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Electron scattering by a cut-off atomic potential: Application to electron properties
in atomic liquids
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The problem of the phase shifts of the cut-off polarization potential is solved exactly by the variable-phase
method. Thes andp waves are calculated by the method for the Wigner-Seitz cell, which is a unit scatterer of
excess electrons in the cellular model of liquids. The phase shifts for the isolated atom are used as input
parameters. The accurate form of the short-range part of the electron-atom potential is not required. The
general features of the behavior of excess electrons in a dense medium are described by the model.
[S0163-182696)03339-3

[. INTRODUCTION the electron scattering in liquid Ar, Kr, and Xe, has been
obtained. The effective scattering lendtfiN) as a function
In recent years, interest in the properties of excess ele®f the fluid density passes through zero and becomes positive
trons in atomic liquids has been reneweédrhis is primarily ~ when the fluid density increases from gas to lictii@ihe
due to the development of computer simulation of electrorresults of the calculations are in good agreement with experi-
movement in a dense medium of scattefefdn these works mental data. But the weak point in the pseudopotential
the definition of the electron-atom potential is the main astheory is an unreliable description of scattering of fast elec-
sumption. As a rule, the long-range part of this potential istrons with an energy exceeding 0.1 eV. The scattering length
known and it is the polarization potential of an isolated atonh, is the basic parameter for this pseudo-
potential. This quantity is characteristic of slow electron
scattering. To construct a theory that will describe the inter-
Vp(r)=- 214 (1) action between fast electrons and liquid additional informa-
tion is required, namely, the partial phase shifts of the wave
wherea is the polarizability of the atoms of the liquid. The function of an electron scattered by an isolated atom.
short-range part of the potential is constructed in various In the present paper a method for calculating characteris-
ways by different authors. Along this line, considerable suc+ics of excess electron scattering in a liquid with high polar-
cess has been achieved in calculations of the backgrouridability of atoms is proposed. The method allows us to cal-
energyVy(N) as a function of the medium density, which culate the partial phase shifts in a wide range of energies of
are in a good agreement with a large body of experimentadcattered electrons. The initial data for the calculation are the
data. partial phase shiftg, (k) of electron scattered by an isolated
Another situation exists with calculation of the excessatom as a function of the wave numbeof an electron.
electron mobility in these liquids. We do not know computer The average field acting on an electron in a liquid is the
calculations of the mobility in liquid Ar, Kr, and Xe. In the “muffin-tin” potential. One can model an element of this
fundamental theory by Cohen and LekAehe kinetic de- potential by surrounding each atom of the liquid by the
scriptions of the electron mobility in atomic liquids has beenWigner-Seitz cell with a radius,= (3/47N)¥3. HereN is
developed with consideration for the spatial correlation ofthe number density of atoms of the liquid. Inside the cell, the
atoms. Two parameters characterizing a liquid are requiregotential is a cut-off electron-atom potential. The size of the
in this theory. First, is a static structure factor, determineccell is large enough for the potential to have the form @&g.
from the neutron and x-ray-scattering experiments and fronin much of the cell. For simplicity we shall not take into
computer simulations. Second, is an effective electronaccount the mean potential of environmental atoms. This as-
scattering cross section in a liquid. As revealed in Ref. 8, thepect has been dealt with in earlier papet8So the atomic
cross section differs considerably from the well-known scatiiquid is considered as a set of cells, each of them a unit
tering cross section of an electron in a rarefied gas. The crostatterer for excess electrons. The properties of the electrons,
section can be calculated by using any model for the intersuch as electron mobility, conduction-band bottom energy,
action between the electron and atom in a liquid. One way isnd effective mass, are determined by the features of the
the introduction of an electron-atom pseudopotential for gootential. In Refs. 13—15 the Scliiager equation for the
liquid.>*° By using this method the background energyelectron wave function in the Wigner-Seitz cell has been
Vo(N), the effective electron mass4(N), the zero-field solved. It allows us to calculate the background energy
mobility x(N), and the effective cross section as a functionand the effective electron mass of electrons in liquids.
of the density of medium have been calculated in Refs. 1But a short-range component of the electron-atom potential
and 12. Parameters of the pseudopotential were determindths to be assumed.
from characteristics of an izolated atom: the polarizabiity In the present paper phase shifts foand p waves are
and the scattering length, . The following basic feature of calculated by the variable-phase mettofbr the Wigner-
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Seitz cell, which is modeled by the cut-off atomic potential. The s-wave scattering determines the zero-field mobility

An accurate form for the short-range part of the potential isof the excess electrons in liquid Ar, Kr, and Xe. For slow

not needed. The general information of the short-rangelectrons the higher partial waves may be neglected. The

electron-atom interaction is contained in the phase shiftscattering cross section is determined by the scattering length

6,(k) for an isolated atom. The phase shifts for the Wigner-L, which defines the long-wavelength limit of tleewave

Seitz cell are calculated as the valuggr.,k) of the partial  phase shift

phase functions at the cell boundary. These effective phase

shifts are density dependent since they are a function of the do(k)=—Lk. )

cell radiusr.. We concentrate mostly on the mathematical

aspects of the partial phase-shift calculation in a liquid with

mgh atomic rIJoIaIrlzzlibg_Ilty. S?Ee a?]alyncfal ri:_sults_rnlusttratequamity can be measured by the spectrum line-shift
€ humernical calcuiations of the phase function. 1Wo terMsy, o, 41718 For Ar, Kr, and Xe thel , values are negative.

of the s-wave phase-shift expansion in powers of the wave ; : .
. , .~ The problem of the scattering length of the Wigner-Seitz
numberk have been obtained. The final result of the work IS el is exactly solved. The phase equati@ for 7,(r,k) at

the s- and p-wave phase shiftgy, (r,k) for the sufficiently /=0 has the form

large values of the wave numblerwhich are required for an

electron effective-mass calculation in the liquid. We believe d7 2m\A(r

that the calculations in the framework of the pseudopotential ar T wk Sir(kr+ 7o), (6)

approach are not quite reliable in these conditions. Hence, in

Sec. IV the calculation of the effective mass in the liquidwith the boundary condition lim,.. 70(r,k)=—Lgk.

with the parameters close to liquid Xe has been carried outyithin the variable-phase method we consider the long-
wavelength limityny(r,K) = —L(r)k, whereL(r) satisfies the

For excess electrons in a gas the cross sectien=i4 L 2,
wherelL, is the scattering length of the isolated atom. This

Il. THE s-WAVE PHASE SHIFT equation
There are two known equivalent methods to find the dL a
phase shifts for the wave function of a scattered electron. In ar- art (r—L)? (7)
0

the first method, the scattering potential is given exactly
(with regard to the short-range part of the potentidlhe  with the boundary condition lim,,, L(r)=L,. In Eq. (7)
Schralinger equation is solved for the partial wave functionswe assumed that at large distances from the atom the poten-
of the scattered electron and the asymptotic form of theséal has the form(1). a, is the Bohr radius. The Riccati equa-
wave functions is tion (7) has the solution

77/ -1
u,(r—o)=sin kf—7+5/(k)>- 2 L(r)= E+ ﬁtar{arctar{ \/Ei)—\/EE ] .
r @ agl, agr
Equation(2) contains the partial phase shifis(k) as a func- ®)
tion of the wave numbek. This can be checked by making an immediate substitution.
In the second method, the phase functigr(r,k) is cal-  This expression for the scattering length of the Wigner-Seitz
culated from the phase equattn cell was obtained in Ref. 10 by an approximate method. Now

we have established that this solution is accurate.
It is significant that the scattering length(r.) of the
Wigner-Seitz cell obtained via this rough modile average
(3)  potential of environment is not discounjeglalitatively de-
scribes all features that are characteristic for the electron

and the boundary conditiom,(0k)=0. Here j (kr) and L Cop : '
n (kr) are the spherical Bessel and Neumann functions, regcattermg in an atomic liquitsee Fig. 1. For large distances

/ A r., the functionL(r) tends to the valud,, which is the
Sﬁectlve:]yﬁThe asymptote of the phase function is sought fOIl:legative scattering length of the isolated atom. With an in-
phase shi

crease of the densit{lecreasing of ;) the scattering length
; _ grows and changes sign: in a liquid near the triple phirf)
lim 7,/(r k)= 8,(k). @ is positive® The calculations for Fig. 1 have been made for a
Xe-like atom withL,=—6a, and a=27a3. In dimension-
It is easy to verify thatz,(r,k) is the phase shift of the less unitsthe scale of length i§a/a,)"/?] the atom is char-
partial /-wave function scattered on the potentM(r), acterized by a single parameter such as the dimensionless
which is cut off at a distance from the atom. In such a scattering length. .= (a/@)Y?L,. In the case under consid-
manner, the calculation of the phase shifts of the partiakration L,=—1.15. According to Eq.(8), L(r) passes
waves for the atom potential cut off at the cell boundaris  through zero at
equivalent to the calculation of the phase functign(r.).
Solving the phase equatigB) with a boundary conduction a
(4), where §,(k) are the known partial phase shifts for the «~=V\34:
isolated atom, the phase shifts for the Wigner-Seitz cell are 0
found exactly, without specific information about the short-In a medium with the densiti, appropriate ta, , s-wave
range structure of the potential. scattering is small and the mobility of the electrons has a

dn,(r,k) 2m\V(r) , .
ar = 72 Leosn i (kr)=sinp,n,(kn)]?

r—o

w

2

-1
+arctarfL; 1)} : ©)
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2 2 The appearance of the term proportionakts the result of
a long-range character of the potential. For the polariza-
A(r) tion potential cut off at a distance. (it is a short-range
1F -1 potentia), expansion(11) should be replaced by expansion
(10), where the parametets andr should be functions of

A N

= o el

) 5 r.. The problem of obtaining.(r) has been resolved above.
RN 0N Now we shall find the next term of the expansion of the
N N

= <

s-wave phase shift in terms of degrees of wave nunkber
It has been established thiafr,)=0 atr=r, [Egs.(8)
-1+ 41 and (9)]. When this takes place, expansi¢b0) loses its

L. meaning. Therefore we shall obtain tké'tans, expansion
in terms of powers of a wave numbler
-2 ' ' ' . -2 Let ug(r,k) be ans-wave solution of the radial Schro
0 ! 2 sS4 5 dinger equation, with the polarization potentia) cut off at
r(ao/o)"* r=re
FIG. 1. Scattering lengtt.(r), calculated from Eq(8), and d?uq(r k) @ +k2)u -0
coefficientA(r) in the expansion of the-wave phase function for dr? a0r4 o

smallk, calculated from Eq(20), versus the cut-off radii. L, is

the scattering length of the isolated atom. The well-known property of the Schilinger equation, be-

longing to different wave numbeksandk’, is used

maximum. We emphasize that it is impossible to obtain ex-. Py Ny
pression(8) by the Born approximation, neglecting(r) on fim [ug(k) (k") = Uo(k") (k)]
the right-hand side of E(6).
It is known that for thes-wave phase shift for a potential o
with a limited radius of action the long-wavelength Bethe- =(k2—k’2)J Ug(r,K)ug(r,k")dr. (12
Born expansiorfapproximation of effective raditiss valid'® 0

r—oo

Here the notatiorug(k) =duy/dr has been introduced and

2
k cotsy= — 1 + ﬁ e (100  the boundary condition for the wave functiag(k,0)=0 has
L 2 been used.
wherelL is the scattering length ang is the effective radius. At distancesr>r the cut-off potential is equal to zero

For the polarization potenti&l) of the isolated atom another and the functioruy(k,r) coincides with its asymptotic form
expansion is vali

vo(r,k)=sinkr+coskr tanyy(k,r.). (13
2
K cots,=— 1, Tr“kz L, 2« k2In< kT (11)  For the asymptotic functiomo(k,r) the following relation-
L 3al” 3lLag 16a, ship can be obtained by the same method:

lim[vo(k)vi(k") —vo(k")vi(k)]—[K tangg(k,re) —k tanno(k’,rc)]z(kz—k’z)J':vo(k,r)vo(k’,r)dr. (14

r—o

Herevq(k,0)=tanyy(k,r.) andv(k,0)=k. The asymptotic values of the functiag andv, coincide atr —oe.
Subtracting Eq(14) from Eqg.(12) and then dividing the result by andk’, one has, in the limit ok’ —0,

e k,r k',r Ug(k,r ug(k’,r
kfltanno(k,rc)ﬂtL(rc):_kZJ UO(k ) lim UO(k, )\ - 0(k ) lim (% dr. (15)
0 k' —0 k' —0
|
Here we used the definition of the scattering lengtfor the L e[ [ . volk,r) 2
cut-off potential k™ *tanpo(k,re)=—L(rs)—k fo (hm " )
k—0
L(re)=—limk ‘tanpo(k,r). (16) Uo(k,r)\ 2
k—0

The integral on the right-hand side of Ed5) is calculated

inside a cell, where the functiony(k,r) differs from its

asymptotic formvy(k,r). From Eq.(14) we obtain the first The first term of the integrand has the form following from
two terms of thek ‘tany,(k,r.) expansion in terms df Eg. (13) and the definition(16):
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. Vo
lim ?=r—L(rC). (18 .
k—0 02+ >
Vs 1
For the second term we shall use the well-known solution of P T
the radial Schrdinger equation with the polarization poten- /
tial (1) for k=0 and/=0: 00 !

No(k,7)

, \/El A
i Up(r k) re—L " M Vagr~
Im = ) -0.2
. k r 1
k=0 ¢ sin( \/E——A)
agr

c \\\
(19) N
—0.4
cot( \/Ei_A - \/§ Lre _ 0.0 0.5 1.0 1.5 2.0
agle a(re—L)

k(o/ao)"*

This function is normalized according to the condition

uo(k,rc) =k(rc—L). The phasé\ is chosen by a smooth join FIG. 2. s-wave phase functiongy(k,r) via the wave numbek
of ug(k,r) with its asymptotic formwy(k,r) atr=r.. The for different dimensionless cut-off radii=r(ay/a)*% (1) T=2,
integral in Eq.(17) with Egs. (18) and (19) is taken in an  (2) T=1.167, and(3) T=0.5. Solid lines, calculations by the vari-
analytical form. For the factor ok? in the expansion able phase method, dotted lines, calculation by the exparfi&ion
k~Ytangy(k,r )= —L(r.) —A(r ) k? we have &(k) for the isolated atom: points, datRef. 22; dashed line, the

solution of Eq.(6) for infinite r.

aglre

A(rc)=a—rc[b2—(b2—% B by|, (20

3ay

A set of the phase functiongy(r,k) is shown in Fig. 2
versus the wave numbér It shows that the contribution of
where b=1—(L/r;) and g and y are the well-known the long-range polarization attraction decays when the cut-
functions™ of the argument=2(a/ag)"r 1, off radius of the polarization potential diminishes. The non-

< monotonic §y(k) dependence, characteristic of the atoms
" o 0 with high polarizability, is replaced by the monotonic depen-
B(Z)_Zfo 24t @)=z fo 729 @D gence 7(k,r) as a result of the change of the scattering
length sign.
The functionA(r) versus the cut-off radius of the potential  If the dependencesy(k) is nonmonotonic, thes-wave
is given in Fig. 1. In the domain whereis not significant, phase shift becomes zero for the wave-number vijuelt
A(r) is small and theyy(k,r) depends on the wave-number |eads to the Ramsauer effect experiencing electron scattering
function linearly up to moderate values lof in the heavier noble gases. The cross section is a nonmono-

The phase functiongyy(k,r) as a function of the wave tonic function of the electron energy; it is small at the energy
numberk and the radius are given, respectively, in Figs. 2 yalue corresponding t6%k2/2m. As it follows from Fig. 2,
and 3. These phase functions have been obtained as the $Re Ramsauer effect disappears as the cut-off radius is re-
lution of the phase equatidi6) with the boundary condition  gyced. If the scattering length is positive, the cross section is
(4). The phase shifts(k) for the isolated atom potential 3 monotonic function of the electron energy. There is a criti-

appears in this boundary condition. In the calculations We:a| valuer, =1.17(a/ay)"? where the scattering length
used the phase shift calculated for the pseudopotential with ghanges sign.

©

polarization tail and a hard core radiag, For smallr the dependencey(k) on the wave numbek
) is practically linear, resulting from the expansion in terms of
@ ) if r<ac k, obtained above. The phase shifts, calculated from the ex-
V(r)= € (220  pansion(17), are represented in Fig. 2 by dotted lines.

T if r>ac.

-1
(23)

The dependence of(r,k) onr is shown in Fig. 3. At
large values ofr the phase functions saturate at thgk)
The size of the hard core is related to the isolated atonfeyel, according to the boundary condition. Then the function
scattering length. ., no(r) decreases monotonically and becomes negative at
smallerr. The sign of the phase function determines the
o= \/E rr+arctar{ \/Ei) character of the interaction; the attraction predominates if
¢ ag aol, 7o>>0. As the polarization potential is cut off, the attraction
is reduced and the repulsion begins to play a general part
This pseudopotential describes well electron scattering byz,<0). It should be pointed out that at smélthe functions
the noble-gas isolated atoms. The phase shifts for Xe-likey(r) become equal to zero at the common valye This is
atoms (L= —6a,, a=27a3, and a,=2.14a,) obtained by the value at which the scattering length passes through zero.
the numerical solution of Eq6) are compared with the re- In Fig. 3 theny(r) curves are bounded at small Actu-
sults of the calculation, performed with the realistic ally, the polarization potentidall) is the long-range part of
electron—Xe-atom potential hin Fig. 2. the real electron-atom potential. At short distances the
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FIG. 3. s-wave phase functiong(r,k) via the distance for
different dimensionless wave numbeks k(a/ag)¥% (1) k=0.1,
(2) k=0.3,(3) k=0.5,(4) k=1, (5) k=1.5, and(6) k=2. Solid lines,
the solution of Eq(6); dashed line, expansidi7) for k=1.

FIG. 4. p-wave phase functiong,(k,r) via the wave numbek
for different cut-off dimensionless radit (1) T=3.5, (2) T=1.52,
and (3) T=0.6. Solid lines, calculations by the variable phase
method; dotted line, expansid7). 6;(k) for the isolated atom:
points, data(Ref. 22; dashed line, the solution of Eq24) for
electron-atomic potential can be simulated by a hard corénfinite r; dash-dotted line, expansid¢81).
with the radiusa. [Eq. (23)]. Since we solve the phase equa-
tion (6) for the polarization potential only, the validity area where §;°(k) is the contribution to the phase shift of the
of our solutions ig>a.. scattering by the hard core ad§°\(k) is the contribution of
As discussed above, expansid) in terms ofk approxi-  the polarization scattering.
mates to the exact phase functigg(r,k) only for smallk As is well known, the Born approximation describes the
and not for large . In Fig. 3 the dashed line gives the result polarization contribution irp-wave scattering well. For the
of the calculation following this expansion fer= (ay/a)*2 Born approximation one can write, using Eg4),
One can estimate the boundary of a validity of expression
(20) for A(r). For smallk the result of the calculation fol-
lowing expression(20) practically coincides with the result
of the exact calculation for afl.

dng;
dr  agkr®

kr

sinkr 2
————CcoxKr | . (27)

For 82(k)=lim, ...7,(k,r) using the boundary condition

82°(0)=0, the following expression can be obtained:
lll. THE p-WAVE PHASE SHIFT

= dr

Let us consider the phase shift of the scattered partial ~ 5pol()= il _4(

wave with/'=1 for the cut-off potential. Th@-wave func-
tion is used for the calculation of an electron effective mas
in the cellular model medi&?® For thep-wave phase func-
tion #,(r,k) the equation is valid

sinkr 2 7 ak?
—cokr
agk Jo 1

o =153, %®

Srhis is the polarization contribution in thpwave scattering
by the isolated atom.

For the short-range potential the Blatt-Jackson
expansiofi* of §,(k) in the terms of the wave numbéris

dpi  2m V(1) [sin(kr + 7,) ? valid

cogkr+m7q)| .
(24)

dr 4% kK kr

1 bk
K3cotsy = — — + ——.

a; 2 (29

As in the case of the-wave scattering we used the boundary
condition Consequently, one can write, for the small valuekof

lim 7, (r,k)= 61(k). (25 67°(k)=— ak®, (30

r—oo

where the coefficiend, is characteristic of thp-wave scat-

A few words are in order about th§(k) function used be- tering by the _|solated atom short-range .poter‘(taflalogous
to the scattering length fa-wave scattering

low. As long as the phase-shift values are small the contri-

; : The values ofé8;(k) calculated in Ref. 22 for Xe are
butions to the scattering of the long-range and the short- s 1 : )
range parts of the potential are additive. Hence, for skall _shown In F'.g' 4. Th% dependenéf_(k)p nonmonotonic and
[and small3,(k)] we can write it is proportional tok“ at k—0, according to Eq(28). As the

1

wave number is increased, the scattering by the core prevails
and the dependencé (k) decreases according to EGO)

81(k) = 85(k) + °(k), (26)  and changes its sign. One can find the magnituds, afsing
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the valuek, , where 8,(k,)=0. Thus, for the isolated Xe

0.08
atom k, =0.2%9,' (Ref. 22 and a;=19.6a3. Unfortu-
nately, the expression obtained
, 0.06 - N
7 ak
1(K)= 7z ——ayk® (3D > \
15 a > 0.04 + A
5 \
is unusable at large values &f It is not in quantitative \Q \
agreement with the data(see Fig. 4 Hence, for an ap- S \
A . < 0.02 | \
proximation of these data over a wide range of wave num- 3 N
bers, we shall use the largeasymptotic of the Eq(24) \
solution &;(k) =lim,_ .. z;(k,r). The boundary conditioifa 0.00
scattering by the hard core with radiog h .
AN
k,r,)=arctarikr,) —kr 32 -0.02 : ‘
71(K,r1) rkry) 1 (32 0.5 10 15
simulates the effect of the short-range part of the atom po- )1/2
tential. The parameter,=3.073, is chosen by fitting the (/™

calculateds; (k) values to the dat#. It is seen from Fig. 4 o ] )

that this approximation is consistent with the data in a wide FIG. 5. Coefficienia, (r) in the expansion of the-wave phase

range ofk values. function for smallk. The solid line is the solution Qf Eq(:35) and
Let us proceed to discuss thewave phase-shift behavior (36) and the dashed line shows the Born approximation(B8§).

for the atomic potential, cut off at the distance. Because

this potential is a short-range one, the representa@nfor  dicted by the Born approximation, at-(a/a) "% However,

small values ok is valid for it. This expansion contains only thea;(r) values and behavior at smalldiffer substantially

odd-numbered powers. Polarization contributi@8), which ~ from the values obtained by the Born approximation.

is proportional tk? results from the long-range nature of the ~ The p-wave phase functiong,(k) shown in Fig. 6 have

interaction. This term must be absent in the expansion for theeen obtained by a numerical solution of E&4) with the

p phase shift of the cut-off potential. In the Born approxima-boundary condition25). In Eq. (25 the dependencé;(k)

tion (27) the phase functiom,(k,r) for a smallk is such that ~ for the isolated atom corresponds to the dashed line in Fig. 4.

kr<1; one obtains We can see from Fig. 6 that with values increasing the

, dependencesg; (k) tend to their asymptotic value®(k). As
k ar

Kor)=8,(K)— — 20 ¢ 2 e

arl

a R —
1 9a,

observed for smaller-values. In the case where the func-
(33)  tions #,(r,k) shown in Fig. 6 have positive limited values,
61(k) and #,(r,k) as a function ofr decrease, cross the

On the right-hand side the contribution of the short—rangeaxis, and take negative valuesradecreases. For small val-

electron-atom interactio(80) is taken into account.
Unfortunately, the Born approximation does not always
give a correct magnitude of the factor coefficienkdfterms

in Eq. (33). If we write the phase equatigq24) for the func-
tion tarf ,(k,r)] the right-hand side of Eq24) will be eas- 0.05
ily expanded in a power series kf
dtany, « 1 [(kr)? tany,|? —~
ar gk r? {—3 0 (34 t 0.00
Considering the first term of the expansion \é
tany,(k,r)=—a,(r)k?, we obtain the equation foa,(r), 005 -
similar to Eq.(7) for the scattering length, ’
day(r)  a [r®-3ay(r)]? a5
dr - g_ao r6 ' ( ) -0.10
1
The range of validity of the Born approximation results from 0 1 é 3 4
the inequalityr®>a,(r). The solution of Eq(35) with the 12
boundary condition r(ay/a)
B ri FIG. 6. p-wave phase functiong,(k,r) via the cut-off radius
ay(ry)== (36)  for different dimensionless wave numbewalues:(1) k=0.3, (2)

k=0.5,(3) k=0.8,(4) k=1, and(5) k=1.3. Solid lines, solution of
following from (32) at small values ok is shown in Fig. 5. Eq.(24): dashed lines, the Born approximatit88); dotted line, the
The range of thea,(r) function is limited byr;=3.07a,. first term in the smalk expansior(37) with a;(r) from the solution
The functiona,(r) tends toward a linear dependence, as preof Eq. (35) for k=0.8.

3 the magnitude of the wave number increases, this tendency is
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ues ofk, 7, (r ,k)=0 at the same point=1.52, where the which determines the wave numblej as a function of the
coefficienta,(r) becomes zergFig. 5). cell radiusr . Equation(39) has a solution only in the case

It follows from Fig. 6 that the straight lines obtained by of #7y(k,r)<0. The expansion of the theory to positive
the Born approximatior33) (dashed lines in Fig. )6édiffer 1o(k,r) has been proposed in Ref. 27. Here we confine the
significantly from the correspondingy(r,k) curves. For discussion to the first case, wherer, and n(k,r)=<0, and
kr<1 a sufficiently good approximation fom,(r,k) is the  we shall use Eq39) for the wave numbekg to calculate the

first term of the expansion electron effective mass\+ as a function of the cell radius
r.. The value of the effective masa.; can be estimated
7(r,k)=—ay(r)k3, (37) according to a method proposed by Bard@én the frame-

. . . . work of the cellular model:
where the functiora;(r) is the solution of Eq(35) with the

boundary condition(36). We finally note that the range of fer 2o
the m(k,r) functon is limited by the value — Mgy 47N Fo(r)r dr[( r dul)
;

r,=0.59(a/a,)Y?=3.07a, for a=27a3. As it follows from m T(ro) uy(r) dr |

Fig. 6, the derivativel »,/dr becomes zero and one obtains, k;lr(

according to Eq(24), ° (40)
tarfkry+ o (kry)]=kry, whereu,(r) is the p-wave radial function. On a cell bound-

which corresponds to the boundary conditi@®). ary one can replace, (r) by its asymptotic form

The dependences;(k,r) as a function of the wave num-
berk are shown in Fig. 4. For the isolated atom the depen- simkr+ n1(k,re)]
denced, (k) =lim,_ ., 7,(k,r) is nonmonotonic; it has posi- uy(r)= kr cogkr+my(k,ro)]. (41)
tive values at smalk as a consequence of the polarization
p-wave scattering Eq(28). The dependencey(k,r) be-
comes monotonic and has negative magnitudes as the cut-o
radiusr decreases. That is, the short-range part of the atom-
electron potential begins to predominate over the polariza{ r dul)

bstituting Eq(41) into Eq. (40), one obtains

»

c
0

tion attraction. Atr =1.52(a/a,) " the dependence,(k) is uy(r) dr
small for significantk magnitudes, which corresponds to a

zero value of a factor the coefficieat(r). To draw on the

analogy between the- and p-wave scattering, we have the

same situation as when the zero value of the scattering length _ (koro)*tar{kor ¢+ ma(ko.ro)] ) 42
occurs. The dependencesg(k,r) onr for smallk are suffi- tarfkor o+ 71(ko, re) I —kore

ciently well approximated by the first term of the expansion

(37) forr>1.52. For the first multiplier on the right-hand side of E40) the

well-known polarization wave function

-3

IV. THE EFFECTIVE MASS OF EXCESS ELECTRONS
IN THE DENSE MEDIUM OF THE ATOMS a
\P0=co{ —
3o

In the Wigner-Seitz model, each atom of the medium is
replaced by an equivalent unit cell of radiys The potential
is assumed to be spherically symmetric and identical in eacls used, which gives
cell. The ground-state energy of the quasifree excess electron
is determined as the sum of the polarization interaction en-

Iearr2 2
ergy and the kinetic energyi’k3/2m due to multiple- 4mNJ s Po(r)r dr: _a 1-8 2 \/E
scattering effect&® The wave numbek, that determines the Wa(re) aor2 re Yag/ |’
ground state is obtained by the Wigner-Seitz boundary con- (43

dition for the electron wave functidh
where 3(z) is the function determined in Eq21).
Equations(40), (42), and (43) are used to calculate the
electron effective mass; as a function of the cell radius
r.. The phase functiongy(k,r) and z(k,r) calculated
On the cell boundary the wave functid’bzr’luo(r) with above'are substitqted into these _equgtions. The res'ult of the
the partials-wave functionu(r.) is joined smoothly with its  "umerical calculations is show; in Fig. 7. The Xe-like pa-
asymptotic form rameterslL ,= —6a, and a=2Ta; are used as input in the
calculations. The effective mass is small in the dense me-

dv,
dr

=0. (39

r:rc

V=1 L5 Kar + 27n(Kar 1. dium. We note that the medium density corresponding to the
0 "tho + 7mo(korc)] cell radiusr .= (alay)'? is aboutN=10?? cm 3. With the
Thus the boundary conditiof88) leads to the equation radius growth them.z/m ratio increases. In the vicinity of

r., no(k,r) andk, tend to zero and an analytical expression
tar{ Kor ¢+ 70(Ko,r o) 1=Kof ¢ » (39)  for mgg/m can be obtained
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0.8 lated atom to the positive one of the cell occurs with a cell
radius decrease. Our study of the phase functigfr,k)
shows that for small values &, the set of7y(r,k) as a
function ofr changes their sign at the same vatygFig. 3.
It means thats-wave scattering of slow electrons is weak
in a fluid with the densitw*=(477ri/3). At this density
the mobility of thermalized electrong(N) as a function of
liquid density has a maximui¥-% This striking qualitative
effect is a result of weakening of the long-range polariza-
tion interaction between an electron and an atom in the lig-
uid. In the present paper this weakening is simulated by cut-
ting the electron-atom potential on the Wigner-Seitz cell
boundary.

Another feature of the scattering by the cut-off potential is
a small value of the effective volum&(r) for r<(a/ag)'2
Tc(ao/a) 1/2 As a consequence, the phase functig(k) is almost linear

in the wide range of wave-number values. For a slow elec-

tron the s-wave scattering determines the scattering cross

0.1 | | | |
0.7 0.8 0.9 1.0 1.1 1.2

FIG. 7. Ratioms/m as a function of the cell radius. The calcu-

lation is carried out for conditions whelr(r ) =0. sectiono=4mrg/k? which is constant for the cut-off poten-
tial. This behavior simulates an almost constant scattering
cross section of excess electrons in liquids near the triple
m 3ay(r 3A(r . .
<_e”> _( _ 1(3 *)>( _ (3*)) points!?3 In gaseous Ar, Kr, and Xe the scattering cross
mj _ M M section for slow electrons decreases as a function of electron

energy. In corresponding liquids this cross section is constant
up to considerable values of the energy. As a result, the
mobility of hot electrongthe electrons whose mean energy
is higher than a fluid temperatyrg(E) as a function of the
This expression contains the paramet&(s, ) anda,(r,), external electric-field strengtk is different in liquids and
which are those included in the expansi¢h6) and(29) for  gase$®—>°We plan to study this problem in a future paper.

-1
x(1+%;*)) | (44)

*

no(k,r) and n,(k,r). The value ofm.s/m is close to unity For the isolated atom with high polarizability, the depen-
nearr, . This results from the small values of the coefficientdence §;(k) is nonmonotonic and positive for smakl It
A(r,) anda,(r,) in this region. follows from the polarization attraction between an electron

and an atom. The diminution of the polarization part of the
potential leads to the change in sign of thgr,k) phase
function. For smalk values the phase function,(r,k) is
In this paper the peculiarities of electron scattering on thenegative for all values ok, which results from the short-
cut-off atomic potential was considered when the cutting rarange character of the cut-off potential. Hence there is the
dius falls at the polarization “tail” of this potential. A simi- vicinity of a pointT=1.5 where the phase functiom(r,k)
lar problem arises in the description of the scattering of arpasses through zero. At this point the coefficient of the first
excess electron in liquids with a high mobiligguch as liquid  term of theny(r,k) expansion becomes zero. The coefficient
Ar, Kr, and Xe. The scattering by an isolated atom with characterizes the behavior of thewave phase shift for
high polarizability is characterized by the nonmonotonic de-small k.
pendence of the partial phase shifigk) and &;(k). For The effective mass of excess electrons in dense media is
s-wave scattering, it is due to the negative sign of the scatealculated by using thp-wave phase function in the frame-
tering length. Fop-wave scattering, it results from the posi- work of the Bardeen theofy in the Wigner-Seitz model. In
tive contribution of the polarization scattering in the phasea dense mediungismall r.) the ratio mg/m is small and
shift 8,(k). In both cases the partial phase shifts are positivéncreases with increasing .
at smallk, suggesting that the long-range polarization attrac- Recently, the effective mass has been calculdted
tion is the dominant component in the interaction betweerwithin the framework of the Wigner-Seitz model of a liquid.
the electron and the atom. The results of this calculation are different. In the paper of
As the action radius of the atom-electron potentiat the ~ Ref. 15 the relatively slow growth of the/m ratio with
cut-off potential is limited, the contribution of the polariza- decreasing density was observed. For the liquidrthg/m
tion part in the scattering decreases. The partial phase funchanges are small and the ratio tends to unity only for the
tion 7,(k,r) gives information about the phase shifts on thedilute gas. The steeper increasemfi/m as a function of
cut-off potential. The parameters determining the phaselensity has been obtained in Ref. 11. Thg/m values ap-
shifts are functions of the cut-off radius. Fewave scatter- proach unity at the liquid density near tiN, point. The
ing these parameters are the coefficients in the expansigmwave phase shift has been calculated in Ref. 11 using the
no(k,r) in terms of wave numbek powers, such as the Born approximation.
scattering length.(r) and the “effective volume”A(r). For Our calculation demonstrates the strong growthngg/m
L(r) the analytical expressiof8) is obtained. It shows how as a function of medium density. We used the accurate
the transition from the negative scattering length of the iso{p-wave phase shifts obtained by the variable-phase method.

V. CONCLUSION



11 260 V. M. ATRAZHEV AND I. V. TIMOSHKIN 54

The analytical expression fon.4/m is obtained for the point ACKNOWLEDGMENTS

r., where the effective scattering length of excess electrons e authors thank Professor I. T. lakubov for fruitful dis-
in the liquid equals zero. The ratioe/m is close to unity in cyssions and comments and Iren Aleshina for help in the
the vicinity ofr, . This is a result of small magnitudes of the computer calculations. The work was supported by the Rus-
coefficientsA(r,) anday(r,) of thes- and p-wave phase sian Foundation for Basic Researches and partially by a
functions. NATO Collaborative Research Grant.

1W. F. Schmidt, inExcess Electron in Dielectric Mediadited by ~ °B. Plenkiewicz, Y. Frongillo, P. Plenkiewicz, and J.-P. Jay-Gerin,

C. Ferradini and J.-P. Jay-Ger{€hemical Rubber Company, J. Chem. Phys94, 6132(1991).

Boca Raton, FL, 1991 p. 127. 18F, Calogero,Variable Phase Approach to Potential Scattering
2L, G. Christophorou, irLinking Gaseous and Condensed Matter: (Academic, New York, 1967

Behavior of Slow Electronsedited by L. G. Christophorou, E. 17E. Fermi, Nuovo Cimentd, 157 (1934.

lllenberger, and W. F. Schmi@Plenum, New York, 1994 p. 3. 18y, Asaf, W. S. Felps, K. Rupnik, S. P. McGlynn, and G. As-
3S. H. Simon, V. Dobrosavljevic, and R. M. Stratt, J. Chem. Phys. carelli, J. Chem. Phy®1, 5170(1989.

94, 7360(1997). 194, Bethe, Phys. Rewi6, 38 (1949.
4J.-M. Lopez-Castillo, Y. Frongillo, B. Plenkiewicz, and J. P. Jay- °°T. F. O'Malley, L. Spruch, and L. Rosenberg, J. Math. PHs.

Gerin, J. Chem. Phy$€6, 9092(1992. 481 (1961).
5B. Space, D. F. Coker, Z. H. Liu, B. J. Berne, and G. Martyna, J?*Handbook of Mathematic FunctiondNatl. Bur. Stand. Appl.

Chem. Phys97, 2002(1992. Math. Ser. No. 55, edited by M. Abramowitz and I. A. Stegun
5B. Boltjes, C. de Graaf, and S. W. de Leeuw, J. Chem. P9§;s. (U.S. GPO, Washington, DC, 1964

275(1993. 22| T. Sin Fai Lam, J. Phys. B5, 119(1982.

M. H. Cohen and J. Lekner, Phys. Ré\68, 305 (1967). 233, Bardeen, J. Chem. Phy&.367(1938.
8J. Lekner, Phys. Rewl58 130(1967). 243. M. Blatt and J. D. Jackson, Phys. R&6, 18 (1949.
%|. T. lakubov, inLinking Gaseous and Condensed Matter: Behav-2°B. E. Springett, J. Jortner, and M. H. Cohen, Phys. R&@, 183

ior of Slow ElectrongRef. 2), p. 319. (1967.
0y, M. Atrazhev and I. T. lakubov, J. Chem. Phys03 9030  2°E. Wigner and F. Seitz, Phys. Re4B, 804 (1933.

(1995. 27|, T. lakubov and V. V. Pogosov, Phys. Rev5R, 14 941(1995.
111, T. lakubov, Chem. Phys. LetR40, 589 (1995. 283, A. Jahnke, L. Meyer, and S. A. Rice, Phys. Rev3A734
12y, M. Atrazhev, I. T. lakubov, and V. V. Pogosov, Phys. Lett. A (1971).

204, 393(1995. 293, S.-S. Huang and G. R. Freeman, J. Chem. PBg§s.1355
13B, Plenkiewicz, P. Plenkiewicz, and J.-P. Jay-Gerin, Phys. Rev. A (1978.

39, 2070(1989. 30F, M. Jacobsen, N. Gee, and G. R. Freeman, Phys. Re34,A

14B. Plenkiewicz, P. Plenkiewicz, and J.-P. Jay-Gerin, Phys. Rev. A 2329(1986.
40, 4113(1989. 3ly. M. Atrazhev and I. T. lakubov, J. Phys. T, 5139(1981).



