
Electron scattering by a cut-off atomic potential: Application to electron properties
in atomic liquids

V. M. Atrazhev and I. V. Timoshkin
Theoretical Department, Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya, 13/19, 127412 Moscow, Russia

~Received 17 August 1995; revised manuscript received 28 May 1996!

The problem of the phase shifts of the cut-off polarization potential is solved exactly by the variable-phase
method. Thes andp waves are calculated by the method for the Wigner-Seitz cell, which is a unit scatterer of
excess electrons in the cellular model of liquids. The phase shifts for the isolated atom are used as input
parameters. The accurate form of the short-range part of the electron-atom potential is not required. The
general features of the behavior of excess electrons in a dense medium are described by the model.
@S0163-1829~96!03339-5#

I. INTRODUCTION

In recent years, interest in the properties of excess elec-
trons in atomic liquids has been renewed.1,2 This is primarily
due to the development of computer simulation of electron
movement in a dense medium of scatterers.3–6 In these works
the definition of the electron-atom potential is the main as-
sumption. As a rule, the long-range part of this potential is
known and it is the polarization potential

Vp~r !52
e2a

2r 4
, ~1!

wherea is the polarizability of the atoms of the liquid. The
short-range part of the potential is constructed in various
ways by different authors. Along this line, considerable suc-
cess has been achieved in calculations of the background
energyV0(N) as a function of the medium density, which
are in a good agreement with a large body of experimental
data.

Another situation exists with calculation of the excess
electron mobility in these liquids. We do not know computer
calculations of the mobility in liquid Ar, Kr, and Xe. In the
fundamental theory by Cohen and Lekner,7 the kinetic de-
scriptions of the electron mobility in atomic liquids has been
developed with consideration for the spatial correlation of
atoms. Two parameters characterizing a liquid are required
in this theory. First, is a static structure factor, determined
from the neutron and x-ray-scattering experiments and from
computer simulations. Second, is an effective electron-
scattering cross section in a liquid. As revealed in Ref. 8, the
cross section differs considerably from the well-known scat-
tering cross section of an electron in a rarefied gas. The cross
section can be calculated by using any model for the inter-
action between the electron and atom in a liquid. One way is
the introduction of an electron-atom pseudopotential for a
liquid.9,10 By using this method the background energy
V0(N), the effective electron massmeff(N), the zero-field
mobility m(N), and the effective cross section as a function
of the density of medium have been calculated in Refs. 11
and 12. Parameters of the pseudopotential were determined
from characteristics of an izolated atom: the polarizabilitya
and the scattering lengthLa . The following basic feature of

the electron scattering in liquid Ar, Kr, and Xe, has been
obtained. The effective scattering lengthL(N) as a function
of the fluid density passes through zero and becomes positive
when the fluid density increases from gas to liquid.8 The
results of the calculations are in good agreement with experi-
mental data. But the weak point in the pseudopotential
theory is an unreliable description of scattering of fast elec-
trons with an energy exceeding 0.1 eV. The scattering length
of an isolated atomLa is the basic parameter for this pseudo-
potential. This quantity is characteristic of slow electron
scattering. To construct a theory that will describe the inter-
action between fast electrons and liquid additional informa-
tion is required, namely, the partial phase shifts of the wave
function of an electron scattered by an isolated atom.

In the present paper a method for calculating characteris-
tics of excess electron scattering in a liquid with high polar-
izability of atoms is proposed. The method allows us to cal-
culate the partial phase shifts in a wide range of energies of
scattered electrons. The initial data for the calculation are the
partial phase shiftsdl (k) of electron scattered by an isolated
atom as a function of the wave numberk of an electron.

The average field acting on an electron in a liquid is the
‘‘muffin-tin’’ potential. One can model an element of this
potential by surrounding each atom of the liquid by the
Wigner-Seitz cell with a radiusr c5(3/4pN)1/3. HereN is
the number density of atoms of the liquid. Inside the cell, the
potential is a cut-off electron-atom potential. The size of the
cell is large enough for the potential to have the form Eq.~1!
in much of the cell. For simplicity we shall not take into
account the mean potential of environmental atoms. This as-
pect has been dealt with in earlier papers.9,10 So the atomic
liquid is considered as a set of cells, each of them a unit
scatterer for excess electrons. The properties of the electrons,
such as electron mobility, conduction-band bottom energy,
and effective mass, are determined by the features of the
potential. In Refs. 13–15 the Schro¨dinger equation for the
electron wave function in the Wigner-Seitz cell has been
solved. It allows us to calculate the background energyV0
and the effective electron massmeff of electrons in liquids.
But a short-range component of the electron-atom potential
has to be assumed.

In the present paper phase shifts fors and p waves are
calculated by the variable-phase method16 for the Wigner-
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Seitz cell, which is modeled by the cut-off atomic potential.
An accurate form for the short-range part of the potential is
not needed. The general information of the short-range
electron-atom interaction is contained in the phase shifts
dl (k) for an isolated atom. The phase shifts for the Wigner-
Seitz cell are calculated as the valueshl (r c ,k) of the partial
phase functions at the cell boundary. These effective phase
shifts are density dependent since they are a function of the
cell radiusr c . We concentrate mostly on the mathematical
aspects of the partial phase-shift calculation in a liquid with
high atomic polarizability. Some analytical results illustrate
the numerical calculations of the phase function. Two terms
of the s-wave phase-shift expansion in powers of the wave
numberk have been obtained. The final result of the work is
the s- and p-wave phase shiftshl (r ,k) for the sufficiently
large values of the wave numberk, which are required for an
electron effective-mass calculation in the liquid. We believe
that the calculations in the framework of the pseudopotential
approach are not quite reliable in these conditions. Hence, in
Sec. IV the calculation of the effective mass in the liquid
with the parameters close to liquid Xe has been carried out.

II. THE s-WAVE PHASE SHIFT

There are two known equivalent methods to find the
phase shifts for the wave function of a scattered electron. In
the first method, the scattering potential is given exactly
~with regard to the short-range part of the potential!. The
Schrödinger equation is solved for the partial wave functions
of the scattered electron and the asymptotic form of these
wave functions is

ul ~r→`!.sinS kr2 pl

2
1d l ~k! D . ~2!

Equation~2! contains the partial phase shiftsdl (k) as a func-
tion of the wave numberk.

In the second method, the phase functionhl (r ,k) is cal-
culated from the phase equation16

dh l ~r ,k!

dr
52

2mV~r !

\2k
@cosh l j l ~kr !2sinh l nl ~kr !#2

~3!

and the boundary conditionhl ~0,k!50. Here j l (kr) and
nl (kr) are the spherical Bessel and Neumann functions, re-
spectively. The asymptote of the phase function is sought for
phase shift

lim
r→`

h l ~r ,k!5d l ~k!. ~4!

It is easy to verify thathl (r ,k) is the phase shift of the
partial l -wave function scattered on the potentialV(r ),
which is cut off at a distancer from the atom. In such a
manner, the calculation of the phase shifts of the partial
waves for the atom potential cut off at the cell boundaryr c is
equivalent to the calculation of the phase functionhl (r c).
Solving the phase equation~3! with a boundary conduction
~4!, wheredl (k) are the known partial phase shifts for the
isolated atom, the phase shifts for the Wigner-Seitz cell are
found exactly, without specific information about the short-
range structure of the potential.

The s-wave scattering determines the zero-field mobility
of the excess electrons in liquid Ar, Kr, and Xe. For slow
electrons the higher partial waves may be neglected. The
scattering cross section is determined by the scattering length
L, which defines the long-wavelength limit of thes-wave
phase shift

d0~k!52Lk. ~5!

For excess electrons in a gas the cross section iss54pL a
2,

whereLa is the scattering length of the isolated atom. This
quantity can be measured by the spectrum line-shift
method.17,18 For Ar, Kr, and Xe theLa values are negative.

The problem of the scattering length of the Wigner-Seitz
cell is exactly solved. The phase equation~3! for hl (r ,k) at
l 50 has the form

dh0

dr
52

2mV~r !

\2k
sin2~kr1h0!, ~6!

with the boundary condition limr→` h0(r ,k)52Lak.
Within the variable-phase method we consider the long-
wavelength limith0(r ,k)52L(r )k, whereL(r ) satisfies the
equation

dL

dr
52

a

a0r
4 ~r2L !2, ~7!

with the boundary condition limr→` L(r )5La . In Eq. ~7!
we assumed that at large distances from the atom the poten-
tial has the form~1!. a0 is the Bohr radius. The Riccati equa-
tion ~7! has the solution

L~r !5H 1r 1Aa0
a

tanFarctanSAa

a0

1

La
D 2Aa

a0

1

r G J
21

.

~8!

This can be checked by making an immediate substitution.
This expression for the scattering length of the Wigner-Seitz
cell was obtained in Ref. 10 by an approximate method. Now
we have established that this solution is accurate.

It is significant that the scattering lengthL(r c) of the
Wigner-Seitz cell obtained via this rough model~the average
potential of environment is not discounted! qualitatively de-
scribes all features that are characteristic for the electron
scattering in an atomic liquid~see Fig. 1!. For large distances
r c , the functionL(r ) tends to the valueLa , which is the
negative scattering length of the isolated atom. With an in-
crease of the density~decreasing ofr c! the scattering length
grows and changes sign: in a liquid near the triple pointL(r )
is positive.8 The calculations for Fig. 1 have been made for a
Xe-like atom withLa526a0 anda527a0

3. In dimension-
less units@the scale of length is~a/a0!

1/2# the atom is char-
acterized by a single parameter such as the dimensionless
scattering lengthL̃a5(a0/a)

1/2La . In the case under consid-
eration L̃a521.15. According to Eq.~8!, L(r ) passes
through zero at

r *5Aa

a0
Fp2 1arctan~ L̃a

21!G21

. ~9!

In a medium with the densityN
*
appropriate tor

*
, s-wave

scattering is small and the mobility of the electrons has a
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maximum. We emphasize that it is impossible to obtain ex-
pression~8! by the Born approximation, neglectingh0(r ) on
the right-hand side of Eq.~6!.

It is known that for thes-wave phase shift for a potential
with a limited radius of action the long-wavelength Bethe-
Born expansion~approximation of effective radius! is valid19

k cotd052
1

L
1
r 0k

2

2
1••• , ~10!

whereL is the scattering length andr 0 is the effective radius.
For the polarization potential~1! of the isolated atom another
expansion is valid20

k cotd052
1

L
1

pak

3a0L
2 1

2a

3La0
k2lnS ak2

16a0
D1••• . ~11!

The appearance of the term proportional tok is the result of
a long-range character of the potential~1!. For the polariza-
tion potential cut off at a distancer c ~it is a short-range
potential!, expansion~11! should be replaced by expansion
~10!, where the parametersL and r 0 should be functions of
r c . The problem of obtainingL(r ) has been resolved above.
Now we shall find the next term of the expansion of the
s-wave phase shift in terms of degrees of wave numberk.

It has been established thatL(r
*
)50 at r5r

*
@Eqs. ~8!

and ~9!#. When this takes place, expansion~10! loses its
meaning. Therefore we shall obtain thek21tand0 expansion
in terms of powers of a wave numberk.

Let u0(r ,k) be ans-wave solution of the radial Schro¨-
dinger equation, with the polarization potential~1! cut off at
r5r c

d2u0~r ,k!

dr2
1S a

a0r
4 1k2Du050.

The well-known property of the Schro¨dinger equation, be-
longing to different wave numbersk andk8, is used

lim
r→`

@u0~k!u08~k8!2u0~k8!u08~k!#

5~k22k82!E
0

`

u0~r ,k!u0~r ,k8!dr. ~12!

Here the notationu08(k)5du0 /dr has been introduced and
the boundary condition for the wave functionu0(k,0)50 has
been used.

At distancesr.r c the cut-off potential is equal to zero
and the functionu0(k,r ) coincides with its asymptotic form

v0~r ,k!5sinkr1coskr tanh0~k,r c!. ~13!

For the asymptotic functionv0(k,r ) the following relation-
ship can be obtained by the same method:

lim
r→`

@v0~k!v08~k8!2v0~k8!v08~k!#2@k8tanh0~k,r c!2k tanh0~k8,r c!#5~k22k82!E
0

`

v0~k,r !v0~k8,r !dr. ~14!

Herev0(k,0)5tanh0(k,r c) andv08(k,0)5k. The asymptotic values of the functionu0 andv0 coincide atr→`.
Subtracting Eq.~14! from Eq. ~12! and then dividing the result byk andk8, one has, in the limit ofk8→0,

k21tanh0~k,r c!1L~r c!52k2E
0

r cF v0~k,r !

k
lim
k8→0

S v0~k8,r !

k8 D 2
u0~k,r !

k
lim
k8→0

S u0~k8,r !

k8 D Gdr. ~15!

Here we used the definition of the scattering lengthL for the
cut-off potential

L~r c!52 lim
k→0

k21tanh0~k,r c!. ~16!

The integral on the right-hand side of Eq.~15! is calculated
inside a cell, where the functionu0(k,r ) differs from its
asymptotic formv0(k,r ). From Eq.~14! we obtain the first
two terms of thek21tanh0(k,r c) expansion in terms ofk

k21tanh0~k,r c!52L~r c!2k2E
0

r cF S lim
k→0

v0~k,r !

k D 2
2S lim

k→0

u0~k,r !

k D 2Gdr. ~17!

The first term of the integrand has the form following from
Eq. ~13! and the definition~16!:

FIG. 1. Scattering lengthL(r ), calculated from Eq.~8!, and
coefficientA(r ) in the expansion of thes-wave phase function for
smallk, calculated from Eq.~20!, versus the cut-off radiir . La is
the scattering length of the isolated atom.

11 254 54V. M. ATRAZHEV AND I. V. TIMOSHKIN



lim
k→0

v0
k

5r2L~r c!. ~18!

For the second term we shall use the well-known solution of
the radial Schro¨dinger equation with the polarization poten-
tial ~1! for k50 andl 50:

lim
k→0

u0~r ,k!

k
5
r c2L

r c

r sinSAa

a0

1

r
2D D

sinSAa

a0

1

r c
2D D ,

~19!

cotSAa

a0

1

r c
2D D 52Aa0

a

Lr c
~r c2L !

.

This function is normalized according to the condition
u0(k,r c)5k(r c2L). The phaseD is chosen by a smooth join
of u0(k,r ) with its asymptotic formv0(k,r ) at r5r c . The
integral in Eq.~17! with Eqs. ~18! and ~19! is taken in an
analytical form. For the factor ofk2 in the expansion
k21tanh0(k,r c)52L(r c)2A(r c)k

2 we have

A~r c!5
ar c
3a0

Fb22S b22 a0L

a Db2
a0Lr c

a
bgG , ~20!

where b512(L/r c) and b and g are the well-known
functions21 of the argumentz52(a/a0)

1/2r c
21,

b~z!5zE
0

` sint

t1z
dt, g~z!5z2E

0

` cost

t1z
dt. ~21!

The functionA(r c) versus the cut-off radius of the potential
is given in Fig. 1. In the domain wherer is not significant,
A(r ) is small and theh0(k,r ) depends on the wave-number
function linearly up to moderate values ofk.

The phase functionsh0(k,r ) as a function of the wave
numberk and the radiusr are given, respectively, in Figs. 2
and 3. These phase functions have been obtained as the so-
lution of the phase equation~6! with the boundary condition
~4!. The phase shiftd0(k) for the isolated atom potential
appears in this boundary condition. In the calculations we
used the phase shift calculated for the pseudopotential with a
polarization tail and a hard core radiusac ,

V~r !5H ` if r<ac

2
ae2

2r 2
if r.ac .

~22!

The size of the hard core is related to the isolated atom
scattering lengthLa ,

ac5Aa

a0
Fp1arctanSAa

a0

1

La
D G21

. ~23!

This pseudopotential describes well electron scattering by
the noble-gas isolated atoms. The phase shifts for Xe-like
atoms ~L526a0 , a527a0

3, and ac52.14a0! obtained by
the numerical solution of Eq.~6! are compared with the re-
sults of the calculation, performed with the realistic
electron–Xe-atom potential in22 in Fig. 2.

A set of the phase functionsh0(r ,k) is shown in Fig. 2
versus the wave numberk. It shows that the contribution of
the long-range polarization attraction decays when the cut-
off radius of the polarization potential diminishes. The non-
monotonic d0(k) dependence, characteristic of the atoms
with high polarizability, is replaced by the monotonic depen-
denceh0(k,r ) as a result of the change of the scattering
length sign.

If the dependenced0(k) is nonmonotonic, thes-wave
phase shift becomes zero for the wave-number valuek

*
. It

leads to the Ramsauer effect experiencing electron scattering
in the heavier noble gases. The cross section is a nonmono-
tonic function of the electron energy; it is small at the energy
value corresponding to\2k

*
2 /2m. As it follows from Fig. 2,

the Ramsauer effect disappears as the cut-off radius is re-
duced. If the scattering length is positive, the cross section is
a monotonic function of the electron energy. There is a criti-
cal value r

*
51.17(a/a0)

1/2, where the scattering length
changes sign.

For smallr the dependenceh0(k) on the wave numberk
is practically linear, resulting from the expansion in terms of
k, obtained above. The phase shifts, calculated from the ex-
pansion~17!, are represented in Fig. 2 by dotted lines.

The dependence ofh0(r ,k) on r is shown in Fig. 3. At
large values ofr the phase functions saturate at thed0(k)
level, according to the boundary condition. Then the function
h0(r ) decreases monotonically and becomes negative at
smaller r . The sign of the phase function determines the
character of the interaction; the attraction predominates if
h0.0. As the polarization potential is cut off, the attraction
is reduced and the repulsion begins to play a general part
~h0,0!. It should be pointed out that at smallk the functions
h0(r ) become equal to zero at the common valuer

*
. This is

the value at which the scattering length passes through zero.
In Fig. 3 theh0(r ) curves are bounded at smallr . Actu-

ally, the polarization potential~1! is the long-range part of
the real electron-atom potential. At short distances the

FIG. 2. s-wave phase functionsh0(k,r ) via the wave numberk
for different dimensionless cut-off radiir̃5r (a0/a)

1/2: ~1! r̃52,
~2! r̃51.167, and~3! r̃50.5. Solid lines, calculations by the vari-
able phase method, dotted lines, calculation by the expansion~17!.
d0(k) for the isolated atom: points, data~Ref. 22!; dashed line, the
solution of Eq.~6! for infinite r .
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electron-atomic potential can be simulated by a hard core
with the radiusac @Eq. ~23!#. Since we solve the phase equa-
tion ~6! for the polarization potential only, the validity area
of our solutions isr.ac .

As discussed above, expansion~17! in terms ofk approxi-
mates to the exact phase functionh0(r ,k) only for small k
and not for larger . In Fig. 3 the dashed line gives the result
of the calculation following this expansion fork5(a0/a)

1/2.
One can estimate the boundary of a validity of expression
~20! for A(r ). For smallk the result of the calculation fol-
lowing expression~20! practically coincides with the result
of the exact calculation for allr .

III. THE p-WAVE PHASE SHIFT

Let us consider the phase shift of the scattered partial
wave with l 51 for the cut-off potential. Thep-wave func-
tion is used for the calculation of an electron effective mass
in the cellular model media.15,23For thep-wave phase func-
tion h1(r ,k) the equation is valid

dh1

dr
52

2m

\2

V~r !

k Fsin~kr1h1!

kr
2cos~kr1h1!G2.

~24!

As in the case of thes-wave scattering we used the boundary
condition

lim
r→`

h1~r ,k!5d1~k!. ~25!

A few words are in order about thed1(k) function used be-
low. As long as the phase-shift values are small the contri-
butions to the scattering of the long-range and the short-
range parts of the potential are additive. Hence, for smallk
@and smalld1(k)# we can write

d1~k!5d1
cor~k!1d1

pol~k!, ~26!

where d1
cor(k) is the contribution to the phase shift of the

scattering by the hard core andd1
pol(k) is the contribution of

the polarization scattering.
As is well known, the Born approximation describes the

polarization contribution inp-wave scattering well. For the
Born approximation one can write, using Eq.~24!,

dh1

dr
5

a

a0kr
4 S sinkrkr

2coskr D 2. ~27!

For d1
pol(k)5limr→`h1(k,r ) using the boundary condition

d1
pol~0!50, the following expression can be obtained:

d1
pol~k!5

a

a0k
E
0

` dr

r 4 S sinkrkr
2coskr D 25 p

15

ak2

a0
. ~28!

This is the polarization contribution in thep-wave scattering
by the isolated atom.

For the short-range potential the Blatt-Jackson
expansion24 of d1(k) in the terms of the wave numberk is
valid

k3cotd152
1

a1
1
b1k

2

2
. ~29!

Consequently, one can write, for the small values ofk,

d1
cor~k!52a1k

3, ~30!

where the coefficienta1 is characteristic of thep-wave scat-
tering by the isolated atom short-range potential~analogous
to the scattering length fors-wave scattering!.

The values ofd1(k) calculated in Ref. 22 for Xe are
shown in Fig. 4. The dependenced1(k) is nonmonotonic and
it is proportional tok2 at k→0, according to Eq.~28!. As the
wave number is increased, the scattering by the core prevails
and the dependenced1(k) decreases according to Eq.~30!
and changes its sign. One can find the magnitude ofa1 using

FIG. 3. s-wave phase functionsh0(r ,k) via the distancer for
different dimensionless wave numbersk̃5k(a/a0)

1/2: ~1! k̃50.1,
~2! k̃50.3,~3! k̃50.5,~4! k̃51, ~5! k̃51.5, and~6! k̃52. Solid lines,
the solution of Eq.~6!; dashed line, expansion~17! for k̃51.

FIG. 4. p-wave phase functionsh1(k,r ) via the wave numberk
for different cut-off dimensionless radiir̃ : ~1! r̃53.5, ~2! r̃51.52,
and ~3! r̃50.6. Solid lines, calculations by the variable phase
method; dotted line, expansion~37!. d1(k) for the isolated atom:
points, data~Ref. 22!; dashed line, the solution of Eq.~24! for
infinite r ; dash-dotted line, expansion~31!.
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the valuek
*
, where d1~k*

!50. Thus, for the isolated Xe
atom k

*
50.29a0

21 ~Ref. 22! and a1519.6a 0
3. Unfortu-

nately, the expression obtained

d1~k!5
p

15

ak2

a0
2a1k

3 ~31!

is unusable at large values ofk. It is not in quantitative
agreement with the data22 ~see Fig. 4!. Hence, for an ap-
proximation of these data over a wide range of wave num-
bers, we shall use the large-r asymptotic of the Eq.~24!
solution d1(k)5limr→`h1(k,r ). The boundary condition~a
scattering by the hard core with radiusr 1!

h1~k,r 1!5arctan~kr1!2kr1 ~32!

simulates the effect of the short-range part of the atom po-
tential. The parameterr 153.07a0 is chosen by fitting the
calculatedd1(k) values to the data.22 It is seen from Fig. 4
that this approximation is consistent with the data in a wide
range ofk values.

Let us proceed to discuss thep-wave phase-shift behavior
for the atomic potential, cut off at the distancer c . Because
this potential is a short-range one, the representation~29! for
small values ofk is valid for it. This expansion contains only
odd-numbered powers. Polarization contribution~28!, which
is proportional tok2 results from the long-range nature of the
interaction. This term must be absent in the expansion for the
p phase shift of the cut-off potential. In the Born approxima-
tion ~27! the phase functionh1(k,r ) for a smallk is such that
kr!1; one obtains

h1~k,r !5d1~k!2
p

15

ak2

a0
1

ar

9a0
k352S a12 ar

9a0
D k3.

~33!

On the right-hand side the contribution of the short-range
electron-atom interaction~30! is taken into account.

Unfortunately, the Born approximation does not always
give a correct magnitude of the factor coefficient ofk3 terms
in Eq. ~33!. If we write the phase equation~24! for the func-
tion tan@h1(k,r )# the right-hand side of Eq.~24! will be eas-
ily expanded in a power series ofk

d tanh1

dr
5

a

a0k

1

r 4 F ~kr !23
1
tanh1

kr G2. ~34!

Considering the first term of the expansion
tanh1(k,r )52a1(r )k

3, we obtain the equation fora1(r ),
similar to Eq.~7! for the scattering length,

da1~r !

dr
52

a

9a0

@r 323a1~r !#2

r 6
. ~35!

The range of validity of the Born approximation results from
the inequalityr 3@a1(r ). The solution of Eq.~35! with the
boundary condition

a1~r 1!5
r 1
3

3
~36!

following from ~32! at small values ofk is shown in Fig. 5.
The range of thea1(r ) function is limited byr 153.07a0 .
The functiona1(r ) tends toward a linear dependence, as pre-

dicted by the Born approximation, atr.(a/a0)
1/2. However,

thea1(r ) values and behavior at smallr differ substantially
from the values obtained by the Born approximation.

The p-wave phase functionsh1(k) shown in Fig. 6 have
been obtained by a numerical solution of Eq.~24! with the
boundary condition~25!. In Eq. ~25! the dependenced1(k)
for the isolated atom corresponds to the dashed line in Fig. 4.
We can see from Fig. 6 that withr values increasing the
dependencesh1(k) tend to their asymptotic valuesd1(k). As
the magnitude of the wave number increases, this tendency is
observed for smaller-r values. In the case where the func-
tions h1(r ,k) shown in Fig. 6 have positive limited values,
d1(k) andh1(r ,k) as a function ofr decrease, cross thex
axis, and take negative values asr decreases. For small val-

FIG. 5. Coefficienta1(r ) in the expansion of thep-wave phase
function for smallk. The solid line is the solution of Eqs.~35! and
~36! and the dashed line shows the Born approximation Eq.~33!.

FIG. 6. p-wave phase functionsh1(k,r ) via the cut-off radiusr
for different dimensionless wave numberk̃ values:~1! k̃50.3, ~2!
k̃50.5, ~3! k̃50.8, ~4! k̃51, and~5! k̃51.3. Solid lines, solution of
Eq. ~24!; dashed lines, the Born approximation~33!; dotted line, the
first term in the small-k expansion~37! with a1(r ) from the solution
of Eq. ~35! for k̃50.8.
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ues ofk, h1 ( r̃ ,k)50 at the same pointr̃51.52, where the
coefficienta1(r ) becomes zero~Fig. 5!.

It follows from Fig. 6 that the straight lines obtained by
the Born approximation~33! ~dashed lines in Fig. 6! differ
significantly from the correspondingh1(r ,k) curves. For
kr,1 a sufficiently good approximation forh1(r ,k) is the
first term of the expansion

h1~r ,k!52a1~r !k3, ~37!

where the functiona1(r ) is the solution of Eq.~35! with the
boundary condition~36!. We finally note that the range of
the h1(k,r ) function is limited by the value
r 150.59(a/a0)

1/253.07a0 for a527a0
3. As it follows from

Fig. 6, the derivativedh1/dr becomes zero and one obtains,
according to Eq.~24!,

tan@kr11h1~k,r 1!#5kr1 ,

which corresponds to the boundary condition~32!.
The dependencesh1(k,r ) as a function of the wave num-

ber k are shown in Fig. 4. For the isolated atom the depen-
denced1(k)5limr→`h1(k,r ) is nonmonotonic; it has posi-
tive values at smallk as a consequence of the polarization
p-wave scattering Eq.~28!. The dependenceh1(k,r ) be-
comes monotonic and has negative magnitudes as the cut-off
radiusr decreases. That is, the short-range part of the atom-
electron potential begins to predominate over the polariza-
tion attraction. Atr51.52(a/a0)

1/2 the dependenceh1(k) is
small for significantk magnitudes, which corresponds to a
zero value of a factor the coefficienta1(r ). To draw on the
analogy between thes- andp-wave scattering, we have the
same situation as when the zero value of the scattering length
occurs. The dependencesh1(k,r ) on r for small k are suffi-
ciently well approximated by the first term of the expansion
~37! for r̃.1.52.

IV. THE EFFECTIVE MASS OF EXCESS ELECTRONS
IN THE DENSE MEDIUM OF THE ATOMS

In the Wigner-Seitz model, each atom of the medium is
replaced by an equivalent unit cell of radiusr c . The potential
is assumed to be spherically symmetric and identical in each
cell. The ground-state energy of the quasifree excess electron
is determined as the sum of the polarization interaction en-
ergy and the kinetic energy\2k 0

2/2m due to multiple-
scattering effects.25 The wave numberk0 that determines the
ground state is obtained by the Wigner-Seitz boundary con-
dition for the electron wave function26

S dC0

dr D
r5r c

50. ~38!

On the cell boundary the wave functionC05r21u0(r ) with
the partials-wave functionu0(r c) is joined smoothly with its
asymptotic form

C05r21sin@k0r1h0~k0r c!#.

Thus the boundary condition~38! leads to the equation

tan@k0r c1h0~k0 ,r c!#5k0r c , ~39!

which determines the wave numberk0 as a function of the
cell radiusr c . Equation~39! has a solution only in the case
of h0(k,r )<0. The expansion of the theory to positive
h0(k,r ) has been proposed in Ref. 27. Here we confine the
discussion to the first case, wherer,r

*
andh0(k,r )<0, and

we shall use Eq.~39! for the wave numberk0 to calculate the
electron effective massmeff as a function of the cell radius
r c . The value of the effective massmeff can be estimated
according to a method proposed by Bardeen23 in the frame-
work of the cellular model:

meff

m
5
4pN*0

r cC0
2~r !r 2dr

C0
2~r c! F S r

u1~r !

du1
dr D

r5r c
k5k0

21G21

,

~40!

whereu1(r ) is thep-wave radial function. On a cell bound-
ary one can replaceu1(r ) by its asymptotic form

u1~r !5
sin@kr1h1~k,r c!#

kr
2cos@kr1h1~k,r c!#. ~41!

Substituting Eq.~41! into Eq. ~40!, one obtains

F S r

u1~r !

du1
dr D

r5r c
k5k0

21G
5

~k0r c!
2tan@k0r c1h1~k0 ,r c!#

tan@k0r c1h1~k0 ,r c!#2k0r c
22. ~42!

For the first multiplier on the right-hand side of Eq.~40! the
well-known polarization wave function

C05cosFAa

a0
S 1r2

1

r c
D G

is used, which gives

4pN*0
r cC0

2~r !r 2dr

C0
2~r c!

512
a

a0r c
2 F12bS 2r c Aa

a0
D G ,

~43!

whereb(z) is the function determined in Eq.~21!.
Equations~40!, ~42!, and ~43! are used to calculate the

electron effective massmeff as a function of the cell radius
r c . The phase functionsh0(k,r ) and h1(k,r ) calculated
above are substituted into these equations. The result of the
numerical calculations is shown in Fig. 7. The Xe-like pa-
rametersLa526a0 and a527a0

3 are used as input in the
calculations. The effective mass is small in the dense me-
dium. We note that the medium density corresponding to the
cell radiusr c5(a/a0)

1/2 is aboutN51022 cm23. With the
radius growth themeff/m ratio increases. In the vicinity of
r
*
, h0(k,r ) andk0 tend to zero and an analytical expression

for meff/m can be obtained
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Smeff

m D
r c5r

*

5S 12
3a1~r * !

r
*
3 D S 12

3A~r * !

r
*
3 D

3S 11
6a1~r * !

r
*
3 D 21

. ~44!

This expression contains the parametersA(r
*
) anda1(r *

),
which are those included in the expansions~10! and~29! for
h0(k,r ) andh1(k,r ). The value ofmeff/m is close to unity
nearr

*
. This results from the small values of the coefficient

A(r
*
) anda1(r *

) in this region.

V. CONCLUSION

In this paper the peculiarities of electron scattering on the
cut-off atomic potential was considered when the cutting ra-
dius falls at the polarization ‘‘tail’’ of this potential. A simi-
lar problem arises in the description of the scattering of an
excess electron in liquids with a high mobility~such as liquid
Ar, Kr, and Xe!. The scattering by an isolated atom with
high polarizability is characterized by the nonmonotonic de-
pendence of the partial phase shiftsd0(k) and d1(k). For
s-wave scattering, it is due to the negative sign of the scat-
tering length. Forp-wave scattering, it results from the posi-
tive contribution of the polarization scattering in the phase
shift d1(k). In both cases the partial phase shifts are positive
at smallk, suggesting that the long-range polarization attrac-
tion is the dominant component in the interaction between
the electron and the atom.

As the action radius of the atom-electron potential~for the
cut-off potential! is limited, the contribution of the polariza-
tion part in the scattering decreases. The partial phase func-
tion hl (k,r ) gives information about the phase shifts on the
cut-off potential. The parameters determining the phase
shifts are functions of the cut-off radius. Fors-wave scatter-
ing these parameters are the coefficients in the expansion
h0(k,r ) in terms of wave numberk powers, such as the
scattering lengthL(r ) and the ‘‘effective volume’’A(r ). For
L(r ) the analytical expression~8! is obtained. It shows how
the transition from the negative scattering length of the iso-

lated atom to the positive one of the cell occurs with a cell
radius decrease. Our study of the phase functionh0(r ,k)
shows that for small values ofk, the set ofh0(r ,k) as a
function ofr changes their sign at the same valuer

*
~Fig. 3!.

It means thats-wave scattering of slow electrons is weak
in a fluid with the densityN*5(4pr

*
3 /3). At this density

the mobility of thermalized electronsm(N) as a function of
liquid density has a maximum.28–30This striking qualitative
effect is a result of weakening of the long-range polariza-
tion interaction between an electron and an atom in the liq-
uid. In the present paper this weakening is simulated by cut-
ting the electron-atom potential on the Wigner-Seitz cell
boundary.

Another feature of the scattering by the cut-off potential is
a small value of the effective volumeA(r ) for r<(a/a0)

1/2.
As a consequence, the phase functionh0(k) is almost linear
in the wide range of wave-number values. For a slow elec-
tron the s-wave scattering determines the scattering cross
sections54ph0

2/k2, which is constant for the cut-off poten-
tial. This behavior simulates an almost constant scattering
cross section of excess electrons in liquids near the triple
points.12,31 In gaseous Ar, Kr, and Xe the scattering cross
section for slow electrons decreases as a function of electron
energy. In corresponding liquids this cross section is constant
up to considerable values of the energy. As a result, the
mobility of hot electrons~the electrons whose mean energy
is higher than a fluid temperature! m(E) as a function of the
external electric-field strengthE is different in liquids and
gases.28–30We plan to study this problem in a future paper.

For the isolated atom with high polarizability, the depen-
denced1(k) is nonmonotonic and positive for smallk. It
follows from the polarization attraction between an electron
and an atom. The diminution of the polarization part of the
potential leads to the change in sign of theh1(r ,k) phase
function. For small-r values the phase functionh1(r ,k) is
negative for all values ofk, which results from the short-
range character of the cut-off potential. Hence there is the
vicinity of a point r̃51.5 where the phase functionh1(r ,k)
passes through zero. At this point the coefficient of the first
term of theh1(r ,k) expansion becomes zero. The coefficient
characterizes the behavior of thep-wave phase shift for
small k.

The effective mass of excess electrons in dense media is
calculated by using thep-wave phase function in the frame-
work of the Bardeen theory23 in the Wigner-Seitz model. In
a dense medium~small r c! the ratiomeff/m is small and
increases with increasingr c .

Recently, the effective mass has been calculated11,15

within the framework of the Wigner-Seitz model of a liquid.
The results of this calculation are different. In the paper of
Ref. 15 the relatively slow growth of themeff/m ratio with
decreasing density was observed. For the liquid themeff/m
changes are small and the ratio tends to unity only for the
dilute gas. The steeper increase ofmeff/m as a function of
density has been obtained in Ref. 11. Themeff/m values ap-
proach unity at the liquid density near theN

*
point. The

p-wave phase shift has been calculated in Ref. 11 using the
Born approximation.

Our calculation demonstrates the strong growth ofmeff/m
as a function of medium density. We used the accurate
p-wave phase shifts obtained by the variable-phase method.

FIG. 7. Ratiomeff/m as a function of the cell radius. The calcu-
lation is carried out for conditions whenL(r c)>0.
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The analytical expression formeff/m is obtained for the point
r
*
, where the effective scattering length of excess electrons

in the liquid equals zero. The ratiomeff/m is close to unity in
the vicinity of r

*
. This is a result of small magnitudes of the

coefficientsA(r
*
) anda1(r *

) of the s- and p-wave phase
functions.
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