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For the title system the column-column transfer matrix is set up and diagonalized by exact calculation. The
free energy and correlation length follow exactly from the eigenvalues of the auxiliary problem, whereas other
quantities such as magnetization profiles, heat capacities, etc., are calculable numerically with arbitrary accu-
racy. The case of surface fields with the opposite signs is studied in some detail. The transition from expo-
nentially decaying to oscillatory eigenvectors is discussed and related to wetting transitions. For the important
case of the perfect asymmetry system the finite-size scaling near the wetting temperatureTw of surface tension
and correlation length parallel to the walls, is derived. Also the scaling of magnetization profiles is found.
@S0163-1829~96!09526-4#

I. INTRODUCTION

The exact solutions of the Ising model have proved in the
past to be particularly useful in the study of phase
transitions.1–4 A particular formulation of this model refers
to a strip of lengthN and widthM . With the emphasis of a
strip infinite in one directionM→` it has been studied in the
past.5–7 Since it has been demonstrated that thed52 Ising
model can be solved by a transfer-matrix~TM! method in a
spinor formulation7–9 this method has been used with great
success in various physical contexts~critical point behavior,
surface transition! for a bulk system.4,9–12

Of considerable present interest is not a bulk system, but
a system confined by walls which may also interact with the
neighboring particles~spins! of the system; thus modeling
confinement and wetting. However, the added complication
of two surface fields, perhapsopposingsurface fields, has not
been solved until now in full generality.

In this work we apply the TM method to study the Ising
systems confined between parallel plates or walls. Statistical
mechanics of systems in confined geometry has attracted a
great deal of interest these last years because of a variety of
new phenomena arising in these systems.13 For a simple
fluid, binary mixture or Ising magnet confined between par-
allel walls, it has been shown that the phase diagram may be
severely modified due to the finite distanceM between the
walls combined with the effects of the surface fieldsh1 and
h2 imposed on the boundaries.

5,14–18In particular, it has been
predicted, largely on the basis of Landau theory,15,16 that the
behavior of the Ising magnet strongly depends on whether
the fields are of equal or opposite sign, as a consequence of
wetting phenomena.

The relevant exact results for ad52 infinitely long Ising
strip with the surface fields ofequal sign imposed on the
walls have been obtained using Pfaffians techniques.5

In this work we give an exact solution for the column-
column transfer matrix taken in the directionparallel to the
walls to incorporate the effects of the surface fields into the
column self-energy from the very start of the calculations.
Having found the exact solution of the TM, one finds imme-
diately the free energy, the correlation length, and the surface
part of the free energy from which we extract the singular

part of the surface tension. Heat capacities follow by numeri-
cal differentiation of the free energies. The computation of
the magnetization profiles is slightly less immediate, as is
described in Sec. V.

We concentrate~Secs. IV and V! on the most interesting
case of surface fields of opposite signs. In this context we
can introduce a mechanism for breaking the symmetry of the
perfectly antisymmetric system. As is well known, the pres-
ence of any bulk external field~homogeneous or not! pre-
vents the solution of the Ising model. Therefore the breaking
of symmetry with the aid of an external field is not possible
but we can instead break the symmetry by making the wall-
system interactions different for the two walls. This
symmetry-breaking mechanism is spectacularly efficient in
the nonwet regime.

The paper is organized as follows. In Sec. II, we define
the model, shortly recall the formalism9,10 and proceed with
the solution of the eigenproblem. Reduction of the TM to
diagonal form is related to the solution of a certain associ-
ated eigenvalue problem. In Sec. III we discuss the solution
of the eigenvalue equation, separately for the case of
uh1u5uh2u and for the case ofuh1uÞuh2u. In Sec. IV we apply
these results and calculate quantities which require only the
eigenvalues, such as the surface tension, correlation length,
and heat capacities, for the case of surface fields with oppo-
site signs. In Sec. V we derive the formula for the magneti-
zation profilesm(z) and discuss profiles for the system with
the surface fields with opposite signs. For the case of the
perfect asymmetry systemh152h2 we propose and test the
scaling law ofm(z) in the vicinity of the wetting temperature
Tw(h1). We conclude~Sec. VI! with a summary and a dis-
cussion of the results.

II. A TRANSFER-MATRIX SOLUTION FOR D52 ISING
MODEL WITH TWO SURFACE LINES

OF WEAKENED BONDS

Consider ad52 square lattice in the geometry of infi-
nitely long strip @N3(M21), N→`# with Ising spins
s(x,z)561, x51,...,N, z51,...,M21 at each lattice site
(x,z). The spins are coupled by the Ising Hamiltonian
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bH52(
z

(
x

@K1s~x,z!s~x11,z!

1K2s~x,z!s~x,z11!# ~2.1!

with the cyclic boundary condition along thex axis.
Ki[bJi , i51,2 are positive coupling constants. We take
K15K2 . To this bulk Hamiltonian the surface term which
accounts for the interaction with the walls is added:

bHs52(
x

@h1s~x,1!1h2s~x,M21!#, ~2.2!

whereh1 and h2 are the surface fields acting only on the
boundary spins.

If hi.0~,0! then it is said that the walli favors the1~2!
phase. It is convenient for the TM matrix method to replace
the surface fields acting ons~x,1! ands(x,M21), by two
rows of modified bonds to additional wall spinss~x,0! and
s(x,M ), 1<x<N, respectively, with the interaction

(
x

@a1Ks~x,0!s~x,1!1a2Ks~x,M !s~x,M21!#.

~2.3!

The bonds are weakened 0<ai<1, i51,2 and the spins on
additional walls are fixed. This includes four cases. If both
s~x,0! ands(x,M ) for all x are equal to11~21! this is the
case of walls which prefer the same1~2! phase. Ifs~x,0!
521~11! but s(x,M )51~21! then the walls prefer oppo-
site phases.

The partition function for this model can be expressed as

ZM ,N5Tr~TN!, ~2.4!

whereT is the column-column transfer matrix~TM! taken in
thex direction and it is known10 how to take the limitN→`
with walls of spins fixed. We take the following symme-
trized form ofV:

T5~2 sinh2K !~M21!/2V,

V5V2
1/2V1V2

1/2, ~2.5!

with

V15expF2K* (
1

M21

sm
z G , ~2.6!

V25exp@~a1K !s0
xs1

x#expFK (
2

M21

sm21
x sm

x G
3exp@~a2K !sM21

x sM
x #, ~2.7!

where s i ( i5x,y,z) are the Pauli matrices,K5bJ and
tanhK*5exp~22K! defines the dual couplingK* . Note that
the presence of two rows of weakened coupling constants
breaks the translation symmetry of the problem. The diago-
nalization of a transfer matrixV, proceeds with the use of
Kaufman8 spinor analysis along the way similar to that de-
scribed in Ref. 9 for the free boundary condition and Ref. 10
for the fixed~1/1!, ~2/2! boundary condition. This method
uses the fact that the TM operatorV written in term of suit-
able set of spinors is a spin representation of a simple 2~M

1l! dimensional rotation hence the dimensionality of the ei-
genvalue problem can be significantly reduced@from 2M11

to 2~M11!#. The procedure proceeds in two steps. The first
step is to introduce the spinorsGk , k50,...,2M11 by a
Jordan-Wigner transformation which is taken here in the
standard form:

G05s0
x G2 j5)

0

j21

~2sm
z s j

x!,

G15s0
y G2 j115)

0

j21

~2sm
z s j

y!,

j51,...,M .

Then the new set of spinorsgk , k50,...,2M11 is found by
an orthogonal transformationgT5GTS such thatV in terms
of gk , k50,...,2M11 is spin representation of a simple 2~M
11!-dimensional rotations10

Vg
TV215gTH, ~2.8!

where

H5S 1

H1

�

HM

1

D
and

Hj5S coshg j i sinhg j

2 i sinhg j coshg j
D .

Finally gk , k50,2M11 are combined in pairs to form the
anticommuting Fermi operatorsf k , f k

† ,k50,...,M defined as

f k5~1/2!~g2k112 ig2k!,

f k
†5~1/2!~g2k111 ig2k! k50,...,M .

In terms of Fermi operatorsV has a familiar form

V5expF2~1/2!(
0

M

gk~2 f k
†f k2I !G ~2.9!

with g050. By quantum-mechanical analogy the eigenvec-
tors are ‘‘excited states’’uL&5 f l1

† ...f l j
† u0& with different op-

eratorsf k
†,0,k<M acting on the ‘‘vacuum’’u0& determined

by f l u0&50 for all l . uL& has the eigenvalue

L5L0exp@2g~v l1
!2...g~v l j

!#, ~2.10!

where

L05expS 12 (
i50

M

g~v i !D . ~2.11!

Each eigenvalue is doubly degenerate and the set
L5( l 1 ,l 2 ,l 3 ,...) specifies whichg’s enter with a minus
sign. To obtain the eigenvectors for the case of surface fields
of opposite signs, namely whenh1 prefers the~2! phase but
h2 prefers the~1! phase, we used projection operators11,12
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P15~21/2!~ f 01 f 0
†2I !, ~2.12!

P25~1/2!@~ f 02 f 0
†!P1I #, ~2.13!

whereP is a parity operator defined as

P5 )
m50

M

~2sm
z !. ~2.14!

The excited statesuL& are the states with anodd number of
~different! operatorsf k

†,0,k<M acting on the vacuumu0&.
uL& has the eigenvalue of the form~2.10! with the set
L5( l 1 ,l 2 ,l 3 ,...) consisting of odd elements of different
numbers. Since ~g1,g2,. . .! the largest eigenvalue is
l15L0exp~2g1! and the next isl25L0 exp~2g2!.

If both walls prefer the same, say~1! phase, the projec-
tion operators are

P15~1/2!~ f 01 f 0
†2I !, ~2.15!

P25~1/2!@~ f 02 f 0
†!P1I # ~2.16!

and the excited statesuL& are the states with anevennumber
of different operatorsf k

†,0,k<M acting on the vacuumu0&.
Now, the largest eigenvalue isl15L0 and the next is
l25L0exp~2g12g2!.

The diagonalization procedure may be reduced to the
problem of finding the orthogonal transformationS and the
values ofgk . This can be done by solving the eigenvalue
problem for R[R2

1/2R1R2
1/2 where R1 ,R2 are 2~M11!-

dimensional rotation matrices such that the action ofV1 and
V2 on the set of spinorsGT5(G0 ,...,G2M11) is a simple
rotation onGT:

V1G
TV1

215GTR1 , ~2.17!

V2G
TV2

215GTR2 . ~2.18!

For the strip with two lines of modified bonds,R1 andR2
have the form

R15S 1

1

A~v1!
�

A~v1!
1

1

D ,

~2.19!

R25S 1

A~v3!
A~v2!

�

A~v2!
A~v4!

1

D ,

~2.20!

where the matricesA(v1), A(v2), A(v3), andA(v4) are

A~v !5S coshv i sinhv
2 i sinhv coshv D ~2.21!

and v152K* , v252K, v352a1K, v452a2K. R is a Her-
mitian operator so it has the eigenvalues

eg0,e2g0,eg1,e2g1,...,egM,e2gM

with gk real with the eigenvectors

y0 ,y0* ,y1 ,y1* ,...,yM ,yM*

that satisfy the normalization condition:

yi
†yi5d i j . ~2.22!

Having found these eigenvectors one can construct the ma-
trix S

S5@h1j1•••hMjM# ~2.23!

with j i521/2(yi1yi* ) and h i521/2(yi2yi* ) for 0< i<M .
These eigenvectors will be needed for the computation of
magnetization profiles.

In the next section the solution of the eigenvalue equation

R2
1/2R1R2

1/2ym5eg~vm!ym ~2.24!

will be described. Such a solution fora15a251 and~1/1!
boundary condition was obtained in Ref. 10, fora15a250
in Ref. 9 and we have obtained12 the ~1/2! case ~for
a15a251! by applying projections to the solution of Ref.
10. Here we find a more general solution fora1,1 anda2,1
with a1Þa2 also allowed.

III. THE SOLUTION ON THE EIGENVALUE EQUATION

To solve~2.24! it is convenient to use a modified form of
this equation

Lx50 ~3.1!

with L5e2gR12R2
21 andx5R2

1/2y. Using expressions for
R1 andR2 one getsM22 pairs of equations which are the
same as for the case of fixed boundary conditions but no
weakening of bonds (a15a251)

2 ie2gsinhv1x2n221~e2gcoshv12coshv2!x2n21

1 i sinhv2x2n50, ~3.2a!

2 i sinhv2x2n211~e2gcoshv12coshv2!x2n

1 ie2gsinhv2x2n1150 ~3.2b!

for 2<n<M21.
Besides, the last and the first of theA(v) matrices ofR2

~see 2.20! provide two pairs of equations closing the recur-
rence~3.2!, from above:

~e2g2coshv3!x11 i sinhv3x250, ~3.3a!

2 i sinhv3x11~e2gcoshv12coshv3!x21~ i sinhv1!x350
~3.3b!

and from below:
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2 ie2gsinhv1x2M221~e2gcoshv12coshv4!x2M21

1 i sinhv4x2M50, ~3.4a!

2 i sinhv4x2M211~e2g2coshv4!x2M50. ~3.4b!

The general solution forxk , 2<k<M21 should have the
known general form.9 That is

x2n5Bz2n1B8z22n, ~3.5a!

x2n215Az2n211A8z22n11,

n52,...,M21. ~3.5b!

z is a ~complex! number. We note that the coefficientsA and
B8 can be eliminated using the fact that separately
x2n5Bz2n, x2n215Az2n21 and x2n5B8z22n, x2n21
5A8z22n11 (n52,...,M ) are also solutions of~3.1! if
A/B52B8/A8[q satisfies

q52
e2gcoshv12coshv2

2 i sinhv2z
211 ie2gsinhv1z

52
i sinhv2z2 ie2gsinhv1z

21

e2gcoshv12coshv2
. ~3.6!

This equation has a nontrivial solution if

~e2gcoshv12coshv2!
25z2~sinhv22e2gsinhv1z

22!

3~sinhv2z
222e2gsinhv1!.

~3.7!

From this condition the allowed values ofgk are related toz.
If z is written in the form ofz25eiv with v complex~3.7!
becomes equal to the Onsager functiong~v!:

coshg5coshv1coshv22sinhv1sinhv2cosv. ~3.8!

The presence of two new constantsv3 and v4 breaks the
symmetry of the matrixL; to satisfy the recurrence~3.2! the
solutions forx1 and forx2M must have coefficients different
from the rest ofx2k andx2k11 respectively:

x15Cz1C8z21, ~39a!

xM5Dz2M1D8z22M. ~39b!

C,C8,D,D8 can be eliminated from~3.3a! and ~3.4b!:

C52
i sinhv3

e2g2coshv3
zB, ~3.10!

C852
i sinhv3

e2g2coshv3
z21B8, ~3.11!

D52
i sinhv4

e2g2coshv4
z21A, ~3.12!

D852
i sinhv4

e2g2coshv4
zA8. ~3.13!

Now, the general solution is written in terms of only two
coefficientsB andA8

x152S i sinhv3
e2g2coshv3

DB@z22~A8/B!qz22#,

x2n5B@z2n2~A8/B!qz22n#,

x2n115B@qz2n111~A8/B!z2~2n11!#,

x2M5S i sinhv4
e2g2coshv4

DB@qz2M211~A8/B!8z22M11#

1< j<M21. ~3.14!

A8/B has to be determined from the boundary conditions of
the recurrence~3.2!. ~3.3b! and ~3.4a! give

B

A8
5z25

T1qz2 ie2gsinhv1
T11 ie2gsinhv1qz

, ~3.15a!

B

A8
52z24M13

T21 ie2gsinhv1qz
T2qz2 ie2gsinhv1

, ~3.15b!

where

T1,25
2sinh2v3,4

e2g2coshv3,4
1~e2gcoshv22coshv3,4!.

~3.16!

In conclusion,~3.14! is a solution of~3.1! with

B

A8
5z25

T1qz2 ie2gsinhv1
T11 ie2gsinhv1qz

,

provided~3.7! is obeyed andz satisfies the eigenvalue equa-
tion

~z2!2~M22!5FT11 ie2gsinhv1qz
T1qz2 ie2gsinhv1

GFT21 ie2gsinhv1qz
T2qz2 ie2gsinhv1

G .
~3.17!

Then the eigenvectorsy are given byy5R2
21/2x so after

some algebra we obtain

y152 iB1A~v3!Fsinh v22 @z2eid*1z4R~z!#

1cosh
v2
2

@z21z4R~z!eid* #G , ~3.18a!

y25B1B~v3!Fsinh v22 @z2eid*1z4R~z!#

1cosh
v2
2

@z21z4R~z!eid* #G , ~3.18b!

y2n115 iB1@z
2n12eid*1z22n14R~z!#, ~3.18c!

y2n125B1@z
2n121z22n14R~z!eid* #, ~3.18d!
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y2M215 iB1A~v4!Fcoshv22 @z2Meid*1z22M16R~z!#

1sinh
v2
2

@z2M1z22M16R~z!eid* #G , ~3.18e!

y2M52B1B~v4!Fsinh v22 @z2Meid*1z22M16R~z!#

1cosh
v2
2

@z2M1z22M16R~z!eid* #G , ~3.18f!

y050,

y2M1150,

where

A~v i !5@coshv i /2 sinhv i /~e
2g2coshv i !1sinhv i /2#,

~3.19a!

B~v i !5@sinhv i /2 sinhv i /~e
2g2coshv i !1coshv i /2#,

~3.19b!

wherei53,4 and

R~z![2 i
T11 ie2gsinhv1qz
T1qz2 ie2gsinhv1

. ~3.20!

Also

eid* ~v!5~B/A!1/2F ~z22A!~z22B21!

~z22A21!~z22B!G
1/2

~3.21!

with A215tanh K tanh K* , B5tanh K/tanh K* and the
branch of the square root is taken such that expd* ~0!511.
The functiond * ~v! is introduced in the above derivation
through the following identity:

q5 iz
eid* coshv2/21sinhv2/2

eid* sinhv2/21coshv2/2
. ~3.22!

d * ~v! andgk which appear naturally here, are the parameters
of the Onsager hyperbolic triangle24 defined by~3.8! and the
set of equations:

~sinhg!cosd85sinhv1coshv22coshv1sinhv2cosv,
~3.23!

~sinhg!cosd*5coshv1sinhv22sinhv1coshv2cosv,
~3.24!

sind8

sinhv2
5

sind*

sinhv1
5

sinv

sinhg
. ~3.25!

The constantB1 is determined from the normalization con-
dition ~2.22!.

The last step of the diagonalization procedure is an ex-
amination of Eq.~3.17!. This equation determines the al-
lowed values of thevk and from~3.8! also ofgk . We start
the discussion of a possible solutions with the simplification
of the right-hand side~rhs! of this equation. As can be shown
after considerable algebraR(z) may be written as

R~z!52eid8
W1~z

22W1
21!

z2~z22W1!
, ~3.26!

where

W15~coshv111!~coshv22coshv3!. ~3.27!

Aboved 8~v! is a parameter of Onsager’s hyperbolic triangle
defined by~3.23! and ~3.25! with the following factor form:

eid8~v!5~AB!21/2F ~z22A!~z22B!

~z22A21!~z22B21!G
1/2

, ~3.28!

such that expid8~0!521. W1 is just the same temperature
function as was used to define the wetting temperature
Tw(h1),h15a1Js0 , in the semi-infinite Ising model with a
single surface fieldh1.

19 At T5Tw(h1)W1 is equal to 1. If
T,Tw(h1) thenW1.1. Using~3.26! Eq. ~3.17! can be writ-
ten as

~z2!2M5e2id8SW1z
2~z22W1

21!

z22W1
D SW2z

2~z22W2
21!

z22W2
D ,
~3.29!

where

W25~coshv111!~coshv22coshv4! ~3.30!

defines the wetting temperatureTw(h2),h25a2JsM , in the
semi-infinite system with a single surface fieldh2. We look
for the roots of the ‘‘eigenvalue’’ equation takingz25eiv

with v real, between 0 andp and check if they give rise the
appropriate number of the eigenvectors. The cases of~a!
uh1u5uh2u and ~b! uh1uÞuh2u are discussed separately.

A. The case ofzh1z5zh2z

For this caseW15W2[W and~3.29! simplifies consider-
ably

eivM5aeid8
Weiv~eiv2W21!

eiv2W
~3.31!

with a561. Forv real we define

eif5
Weiv~eiv2W21!

eiv2W
, ~3.32!

wheref~v! is a real function so that the allowed wave num-
bersvk between 0 andp could be find graphically or nu-
merically by rewriting the~3.31! in the form

tanMv5tan~d81f!~v!, ~3.33!

~d81f!~v!5Mv2~k21!p. ~3.34!

As is well known,9,10 d8~v! has a differentv dependence
below and aboveTc,` , the critical temperature of the infinite
system. A detailed examination off~v! shows that this func-
tion changes its behavior not only atTc,` but also at
Tw(h1)—the wetting temperature of the semi-infinite sys-
tem. Thus we distinguish three temperature regions:~1!
T,Tw(h1), ~2! Tw(h1)<T,Tc,` , and~3! Tc,`,T.
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At T5Tw(h1) there is a special solution atv50 with
nonzero eigenvector and the corresponding eigenvalueeg(0)

5ev22v1. For all other temperatures the valuesv50,p give
the trivial eigenvectors.

The results forvk , andgk , k51,...,M are as follows.
~1! T,Tw(h1).
Below Tw(h1) there areM22 real solutions between 0

andp. gk[g(vk) are given by~3.8! and they are all greater
than v0[v22v1 . Two ‘‘missing’’ solutions are found at
imaginary valuev15iu1 andv25iu2, u1,2>0 from

e2ukM5ake
id8~ iuk!

We2uk~e2uk2W21!

e2uk2W
, ~3.35!

wherek51,2 anda151,a2521. The solutions lie between
B21 and 1 nearW21. In the limit M→` they become equal
to e2u15e2u25W21. For large but finiteM , the difference
u1,22u0 , whereu0[lnW, is exponentially small

uk2u0;2ak2e
2u0Me2 id8~ iu0!sinhu0e

u0, ~3.36!

k51,2.
Having foundu1,2, gi , i51,2 are calculated from

coshg i5coshv0112coshui , i51,2, ~3.37!

u1.u2 henceg1,g2,v0. With the increasing temperature
W21 goes to 1 and atTw,M(h1) that lies slightly below
Tw(h1) the imaginary solutionu2 disappears. At the same
time a real solution nearv50 appears.Tw,M is determined
from

M51/~sinhv1 /tanhv22coshv1!

12~12W!/~22W2W21!. ~3.38!

For large M and not too small a1,
Tw,M(h1);Tw(h1)2C1(h1)/M . Thus betweenTw,M(h1)
and Tw(h1) there areM21 real solutionsvk with gk.v0
and one imaginary solutionv15u1 with g1,v0.

~2! Tw(h1)<T,Tc,` .
At Tw(h1) all vk become real with v150 and

g15g~v50!, the smallest ofg’s becomesequal tov0. All
solutionsvk remain real up to the temperatureTc,M that lies
slightly aboveTc,` . Tc,M is given also by~3.38! but solved
aboveTc,` . For largeM , Tc,M(h1);Tc,`2C2(h1)/M . All
gk are greater thanv0.

~3! T.Tc,` .
Above Tc,M there appears again one imaginary solution

v15iu andM21 real. u is found betweenB and 1 from
~3.35! with a151.

B. The case ofzh1zÞzh2z

We takeuh1u,uh2u so thatTw(h1).Tw(h2). The real so-
lutions between 0 andp which give rise to nontrivial eigen-
vectors are found from

tanMv5tanFd8~v!1
f11f2~v!

2 G , ~3.39!

wheref1,2 are defined by~3.32! with W5W1,2, respectively.
Now, there are three characteristic temperatures in the sys-
tem: the wetting temperatures for wallsTw(h1), Tw(h2), and

Tc,` . The examination off1,2 shows that in this case where
there is no perfect asymmetry in a system we have to distin-
guish four temperature regions:~1! T,Tw(h2), ~2!
Tw(h2),T,Tw(h1), ~3! Tw(h1),T,Tc,` , and ~4!
Tc,`,T.

The results for the allowed number ofvk and gk are as
follows.

~1! T,Tw(h2),Tw(h1).
Below Tw(h2), which is the lower of the two, there are

M22 real solutions forv between 0 andp—just as in case
~a! below the wetting temperatureTw(h1)5Tw(h2). The
missing two roots are found from~3.29! for z25eiv and
v5iu betweenB21 and 1 close to theW1

21 andW2
21 @which

are zeros of the rhs of~3.29!#. For Tw(h1).Tw(h2),
W1

21,W2
21, so that u1 lies exponentially close tou01

[lnW1 andu2 lies exponentially close tou02[lnW2:

u12u01;22 sinhu01e
22Mu01e22id8~ iu01!

3~12W2W1!/~W2W1
2121!, ~3.40!

u22u02;2 sinhu02e
22Mu02e22id8~ iu02!

3~12W1W2!/~W1W2
2121!. ~3.41!

u1.u2 henceg1,g2,u0.
~2! Tw(h2),T,Tw(h1).
In this temperature region there areM21 real solutions

and one imaginaryv15iu1 with g1,v0. The imaginary so-
lution that lies close toW2

21 disappears—not exactly at
Tw(h2) but atTw,M(h2) which is slightly belowTw(h2).

~3! Tw(h1),T,Tc,` .
In this region all roots become real and allgk are greater

thanv0. The imaginary solution that lies close toW1
21 dis-

appears, not exactly atTw(h1) but atTw,M(h1) slightly be-
low Tw(h1).

Both Tw,M(h2) andTw,M(h1) are given by the roots of

M51/~sinhv1 /tanhv22coshv1!1
~12W1!

~22W12W1
21!

1
~12W2!

~22W22W2
21!

. ~3.42!

~4! Tc,`,T.
Just as in the case of perfect asymmetry, there are~M21!

real solutions aboveTc,M . Tc,M is a third root of ~3.42!
which lies aboveTc,` . The imaginaryv is found from~3.29!
betweenB and 1. The mechanism of breaking the symmetry
of the perfectly asymmetric system withuh1u5uh2u is further
discussed below.

The above discussion is of a great importance for the form
of the eigenvectorsyk ~3.18!. As the exact expressions~3.18!
for yk , k51,...,2M show, realv corresponds to oscillatory
behavior of the eigenvectors whereas the~one or two! miss-
ing roots with purely imaginaryv correspond to exponen-
tially decaying eigenvectors. Such exponential decay is
needed to describe the fast fall of magnetization and other
properties near either wall—hence below the wetting tem-
perature in the nonwet regime but also aboveTc,` where at
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sufficiently high temperatures the system is filled with disor-
dered bulk phase—except for a few layers of adsorbed mat-
ter at a wall.

IV. ISING STRIP WITH THE SURFACE FIELDS
OF THE OPPOSITE SIGNS

The results obtained in the previous sections are now ap-
plied to the case when the surface fieldsh1, h2 have the
opposite signs. We fix spinss~x,0!, x51,...,N at the value
21 ands(x,M ), x51,...,N at the value11 so thath1,0
andh2.0. We calculate the surface tension~surface excess
free energy per unit area! from the definition4

bs~M !52 lim
N→`

ln
Z21

Z11 , ~4.1!

whereZ21 is a partition function for the system with the
surface fields of opposite signs andZ11 is a partition func-
tion for the similar system but with the surface fields of equal
signs @s~x,0! and s(x,M ) fixed at the value11 for all
x51,...,N#.

In the limit N→` it is enough to know the highest eigen-
value of the TM. For the~1/1! case it isL0 given by~2.10!,
for the ~2/1! case it isL0e

2g1, thus

bs5g1 . ~4.2!

We also consider the correlation lengthji in a direction
parallel to the wall, which is defined through the spectral gap
between the two highest eigenvalues

j i
215@ ln~l1 /l2!#

215~g22g1!. ~4.3!

Having the expressions forg1 andg2 in the various tempera-
ture regions the discussion of the asymptotic behavior and
scaling for the surface tensions(M ) and longitudinal corre-
lation lengthji is straightforward.

A. The case of the perfect asymmetryh152h2

Below the wetting temperatureTw(h1) g1 is given by
~3.8! with the imaginary wave numberv15iu1 and is less
thanv0[v22v1 . Hence, as can be expected for the nonwet
region, the surface tension of the interface bound to the~2!
or ~1! wall is less thanb21v0—the Onsager surface tension
for the free interface in the Ising system.

An asymptotic behavior ofg1 for large distanceM be-
tween the walls and for the temperature fixed at any value
below Tw(h1), can be derived from~3.37! and ~3.36!. For
largeM , g1 is exponentially close to theg0 given by

coshg05sinhv0112coshu0 , ~4.4!

whereu05ln W.

g15g02C~T,h1!e
2Mu0 ~4.5!

with C(T,h1)52(eu0sinh2u0 /sinhg0)exp@2id8(iu0)#.
~1/b!g0 is the surface tension of the interface below

Tw(h1) ~bound to the wall! obtained exactly by Abraham in
the semi-infinite Ising model for the wetting transition.19

This surface tension exhibits a jump in the second tempera-
ture derivative at the wetting temperature. In a strip of finite

width this discontinuity is rounded and in the vicinity of
Tw(h1) we consider a finite-size scaling. The small param-
eter which measures the distance to the wetting temperature
is u0. It is equal to 0 atTw(h1). The bulk ~semi-infinite!
system is wet foru0,0 and nonwet for theu0.0. The scal-
ing limit is defined as u0→0, n[M21→` but
X[nu05O(1). n[M21 is the width of the strip where
only the active spins are taken into account. Asu0→0 than
g1→v0 and the lhs of Eq.~3.36! can be expanded aroundv0.
The rhs of this equation is expanded aroundu050 using
~3.35!. In the scaling limit we get

g15v052~1/4 sinhv0!u0
2~122e2X!21O~u0

3! ~4.6!

and the scaling for the singular part of the surface tension in
the vicinity of the wetting temperature has the form

bss[g12v052n22F~X! ~4.7!

with the scaling function F(X)5~1/4 sinhv0!X
2(1

22e2X)2. In the limit X→`, corresponding to the nonwet
regionu0@n21, F(X);X2. In this limit the behavior of the
bulk critical wetting is recovered.19 The opposite limit can-
not be taken because the above derivation is valid only for
T,Tw(h1), wherev1 is a pure imaginary number.

At Tw(h1) the surface tensions(M )[~1/b!g1 becomes
equal to~1/b!v0—the surface tension of the free interface.
AboveTw(h1), bs(M ) remains, up to the finite-size correc-
tions, equal tov0. These corrections are calculated from
~3.8! using the fact that in the wet regionv1 is a real root of
~3.33! between 0 andp/M . For largeM , v1→0 andg1→v0.
If the wetting temperature is well belowTc,` so thatv0 is not
a small parameter, the finite-size behavior ofg1 can be ob-
tained by expanding~3.33! and~3.8! aboutv50. ForM→`
at constantT

v15pM211~A11B1!pM
221••• , ~4.8!

where A151/~sinhv1/tanhv22coshv1! and B15~12coshu0
1sinhu0!/~12coshu0!. It follows from ~3.8! that

bs~M !5v01~1/2bG!p2M221O~M23!, ~4.9!

where the stiffness of the interfacebG5sinhv0. This is a
well-known result20,21,23for the finite-size effects in the sur-
face tension of the planar fluctuating interface in the Ising
model. For the casea15a251 see Ref. 23.

Close to the critical temperatureTc,` the singular part of
the surface tension should obey the standard finite-size scal-
ing. The scaling limit is nowM→`, t[(T2Tc,`)/Tc,`→0
butX[Mt5O~1!. As t→0, v0→0. In this limit the equation
for vk ~3.33! takes the form

tan~Mv1!5
vk

2v0
~4.10!

and the further derivation of the scaling function for the sin-
gular part of the surface tension is the same as has been done
previously for the case of the Ising strip with fixed~2/1!
boundary condition for (a15a251).22,23

For the correlation lengthji bothg1 andg2 are needed. As
the finite-size dependence ofg1 andg2 is different below and
aboveTw(h1) there is a qualitatively different behavior ofji

in these two regions.
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In the nonwet region@below Tw,M(h1)# both g’s come
from imaginary wave numbersv15iu1 and v25iu2. For
large M , g1 is given by ~4.5! and g2 takes the following
form:

g25g01C~T,h1!e
2Mu0, ~4.11!

where g0 is given by ~4.4!, C(T,h1)52(eu0sinh2u0 /
sinhg0)exp„2 id8( iu0)… andu05lnW. Hence

g22g1;~24 exp2 id8~ iu0!sinhu0
2eu0/sinhg0!e

2Mu0.
~4.12!

This means that belowTw,M(h1) the two highest eigenvalues
l15L0e

2g1 andl25L0e
2g2 are asymptotically degenerate

asM→` and the correlation lengthji diverges exponentially
with the width of the strip,j i;e1Mu0.16

In the scaling limit u0→0, n[M21→` but
X[nu05O~1! g1 is given by~4.6! and

g22v052~1/4 sinhv0!u0
2~112e2X!21O~u0

3!,
~4.13!

from which the scaling for the correlation length follows

j i5n2~sinhv0/2!X22eX. ~4.14!

At Tw,M(h1) g2 becomes equal tov0 and aboveTw,M(h1)
v2 switches from imaginary value to the real root of~3.33!
between 0 andp/M . At the same timev1 remains imaginary
up to theTw(h1) when in turng1 becomes equalv0 andv1
switches to the real value. BetweenTw,M(h1) and Tw(h1)
there is a crossover from the nonwet to the wet regime. In a
wet regime bothv1 and v2 are real roots of~3.33! with
0,v1,p/M andp/M,v2,2p/M . For largeM and at the
temperature fixed at any value belowTc,` , v1 is given by
~4.8! and v252pM211(A11B1)pM

221••• . Expanding
~3.8! in powers of 1/M we find

1/j i5g22g15~3/2 sinhv0!p
2M22. ~4.15!

The above result shows that the finite-size dependence ofji

aboveTw(h1) with weakening of bonds is the same as for the
planar fluctuating interface in the capillary-wave dominant
regime, found for large~1/2! Ising strips with no weaken-
ing of bonds (a15a251).16,20,22

The result~4.15! is a particular case of a more general
scaling law22 of the form

M /j i5Y~M sinhv0!,

and the leading term of the low-temperature~large argument!
expansion of the scaling functionY produces~4.15!.22 Small
argument expansion recovers finite-size scaling nearTc,` .

22

This can be understood by combining~4.10! and ~3.8!.

B. The case ofh1h2<0 and zh1zÞzh2z

The qualitative behavior of the surface tension below the
highest of the wetting temperatures, which we take to be
Tw(h1), is the same as for the previous case, although the
expression forg1 is more complicated. For fixed temperature
belowTw(h1) and for largeM it takes the form

g15g012C8~T,h1 ,h2!exp~2Mu01! ~4.16!

with the constant

C8~T,h1 ,h2!5
2~eu01sinh2u01~12W2W1!

sinhg01~W2W1
2121!

3exp„22id8~ iu01!…. ~4.17!

Here

coshg015coshv0112coshu01 ~4.18!

andu01[lnW1. Hence, belowTw(h1) the surface tension is
exponentially close to the valueg01/b which is the surface
tension of the bound interface in the semi-infinite Ising sys-
tem with a singleh1 wall.

Derivation of the scaling form for the singular part of the
surface tension in the vicinity ofTw(h1) is similar to that for
the case of the perfect asymmetry. We take the scaling vari-
able to beX[u01n and in the limit n→`, u01→0 but
X5O~1! we find

g12v05n22F1~X! ~4.19!

with the scaling function F1(X)5~1/2 sinhv0!X
2(1

22e22X)2.
For the case ofh1h2,0 anduh1uÞuh2u there is no asymp-

totic degeneracy of the two highest eigenvalues. For fixed
temperature belowTw(h1) andTw(h2), when bothv1 andv2
are purely imaginary,g1 lies exponentially close to the value
g01 given by ~4.18! and g2 lies exponentially close to the
valueg02 given by

coshg025coshv0112coshu02. ~4.20!

Hence

1/j i5g22g1;g022g01 ~4.21!

up to the exponentially small corrections. When the perfect
asymetryh152h2 is broken, the correlation lengthji , in-
stead of diverging withM exponentially, is anM indepen-
dent function of temperature only. This result was not sug-
gested earlier.

BetweenTw(h2) andTw(h1) or more precisely between
Tw,M(h2) and Tw,M(h1), the value ofv1 remains purely
imaginary butv2 switches to the real value. The finite-size
dependence becomes more evident in this crossover region.
If Tw(h2) lies sufficiently far fromTw(h1) the asymptotics
for largeM and fixed temperature ofg1 andg2 is different.
g2 is given by

g25v01~1/2bG!p2M221O~M23!, ~4.22!

and as far as the temperature is not too close to theTw(h1),
the asymptotic behavior ofg1 is still given by
~4.11!. Above Tw(h1) the behavior of the surface tension
s(M ) and longitudinal correlation length is up to the highest
order of 1/M the same as for the case of the perfect asym-
metry system.

Our results forji are summarized in Figs. 1–3. Figure 1
shows the test of scaling~4.14! in the nonwet regime. Figure
2 shows the comparison of three strips of the same width: a
~1/1! strip, a ~1/2! strip with perfect asymmetry, and the
~1/2! strip with broken asymmetry~broken by a slight dif-
ference between the two surface fields,a25a11e!. First,
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aboveTc,` , ji(T) is common to all strips. On lowering the
temperature, atTc,` the ~1/2! strips show smooth further
increase. Hence only the~1/1! strip shows a peak atTc,` .
BetweenTc,` andTw @and beyondTw(M )#, ji(T,M ) is prac-
tically independentof e. Below Tw(M ), ji of the perfectly
antisymmetric system~e50! continues to rise,

j i;P~W!WM

with the prefactorP(W) which follows from Eq.~4.12!; tem-
perature dependence ofW is given by~3.27! andW increases

indefinitely asT decreases. This was predicted.16 In contrast
to that, any system with broken symmetry byeÞ0 crosses
over ~very abruptly for largeM ! to a curveji~T,e! common
to allM . Two such curves~for e51025 and 1027! are shown
in Fig. 2. These were calculated from~4.21! with ~4.20!,
~4.18!, ~3.27!, and ~3.30! assumingv45v312K2e. These
equations describe a superposition of two semiinfinite wall-
spin systems without any interference. Thesed52 plots dif-
fer from Fig. 13 of Ref. 16 which refers tod53 systems.
Another remark concerns the prediction of Eq.~4.15!: the
region where this scaling law operates is rather limited. Its
derivation from the more general scaling law22 requires that
T!Tc,` and, on the other hand we must haveT@Tw , espe-
cially for smallM ~see Fig. 3!.

Figure 3 shows a plot similar to Fig. 2, of data computed
without approximations for one value ofe and several values
of M of the ~1/2! strip. The low-temperature branch is in-
deed common to all values ofM ~for M.10, say!.

From the eigenvalues one can also compute the free en-
ergy per column and by numerical differentiation we have
computed the heat capacities. Figure 4~a! shows a family of
curves with differentM for perfect asymmetry. The strong
peak nearT/Tc51 follows the usual finite-size scaling and
nothing new is revealed in relation to the work of Fisher and
co-workers~see Ref. 5 where references to earlier work can
be found!. The peaks of the~1/2! strips are some 20%
lower than those for the~1/1! strips. The perfectly antisym-
metric system differs only quantitatively from systems with
uh1uÞuh2u. NearTw , asM→`, the surface peak inCv ~per
column! approaches the second-order finite discontinuity
found by Abraham4 in a semi-infinite system with
one wall. To extract the singular part, we should form
the difference@s~wall, phase2!-s~wall, phase1!-s~phase1,
phase2!#;2ut u22a which in our case of two perfectly
antisymmetric walls translates intob f „strip~1/2!…
2b f „strip~1/1!…2v0. In fact the differenceCv(12)
2Cv(11)5(d/dT)(d/db)g1(T,M ) andg1 has the mean-

FIG. 1. Scaling for the correlation lengthji in a direction par-
allel to the walls. ln~ji/n

2! is plotted as function ofy5nu0 for
a15a250.9 and different strip widthsn5M21: ~a! circles for
n5200, ~b! stars forn5180, ~c! squares forn5120, ~d! diamonds
for n596, and~e! plus for n548. Tw~M→`!;0.488 04Tc,`. The
solid curve represents the scaling function given by~4.14!.

FIG. 2. Comparison of three strips:~1/1!, ~1/2! with perfect
asymetry (a15a2),~1/2! with symmetry broken by unequal sur-
face fields,a25a11e: M597, a150.9. Full line: ~1/2! strips for
e50. Dashed line labeled~c!: ~1/1! strip; indistinguishable from
the full line aboveTc,` . Curves marked~a! and~b! ~e51027,1025,
respectively! calculated from~4.21!, ~4.20!, ~4.18!, ~3.27!, and
~3.30! assumingv45v312K2e. The points show numerically exact
computation, crosses fore51027, diamonds fore51025. These
points join the full line as shown and continue at all higher tem-
peratures indistinguishable from the full line. Note the logarithmic
scale. See Fig. 3.

FIG. 3. Plot ofji(T,M ,e) for e50.000 01,M512 ~diamonds!,
24 ~crosses!, 48 ~squares!, 96 ~crosses!, 200 ~triangles!, and 400
~stars!. EachM value has a different crossover point~in fact a small
region! whereji(T) joins the common low-temperature line inde-
pendent ofM , marked~a! and calculated with approximations de-
scribed in Fig. 2 and in the text.
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ing of a surface free energy /kT. The plot in Fig. 4~b! shows
the surface heat capacityCs5Cv(12)2Cv~11!. The heat
capacity of the Onsager free interface~not yet subtracted! of
surface tensionv05v22v1 is also shown~as the flat back-
ground curve!. The scaling law~4.7! for the singular part of
the surface tension requires further subtraction of thev0 con-
tribution and the singular part of heat capacity of the~1/2!
strip thus obtained should scale withX[nu0 ; this scaling is
not satisfactory. Apparently the corrections to scaling are
numerically not small. In fact already the scaling ofbs
shown in Fig. 5 is not as excellent as in typical bulk scaling
plots as soon asX is not close to zero.

V. MAGNETIZATION PROFILES

Formal expressions for the average magnetization^sm&
depend on the relative signs of the surface fields. The

transfer-matrix spectrum obtained in the previous sections
includes all four choices of these signs. To extract the suit-
able case we used the projection operators.

The formula for an average of any operatorA has the
form

^A&5Tr~VNP1AP2!/Tr~V
NP1P2!, ~5.1!

whereP1 andP2 are the projection operators and we wish to
take the limit of the infinite long stripN→`.

For the case of the surface fields of the opposite signs, say
~2/1!, i.e., h1,0, h2.0, the projection operators used in
~6.1! are given by~2.12! for P1 and ~2.13! for P2. In the
limit of large N the largest eigenvalues dominate and in the
representation in whichV is diagonal we obtain

lim
N→`

Tr~VNP1AP2!5~1/2!L1
N@^0u f 1Af1

†u0&

1^0u f 1f 0Af0
†f 1

†u0&2^0u f 1Af0
†f 1

†u0&

2^0u f 1f 0Af1
†u0&#. ~5.2!

The largest eigenvalueL1 is equal toL15L0 exp~2g1! and
L0 is given by~2.11!. The average magnetization^sm& where
m is the height indexm51,2,...,M21 is the average of the
operatorsm

x , counting spins at the positionm. This operator
is nonlocal in the spinor representation

sm
x 5G0G1•••G2m . ~5.3!

Substitutingsm
x for A and commutingf 0G0 we obtain

^sm&52~ i !m^0u f 1G0G1•••G2mf 1
†u0&, ~5.4!

already in the limitN→`. If both walls prefer the same, say
~1! phase, i.e.,h1 ,h2.0, the projection operators for the
~1/1! system areP15(1/2(f 01 f 0

†2I ) and P25(1/2)@( f 0
2 f 0

†)P1I # @see~2.15! and ~2.16!#; now the largest eigen-
value which contributes isL15L0 and after the similar alge-
bra one has

FIG. 4. ~a! Heat capacityCv/k divided by strip widthM ~heat
capacity per site in units of Boltzmann constantk! plotted against
temperatureT/Tc,` for M512,24,48,96,200. IncreasedM raises the
peak nearTc,` but decreases the rounded step nearTw . ~b! Heat
capacity ‘‘per column’’ obtained by remultiplying byM .
M512,24,48,96,200~diamonds, crosses, squares,x crosses, and tri-
angles, respectively!; the contribution ofv0 ~stars!; the contribution
of g0 ~densely spaced diamonds!. The rounded step nearTw is
sharper and slightly higher for largerM—bounded byDCv/k which
follows from exact equations~Ref. 4! for the semiinfinite system.
These predictg0 from Eq. ~4.4! for T,Tw andv0 for T.Tw .

FIG. 5. Scaling for the surface excess free energy~per unit area!
ss given by~4.2!. n2bss is plotted as function ofy5nu0 for fixed
a15a250.9 and differentn: ~a! stars forn115201, ~b! triangles
down for n115181, ~c! diamonds forn11597, ~d! squares for
n11549, ~e! circles for n11525. Wetting temperature for
h150.9 K is Tw(h1);0.488Tc,`. The solid curve represents the
scaling functionF(x) given by ~4.7!.
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^sm&52~ i !m^0uG0G1•••G2mu0&, ~5.5!

in the limit N→`. The exact formulas~5.4!, ~5.5! for ^sm&
can be transformed into a form suitable for practical compu-
tations by using Wicks theorem and by simplifying the Pfaff-
ian expression for̂sm& to a determinant of a certain matrixB
~in a way similar to that described in Ref 12.! The main steps
of this computation are the following. The Wicks theorem
transforms the average of an ordered product of anticommut-
ing operators into a Pfaffian of an antisymmetric matrixA

^sm&52~ i !mPfA52~ i !mdet~A!1/2. ~5.6!

We discuss the case of opposite surface fields~2/1! first.
For this case the matrixA has a dimension (2m12)
3(2m12) with the elements which are averages of prod-
ucts of only two operators~so-called contractions!

A0 j5^0u f 1G j u0& ~ j51,...,2m!, ~5.7!

A0,2m115^0u f 1f 1
†u0&51, ~5.8!

Ai ,2m115^0uG i f 1
†u0& ~ i51,...,2m!, ~5.9!

Ai , j5^0uG iG j u0& ~ i52,...,2m, j53,...,2m11!,
~5.10!

Aii50, Ai j52Aji ~ i , j50,...,2m11!. ~5.11!

We can express contractions in terms of the elements of the
orthogonal matrixS defined in Sec. II@Eq. ~2.23!# and cal-

culated in Sec. III.S is the matrix of linear transformation of
spinorsGi into spinorsgk ~see Sec. II!

G i5(
m

Si ,mgm ~ i ,m50,...,2M11!. ~5.12!

The elements of matrixS are built up from the realj~vk! and
imaginaryh~vk! parts of eigenvectorsy given by ~3.18! ac-
cording to Eq.~2.23! and are functions of the wave number
vk . They can be oscillatory or exponential functions of
v—depending on whethervk is real or imaginary—however,
the structure of the matrixS is always the same.

The 0th row and column and 2M11 row and column
have vanishing elements except forS005S2M11,2M1151
hence it is enough to consider a 2M32M matrix S. The
columns are ordered according tok51,...,M , i.e., the 2k and
2k21 columns belong tok,v5vk . Then

S2n21,2k215h2n21 , n51,...,M , ~5.13!

S2n21,2k50, n51,...,M , ~5.14!

S2n,2k5j2n , n51,...,M , ~5.15!

S2n,2k2150, n51,...,M . ~5.16!

For vk real we found an oscillatory behavior ofh~vk! and
j~vk!:

h1~vk!52A~v3!CFsinh v22 cos
1

2
@2vk1d* ~vk!2c~vk!#1cosh

v2
2
cos

1

2
@vk1d* ~vk!1c~vk!#G , ~5.17!

h2n11~vk!5C cos
1

2
@~2n21!vk1d* ~vk!2c~vk!#, ~n51,...,M22!, ~5.18!

h2M21~vk!5A~v4!CFsinh v22 cos
1

2
@~2M23!vk2d* ~vk!2c~vk!#1cosh

v2
2
cos

1

2
@~2M23!vk1d* ~vk!2c~vk!#G ,

~5.19!

h2n~vk!50 ~n51,...,M !, ~5.20!

and

j2~vk!5B~v3!CFsinh v22 cos
1

2
@2vk1d* ~vk!2c~vk!#1cosh

v2
2
cos

1

2
@vk1d* ~vk!1c~vk!#G , ~5.21!

j2n12~vk!5C cos
1

2
@~2n21!vk2d* ~vk!2c~vk!#, ~n51,...,M22!, ~5.22!

j2M~vk!52B~v4!CFsinh v22 cos
1

2
@~2M23!vk2d* ~vk!2c~vk!#1cosh

v2
2
cos

1

2
@~2M23!vk1d* ~vk!2c~vk!#G ,

~5.23!

j2n21~vk!50 ~n51,...,M !. ~5.24!

HereC52A2B1 andB1 @see~3.18!# is determined from the normalization condition for the eigenvectory(vk) ~2.22!. The
constantsA(v i) andB(v i), i53,4 are given by~3.19a! and~3.19b!, respectively. The functionc~vk! is defined as@see~3.20!#
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eic[R~eiv!52 i
T11 ie2gqzsinhv1
T1qz2 ie2gsinhv1

.

For v imaginaryv5iv the components of the eigenvectory(v) are exponential functions ofv

h1~v !52A~v3!C1Fsinh v22 @eid* ~ iv !e2v1R~v !e22v#1cosh
v2
2

@e2v1R~v !eid* ~ iv !e22v#G , ~5.25!

h2n11~v !5C1@e
id* ~ iv !e2~n11!v1R~v !e~n22!v#, ~5.26!

h2M21~v !5A~v4!C1Fcoshv22 @eid* ~ iv !e2Mv1R~v !e~M23!v#1sinh
v2
2

@e2vM1R~v !eid* ~ iv !e~M23!v#G , ~5.27!

h2n~v !50 ~n51,...,M !, ~5.28!

and

j2~v !5B~v3!C1Fsinh v22 @eid* ~ iv !e2v1R~v !e22v#1cosh
v2
2

@e2v1R~v !eid* ~ iv !e22v#G , ~5.29!

j2n12~v !5C1@e
2~n11!v1R~v !eid* ~ iv !e~n22!v#, ~5.30!

j2M~v !52B~v4!C1Fcoshv22 @eid* ~ iv !e2Mv1R~v !e~M23!v#1sinh
v2
2

@e2vM1R~v !eid* ~ iv !e~M23!v#G , ~5.31!

j2n21~v !50 ~n51,...,M !. ~5.32!

Here C15&B1 and R(v) is given by ~3.26! for
z25eiv5e2v.

In terms of the elements of matrixS the contractions read

^0uG iG j u0&50, i , j5both odd or both even,
~5.33!

^0uG iG j u0&5 i(
k51

M

Si ,2kSj ,2k212Si ,2k21Sj ,2k ~ i, j !,

~5.34!

^0u f 1G j u0&5Sr ,21 iSr ,1 , ~5.35!

^0uG i f 1
†u0&5Sr ,22 iSr ,1 . ~5.36!

However,Sr ,250 for r odd andSr ,150 for r even so the
antisymmetric matrixA takes the following form:

A5S 0
•••
A

•••
•••

iS11
0
A

•••
•••

S22
Q12

0
•••
•••

•••
•••
Q
•••
•••

1
2 iS11

A
•••
0

D ,
where we abbreviate

Qi j50 i , j5both odd or both even, otherwise,

Qi j5 (
k51

M

Si ,2kSj ,2k212Si ,2k21Sj ,2k ~ i, j !. ~5.37!

After some manipulations on this matrix in order to group
zeros together~Ref. 12! we obtain the very useful result that
det(A)5@det(B)#2 so

^sm&52det~B! ~5.38!

with

B5S 1
S22
S42
A

2S11
2 iQ21

2 iQ41

A

2S31
2 iQ23

2 iQ43

A

2S51
2 iQ25

2 iQ45

A

•••
•••
•••D .

The elements of matrixB are the same for allm51,...,M
21; the dimension ofB is (m11)3(m11).

For the system with the surface fields of thesamesign,
say ~1/1!, the matrixB has a dimensionm3m and can be
obtained from the matrixB of the ~2/1! system by deleting
the first column and first row.

Equations~3.39! have been implemented for numerical
computation of the magnetization profiles^sm& in the case of
the opposite surface fields. We usedMP@9,201# and
a1 ,a2P~0,1!.

For the perfect asymmetry systemh152h2 a selection of
the magnetization profiles computed for a fixed width of the
strip n[M21, a fixed value of the parametera15a2 and at
different temperatures is shown in Figs. 6, 7, and 8. As can
be expected from the symmetry features of the system all the
profiles are antisymmetric

^sm&52^sM2m& ~5.39!
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Figures 6~a! and 6~b! show profiles calculated for a rela-
tively narrow stripn520 and large parametera15a250.9
which corresponds toslightly weakened bonds between the
walls and the system. The wetting temperature in this case
lies far away from the bulk critical temperature
Tc,` :Tw(h15s0a1J)/Tc,`;0.488 04. For low enough tem-
peratures@crosses in Fig. 6~a!# the average magnetization at
all points across the strip is almost zero. As the temperature
is increased, the profile gradually changes its shape with the
most rapid change taking place near the wetting temperature
Tw(h1). The typical profile in this temperature region is
monotonic with the inflection point in the middle of the strip.
It quickly increases or decreases in the vicinity of the walls
and is concave in the first half of the strip. AtTw(h1) the
profile becomes linear across the whole strip. AboveTw(h1)
it starts to bend, forming eventually a characteristic for the
single soft-mode phase interfacelike profile. This profile is
convex in the first half of a strip with plateaus of pseudobulk
phases near the walls.

The soft-mode profile calculated forT/Tc,`50.6 and

n520 is shown in Fig. 6~a! ~circles!. For such a small system
~n520! all the points of the system ‘‘feel’’ the presence of
both walls, hence there are almost no plateaus of pseudobulk
phases near the walls. These are better seen in Fig. 7~a!
~curve 7! calculated for a large systemn5100.

With the further increase of the temperature, the interface-
like profile starts to deform towards the critical profile at
Tc,` @curve with stars in Fig. 6~b!# and then aboveTc,` it
bends once again to be concave in the first half of the strip.
Then the system reaches the high-temperature situation in
which ^sm&50 for all m except for a few sites at the walls.

The convexity of the profile can be connected with the
type of eigenvectorsyk , k51,...,2M as functions of the
‘‘wave number’’ v. As we know from Sec. III, below the
wetting temperatureTw(h1) both v1 andv2 are imaginary
v15iv1, v25iv2. This implies that the first four columns of
the orthogonal matrixS @these are real and imaginary parts
of the eigenvectorsy1~v1! andy2~v2! see Eq.~2.23!#, consist
of exponential functions ofv1 andv2. This in turn results in
the shape of the profiles which are concave in the first half of
the strip. Also aboveTc,` there is the same convexivity of
the profile although this time there is only one imaginary
wave numberv15iv and hence only two columns of the

FIG. 6. A selection of computed magnetization profiles for fixed
n520 and perfect asymmetry witha15a250.9, showing the varia-
tion with temperature~in units of Tc,`!; ~a! crosses,T/Tc,`50.3;
stars,T/Tc,`50.45; triangles up forT/Tc,`50.465; diamonds for
T/Tc,`50.475; squares forT;Tw(M→`); circles forT/Tc,`50.5.
~b! triangle up forT/Tc,`50.6; diamonds forT/Tc,`50.8; stars for
T;Tc,` ; squares forT/Tc,`51.05; circles forT/Tc,`51.1; crosses
for T/Tc,`51.4. The wetting temperatureTw(M→`);0.488 04
Tc,`. Curves are drawn only as guides for the eye.

FIG. 7. A selection of magnetization profiles computed for
larger systemn5100 with the perfect asymmetry and the same
surface fields~a15a250.9!, for various temperatures in units of
Tc,` : ~a! ~1! for T/Tc,`50.3; ~2! for T/Tc,`50.45; ~3! for
T/Tc,`50.482; ~4! for T/Tc,`50.488; ~5! for T;Tw(h1); ~6! for
T/Tc,`50.5, and~7! for T/Tc,`50.6. ~b! ~1! for T/Tc,`50.9; ~2!
for T/Tc,`50.99; ~3! for T;Tc,` ; ~4! for T/Tc,`51.025; ~5! for
T/Tc,`51.1. The wetting temperatureTw(h1);0.488 04Tc,`. The
lines are drawn through all 101 points.
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matrix S consists of the exponential functions. For the soft-
mode phase betweenTw(h1) andTc,` , all the wave numbers
are real so that the elements of the matrixS are oscillatory
functions ofvk , k51,...,M . This results in the profiles being
convex in the first half of the strip.

For comparison we also show the magnetization profiles
computed fora15a250.9 @the same~2/1! surface fields as
in Fig. 6# but for the large systemn5100 @Figs. 7~a! and
7~b!#. The profiles look qualitatively similar, the main differ-
ence being that for the large system the rapid change in the
shape of the profile nearTw(h1) takes place in a very narrow
temperature region aboutTw(h1) and that for wide strips
there are well developed plateaus of the ‘‘bulk phases’’ near
the walls for the soft-mode phase profile.

For completeness we also show the profiles forn520 but
for a small parametera15a250.3 which corresponds to a
large weakening of the bonds between the walls and the sys-
tem. The wetting temperature in this case lies very close to
the bulk critical temperatureTw(h1)/Tc,`;0.95. Hence there
is almost no soft-mode phase with its typical interfacelike
profile ~Fig. 8!.

As we have mentioned above, in the region of low tem-
peratures the average magnetization is almost zero for all the
points across the strip. This corresponds to the pseudocoex-
istence of two ‘‘phases’’ below the wetting temperature
Tw(h1). One of the profiles of these phases corresponds to a
thin film of down spins~2! at wall 1 and a film of up spins
~1! at the wall 2 and can be obtained if one breaks the
symmetry of the system by applying an infinitesimal bulk
field h60 or by settinga15a26e. Figure 9 shows the family
of the profiles for one of these phases calculated for the same
width of the strip~n520! as for Fig. 6 and for surface fields
which differ by e50.001,a250.9, anda150.899. This cor-
responds to the situation when the spins up~1! phase fills
the strip, with a thin film of spins down~2! at wall 1. Also
the profiles are nonmonotonic at low temperatures. The av-
erage magnetization near the wall that favors the spin-up~1!
phase is less than the spontaneous magnetization1m* (T) of
the ~1! phase

m* ~T![2@12~sinh2K !24#1/8. ~5.40!

This can be seen in the inset of the Fig. 9 although for the
small system shown there, only the magnetization in the first
two ~one! sites at the wall is less than1m* (T).

With u0 as a small parameter describing the distance of
the system from the wetting temperature we propose and
verify the scaling relations for the magnetization profile at
the fluctuation-dominated critical wetting transition

m~z,T,M !5M~z/n;nu0!; h50. ~5.41!

To check ~5.41!, we plot [m(z)2m* ]/m* , calculated for
differentn and different parametera1 as a function ofz/n for
fixed y5nu0 ~bs51 for d52 Ising model!. Scaling is excel-
lent for a wide range of variabley from y520 up toy5210.

FIG. 8. A selection of magnetization profiles computed for
small systemn520 with the perfect asymmetry and weaker surface
fields2a15a250.3 for various temperatures in units ofTc,` : ~a!
triangle left forT/Tc,`50.3; diamonds forT/Tc,`50.7; squares for
T/Tc,`50.9; circles forT;Tw(h1). ~b! circle for T/Tc,`50.985;
squares forT/Tc,`51.05; diamonds forT/Tc,`51.1; stars for
T/Tc,`51.35. The wetting temperatureTw(M→`);0.9665Tc,`.
Curves through these profiles are drawn only as guides for the eye.

FIG. 9. Magnetization profiles calculated for fixed width of the
stripn520 and for surface fields which differ by~a large! e50.001,
a150.9 anda250.899, for various temperatures below the wetting
temperatureTw(M→`);0.488 04Tc,` : circles for T/Tc,`50.3;
squares forT/Tc,`50.4; triangles left forT/Tc,`50.45; triangles up
for T/Tc,`50.465; triangles right forT/Tc,`50.475; stars for
T;Tw . The profiles are nonmonotonic near the~1! wall as can be
seen from the inset with portions of those calculated for
T/Tc,`50.4 ~squares! and forT/Tc,`50.42 ~diamonds!.
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Figure 10 shows four scaling functions:~a! for y520 in low-
temperature region;~b! for y511; ~c! for y50, i.e., exactly
at the wetting temperatureu050, and~d! for y5210 where
the profile is typical for the single soft-mode phase.

For y50 the profile is linear across the whole strip. This
linear behavior was found also in the restricted solid-on-solid
~RSOS! model26 with the slope equal to22. Our profile for
y50 is the same as in the RSOS model result. Also our
profiles for the soft-mode phase~sufficiently below the bulk
critical temperature! perfectly agree with the RSOS result
which gives the following prediction:26

m~z!5m* @122z/n1p21sin~2pz/n!#. ~5.42!

The scaling relation for a magnetization profile at the
fluctuation-dominated critical wetting transition given by
~6.41! is similar to those proposed by Parry, Evans, and
Nicolaides26

m~z,T,M !5M~zt8bs;nt8bs!; h50, ~5.43!

where t8[[T2Tw(h1)]/Tw(h1). This is becauseu0 is pro-
portional tot8 near the wetting temperature.

VI. SUMMARY AND CONCLUSIONS

We have presented the transfer-matrix solution for the
d52 Ising model confined between parallel walls. The trans-
fer has been taken in such a way as to have the effects of
walls incorporated directly into the matrix elements. This
solution includes all four possible cases of the sign of the
surface fields~h1h2.0, h1h2,0!. To extract from the gen-
eral solution the case of the surface fields of equal or oppo-
site signs projection operators have been used. The results
are valid for general values of the magnitudes of the surface
fields. We have solved the auxiliary eigenvalue problem
~2.24! and calculated the exact expressions for the eigenvec-
torsyk , k51,...,2M11 @see~3.18!#. In the nonwet regimey1
and y2 are exponentially decaying functions of the wave
numberv andyk , k53,...,2M11 are oscillatory functions of
v. In the wet regimeall of yk become oscillatory. These
eigenvectors form the orthogonal matrixS which is needed
to calculate the magnetization profiles~Sec. V!. As the Ising
system with the surface fields of equal signs is relatively well
understood,5,14 we concentrate on the case of the surface
fields of the opposite signs. In this case the wetting phenom-
ena have proven to be particularly interesting.16 In an earlier
paper25 we discussed a particular case with only one interac-

FIG. 10. Scaling of the magnetization profiles for the perfectly asymmetric system,a15a2 . [m(z,T,a1 ,n)2m* (T)]/m* (T) is calcu-
lated for different widths of the stripn at fixeda1 and plotted againstz/n for the following value of the second scaling variabley5nu0 @see
Eq. ~5.41!#: ~a! y520; ~b! y51; ~c! y50; ~d! y5210. The symbols are circles for the profile calculated forn590 anda150.9; squares for
n5150 anda150.9; diamonds forn548 anda150.9; crosses forn590 anda150.8; stars forn5120 anda150.7.
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tion weakened~0<h1<Ks0 ,h252`! and the scaling of
magnetization profiles in the near proximity of wall 1. Now
we can study any values ofh1, h2, including the perfectly
antisymmetric system withh152h2. The main features of a
system are reflected in the TM spectrum. The highest eigen-
values of~1/1! and~2/1! systems give the singular part of
the surface tensionbss . The ratio of the two largest eigen-
values for single system gives the correlation length parallel
to the wallsji ~mass gap!. We have studied the asymptotic
behavior of bss and ji in various temperature regions.
Within the solution we have distinguished and discussed
separately two cases: the perfect asymmetryh152h2 case
and the caseuh1uÞuh2u, the latter particularly in the context
of symmetry breaking by a small difference in~absolute val-
ues of! surface fields. We have found that for both cases in
the nonwet region the finite-size dependence of the surface
tension is weak. The surface tension converges to its bulk
value exponentially

s~M !2s~`!;exp„2M /~u0
21!… ~6.1!

with characteristic lengthu0
2151/lnW for h152h2 or u01

21

51/lnW1 for uh1uÞuh2u. u0
21 diverges at the wetting tempera-

ture.
In the wet region we find thatbs (M ) converges algebra-

ically to its bulk value@see~4.9!#. The same behavior was
obtained for the~2/1! Ising strip with no weakening of
bondsa15a251.20,21,23

We have derived analytically the finite-size scaling func-
tion for the singular part of the surface tension nearTw(h1)
@Eq. ~4.7! for h152h2 and~4.19! for uh1uÞuh2u#. The scal-
ing variable isX[nu0. u0 is proportional to the variable
t8[[Tw(h1)2T]/Tw(h1) in the scaling region. This agrees
with the earlier proposition of the scaling ansatz16 near the
wetting temperature based on the heuristic arguments. We
have also calculated numericallyg1 and plotted2n2bss ,
where bss[g12v0, as a function ofX[nu0 for fixed
h152h2 and different values ofn ~Fig. 5!. As Fig. 5 shows,
the region of validity of this scaling below the wetting tem-
perature is not too wide as the scaling is very good forX
P~2100,20!. Although the scaling has been derived for
T,Tw @Eq. ~4.7!# it is also very good above the wetting
temperature up toX;2100.

For the antisymmetric case ofh152h2 we have found an
asymptotic divergence with the size of the stripM , of the
two largest eigenvalues below the wetting temperature; this
leads to exponential divergence withM of the correlation
lengthji :

j i;A~T,h1!exp„M /~u0
21!… ~6.2!

valid for M@u0
21. This behavior is associated with the

nearly broken symmetry of having the interface bound to the
wall ~2! or to wall ~1!.6,16

In the second caseh1h2,0 and uh1uÞuh2u, we have ob-
tained that the correlation length at low temperatures in the
nonwet regime depends on the relative value of the surface
fieldsh1 andh2 but is almost~up to the exponentially small
corrections! independentof the width M of the strip @see
~4.21!#. This corresponds to the system in which the pre-

dominant configurations are those with an interface bound to
the wall energetically preferred, effectively those of a semi-
infinite system.

Above the wetting temperature, for both cases we find the
soft-mode with known properties12,16,20,23very little affected
by the values of surface fields. We find the same finite-size
dependence@Eq. ~4.15!# as for the planar fluctuating inter-
face in the capillary-wave dominant regime, even though it
was derived20 ~see also Refs. 12 and 16! for ~1/2! strips
with no weakening of bonds~a15a251 yieldingTw50!.

For a different derivation of the asymptotic behavior of
the correlation length, from the two-point bond-energy cor-
relation function, see Ref. 7.

For the case of perfect asymmetry we have derived ana-
lytically the finite-size scaling function@see ~4.14!# for ji
near the bulk wetting transition. We have also calculated
numericallyji and plotted ln~ji/n

2! as a function ofX[nu0
for fixed h152h2 and different values ofn ~Fig. 1!. Figure
1 shows an excellent scaling forXP~2100,50!. As for the
surface tension, we have obtained the scaling function only
below the wetting temperature~the solid line in Fig. 1! but
the scaling is valid also aboveTw(h1) when the scaling func-
tion becomes a constant independent ofX. The heat capacity
shows less clearly the interference of wetting with the ordi-
nary bulk phase transition between~1! phase and~2! phase.

We have derived formulas for the average magnetization
^sm& at any pointm of the strip. Formal expressions for^sm&
depend on the relative signs of the surface fields. We have
concentrated on systems with surface fields of opposite
signs. After transforming these expressions into a form suit-
able for practical computations, we have calculated numeri-
cally magnetization profilesm(z) for various sizes of the
strip ~nP@9,201#! and for various values of surface fields,
@a1 ,a2P~0,1!#.

For fixed value ofn and a1 ,a2 the profile changes its
shape with the temperature. In the case of the perfect asym-
metry h152h2 profiles are antisymmetric with respect to
the center of the strip. At low temperatures the average mag-
netization is almost zero for all points of the strip; this cor-
responds to the average of two situations with the interface
bound to either wall~1! or wall ~2!. A dramatic change in the
profiles occurs when the symmetry of the system is broken
by settinga25a11e to have the interface bound to the wall
~1!, or settinga25a12e to have the interface bound to the
wall ~2!. Figure 9 showsm(z) for the interface bound to the
wall ~1!. For clarity of the figure we have not shown the
other profiles witha2,a1 as they have exactly the same
shape, only the interface is located at the wall~2!. These
profiles are nonmonotonic near the walls at low tempera-
tures, a feature never obtained with the SOS models.

For the perfect asymmetry the system shows strong inter-
face fluctuations at the wetting temperature, which causes the
profile to be a straight line across the whole strip, with the
slope equal to 2. Such a result has been obtained in the
restricted solid-on-solid model~RSOS!, for strip geometry
and contact surface fields.26

If uh1uÞuh2u the profiles at the wetting temperature are
not linear across the whole strip. If there is a little~e! differ-
ence between the surface fields, the profiles are linear in the
vicinity of both walls. If uh2u is much greater thanuh1u the
profile is linear only near wall~1!.
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The single soft-mode phase profile does not depend on the
relative value of the surface fields and perfectly agrees with
the one obtained in the RSOS model@Eq. ~5.42!#. The mag-
netization profiles can be usefully compared with those in
d53 obtained by Binder, Landau, and Ferrenberg17 by
Monte Carlo simulations. Qualitatively, there is a surprising
similarity with those Monte Carlo profiles obtained with per-
fect antisymmetry broken by the bulk external field. We have
also proposed and tested the scaling law form(z) @Eq.
~5.41!#.

In conclusion, we have confirmed by exact calculations
all the predictions,16 some obtained with heuristic arguments,

about the unusual behavior of the antisymmetric system with
surface fields of opposite signs—and found behavior of this
system with symmetry broken by a slight difference in the
strength of surface fields.
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