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d=2 Ising strip with two surface fields solved using the transfer-matrix method
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For the title system the column-column transfer matrix is set up and diagonalized by exact calculation. The
free energy and correlation length follow exactly from the eigenvalues of the auxiliary problem, whereas other
guantities such as magnetization profiles, heat capacities, etc., are calculable numerically with arbitrary accu-
racy. The case of surface fields with the opposite signs is studied in some detail. The transition from expo-
nentially decaying to oscillatory eigenvectors is discussed and related to wetting transitions. For the important
case of the perfect asymmetry system the finite-size scaling near the wetting tempEgadfisirface tension
and correlation length parallel to the walls, is derived. Also the scaling of magnetization profiles is found.
[S0163-182606)09526-4

[. INTRODUCTION part of the surface tension. Heat capacities follow by numeri-
cal differentiation of the free energies. The computation of
The exact solutions of the Ising model have proved in thehe magnetization profiles is slightly less immediate, as is
past to be particularly useful in the study of phasedescribed in Sec. V.
transitions:™ A particular formulation of this model refers We concentratéSecs. IV and Y on the most interesting
to a strip of lengthN and widthM. With the emphasis of a case of surface fields of opposite signs. In this context we
strip infinite in one directioM — it has been studied in the can introduce a mechanism for breaking the symmetry of the
past>™’ Since it has been demonstrated that the2 Ising  perfectly antisymmetric system. As is well known, the pres-
model can be solved by a transfer-matftM) method in a  ence of any bulk external fielthomogeneous or nppre-
spinor formulatioA™® this method has been used with greatyents the solution of the Ising model. Therefore the breaking
success in various physical contextsitical point behavior,  of symmetry with the aid of an external field is not possible
surface transitionfor a bulk systenf:®~*? but we can instead break the symmetry by making the wall-
Of considerable present interest is not a bulk system, budystem interactions different for the two walls. This

a system confined by walls which may also interact with thesymmetry-breaking mechanism is spectacularly efficient in
neighboring particlegsping of the system; thus modeling the nonwet regime.

confinement and wetting. However, the added complication The paper is organized as follows. In Sec. II, we define

of two surface fields, perhappposingsurface fields, has not  the model, shortly recall the formali$rif and proceed with
been solved until now in full generality. _ the solution of the eigenproblem. Reduction of the TM to
In this work we apply the TM method to study the Ising dgiagonal form is related to the solution of a certain associ-
systems confined between parallel plates or walls. Statisticglted eigenvalue problem. In Sec. Ill we discuss the solution
mechanics of systems in confined geometry has attracted} the eigenvalue equation, separately for the case of
great deal of interest these last years because of a variety pf, | =|h,| and for the case dhy| # |h,|. In Sec. IV we apply
new phenomena arising in these systégor a simple  these results and calculate quantities which require only the
fluid, binary mixture or Ising magnet confined between par-gigenvalues, such as the surface tension, correlation length,
allel walls, it has been shown that the phase diagram may bgnd heat capacities, for the case of surface fields with oppo-
severely modified due to the finite distankb between the sjte signs. In Sec. V we derive the formula for the magneti-
walls combined with the effects of the surface fieldsand  zation profilesm(z) and discuss profiles for the system with
h, imposed on the boundari@s™*°In particular, it has been  the surface fields with opposite signs. For the case of the
predicted, largely on the basis of Landau thebrifthat the  perfect asymmetry system = —h, we propose and test the
behavior of the Ising magnet strongly depends on whethegcaling law ofm(z) in the vicinity of the wetting temperature
the fields are of equal or opposite sign, as a consequence 9f (h.). We concludeSec. V) with a summary and a dis-

wetting phenomena. o . cussion of the results.
The relevant exact results fords=2 infinitely long Ising

strip with the surface fields ogéqual sign imposed on the
walls hz_ave been obtgined using Pfaffians technigues. Il. A TRANSEER-MATRIX SOLUTION FOR D=2 ISING

In this work we give an exact solgtlon for the column- MODEL WITH TWO SURFACE LINES
column t'ransfer matrix taken in the dlrectmaral'lel to .the OF WEAKENED BONDS
walls to incorporate the effects of the surface fields into the
column self-energy from the very start of the calculations. Consider ad=2 square lattice in the geometry of infi-
Having found the exact solution of the TM, one finds imme-nitely long strip [NX(M—1), N—~] with Ising spins
diately the free energy, the correlation length, and the surface(x,z)==*1, x=1,...N, z=1,... M—1 at each lattice site
part of the free energy from which we extract the singular(x,z). The spins are coupled by the Ising Hamiltonian
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54 d=2 ISING STRIP WITH TWO SURFACE FIELB. .. 1129

+1) dimensional rotation hence the dimensionality of the ei-

BH=-2 > [Kio(x,2)o(x+12) genvalue problem can be significantly redu¢gom 2V+1
s to 2(M +1)]. The procedure proceeds in two steps. The first
+K,o(x,2)o(x,2z+1)] (2.1 step is to introduce the spinois,, k=0,...,2MM+1 by a

Jordan-Wigner transformation which is taken here in the

with the cyclic boundary condition along th& axis.  giandard form:

Ki=p8J;, i=1,2 are positive coupling constants. We take
K;=K,. To this bulk Hamiltonian the surface term which i-1
accounts for the interaction with the walls is added: Fo=0p Ty= 11 (—o,zno}‘),
0
BHe=—2 [ho(x,D+ho(x,M=1)], (2.2 i1
X

Ti=0} Ty.=]l (—oma),
where h; and h, are the surface fields acting only on the 0
boundary spins.

If h;>0(<0) then it is said that the wailfavors the+(—)
phase. It is convenient for the TM matrix method to replaceThen the new set of spinogy, k=0,...,2M +1 is found by
the surface fields acting om(x,1) and o(x,M—1), by two  an orthogonal transformatiog’ =I'"S such thatV in terms
rows of modified bonds to additional wall spingx,0) and  of g,, k=0,...,2M + 1 is spin representation of a simplév2
o(x,M), 1=x=<N, respectively, with the interaction +1)-dimensional rotatiortg

VgV i=g™H, (2.9

ji=1,...M.

> [a1Ko(X,0)0(x,1) + a,K o (x,M)a(x,M — 1)].
X 2.3 where

The bonds are weakened<@;<1, i=1,2 and the spins on
additional walls are fixed. This includes four cases. If both Hy
a(x,0) and o(x,M) for all x are equal to+1(—1) this is the H= .
case of walls which prefer the samg —) phase. Ifa(x,0) Hu
=—1(+1) but o(x,M)=1(—1) then the walls prefer oppo- 1
site phases.

The partition function for this model can be expressed agnd

Zyn=Tr(TY), (2.4 _[ coshy; i sinhy,

i\ —j si ) e
whereT is the column-column transfer matrfXM) taken in I sinhy; coshy,

thex direction and it is knowtf how to take the limitN—o Finally g, k=0,2M +1 are combined in pairs to form the
with walls of spins fixed. We take the following symme- anticommuting Fermi operatofg,f} ,k=0,... M defined as
trized form ofV:
fk=(1/2)(g2x+1~192k),
T=(2 sinhX)M- D2y,
fl=(1/2)(gor 11920 k=0,...M.

U2/ \/12
V=V VaVa© @5 terms of Fermi operatorg has a familiar form

with

M
v:exp[—(l/z); Y 2E = 1) (2.9

: (2.6
T

M-1
Vl=exr{ —K* > o

with y,=0. By quantum-mechanical analogy the eigenvec-
tors are “excited statesfL)=f/ .. .f,TJ_|0) with different op-

eratorsf, ,0<k<M acting on the “vacuum”|0) determined
by f,|0)=0 for all I. |L) has the eigenvalue

xexl (azK) oy _ o], (2.7) A=Agexi — y(o,) ... ¥(@)], (2.10

where ¢' (i=x,y,z) are the Pauli matrices=£J and
tanhK* =exp(—2K) defines the dual couplinig*. Note that
the presence of two rows of weakened coupling constants 1 M

breaks the translation symmetry of the problem. The diago- Aozex;{— 2 y(wi)). (2.11
nalization of a transfer matri¥, proceeds with the use of 1=0

Kaufmarf spinor analysis along the way similar to that de- Each eigenvalue is doubly degenerate and the set
scribed in Ref. 9 for the free boundary condition and Ref. 10L=(l,,l,,l3,...) specifies whichy's enter with a minus

for the fixed(+/+), (—/—) boundary condition. This method sign. To obtain the eigenvectors for the case of surface fields
uses the fact that the TM operafdrwritten in term of suit-  of opposite signs, namely whdn prefers the—) phase but
able set of spinors is a spin representation of a simfié 2 h, prefers the(+) phase, we used projection operatérg

M-1
V,= exp{(alK)chof]exr{ K 22: T 10N

where
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Pi=(—1/2)(fo+fl—1), (2.12 [ coshvy i sinty
A=\ _i sinbw  cosh (2.2
P,=(12)[(fo—fhHP+1], (2.13

whereP is a parity operator defined as

M

P=11 (-of. (2.14

m=0
The excited statell ) are the states with andd number of
(different) operatorsz,0< k<M acting on the vacuun).
L) has the eigenvalue of the forr2.10 with the set
L=(l,,l,,l3,...) consisting ofodd elements of different
numbers. Since(y;<7y,...) the
M=Agexp(—yy) and the next iv,=Ag expl—y,).

If both walls prefer the same, sdy-) phase, the projec-
tion operators are

Pi=(1/2)(fo+fi—1), (2.15

P,=(12)[(fo—fHP+1] (2.16

and the excited stat¢k) are the states with aevennumber
of different operatorsfﬂ:,0< k<M acting on the vacuun).
Now, the largest eigenvalue i&;=A, and the next is
No=AgeXP(—y1~¥2).

largest eigenvalue is

andv,=2K*, v,=2K, v3=2a,K, v,=2a,K. R is a Her-
mitian operator so it has the eigenvalues

e¥,e 7. eM e ", . .. eMe ™
with . real with the eigenvectors
Y0.Y5 Y11 1 Ym Y
that satisfy the normalization condition:
ylyi=3; . (2.22

Having found these eigenvectors one can construct the ma-
trix S

S=[7181" - 7wém] (2.23
with &=2Y4y,+y*) and 7;=2Y4y,—y}) for 0O<i<M.
These eigenvectors will be needed for the computation of
magnetization profiles.

In the next section the solution of the eigenvalue equation

RY%RiR; Y m=emy,, (2.24

The diagonalization procedure may be reduced to thavill be described. Such a solution fag=a,=1 and(+/+)

problem of finding the orthogonal transformati@nand the

boundary condition was obtained in Ref. 10, &gr=a,=0

values ofy,. This can be done by solving the eigenvaluein Ref. 9 and we have obtainEdthe (+/—) case (for

problem for R=R}/’°R;R%/?> where R;,R, are AM+1)-
dimensional rotation matrices such that the actiov paind
V, on the set of spinord' "=(T'y,.... I,y 4) is a simple
rotation onI™":

VIV =TTR,, (2.17

VoIV, 1=TTR,. (2.18

For the strip with two lines of modified bondR; and R,
have the form

1
1
A(vy)
R,= )
A(vy)
1
1
(2.19
1
A(vs)
A(vy)
R,= )
A(vy)
A(vg)
1
(2.20

where the matriced\(v,), A(v,), A(vs), andA(v,) are

a;=a,=1) by applying projections to the solution of Ref.
10. Here we find a more general solution &g 1 anda,<1
with a; #a, also allowed.

Ill. THE SOLUTION ON THE EIGENVALUE EQUATION

To solve(2.24) it is convenient to use a modified form of
this equation

Lx=0 (3.1

with L=e "R;—R, ! andx=R%/?y. Using expressions for
R; and R, one getsM —2 pairs of equations which are the
same as for the case of fixed boundary conditions but no
weakening of bondsa;=a,=1)

—ie” ’sinhv X5, o+ (€~ Ycoshy;—coshy o) Xo, 1

+i Sinh)2X2n:O, (323
—i sinhv,X,,_ 1+ (e~ "coshy; — costv,) Xy,
+ie_7sinh)2X2n+1=O (32b)

for 2=snsM-1.

Besides, the last and the first of thév) matrices ofR,
(see 2.2D provide two pairs of equations closing the recur-
rence(3.2), from above:

(e ?—coshyg)x,+i sinhvzx,=0, (3.33
—i sintv X+ (e~ coshv—coshvz)x,+ (i Sintv1)x3=0
(3.3b

and from below:
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—ie” ”sinhv 1 Xom_ot+ (€~ Ycoshy ;—coshy 4) Xom -1 i sintvs ) B
. X1= = | 55— goan | BLIZ~ (A'/B)az 7],
+1i sinhv 4o =0, (3.4a 3
—i Sinh)4X2M_1+(e_y—COSh)4)X2M=O. (34b) inzB[Zzn_(A,/B)qzizn],
The general solution fox, , 2<k=<M — 1 should have the Xons1=B[qZ2" 14 (A'/B)z~ ("1,

known general forni.That is

Xon=BZ2"+B'z" 2", (3.53 X2M:< i sinhu,

M-1 ’ 1 5—2M+1
—e_y_coshu)B[qzz +(A'IB)'z ]

X2n,1=A22n_1+A'Z_2n+1,

n=2,.M-1. (3.5b IsjsM-1. (314

zis a(comple} number. We note that the coefficieftsand ~ A'/B has to be determined from the boundary conditions of
B’ can be eliminated using the fact that separateljthe recurrence3.2). (3.3b and(3.4a give
inszzn, X2n,l:A22n71 a.nd X2n:B,272n, infl

=A'z"?"1 (n=2,...M) are also solutions of3.1) if B gTiqz—ie ’sinhy, 3.15
A/B=—B'/A’=q satisfies A’ =z T,+ie ’sinhv,qz’ (3.153
e~ "coshy;—cosh, L
q=——— o p—— B _ams3 T2tie 7sintv gz
—i sinhv,z”*+ie” 7sinlv,z —=— - . .
2 ! AL T,qz—ie ’sintv;’ (3.159

i sinhyyz—ie” "sinhy,z7t 36

B e coshv;—cosh, (36 where
This equation has a nontrivial solution if —sintfug,

T2 — + (e~ "coshy,—coslvg 4).

(e~ Ycoshy; — coshv,) 2= z?(sintv,— e~ ?sintv 27 2) e 7—coshz, (3.16
X(sintv,z?2—e ’sinty,).
In conclusion,(3.14) is a solution of(3.1) with

(3.7)
From this condition the allowed values gf are related ta. B g T1qz—ie ’sinhy,
: - : 2 i — =7
If z is written in the form ofz°=¢e'® with o complex(3.7) A T,+ie ’sintv,qz’

becomes equal to the Onsager functigmw):

coshy = coshy 1oy, — sinfv; sinfu,coss. (3.9 provided(3.7) is obeyed and satisfies the eigenvalue equa-

tion
The presence of two new constantg and v, breaks the
symmetry of the matrix_; to satisfy the recurrend@®.2) the 2\2(M-2)_ T,+ie” ?sintv,qz|| T,+ie” ?sintv,qz
solutions forx; and forx,y, must have coefficients different (z9 ~|T,qz—ie 7sintv, || T,qz—ie ?sintv, |’
from the rest ofx,, andx, 1 respectively: (3.17
x;=Cz+C'z" %, (399  Then the eigenvectorg are given byy=R, % so after
some algebra we obtain
xuy=Dz?M+D’z" M, (39b)
’ ’ H . 1)) S %
C,C’,D,D’ can be eliminated froni3.3a and(3.4b): y1=—iB1A(vs) sinhiz [2261" + 2°R(2)]
c i sinhvg B (3.10
=————— 4Zb, . v .
e Y—cosh, +cosh72 [22+72*R(2)€'?" ]|, (3.183
i sinbvg
C,:—mz B’, (31]) v _
3 y,=B,B(vs) sinh?z [2261% + 2°R(2)]
i sinfbv,
D:_—fy z lA, (312 Uo i sk
e 7—cosh, +cosh [+ 2°R(2)€”'] |, (3.189
i sinhv,
D'= A (3.13

- 3 Z . i sk
e~ Y—cosh, Yons1=1B[2?""2%€'%" +272""4R(2)],  (3.189

Now, the general solution is written in terms of only two .
coefficientsB and A’ Yonio=B[Z2""2+7272""4R(2)€'?"],  (3.180
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Yom-1=1B1A(v4)

U .
cosh?2 [22Mel o 427 2M+6R(7)]

v L
+sinh72[22M+z‘2M+6R(z)e'5 11, (3.180

Yom=—B1B(v,) sinh% [22Meio" 4 77 2M+6R(7)]
+cosh%[22M+z*2M*6R(z)e‘5*] , (3.18%
yO:01
Yom+1=0,
where

A(v;)=[cosh;/2 sintv;/(e” ”—cosh,) + sintv;/2],

(3.193
B(v;)=[sinhv;/2 sintv;/(e~¥—coshy;) + coshy;/2],

(3.19H

wherei =3,4 and

. Ti+ie"’sintviqz 32
R(z)=-1 T.qz—ie ?sintv;’ (320
Also
) 22_A ZZ_B*]. 1/2

el (@ =(B/A)? : X ) (3.2

(Z2—A Y (z°-B)

with A~’=tanh K tanh K*, B=tanh K/tanh K* and the
branch of the square root is taken such that &x{®)=+1.

The function §*(w) is introduced in the above derivation

through the following identity:

e' 7" cosh 2+ sinty ,/2
iz —— .
€' sinhv ,/2+ coshy ,/2

(3.22
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o Wa(Z-Wi )
— _ Qb
R(2)=-€? ——— Z-Wy) (3.26
where
W, =(coshy;+1)(cosh,—cosh). 3.29

Above §'(w) is a parameter of Onsager’s hyperbolic triangle
defined by(3.23 and(3.25 with the following factor form:

(ZZ_A)(ZZ_B) 1/2

ei&/(w):(AB)—llz (ZZ_Afl)(ZZ_Bfl) ’

(3.28

such that exp 6'(0)=—1. W; is just the same temperature
function as was used to define the wetting temperature
Tw(hy),hy=a;d0g, in the semi-infinite Ising model with a
single surface fieldh,.° At T=T,,(h;)W, is equal to 1. If
T<T,(h;) thenW,;>1. Using(3.26 Eq.(3.17 can be writ-

ten as

(22)M= g2 ¥’ ( lez(zz_Wl_l)) (WZZZ(ZZ—WEl)) |

z°—W, =W,
(3.29

where

W,=(coshy;+1)(coshy,—cosh,) (3.30

defines the wetting temperatutg,(h,),h,=a,Joy,, in the
semi-infinite system with a single surface fi¢lgd. We look
for the roots of the “eigenvalue” equation takirgf=e'®
with o real, between 0 and and check if they give rise the
appropriate number of the eigenvectors. The casega)of
|h,|=1|h,| and(b) |h,|#|h,| are discussed separately.

A. The case oflh;|=|h,|

For this caseV,=W,=W and(3.29 simplifies consider-
ably

we“(e'“~w1)

5* (w) andy, which appear naturally here, are the parameters

of the Onsager hyperbolic triangfedefined by(3.8) and the
set of equations:

(sinhy)cosd’ =sinhv ;coshy, — coshy ;sinhv ,cosw,

(3.23
(sinhy)coss* = cosh ;sinhv,— sinhy ;coshy ,cosw,
(3.29
sind’  sind*  sinw
(3.2

sintv, - sinhv, - sinhy’

The constanB, is determined from the normalization con-

dition (2.22.

ein — aei &' T (331)
with a==*1. For w real we define
o Wee(ee—-wY
i _—
e T (3.32

where ¢(w) is a real function so that the allowed wave num-
bers w, between 0 andr could be find graphically or nu-
merically by rewriting the(3.31) in the form

tatMow=tan 8’ + ¢)(w), (3.33

(0'+P)(w)=Mw—(k—1)7. (3.39

910 5'(w) has a differentw dependence

As is well known

The last step of the diagonalization procedure is an exbelow and abovd .., the critical temperature of the infinite
amination of Eq.(3.17). This equation determines the al- system. A detailed examination éfw) shows that this func-

lowed values of thew, and from(3.8) also of . We start

tion changes its behavior not only &t . but also at

the discussion of a possible solutions with the simplificationT,,(h;)—the wetting temperature of the semi-infinite sys-
of the right-hand sidérhs) of this equation. As can be shown tem. Thus we distinguish three temperature regiaiis:

after considerable algebR(z) may be written as

T<Tu(hy), @ Ty (h)<ST<T..,and(3) T .<T.
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At T=T,/(h;) there is a special solution at=0 with
nonzero eigenvector and the corresponding eigenvali(fe
=eV27"1, For all other temperatures the values 0,7 give
the trivial eigenvectors.

The results forwy, and ., k=1,... M are as follows.

(1) T<Tw(h1)'

Below T,(h;) there areM —2 real solutions between 0
andm. y,=vy(w)) are given by(3.8) and they are all greater
than vg=v,—v;. Two “missing” solutions are found at
imaginary valuew,=iu; and w,=iu,, u; >0 from

We Yk(e"Uk—W1)
e Y—W ’

e UM i’ (iuy)

= e (3.35
wherek=1,2 anday=1,a,=—1. The solutions lie between
Bl and 1 neatw 1 In the limit M—a they become equal
to e U1=e Y2=W~1, For large but finiteM, the difference
u; ,— Ug, Whereug=InW, is exponentially small

(3.39

Ug—Ug~ — a2e” “OMe—iﬁ’(iuo)sinf‘uoeuo,
k=1,2.
Having foundu, ,, ¥, i=1,2 are calculated from

i=1,2, (3.3

u;>u, hencey;<y,<vy. With the increasing temperature
W1 goes to 1 and am,, y(h;) that lies slightly below
T(hy) the imaginary solutioru, disappears. At the same
time a real solution neav=0 appearsT,,  is determined
from

coshy;=coshy+1—cosh;,

M =1/(sintv , /tantv ,—coslv )

+2(1-W)/(2—W—W"1), (3.39

For large M and not too small aj,
Twm(hy)~Ty(h) —Cy(hy)/M. Thus betweenT,, \(h;)
and T, (h;) there areM —1 real solutionsw, with y,>v,
and one imaginary solutiom;=u; with y,<v.

(2 Ty(h)=T<T....

At T,(hy) all o, become real with ;=0 and
v1=Yw=0), the smallest ofy's becomesequal tov,. All
solutionsw, remain real up to the temperatufg , that lies
slightly aboveT, ... T y is given also by(3.38 but solved
aboveT, ... For largeM, T; y(h)~T...—Cy(h)/M. All
v, are greater thany,.

B T>Tew -

Above T, \, there appears again one imaginary solution

w=iu and M—1 real.u is found betweerB and 1 from
(3.395 with a;=1.

B. The case oflhq|#|h,|
We take|h,|<|h,| so thatT,(h;)>T,(h,). The real so-

lutions between 0 ang which give rise to nontrivial eigen-
vectors are found from

¢)1+<2ﬁz(w) ’ (3.39

tanv w=tar{ ' (w)+
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T. ... The examination ofp, , shows that in this case where
there is no perfect asymmetry in a system we have to distin-

guish four temperature regions(l) T<T,(hy), (2
Tw(h2) <T<Ty(hy), ) Tu(h)<T<Tc., and (4)
Te<T.

The results for the allowed number af, and vy, are as
follows.

(1) T<Tw(h2)<TW(hl)'

Below T,,(h,), which is the lower of the two, there are
M —2 real solutions forw between 0 andr—ijust as in case
(@) below the wetting temperatur§w(h1)=T\,¥(h2). The
missing two roots are found front8.29 for z°=¢'® and
w=iu betweerB ™! and 1 close to th&v; * andW, ! [which
are zeros of the rhs 0f3.29]. For T,(hy)>T,(h,),
Wil<w;?, so thatu; lies exponentially close taiy,
=InW, andu, lies exponentially close tag,=InW,:

. _ —2i8'(i
Uy — Ugy~ — 2 sinhuge 2Muolg = 219" (iUoy)

X(1=WoWp)/(W Wy =1), (340
Uy — Ugy~ 2 Sinfugye ™ 2MUozg~2i4" (iU
X (1= Wi Wo) (Wi W5 ' —1). (3.4

u;>U, hencey,<vy,<ug.

(2) Ty(h) <T<Ty(hy).

In this temperature region there akk—1 real solutions
and one imaginary;=iu, with y,<v,. The imaginary so-
lution that lies close tow,! disappears—not exactly at
Tw(hy) but atT,, \(h,) which is slightly belowT,,(h,).

() Ty(h)<T<T..

In this region all roots become real and g}l are greater
thanv,. The imaginary solution that lies close ;! dis-
appears, not exactly at,(h,) but atT,, \,(h,) slightly be-
low T, (hy).

Both T,, y(h,) andT,, y(h,) are given by the roots of

M = 1/(sinhv, /tanhv,— coshy )+ﬂ
e V(2= Wimw, )
(1-Wy)
2-WmW, ) (342
(4 T.<T.

Just as in the case of perfect asymmetry, theréMre 1)
real solutions above, . T,y is a third root of(3.42
which lies abovel . ... The imaginaryw is found from(3.29
betweerB and 1. The mechanism of breaking the symmetry
of the perfectly asymmetric system with,|=|h,| is further
discussed below.

The above discussion is of a great importance for the form
of the eigenvectorg, (3.18. As the exact expressioii3.18
for yy, k=1,...,2M show, realw corresponds to oscillatory
behavior of the eigenvectors whereas tbee or twg miss-
ing roots with purely imaginarys correspond to exponen-

tially decaying eigenvectors. Such exponential decay is
where ¢, , are defined by3.32 with W=W, ,, respectively. needed to describe the fast fall of magnetization and other
Now, there are three characteristic temperatures in the syproperties near either wall—hence below the wetting tem-
tem: the wetting temperatures for walig(h,), T,,(h,), and  perature in the nonwet regime but also abdye, where at
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sufficiently high temperatures the system is filled with disor-width this discontinuity is rounded and in the vicinity of
dered bulk phase—except for a few layers of adsorbed maff,,(h;) we consider a finite-size scaling. The small param-

ter at a wall. eter which measures the distance to the wetting temperature
is Ug. It is equal to O atT,,(h;). The bulk (semi-infinitg
IV. ISING STRIP WITH THE SUREACE FIELDS system is wet fouy<<O and nonwet for thei;>0. The scal-
OF THE OPPOSITE SIGNS ing limit is defined as uy—0, n=M—-1-«~ but

] ] ] ) X=nuy,=0(1). n=M -1 is the width of the strip where
The results obtained in the previous sections are now anly the active spins are taken into account. ls-0 than
plied to the case when the surface fields h, have the y,—v, and the Ihs of Eq(3.36) can be expanded aroung.

opposite signs. We fix spins(x,0), x=1,... N at the value  The rhs of this equation is expanded aroumg=0 using
—1 and O'(X,M), X::L,...,N at the value+1 so thath1<0 (335) In the Sca"ng limit we get

andh,>0. We calculate the surface tensi@urface excess

free energy per unit argdrom the definition* y1=vo=—(1/4 sinhyg)uj(1—2e *)2+O(u3) (4.6)
. Z " and the scaling for the singular part of the surface tension in
Bo(M)=—lim Ino=, (4.))  the vicinity of the wetting temperature has the form
N—oo

whereZ™* is a partition function for the system with the Bos=y1=vo=—n*F(X) 4.7
surface fields of opposite signs a@d " is a partition func-  with  the scaling function F(X)=(1/4 sinh;o)xz(l
tion for the similar system but with the surface fields of equal—2e~*)2. In the limit X—, corresponding to the nonwet
signs [a(x,0) and o(x,M) fixed at the value+1 for all  regionuy>n~1, F(X)~X2. In this limit the behavior of the
x=1,...N]. bulk critical wetting is recoveretf The opposite limit can-

In the limit N—< it is enough to know the highest eigen- not be taken because the above derivation is valid only for
value of the TM. For thé+/+) case it isAy given by(2.10), T<T,/(h;), wherew, is a pure imaginary number.

for the (—/+) case it isAoe™ "1, thus At T,(h,) the surface tensiom(M)=(1/8)y, becomes
B equal to(1/B)v—the surface tension of the free interface.
Bo=71. 4.2} Apove Tw(hy), Bo(M) remains, up to the finite-size correc-

tions, equal tovy. These corrections are calculated from

(3.8 using the fact that in the wet regiaw, is a real root of

;)(3_33) between 0 and/M. For largeM, w;—0 andy;—vg.

If the wetting temperature is well beloW, .. so thaty is not

-1_ “1_ (. _ a small parameter, the finite-size behaviorygfcan be ob-

& =N /A2) 5= (72 7). 43 lained by expanding3.33 and(3.8) aboutw=0. ForM —

Having the expressions far, and y, in the various tempera- at constanil

ture regions the discussion of the asymptotic behavior and

scaling for the surface tensiar(M) and longitudinal corre- w;=7M "+ (A +B)TM 24 (4.8

lation length, is straightforward. where A;=1/(sintv/tantv,—cosh;) and B;=(1—costhu,
+sinhug)/(1—coshuy). It follows from (3.8) that

We also consider the correlation lengghin a direction
parallel to the wall, which is defined through the spectral ga
between the two highest eigenvalues

A. The case of the perfect asymmetryh,;=—h,
_ 20 =2 -3

Below the wetting temperatur&,(h;) v, is given by Bo(M)=vo+(1ZBL)m™ M “+O(M ™), (4.9
(3.8 with the imaginary wave numbep,=iu; and is less \here the stiffness of the interfagel’ =sintv,. This is a
thanvo=v,—v,. Hence, as can be expected for the nonwetyel|-known resuft®?*?3for the finite-size effects in the sur-
region, the surface tensuin of the interface bound to(the  face tension of the planar fluctuating interface in the Ising
or (+) wall is less than3™“v—the Onsager surface tension model. For the casa;=a,=1 see Ref. 23.
for the free interface in the Ising system. Close to the critical temperatuf®, ., the singular part of

An asymptotic behavior ofy, for large distanceM be-  the surface tension should obey the standard finite-size scal-
tween the walls and for the temperature fixed at any valugng. The scaling limit is nowM —c, t=(T—Te o)/ Tc—0
below T,,(h;), can be derived front3.37 and (3.36. For  pytx=Mt=0(1). Ast—0, vo—0. In this limit the eduation

large M, v, is exponentially close to the, given by for w, (3.33 takes the form
coshyg=sinhvy+ 1—coshug, 4.9 W
tanMw,)= — 4.1
whereug=In W. M) —vg (4.10
y1=vo— C(T,hy)eMuo (4.5 and the further derivation of Fhe _scallng function for the sin-
gular part of the surface tension is the same as has been done
with C(T,h,) = 2(e"sinFuy/sinhyg)exd —ié' (iug)]. previously for the case of the Ising strip with fixée-/+)

(1/B)y, is the surface tension of the interface below boundary condition forg,=a,=1).2%%
T, (hy) (bound to the wa)l obtained exactly by Abraham in For the correlation lengtlj, both y, andy, are needed. As
the semi-infinite Ising model for the wetting transitibh. the finite-size dependence ¢f andy, is different below and
This surface tension exhibits a jump in the second temperaaboveT,,(h,) there is a qualitatively different behavior §f
ture derivative at the wetting temperature. In a strip of finitein these two regions.
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In the nonwet regioribelow T, \(h;)] both ¥'s come
from imaginary wave numbers;=iu,; and w,=iu,. For
large M, vy, is given by (4.5 and y, takes the following
form:

¥2= Yo+ C(T,hy)e Mt (4.1

where 7y, is given by (4.4, C(T,h;)=2(e"sinFuy/
sinhyg)exp(—ié’ (iug)) anduy=InW. Hence

— y1~(—4 exp ¥ (U0sinhuZelo/sinhy,)e Mo,
(4.12

This means that below,, \,(h;) the two highest eigenvalues
Ni=Ape " and\,=Aye” 72 are asymptotically degenerate
asM —x and the correlation lengtfj diverges exponentially
with the width of the stripg~e* Mo 1
In the scaling limit uy—0,
X=nuy=0(1) ¥, is given by(4.6) and

Y2

n=M-—-1—o but

Yo—vo=—(1/4 sinbvg)u3(1+2e X2+ O(ud),
(4.13

from which the scaling for the correlation length follows

(4.19

At Ty, m(hy) v, becomes equal to, and aboveT,, \(h;)
w, switches from imaginary value to the real root(8t33
between 0 andi/M. At the same timev; remains imaginary
up to theT,(h;) when in turny, becomes equal, and v,
switches to the real value. Betwedn, ,(h,;) andT,,(h;)

gHZ nz(Sinh)O/Z)X_zex.

there is a crossover from the nonwet to the wet regime. In a

wet regime bothw; and w, are real roots 0f3.33 with
0<w,<@/M and /M <w,<27/M. For largeM and at the
temperature fixed at any value beloWy .., o, is given by

(4.8) and w,=27M 1+ (A;+B;)7M ~2+--- . Expanding
(3.9 in powers of 1M we find
1/&,=y,— y1=(3/2 sinbv o) m2M ~2, (4.15

The above result shows that the finite-size dependengg o
aboveT,,(h;) with weakening of bonds is the same as for th

planar fluctuating interface in the capillary-wave dominant

regime, found for largé+/—) Ising strips with no weaken-
ing of bonds &;=a,=1).16:20:22

The result(4.15 is a particular case of a more genera
scaling lavé? of the form

M/é:H:Y(M Sinhjo),

and the leading term of the low-temperatderge argument
expansion of the scaling function produceg4.15.%? Small
argument expansion recovers finite-size scaling IT@;;)J.ZZ
This can be understood by combinitgy10 and(3.98).

B. The case ofh;h,<0 and |h,|#|h,]

d=2 ISING STRIP WITH TWO SURFACE FIELB. ..
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with the constant
2(eYosinFPug,(1—W,W;)
C,(T,hl,hz): " —1_
sinhyoy(W,W; ~—1)
Xexp(—2i 8’ (iugy)). 4.1
Here
coshyg;=coshyy+ 1—coshug, (4.18

andug;=InW,. Hence, belowT(h,) the surface tension is
exponentially close to the valugy,/B8 which is the surface
tension of the bound interface in the semi-infinite Ising sys-
tem with a singleh; wall.

Derivation of the scaling form for the singular part of the
surface tension in the vicinity df,,(h,) is similar to that for
the case of the perfect asymmetry. We take the scaling vari-
able to beX=uyn and in the limit n—%, uy—0 but
X=0(1) we find

y1—vo=Nn"2Fy(X) (4.19

with  the function F;(X)=(1/2 sinbyg)X?(1
_ 2e—2x)2_

For the case ofi;h,<0 and|h,|# |h,| there is no asymp-
totic degeneracy of the two highest eigenvalues. For fixed
temperature below,,(h,) andT,,(h,), when bothw; andw,
are purely imaginaryy; lies exponentially close to the value
Y01 Qiven by (4.18 and y, lies exponentially close to the

value y,, given by

scaling

coshyg,=coshvy+ 1—coshug,.

(4.20

Hence

€= v2—v1~ Yoo~ You (4.21

up to the exponentially small corrections. When the perfect
asymetryh, = —h, is broken, the correlation lengtj, in-
stead of diverging wittM exponentially, is arM indepen-

¢ dentfunction of temperature only. This result was not sug-
egested earlier.

BetweenT,,(h,) andT,,(h;) or more precisely between
Twm(hy) and T, y(hy), the value ofw; remains purely
imaginary butw, switches to the real value. The finite-size

| dependence becomes more evident in this crossover region.

If T,,(h,) lies sufficiently far fromT,(h;) the asymptotics
for largeM and fixed temperature of;, and v, is different.
v, IS given by

Y2=vo+(1/28T)m2M "2+ O(M ~3), (4.22

and as far as the temperature is not too close tdrtté,),

the asymptotic behavior ofvy; is still given by
(4.1). Above T,(h;) the behavior of the surface tension
o(M) and longitudinal correlation length is up to the highest
order of 1M the same as for the case of the perfect asym-

The qualitative behavior of the surface tension below themetry system.
highest of the wetting temperatures, which we take to be Our results for§ are summarized in Figs. 1-3. Figure 1
T.(hy), is the same as for the previous case, although thehows the test of scaling.14) in the nonwet regime. Figure
expression fory; is more complicated. For fixed temperature 2 shows the comparison of three strips of the same width: a
below T,,(h;) and for largeM it takes the form (+/+) strip, a(+/—) strip with perfect asymmetry, and the
(+/—) strip with broken asymmetrgbroken by a slight dif-
ference between the two surface fields,=a;+e¢). First,

Y1=Y01— C'(T,hy,hy)exp(—Mug,) (4.16
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FIG. 1. Scaling for the correlation lengt in a direction par-
allel to the walls. Irﬁf”/nz) is plotted as function ofy=nu, for
a;=a,=0.9 and different strip widthe¥=M —1: (a) circles for
n=200, (b) stars forn=180, (c) squares fon=120, (d) diamonds
for n=96, and(e) plus forn=48. T,,(M—%)~0.488 04T, ... The
solid curve represents the scaling function given(éyl4).

aboveT, .., §(T) is common to all strips. On lowering the
temperature, af . .. the (+/—) strips show smooth further
increase. Hence only the+-/+) strip shows a peak &t .. .
BetweerT, .. andT,, [and beyondr,,(M)], §(T,M) is prac-
tically independenbf e. Below T,(M), & of the perfectly
antisymmetric systeme=0) continues to rise,

&~P(W)wM

with the prefactoiP (W) which follows from Eq.(4.12); tem-
perature dependence ¥f is given by(3.27) andW increases

FIG. 2. Comparison of three strigs:/+), (+/—) with perfect
asymetry @;=a,),(+/—) with symmetry broken by unequal sur-
face fields,a,=a;+e M=97,a,=0.9. Full line: (+/—) strips for
€=0. Dashed line labele¢t): (+/+) strip; indistinguishable from
the full line aboveT, ... Curves markeda) and(b) (=10 7,10 >,
respectively calculated from(4.21), (4.20, (4.18, (3.27), and
(3.30 assuming 4=v3+2K,e. The points show numerically exact
computation, crosses foe=10', diamonds fore=10"°. These

points join the full line as shown and continue at all higher tem-antisymmetric
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FIG. 3. Plot of§(T,M,e) for e=0.000 01,M =12 (diamonds,
24 (crossey 48 (squarey 96 (crossey 200 (triangles, and 400
(starg. EachM value has a different crossover poiirt fact a small
region where §(T) joins the common low-temperature line inde-
pendent ofM, marked(a) and calculated with approximations de-
scribed in Fig. 2 and in the text.

indefinitely asT decreases. This was predict@dn contrast

to that, any system with broken symmetry by0 crosses
over (very abruptly for largeM) to a curveg(T,e) common

to all M. Two such curvesfor e=10°and 10°7) are shown

in Fig. 2. These were calculated frod.21) with (4.20),
(4.18, (3.27), and (3.30 assumingu,=v3+2K,e. These
equations describe a superposition of two semiinfinite wall-
spin systems without any interference. These2 plots dif-

fer from Fig. 13 of Ref. 16 which refers td=3 systems.
Another remark concerns the prediction of E4.19: the
region where this scaling law operates is rather limited. Its
derivation from the more general scaling f&wequires that
T<T,. and, on the other hand we must hav2 T,,, espe-
cially for smallM (see Fig. 3.

Figure 3 shows a plot similar to Fig. 2, of data computed
without approximations for one value efand several values
of M of the (+/—) strip. The low-temperature branch is in-
deed common to all values &f (for M >10, say.

From the eigenvalues one can also compute the free en-
ergy per column and by numerical differentiation we have
computed the heat capacities. Figufe)shows a family of
curves with differentM for perfect asymmetry. The strong
peak neafT/T,=1 follows the usual finite-size scaling and
nothing new is revealed in relation to the work of Fisher and
co-workers(see Ref. 5 where references to earlier work can
be found. The peaks of th€+/—) strips are some 20%
lower than those for thé+/+) strips. The perfectly antisym-
metric system differs only quantitatively from systems with
|h,|#|h,|. NearT,,, asM—x, the surface peak i€, (per
column approaches the second-order finite discontinuity
found by Abrahah in a semi-infinite system with
one wall. To extract the singular part, we should form
the difference[o(wall, phaseZo(wall, phaselo(phasel,
phase?]~—|t|>"* which in our case of two perfectly
walls translates into Bf(strip(+/—))

peratures indistinguishable from the full line. Note the logarithmic —Bf(strip(+/+))—vy. In fact the differenceC,(+ —)

scale. See Fig. 3.

—C,(++)=(d/dT)(d/dB) y,(T,M) andy, has the mean-
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Cy/M

Cy/k

FIG. 4. (a) Heat capacityC,/k divided by strip widthM (heat
capacity per site in units of Boltzmann consténtplotted against
temperaturd /T, .. for M=12,24,48,96,200. Increaséti raises the
peak neafT. .. but decreases the rounded step negr (b) Heat
capacity “per column” obtained by remultiplying byM.
M =12,24,48,96,200diamonds, crosses, squaregrosses, and tri-
angles, respectivelythe contribution ob  (starg; the contribution
of y (densely spaced diamondsThe rounded step near,, is
sharper and slightly higher for largbt—bounded byA C,/k which

follows from exact equationéRef. 4 for the semiinfinite system.

These predicty, from Eq. (4.4) for T<T,, andv, for T>T,,.

ing of a surface free energiT. The plot in Fig. 4b) shows
the surface heat capaci§;=C,(+ —)—C,(++). The heat
capacity of the Onsager free interfagmt yet subtractedof
surface tensiowy,=v,—v, is also shown(as the flat back-
ground curvé The scaling law(4.7) for the singular part of
the surface tension requires further subtraction ofutheon-
tribution and the singular part of heat capacity of tHg—)
strip thus obtained should scale wi¥¥=nuy; this scaling is

not satisfactory. Apparently the corrections to scaling are

numerically not small. In fact already the scaling Bt

shown in Fig. 5 is not as excellent as in typical bulk scaling

plots as soon aX is not close to zero.

V. MAGNETIZATION PROFILES

Formal expressions for the average magnetizatigp
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X=nu,

FIG. 5. Scaling for the surface excess free enépgy unit area
o, given by(4.2). n?Bo is plotted as function of = nuj for fixed
a;=a,=0.9 and differenn: (a) stars forn+1=201, (b) triangles
down for n+1=181, (c) diamonds forn+1=97, (d) squares for
n+1=49, (e) circles for n+1=25. Wetting temperature for
h;=0.9 K is T,,(h;)~0.488 T, ... The solid curve represents the
scaling functionF(x) given by (4.7).

transfer-matrix spectrum obtained in the previous sections
includes all four choices of these signs. To extract the suit-
able case we used the projection operators.

The formula for an average of any opera#drhas the
form

(AY=Tr(VNP,AP,)/Tr(VNP,P,), (5.9

whereP,; andP,, are the projection operators and we wish to
take the limit of the infinite long striN—oo.

For the case of the surface fields of the opposite signs, say
(=/+), i.e., h;<0, h,>0, the projection operators used in
(6.1) are given by(2.12 for P; and (2.13 for P,. In the
limit of large N the largest eigenvalues dominate and in the
representation in whick is diagonal we obtain

lim Tr(VNP,AP,)=(1/2)A)[(0|f,Af]|0)

N— o
+(0|f,foAf{F]|0)— (0| f,AfF]|0)
—(0]f,foAf][0)]. (5.2

The largest eigenvalug; is equal toA;=Ay exp(—7y,) and
Ay is given by(2.11). The average magnetizati¢e,,) where
m is the height indexm=1,2,... M —1 is the average of the
operatora ), counting spins at the positian. This operator
is nonlocal in the spinor representation

O'?.(n:r‘orl"'FZm. (53)

Substitutingo ), for A and commuting oI'y we obtain

(om)=—()™O|f1TT' -+ T, 1]0), (5.9

already in the limitN—c. If both walls prefer the same, say
(+) phase, i.e.h;,h,>0, the projection operators for the
(+/+) system areP1=(1/2(f0+f$—l) and P,=(1/2)[(fq

—fg)PJrI] [see(2.15 and (2.16]; now the largest eigen-
value which contributes id;=A, and after the similar alge-

depend on the relative signs of the surface fields. Théra one has
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(omy=—(1)™0|T 'y Ty 0), (5.5 culated in Sec. llISis the matrix of linear transformation of

spinorsI’; into spinorsg, (see Sec. )l
in the limit N—oe. The exact formulag5.4), (5.5 for (o}, P ! P 9 ( )

can be transformed into a form suitable for practical compu-

tations by using Wicks theorem and by simplifying the Pfaff- =2, S mOm (i,m=0,...M+1). (5.12
ian expression fofa;,,) to a determinant of a certain matiix m

(in a way similar to that described in Ref 1Zhe main steps The elements of matri$ are built up from the reaf(e,) and

of this computation are the following. The Wicks theorem.

transforms the average of an ordered product of anticommuf—'ﬁnadg.'narty néwk)zpzarts 0; elge?vec;ory g“ﬁﬂ by(3.18 ac-b
ing operators into a Pfaffian of an antisymmetric matkix cording to Eq(2.23 and are functions ot theé wave numboer
wy. They can be oscillatory or exponential functions of

(omy=—(i)"PfA= —(i)"del A) Y2 (5.6) w—depending on whethes, is real or imaginary—however,
) ) ) ) the structure of the matri$ is always the same.
We discuss the case of opposite surface fiéldst) first. The Oth row and column and\N2+1 row and column

For this case the matribA has.a dimension (R+2) have vanishing elements except f85= Sy 1ov+1=1
X (2m+2) with the elements which are averages of prod-hence it is enough to consider a12<2M matrix S. The

ucts of only two operatorgso-called contractions columns are ordered accordingke 1,... M, i.e., the X and
Agj=(0[f.Tj[0) (j=1,...,2m), (5.7) 2k—1 columns belong t&, w= w). Then
Agam+1=(0f1f1]0)=1, (5.8 Son-1x-17 201, N=1...M, (5.13
Aioms1=(0|T;f1]0) (i=1,...,2m), (5.9 Son-12=0, n=1,..M, (5.14
A j=(0|l'\T{|0) (i=2,....2n, j=3,....2n+1), Son k=&, N=1,...M, (5.15
(5.10 ’
A;=0, Aj=-A; (i,j=0,...m+1). (5.10 Sonx-1=0, n=1...M. (5.16

We can express contractions in terms of the elements of thEor w, real we found an oscillatory behavior afw,) and
orthogonal matrixS defined in Sec. I[Eq. (2.23] and cal- &(w,):

(@)=~ A(va)C{Sinh 2 cos [~ w,+ 8% (w,) ~ w1+ cOSh™L cosiy [y 8* () + plw)]|, (5,17

1
Non+1(w) =C COSE[(Zn_l)wk+5*(wk)_‘/’(wk)]a (n=1,...M-2), (5.18

sinh% cos% [(2M = 3) 0y — 5* () — ¢(wk)]+cosh% cos% [(2M = 3) oy + 5 (wy) — zﬂ(wk)]},

Nam-1(w ) =A(v4)C

(5.19
7]ZI"I(('OK):O (n=l,...,M), (52@
and
) 1 Uo 1
fz(wk):B(Ug)C S|nh7 COSE [_ (,()k"' 5*((1)k)_ 1//(a)k)]+COSh7 COSE [(1)k+ 5*((1)k) + l,[/((,()k)] y (521)
1
Ean+a(@) =C cos5 [(2n—1)wy— M (w)— o], (n=1,..M-2), (5.22

Em(w)=—B(v,)C sinh% cos% [(2M =3)w— 6* (wy) — z//(wk)]+cosh% cos% [(2M =3) v+ 6* (wy) — z/;(wk)]},

(5.23

éon-1(0)=0 (n=1,...M). (5.29

Here C=2+2B; and B, [see(3.18)] is determined from the normalization condition for the eigenvegfas,) (2.22. The
constantsA(v;) andB(v;), i=3,4 are given by3.193 and(3.19b, respectively. The functiog{w,) is defined agsee(3.20]



For w imaginaryw=iv the components of the eigenvecidiw)

n(v)=—A(v3)Cy

Nom-1(v) = A(v4)Cyq

and

&x(v)=B(v3)Cy

Eom(v)=—DB(v4)Cyq

d=2 ISING STRIP WITH TWO SURFACE FIELB ... 1139
o
V= R(€%)= T1+|e. QZS!nh)l_
T,9z—ie ?sintv,
are exponential functions ef
v . . v . .
sinh?2 [l (igmv 4 R(v)e*”]+cosh§2 [eU+R(v)e'5*('”>e2”]}, (5.29
Tan+1(v)=Cy[e! " (We~ (M DV 4+ R(y)eln~21], (5.26
1% . . v . .
cosh72 [e"s*('”>e*'\"”+R(v)e('\"*3)”]+sinh?2 [e”M+R(v)e"9*<'”)e(M3”’]}, (5.2
Non(v)=0 (n=1,..M), (5.28
1% . . v . .
sinh?Z [e®* (g vt R(v)e’2”]+cosh72 [e v+ R(v)e'5*<'v>e2v]}, (5.29
§2n+2(v)zcl[e—(n+l)v+R(v)eiﬁ*(iv)e(n—Z)v]’ (53@
1% . . v . .
coshf2 [e"s*(”’)e*'\"“rR(v)e('\"*?’)”]Jrsinh?2 [e”M+R(v)e'5*('v)e(M3)”]}, (5.31)
én-1(v)=0 (n=1,..M). (5.32

Here C,=v2B; and R(v)
?=e®=e"",
In terms of the elements of matr&the contractions read

is given by (3.26 for

(0|T'iT'j|0)=0, i,j=both odd or both even,

(5.33
M
<O|FiFj|0>:ik§=:1 S xS x-1-Sx-15x (1<j),
(5.39
(0[f1I';]0) =S, ,+iS; 1, (5.39
(OITf]]0)=S; =S 1. (5.36

However, S, ,=0 for r odd andS; ;=0 for r even so the
antisymmetric matriXA takes the following form:

0 iSy; Sp 1
0 Qun —iSy
A: H 0 Q : 1
0

where we abbreviate

Q=0

i,j=both odd or both even, otherwise,

M
Qij:gl S S x-1—Six-15x (I<j). (6.3

After some manipulations on this matrix in order to group
zeros togethefRef. 12 we obtain the very useful result that
det(A) =[det(B) ] so

(o= —de(B) (5.39
with
1 253 25 25,
Sy —iQa —iQ —iQgs

B= . . .
S;; —iQa —1Qu —i1Qys

The elements of matriB are the same for ain=1,... M
—1; the dimension oB is (m+1)X(m+1).

For the system with the surface fields of tk@mesign,
say (+/+), the matrixB has a dimensiomxm and can be
obtained from the matriB of the (—/+) system by deleting
the first column and first row.

Equations(3.39 have been implemented for numerical
computation of the magnetization profil@s,,) in the case of
the opposite surface fields. We usdd <[9,201] and
al ,a2 (S (0,1)

For the perfect asymmetry systdm= —h, a selection of
the magnetization profiles computed for a fixed width of the
stripn=M —1, a fixed value of the parametay=a, and at
different temperatures is shown in Figs. 6, 7, and 8. As can
be expected from the symmetry features of the system all the
profiles are antisymmetric

(5.39

(om)=—(om-m)
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L . ! FIG. 7. A selection of magnetization profiles computed for
0.0 5.0 10.0 15.0 20.0 larger systemn=100 with the perfect asymmetry and the same
4 surface fields(a;=a,=0.9), for various temperatures in units of
Teo: (@ (1) for T/T,.=0.3; (2) for T/T.=0.45; (3) for
FIG. 6. A selection of computed magnetization profiles for fixed T/T¢ ..=0.482; (4) for T/T.,,=0.488;(5) for T~T,/(h,); (6) for
n=20 and perfect asymmetry with, =a,=0.9, showing the varia- T/T¢.=0.5, and(7) for T/T.,,=0.6. (b) (1) for T/T..=0.9; (2)
tion with temperaturdin units of T ..); (a) crossesT/T..,.=0.3;  for T/T;..=0.99; (3) for T~T,..; (4) for T/T..=1.025;(5) for
stars, /T, .=0.45; triangles up foff/ T ..=0.465; diamonds for T/T¢..=1.1. The wetting temperatu®,(h;) ~0.488 04T .. The
T/T. .. =0.475; squares fof ~ T,,(M —); circles forT/T. ,=0.5.  lines are drawn through all 101 points.
(b) triangle up forT/T, ,,=0.6; diamonds foil /T ..=0.8; stars for
T~T,; squares foil /T ..=1.05; circles fofT/T. ..=1.1; crosses
for T/T...=1.4. The wetting temperaturg, (M —=)~0.488 04
T... Curves are drawn only as guides for the eye.

n=20 is shown in Fig. @) (circles. For such a small system
(n=20) all the points of the system “feel” the presence of
both walls, hence there are almost no plateaus of pseudobulk
Figures a) and Gb) show profiles calculated for a rela- phases near the walls. These are better seen in k&y. 7
tively narrow stripn=20 and large parameter;=a,=0.9  (curve 7 calculated for a large system=100.
which corresponds tslightly weakened bonds between the  With the further increase of the temperature, the interface-
walls and the system. The wetting temperature in this caskike profile starts to deform towards the critical profile at
lies far away from the bulk critical temperature T.. [curve with stars in Fig. @] and then abovd, ., it
T :Tw(hi=00a.J)/T. ..~0.488 04. For low enough tem- bends once again to be concave in the first half of the strip.
peraturegcrosses in Fig. @)] the average magnetization at Then the system reaches the high-temperature situation in
all points across the strip is almost zero. As the temperaturarhich {o;,,)=0 for all m except for a few sites at the walls.
is increased, the profile gradually changes its shape with the The convexity of the profile can be connected with the
most rapid change taking place near the wetting temperaturtype of eigenvectorsy,, k=1,...,2M as functions of the
T.(hy). The typical profile in this temperature region is “wave number” w. As we know from Sec. lll, below the
monotonic with the inflection point in the middle of the strip. wetting temperatur&,,(h;) both w; and w, are imaginary
It quickly increases or decreases in the vicinity of the wallsw;=iv4, w,=iv,. This implies that the first four columns of
and is concave in the first half of the strip. At,(h;) the the orthogonal matrS [these are real and imaginary parts
profile becomes linear across the whole strip. Abdyg¢h;)  of the eigenvectorg,(w,) andy,(w,) see Eq(2.23], consist
it starts to bend, forming eventually a characteristic for theof exponential functions af ; andv,. This in turn results in
single soft-mode phase interfacelike profile. This profile isthe shape of the profiles which are concave in the first half of
convex in the first half of a strip with plateaus of pseudobulkthe strip. Also aboved . ., there is the same convexivity of
phases near the walls. the profile although this time there is only one imaginary
The soft-mode profile calculated fof/T..=0.6 and wave numbero;=iv and hence only two columns of the
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0.0 5.0 10.0 15.0 20.0
z

FIG. 9. Magnetization profiles calculated for fixed width of the
stripn=20 and for surface fields which differ lfg large €=0.001,
a;=0.9 anda,=0.899, for various temperatures below the wetting
temperatureT, (M —%)~0.488 04 ... circles for T/T; . =0.3;
squares foll /T ., =0.4; triangles left fofl/ T .,.=0.45; triangles up

N for T/T...=0.465; triangles right forT/T..=0.475; stars for
£ T~T,, . The profiles are nonmonotonic near the) wall as can be

seen from the inset with portions of those calculated for
T/T; »=0.4 (squarepand forT/T, ..=0.42 (diamonds.

b 1 As we have mentioned above, in the region of low tem-
10 L , ) ) peratures the average magnetization is almost zero for all the
0.0 5.0 10.0 15.0 20.0 points across the strip. This corresponds to the pseudocoex-
z istence of two “phases” below the wetting temperature

T, (h;). One of the profiles of these phases corresponds to a
thin film of down spins(—) at wall 1 and a film of up spins

small systerm=20 with the perfect asymmetry and weaker surface(+) at the wall 2 and can be ObFained i,f (_Jn,e b_reaks the
fields —a; —a,=0.3 for various temperatures in units f ,,: ( ~ SYmmetry of the system by applying an infinitesimal bulk

triangle left forT/T. ..=0.3; diamonds fofl/ T .,=0.7; squares for field h+0 or by settinga; =a, *e. Figure 9 shows the family
TIT, ..=0.9; circles forT~T,,(h;). (b) circle for T/T,..=0.985; of the profiles for one of these phases calculated for the same

squares forT/T,.,=1.05; diamonds forT/T,..=1.1; stars for width of the strip(n=20) as for Fig. 6 and for surface fields
T/T,..=1.35. The wetting temperatufg, (M —)~0.9665T ... which differ by e=0.001,a,=0.9, anda;=0.899. This cor-
Curves through these profiles are drawn only as guides for the eyéesponds to the situation when the spins(dp phase fills

) i . i the strip, with a thin film of spins dowfr) at wall 1. Also
matrix S consists of the exponential functions. For the soft-i,o profiles are nonmonotonic at low temperatures. The av-
mode phase betwedy,(h,) andT, .., all the wave numbers o546 magnetization near the wall that favors the spitHup

are real so that the elements of the maiare oscillatory h . s
) ' . ' ; ase is less than the spontaneous magnetizatioh(T) of
functions ofwy, k=1,... M. This results in the profiles being Fhe (+)I phase P u gnetiz (T)

convex in the first half of the strip.
For comparison we also show the magnetization profiles e —441/8

computed fora; =a,=0.9[the sam&—/+) surface fields as m*(T)=—[1=(sinhZK) 17 (540

in Fig. 6] but for the large system=100 [Figs. 1) and  Thjs can be seen in the inset of the Fig. 9 although for the

7(b)]. The profiles look qualitatively similar, the main differ- gmq)| system shown there, only the magnetization in the first

ence being that for the large system the rapid change in thg,q (on® sites at the wall is less thahm* (T).

shape of the profile nedr,(h,) takes place in a very narrow  jith u, as a small parameter describing the distance of

temperature region abouf,(h;) and that for wide strips the system from the wetting temperature we propose and

there are well developed plateaus of the “bulk phases™ neagerify the scaling relations for the magnetization profile at

FIG. 8. A selection of magnetization profiles computed for

the walls for the soft-mode phase profile. the fluctuation-dominated critical wetting transition
For completeness we also show the profilesnfer20 but
for a small parametea,=a,=0.3 which corresponds to a m(z,T,M)=M(z/n;nuy); h=0. (5.4

large weakening of the bonds between the walls and the sys-

tem. The wetting temperature in this case lies very close tdo check(5.41), we plot [m(z)—m*]/m*, calculated for
the bulk critical temperatur®,,(h,)/T. .~0.95. Hence there differentn and different parametex; as a function og/n for
is almost no soft-mode phase with its typical interfacelikefixedy=nu, (8;=1 for d=2 Ising model. Scaling is excel-
profile (Fig. 8). lent for a wide range of variabl from y=20 up toy=—10.
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FIG. 10. Scaling of the magnetization profiles for the perfectly asymmetric systema,. [m(z,T,a;,n) —m* (T)]/m*(T) is calcu-
lated for different widths of the strip at fixeda; and plotted against/n for the following value of the second scaling variagle nu, [see
Eq. (5.4D]: (a) y=20; (b) y=1; (c) y=0; (d) y=—10. The symbols are circles for the profile calculatedrferd0 anda;=0.9; squares for
n=150 anda;=0.9; diamonds fon=48 anda;=0.9; crosses fon=90 anda;=0.8; stars fom=120 anda;=0.7.

Figure 10 shows four scaling functions) for y=20 in low- VI. SUMMARY AND CONCLUSIONS
temperature region(p) for y=+1; (c) for y=0, i.e., exactly . .
at the wetting temperatung,=0, and(d) for y=—10 where d—VZV(Ia _have %relsent?d tdh(; transfer-maltlr|>|< SOIIIUUE;_?] for the
the profile is typical for the single soft-mode phase. —< ISIng model confine etween parallel walls. The trans-
Fory=0 the profile is linear across the whole strip. This er has been taken in such a way as to have the effects of

linear behavior was found also in the restricted solid-on-solidValls incorporated directly into the matrix elements. This
(RSOS modef® with the slope equal te-2. Our profile for solution includes all four possible cases of the sign of the
y=0 is the same as in the RSOS model result. Also ougurface fieldshsh,>0, h;h,<0). To extract from the gen-

profiles for the soft-mode phagsufficiently below the bulk eral solution the case of the surface fields of equal or oppo-

critical temperature perfectly agree with the RSOS result site signs projection operators have been used. The results
which gives the following predictioR® are valid for general values of the magnitudes of the surface

fields. We have solved the auxiliary eigenvalue problem
(2.24) and calculated the exact expressions for the eigenvec-
torsy, k=1,...,2\ +1[see(3.18]. In the nonwet regimg;

. . L ' and y, are exponentially decaying functions of the wave
The sc_allng re_latlon fo_r_a magn_ehzatmn_proﬂle_ at thep,mperq andy,, k=3,...,2V +1 are oscillatory functions of
fluctuation-dominated critical wetting transition given by . In the wet regimeall of y, become oscillatory. These

(6.43) is similar to those proposed by Parry, Evans, andeigenvectors form the orthogonal matsxwhich is needed

Nicolaides® to calculate the magnetization profiléSec. \J. As the Ising
system with the surface fields of equal signs is relatively well
m(z,T,M)=M(zt'Ps;nt'Ps); h=0, (543  understood;’* we concentrate on the case of the surface
fields of the opposite signs. In this case the wetting phenom-

wheret’=[T-T,(h,)]/T,(h,). This is because, is pro-  ena have proven to be particularly interesttfign an earlier
portional tot’ near the wetting temperature. papef® we discussed a particular case with only one interac-

m(z)=m*[1—2z/n+ 7 sin2wz/n)]. (5.42
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tion weakened(0<h,;<Ko,,h,=—») and the scaling of dominant configurations are those with an interface bound to
magnetization profiles in the near proximity of wall 1. Now the wall energetically preferred, effectively those of a semi-
we can study any values &f;, h,, including the perfectly infinite system.

antisymmetric system with,=—h,. The main features of a  Above the wetting temperature, for both cases we find the
system are reflected in the TM spectrum. The highest eigernsoft-mode with known properti€s'62923ery little affected
values of(+/+) and(—/+) systems give the singular part of py the values of surface fields. We find the same finite-size
the surface tensioBos. The ratio of the two largest eigen- gependencéEq. (4.15] as for the planar fluctuating inter-
values for single system gives the correlation length parallef,ce in the capillary-wave dominant regime, even though it
to the walls§; (mass gap We have studied the asymptotic \ a5 derive® (see also Refs. 12 and Léor (+/—) strips
behavior of oy and § in various temperature regions. (yvith no weakening of bond&, =a,=1 yielding T,,=0).

Within the solution we have distinguished and discusse For a different derivation of the asymptotic behavior of
separately two cases: the perfect a$ymmhﬁf¥ —h, case the correlation length, from the two-point bond-energy cor-
and the cas¢hy|#|h,|, the latter particularly in the context o |ation function. see Ref. 7

of symmetry breaking by a small difference (@bsolute val- For the case of perfect asymmetry we have derived ana-

ues of surface _flelds. V\/_e_have found that for both cases in tically the finite-size scaling functioisee (4.14] for §
the nonwet region the finite-size dependence of the surfac.,. the hulk wetting transition. We have also calculated
tension is weak. The surface tension converges to its bul

) umerically& and plotted In(&/n?) as a function oX=nu
value exponentially y§ and p n(§/n%) 0

for fixed h,=—h, and different values of (Fig. 1). Figure
1 shows an excellent scaling fofe (—100,50. As for the
o(M)— o () ~exp(—M/(ug 1)) (6.1)  surface tension, we have obtained the scaling function only
below the wetting temperatui¢ghe solid line in Fig. 1 but

with characteristic lengtig*=1/InW for h,=—h, or ug  the scalingis valid also abovg,(h;) when the scaling func-
—1/InW, for |h,| #|h,|. ug * diverges at the wetting tempera- tion becomes a constant independenXofrhe heat capacity
ture. shows less clearly the interference of wetting with the ordi-
In the wet region we find thaBo (M) converges algebra- Nary bulk phase transition between) phase and—) phase.
ically to its bulk value[see(4.9)]. The same behavior was =~ W€ have derived formulas for the average magnetization
obtained for the(—/+) Ising strip with no weakening of (m) at any pointm of the strip. Formal expressions fr,
bondsa, =a,=1 202123 depend on the relative signs of the surface fields. We have
We have derived analytically the finite-size scaling func-concentrated on systems with surface fields of opposite
tion for the singular part of the surface tension n&gth,) signs. After tr_ansformlng th_ese expressions into a form suit-
[Eq. (4.7) for hy,=—h, and(4.19 for |h,|# |h,|]. The scal- able for practical computations, we have calculated numeri-
ing variable isX=nu,. U, is proportional to the variable cally magnetization profilesn(z) for various sizes of the
t'=[T,(hy)—TI/T,(hy) in the scaling region. This agrees StriP (N€[9,201) and for various values of surface fields,
with the earlier proposition of the scaling andtmear the [21,82€(0,1]. . .
wetting temperature based on the heuristic arguments. We For fixed value ofn and a,,a, the profile changes its
have also calculated numerically and plotted—nzﬁas, shape with the temperature. In _the case _of th_e perfect asym-
where Bo.=vy,—v,, as a function ofX=nu, for fixed metry h,=—h, proflles are antisymmetric with respect to
h,=—h, and different values af (Fig. 5). As Fig. 5 shows, the center of the strip. At low temperatures the average mag-
the region of validity of this scaling below the wetting tem- netization is almost zero for all pqlnts_of the strip; this cor-
perature is not too wide as the scaling is very goodXor responds to the average of two situations with the interface
€(—100,20. Although the scaling has been derived for bound to either wal(1) or wall (2). A dramatic change in the
T<T, [Eq. (4.7] it is also very good above the wetting proﬂle; occurs when the symmetry of the system is broken
temperature up t&X~—100. by settinga,=a, + € to have the interface bound to the wall
For the antisymmetric case bf = — h, we have found an (1), or settinga,=a; —€ to have the _interface bound to the
asymptotic divergence with the size of the sthify of the wall (2). Figure 9.showsn(z) 'for the interface bound to the
two largest eigenvalues below the wetting temperature; thi¥/@ll (1). For clarity of the figure we have not shown the

leads to exponential divergence wit of the correlation ~Other profiles witha,<a, as they have exactly the same
length &: shape, only the interface is located at the w@). These

profiles are nhonmonotonic near the walls at low tempera-
1 tures, a feature never obtained with the SOS models.
&~A(T,hy)expM/(ug 7)) (6.2 For the perfect asymmetry the system shows strong inter-
face fluctuations at the wetting temperature, which causes the
valid for M>ug!. This behavior is associated with the profile to be a straight line across the whole strip, with the
nearly broken symmetry of having the interface bound to theslope equal to 2. Such a result has been obtained in the
wall (—) or to wall (+).616 restricted solid-on-solid moddRSOS, for strip geometry
In the second cask;h,<0 and|h|#|h,|, we have ob- and contact surface field§.
tained that the correlation length at low temperatures in the If |hy|#|h,| the profiles at the wetting temperature are
nonwet regime depends on the relative value of the surfaceot linear across the whole strip. If there is a litt differ-
fieldsh, andh, but is almost(up to the exponentially small ence between the surface fields, the profiles are linear in the
correction$ independeniof the width M of the strip[see  vicinity of both walls. If |h,| is much greater thath,| the
(4.21)]. This corresponds to the system in which the pre-profile is linear only near wal(1).
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The single soft-mode phase profile does not depend on thebout the unusual behavior of the antisymmetric system with
relative value of the surface fields and perfectly agrees witlsurface fields of opposite signs—and found behavior of this
the one obtained in the RSOS mo(lED. (5.42]. The mag-  system with symmetry broken by a slight difference in the
netization profiles can be usefully compared with those instrength of surface fields.
d=3 obtained by Binder, Landau, and FerrenBérgy
Monte Carlo simulations. Qualitatively, there is a surprising
similarity with those Monte Carlo profiles obtained with per- ACKNOWLEDGMENTS
fect antisymmetry broken by the bulk external field. We have
also proposed and tested the scaling law fiofz) [Eq. We acknowledge a discussion with A. Ciach and several
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all the prediction® some obtained with heuristic arguments, 2P03B01810.

1B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Model *M. E. Fisher and H. Nakanishi, J. Chem. Phys, 5837 (1981);

(Harvard University Press, Cambridge, MA, 197B. McCoy, H. Nakanishi and M. E. Fisheibid. 78, 3279(1983.
in Phase Transition and Critical Phenomenadited by C.  °F. Brochard-Wyart and P. G. de Gennes, C. R. Acad. X, I|
Domb and J. L. LebowitZAcademic, London, 1972 223(1983.

2H. N. V. Temperley, inPhase Transition and Critical Phenom- 165 (. Parry and R. Evans, Physica ¥81, 250 (1992; see also
ena edited by C. Domb and J.L. LebowitAcademic, London, Phys. Rev. Lett64, 439(1990.
1972, Vol. 1; C. D. Domb, inibid., Vol. 3. 7K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. Lett.

SR. J. Baxter,Exactly Solved Models in Statistical Mechanics 74, 298 (1999; Phys. Rev. E74, 298 (1999, and references
(Academic, London, 1982 therein.

4D. B. Abraham, inPhase Transition and Critical Phenomena 18\ R. Swift. A. L. Owczarek. and J. O. Indekeu Europhys. Lett

edited by C. Domb and J. L. Lebowitg\cademic, London, 14, 475(1992); J. O. Indekeu, A. L. Owczarek, and M. R. Swift,

1986, and references therein.
’ . Phys. Rev. Lett66, 2174(1991).
5 ) .
M. E. Fisher and H. Au-Yang, Physi¢tlitrech) 101, 255(1980); 190, B. Abraham, Phys. Rev. Lett4, 1165(1980).

H.Au-Yang and M.E. Fisher, Phys. Rev. 3956 (1980. 20 .
6\, Privman and M. E. Fisher, J. Stat. Phg8, 385 (1983, D. B. Abraham and N. M. @&akic, Phys. Rev. Lett56, 1172

’D. B. Abraham, N. M.~8rak|'6, and P.J. Upton, Phys. Rev. Lett. ”n (1986. )
68, 423(1992. 22D. B. Apraham, Physica A77, 421(199)).
8B. Kaufman, Phys. Revz6, 1232(1949; T. D. Schultz, D. C.  J- Stecki, Phys. Rev. B7, 7519(1993.
Mattis, and E. H. Lieb, Rev. Mod. Phy86, 856 (1964. R. Evans and J. Stecki, Phys. Rev4B 8842(1984).
°D. B. Abraham, Stud. Appl. Math., 71 (1971). ?!L. Onsager, Phys. Re®5, 117 (1944).
10p, B. Abraham and A. Martin-Lh Commun. Math. Phys32, 25A. Maciolek, Ph.D. thesis, Institute of Physical Chemistry of the
245(1973. Polish Academy of Science, Warsaw, 1995; J. Phy<tcAbe
11p.B. Abraham and P. Reed, Commun. Math. P13g .35 (1976. published.
123, Stecki, A. Maciolek, and K. Olausen, Phys. Reva® 1092  2°A. Ciach and J. Stecki, J. Phys.20, 5619(1987); see also A. O.
(19949. Parry, R. Evans, and D. B. Nicolaides, Phys. Rev. [&#t.2978
3For a review, see R. Evans, J. Phys. Condens. M&{t&989 (1992).

(1990.



