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The electron energy eigenstates for an isolated and a pair of strongly coupled quantum-well structures with
a quantizing magnetic fieldBuu parallel to the planes are calculated. Numerical results are presented for the
energy eigenvalues as a function ofBuu as well as the in-plane wave numberky . The results show a crossover
behavior as the magnetic field is increased, with the critical magnetic field corresponding to the well width
being equal to the magnetic length. This implies that for the pair of coupled quantum wells the tunneling
between wells is suppressed in the high magnetic field regime with the electrons confined to the wells, which
is also evident from the wave functions. In the low magnetic field regime, the energy eigenvalue spectrum is
more densely distributed compared to the high magnetic field region. When plotted as a function ofky , the
energy spectra for both the single- and double-quantum-well systems have gaps. The eigenfunctions for the
lowest states are also presented forky50 andky finite to demonstrate their dependence on this wave vector.
These results are used to obtain the partial density of states for each energy eigenvalue as a function of the
electron energy for fixed magnetic field strength. The role played by impurity scattering is included in the
self-energy, through the self-consistent Born approximation. The magnitude of the contribution from the
self-energy to the partial density of states increases with the magnetic field. The role played by the electron
tunneling between coupled wells for the self-consistent density of states is included.@S0163-1829~96!06740-9#

I. INTRODUCTION

Recently, there has been a considerable amount of interest
in strongly coupled two-dimensional electron gas~2DEG!
systems.1–5 In a double-quantum-well~DQW! structure, the
tunneling between the two parallel 2DEG layers introduces
several interesting features in the cyclotron resonance, mag-
netoplasmon excitation spectrum, as well as the electrical
transport, all of which have no counterpart in a single 2DEG.
The effect due to tunneling could of course be adjusted by
varying the thickness of the barrier layer separating the two
quantum wells~QW’s!. As reported recently, the role of tun-
neling has also been demonstrated in theoretical calculations
of the magnetoplasmon excitation for a magnetic field per-
pendicular to the 2DEG layers.6 In a series of papers, Sim-
monset al.7–9 and Lyo10,11have reported on experiments for
the conductivity and cyclotron resonance for DQW struc-
tures when a magnetic field is applied parallel to the 2D
planes. In Ref. 8, the magnetic fieldBuu is in thez direction,
the electron gases are in they-z plane, and the electric field
EW makes an angleu with Buu . The component of the current
jW in the direction ofEW yields the in-plane magnetoconduc-
tivity jW•EW /E2 which exhibits several interesting features due
to magnetic field-induced anticrossing of the electron energy
bands.

In this paper, we are interested in calculating the single-
electron wave functions, the energy eigenvalues, and their
density of states for a single quantum well and a pair of
coupled quantum wells,4,12 in the presence of a magnetic
field parallel to the planes confining the electron gases. For a
pair of coupled QWs, the quadratic energy dispersions of
electrons in a single well anticross due to the in-plane mag-

netic field and the tunneling in the DQW structure. This will
produce minigaps and saddle points in the density of states
whenBuu is strong. Our results for the energy eigenvalues as
a function ofBuu show the splitting of the originally degen-
erate Landau energy levels due to tunneling in the strong
magnetic field limit. The partial density of states is obtained
using the self-consistent Born approximation. The role
played by the impurity interaction matrix element increases
with the magnetic field. Therefore, the self-consistency of
the calculation for the density of states becomes more impor-
tant in the high magnetic field regime. This is the first step in
a calculation of the static conductivitys' for a quantum-
well structure in the presence of an in-plane magnetic field
with the electric field and the current along the growthx
axis. Resonant tunneling experiments have also been re-
ported for DQWs in a parallel magnetic field.13–15 These
experiments show the effect due to tunneling on the current-
voltage characteristics. The results of the present paper could
be applied in analyzing the results of these experiments.

The outline of the rest of this paper is as follows. In Sec.
II, we derive the dispersion relation for the energy eigenval-
ues and eigenfunctions of a single quantum well in a mag-
netic field Buu parallel to the confining potential. Detailed
numerical results are given for the eigenvalue spectrum as a
function of Buu and the wave vector dispersion for the in-
plane wave vector for a fixed value of the magnetic field
strength. In Sec. III, we repeat the calculations of Sec. II for
a pair of strongly coupled quantum wells. In Sec. IV, we
formulate the calculation of the density of states in the self-
consistent Born approximation and provide numerical results
for the single- and double-quantum-well structures. Sec-
tion V contains a summary of our results and some conclud-
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ing remarks. An Appendix is devoted to some mathematical
details for the parabolic cylinder function, in terms of which
the eigenfunctions are expressed.

II. SINGLE-PARTICLE EIGENSTATES
FOR A SINGLE QUANTUM WELL

Let us first consider electrons moving in they-z plane in
a magnetic fieldBuu parallel to the z axis and a one-
dimensional potentialUext(x). In the Landau gauge with vec-
tor potentialAW 5(0,Buux,0), the Schro¨dinger equation for an
electron has the form
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and, for simplicity, the spatial variation of the electron effec-
tive mass in the well and barrier regions is accounted for by

using the average valuem* in Eq. ~1!. Here j is a quantum
number labeling the subbands andkW uu5(ky ,kz). We note that
for a symmetric potential withUext(2x)5Uext(x), the
Hamiltonian in this gauge is invariant underBuu to 2Buu
when we make the replacementx→2x. For Eq. ~1!, we
write the wave function in the form of
c jkW uu

(rW)5f jky
(x)exp(ikyy1ikzz)/AA, whereA is the cross-

sectional area of the 2DEG, and we introduce a new variable
jky5A2(x/l H1l Hky). Then, Eq.~1! yields

]2f jky
~jky!

]jky
2 1FEj~ky!2Uext~jky!

\vc
2

jky
2

4
Gf jky

~jky!50,

~2!

where Ej (ky)5Ej (kW uu)2\2kz
2/2m* , vc5eBuu /m* , l H

5A\/eBuu is the magnetic length, andUext stands for the
potential of a single well~or a DQW in the next section!.
Thus the electron potential in Eq.~2! consists of a square
well potential that is symmetric aboutx50 and a magnetic
parabola with its minimum atx52kyl H

2 . We note that when
Uext in Eq. ~2! is a constant, we have the standard equation
for parabolic cylinder functions. Subsequently, for the QW
structures we consider, the general solution of Eq.~2! can be
expressed in terms of two linearly independent parabolic cyl-
inder functionsDn(jky) and Vn(jky), where n5@Ej (ky)

2E0#/\vc21/2, with E050 or U0 in the well or barrier
region, respectively. For convenience, we have given inte-
gral representations of these special functions in the Appen-
dix, which are used in our numerical calculations. These
functions have the following properties:16

Dn~jky!5H 0, jky→`

`, jky→2`,
~3!

Vn~jky!5H `, jky→`

0, jky→2`,
~4!

whose linear combination can be used to construct the gen-
eral solution of Eq.~1!.

For a single quantum well, the solution inside the well,
2a,x,a, is

f jky
~x!5Cj

~2!~ky!Dn0
~jky!1Cj

~3!~ky!Vn0
~jky!, ~5!

wheren05Ej (ky)/\vc21/2 and, similarly, the solution in
the two barrier regions can be written as

f jky
~x!5H Cj

~1!~ky!Vn1
~jky!, x,2a

Cj
~4!~ky!Dn1

~jky!, x.a,
~6!

wheren15@Ej (ky)2U0#/\vc21/2. In terms of the continu-
ous boundary conditions for the wave functions and their
derivatives, we obtain the following equation determining
Ej (ky) andCj

( i )(ky):

FIG. 1. Plot of the lowest scaled energy eigenvalues
n05Ej (ky)/\vc21/2 for a single quantum well. We chose
m*50.0667me , U05213 meV, and 2a5200 Å. In ~a!, n0 is plot-
ted as a function ofky in the unit of Å21 for Buu510 T. In ~b!,
n0 is plotted as a function ofBuu for ky50. The Landau levels are at
integer values.
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where, for convenience, we have introduced the following
notations:

D̃n0
~x![Dn0

~jky!, Ṽn0
~x![Vn0

~jky!, ~8a!

D̃n0
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dD̃n0
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From Eq. ~7!, we can expressCj
(2)(ky), . . . ,Cj

(4)(ky) in
terms ofCj

(1)(ky) which must itself be determined from the
normalization condition for each eigenstate wave function
f jky

(x) given by Eqs.~5! and ~6!.
In Fig. 1~a!, we present results for the scaled energy ei-

genvaluesn05Ej (ky)/\vc21/2 in a single quantum well,
obtained by solving Eq.~7! as a function ofky for a parallel
magnetic fieldBuu510 T. Here, we takem*50.067me ,
where me is the free-electron mass, 2a5200 Å, and
U05213 meV. For these values ofBuu and m* ,
\vc517.264 meV so that all the levels shown lie below the
top of the potential barrier. These calculations show that
when the homogeneous 2DEG is modulated by a single-
square-well potential, theky

2-dispersion relation for each
quantized energy level in the absence of an external mag-
netic field becomes hybridized with each of the originally
degenerate Landau levels of a homogeneous 2DEG in the
presence of an external magnetic field, which are indepen-
dent ofky . The results in Fig. 1~a! show that theky disper-
sion may vary from one energy level to another and that the
effects due to scattering from the quantum well are largest
for the high energy states whose orbital radii increase with
the Landau level index. Thus the electron motion in the well
does not follow the guiding center and the spacing between
energy levels is not constant. In Fig. 1~a!, we also show the
Landau levels for the homogeneous 2DEG, which are
straight lines at integer values parallel to theky axis when the
energy levels are scaled by\vc and 1/2 is subtracted from
the result. In Fig. 1~b!, we display the energy eigenvalues in
a single quantum well as a function of the parallel magnetic
field Buu . Here, we takekW uu50, and all the other parameters
for the quantum well, i.e., the well width, the barrier height,
and the electron effective mass, are the same as Fig. 1~a!. In
the low magnetic field regime, there is considerable mixing
of the Landau orbits from different Landau levels and with
different guiding centers due to the presence of the potential
barriers. This results in the densely distributed energy eigen-
values at low magnetic field. As the magnetic field is in-
creased, the orbits become commensurate with the width of
the well (l H5a whenBuu;6.6 T!. At large magnetic fields
where the diameter of the orbits is much less than the well
width, the mixing of the Landau levels and Landau orbits for
the electrons by the confining potential is negligible, thereby
giving rise to the approaching of the energy levels to Landau
levels. The separation between the energy levels within the
well in the absence of a magnetic field increases with energy
whereas the energy levels within the magnetic parabola are
equally spaced. However, as the magnetic field is increased,
the curvature of the magnetic parabola increases and the en-
ergy levels are shifted upwards. Therefore, when the\vc
factor is included in the energy diagram of Fig. 1~b! the
energy eigenvalues increase with the magnetic field.

III. SINGLE-PARTICLE EIGENSTATES
FOR A DOUBLE QUANTUM WELL

For the DQW structure where each well has width 2a and
the barrier between them is2b/2,x,b/2, we have in the

FIG. 2. Plot of the lowest scaled energy eigenvalues
n05Ej (ky)/\vc21/2 for a double quantum well. We chose
m*50.0667me , U05213 meV, 2a5200 Å, and the barrier sepa-
rating the two wells has widthb520 Å. In ~a!, n0 is plotted as a
function ofky in the unit of Å

21 for Buu510 T. In ~b!, n0 is plotted
as a function ofBuu for ky50.
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first region (x,x1) a barrier withE05U0, in the second
region (x1,x,x2) a quantum well withE050, in the third
region (x2,x,x3) a potential barrier withE05U0, in the
fourth region (x3,x,x4) a quantum well withE050, and
in the fifth region (x.x4) a barrier withE05U0. Here,

x152(2a1b/2), x252b/2, x35b/2, andx45(2a1b/2).
Therefore, we obtain the eigenvalue equation determining
Ej (ky) from the continuity boundary conditions of the wave
functions and their derivatives as
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8 ~x2! 0 0 0

0 0 0 D̃n1
~x3! Ṽn1
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From Eq. ~9!, we can write outCj
(2)(ky), . . . ,Cj

(8)(ky) in
terms ofCj

(1)(ky), which in turn has to be obtained from the
normalization condition for each wave functionf jky

(x) of
the eigenstate.

In Figs. 2~a! and 2~b!, we plot the scaled energy eigenval-
ues n05Ej (ky)/\vc21/2 for a pair of strongly coupled
QWs. The solutions were obtained by solving Eq.~9! nu-
merically as a function of the in-plane wave vectorkW uu and
the parallel magnetic fieldBuu , respectively. Here,m* and
2a are the same as Fig. 1, the barrier separating the wells has
width b520 Å, and the middle barrier height isU05213
meV. Figure 2~a! is a plot of theky dispersion for a fixed,
large magnetic fieldBuu510 T. In Fig. 2~b!, we setkW uu50.
The energy diagram in Fig. 2~a! shows that the quadratic
energy dispersions of electrons in each of the pair of quan-
tum wells anticross due to the in-plane magnetic field as well
as the tunneling between the wells. This will produce mini-
gaps and saddle points in the total density of states when
Buu is strong. The plot of the energy eigenvalues as a function
of Buu in Fig. 2~b! shows the splitting of the originally degen-
erate Landau energy levels due to tunneling in the strong
magnetic field limit.

IV. PARTIAL DENSITY OF STATES
FOR A SINGLE- AND DOUBLE-QUANTUM-WELL
STRUCTURE IN A PARALLEL MAGNETIC FIELD

The single-particle Green’s function that includes scatter-
ing by impurities is given by

GjkW uu
~E!5

1

Zjky
~E!2\2kz

2/2m*
, ~10!

where the scattering self-energy from impurities can be cal-
culated in the self-consistent Born approximation

Zjky
~E!5E2Ej~ky!1

Am*
h (

j 8
E

2`

`

dky8G jky ; j 8ky8

3$AuZj 8ky8
~E!u1ReZj 8ky8

~E!

1 iAuZj 8ky8
~E!u2ReZj 8ky8

~E!%21, ~11!

with the impurity interaction vertex given by

G jky ; j 8ky8
5(

n
Nim
2D~n!@Ujky ; j 8ky8

im
~xn!#

2. ~12!

In this notation,Nim
2D(n) stands for thenth sheet density of

d doping, and the impurity interaction matrix element is de-
fined as

Ujky ; j 8ky8
im

~xn!52
e2

2e0eb
E

2`

`

dxf jky
~jky!ux2xnuf j 8ky8

~jk
y8
!,

~13!

with xn denoting the position of thenth d-doping layer. The
contribution from the term in Eq.~11! involving the impurity
interaction matrixG jky ; j 8ky8

increases with the magnetic field.

Therefore, the self-consistency of the calculation for the den-
sity of states becomes more important in the high magnetic
field regime. Solving Eq.~11! for Zjky

(E), the partial density

of statesDjkW uu
(E) can be calculated from the Green’s func-

tion in Eq. ~10! and we obtain

DjkW uu
~E!5

1

p
ImGjkW uu

~E!52
1

p

ImZjky
~E!

uZjky
~E!2\2kz

2/2m* u2
.

~14!

We now present numerical results for the partial density of
states for a single QW and a DQW in a parallel magnetic
field.
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In Fig. 3, we have plotted the partial density of states in
Eq. ~14! for a pair of coupled QWs in a parallel magnetic
field Buu510 T. The parameters used for the well width and
heightU0 of the barriers on either side of the well are the
same as those in Fig. 2. The sheet density for doping is
Nim
2D(n50)51011 cm22 at xn50 and the average back-

ground dielectric constant iseb511. For illustration, we
present results forky52p/a, where the half-width of the
well is a5100 Å and for the two lowest energy eigenvalues
corresponding to this wave number. The broadening of the
peaks for the self-consistent density of states was obtained
by initializing the value ofZjky

(E)'E2Ej (ky)1 i\/t, with

the relaxation time parameter set ast510211 sec, and iter-
ating Eq.~11! to convergence. Our results show that the line
shape of the partial density of statesDjkW uu

(E) depends on

both the indexj of the energy eigenvalue for the specified
wave numberky .

V. CONCLUDING REMARKS

In conclusion, we have derived the dispersion relation for
the energy eigenvalues in a single-quantum-well and a DQW
system in the presence of an in-plane magnetic fieldBuu . For
the double quantum well, the energy eigenvalues include
tunneling between the quantum wells and subsequently dis-
play anticrossing features. The self-consistent Born approxi-
mation has been used to calculate the partial density of
states. Our numerical results for the energy eigenvalues as a
function of Buu show a crossover behavior as the magnetic
field is increased, at a critical magnetic field which corre-
sponds to the well width being equal to the magnetic length.
This means that for a pair of coupled quantum wells in a
strong parallel magnetic field, the tunneling between the
wells is suppressed in the high magnetic field limit so that

the electrons are confined to the wells. Our calculations for
the wave functions support this conclusion. In the low mag-
netic field regime, the energy eigenvalue spectrum is more
densely distributed compared to the high magnetic field re-
gion. In fact, the dimensionless energy eigenvalue spectra
expressed in units of the cyclotron energy\vc are lines
whose slopes become steeper as the magnetic field is low-
ered. When plotted as a function of the in-plane wave num-
ber ky , the energy spectra for both the single- and double-
quantum-well systems have gaps. The source of the gaps is
due to the confining potential and, in the case of the double
well structure, to the anticrossing of the energy dispersion in
each well. The results for the energy eigenvalues are used to
obtain the partial density of states as a function of the elec-
tron energy for fixed magnetic field strength. The role played
by impurity scattering is included in the self-energy, in the
self-consistent Born approximation. The magnitude of the
contribution from the self-energy to the density of states in-
creases with the magnetic field.
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APPENDIX A

In this appendix, we present integral representations of
the parabolic cylinder functions, solutions of Eq.~2!, and list
some of their properties. For arbitraryn, Vn(x) can be ex-
pressed in terms ofDn(x) and Dn(2x) in the following
way:17

Vn~x!5
1

p
G~2n!@Dn~2x!2cos~pn!Dn~x!#. ~A1!

Whenn is an integerDn(2x)5(21)nDn(x),
The integral representation ofDn(x) depends on the value

of n. Whenn,0, we have

Dn~x!5
e2x2/4

G~2n!
E
0

`

dt expS 2xt2
t2

2 D t2n21. ~A2!

Whenn.21, we have

Dn~x!5A2

p
ex

2/4E
0

`

dte2t2/2tncosS xt2 pn

2 D
→xne2x2/4H 11

n~12n!

2x2
1

n~n22!~12n!~32n!

8x4

1OS 1x6D J , ~A3!

as uxu→`. We note that we have takenDn(jky) and

Vn(jky) as linearly independent solutions of Eq.~2!. How-

ever, whennÞ0,1,2, . . . another pair of linearly indepen-
dent solutions is possible. These areDn(jky) and

FIG. 3. The partial density of statesDjkW uu
(E) ~per eV! for a

DQW in a parallel magnetic fieldBuu510 T and kz50. Here,
m* ,U0 ,a, and the barrier width between the two wellsb are the
same as Fig. 2. The barrier separating the wells isd doped at
xn50 with an impurity concentration ofNim

2D(n50)51011 cm22.
The in-plane wave vector isky52p/a, for a half-well width
a5100 Å, The curve labeled ‘‘1’’ is for the lowest energy eigen-
value and ‘‘2’’ refers to the first excited state.
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Dn(2jky), which are only linearly independent whenn is

not equal to a non-negative integer, butDn(jky) and Vn~jky!

are linearly independent for arbitraryn. Therefore, if we are
restricted to values of energy wheren5E/\vc21/2

Þ0,1,2,. . . , we can useDn(2jky) instead ofVn(jky) in the

determinantal equations~2! and ~9! determining the energy
eigenvalues for the single-well and double-well problem, re-
spectively.
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