magnetic fgld For 2

the dquble guantum well, the energy eigenvalues include o, W(1—v) w(r=2)(1—v)(3—)
tunneling between the quantum wells and subsequently dis- —x"e ’4[ 1+ ~ 7

play anticrossing features. The self-consistent Born approxi- 2x 8x

mation has been used to calculate the partial density of 1

states. Our numerical results for the energy eigenvalues as a +0 F) ) (A3)

function of B show a crossover behavior as the magnetic
field is increased, at a critical magnetic field which corre-
sponds to the well width being equal to the magnetic Iength‘.”ls IX| e _We no_te that we have_ take”(gky) and
This means that for a pair of coupled quantum wells in aVv(gky) as linearly independent solutions of E@). How-
strong parallel magnetic field, the tunneling between theever, whenv+#0,1,2, ... another pair of linearly indepen-
wells is suppressed in the high magnetic field limit so thatdent solutions is possible. These a@V(gky) and
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D,,(—§ky), which are only linearly independent whenis #0,1,2,...,we can usé)y(—gky) instead oiVV(gky) in the

not equal to a non-negative integer, Iﬁlj,;(gky) and Vi(&ky) determinantal equation®) and (9) determining the energy
are linearly independent for arbitrapy Therefore, if we are ~eigenvalues for the single-well and double-well problem, re-
restricted to values of energy where=E/fhw,—1/2  spectively.
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