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We study electron localization of quasi-one-dimensional random-potential and random-magnetic-field sys-
tems with and without a uniform external magnetic field. We find that in a random-magneti¢RigIg)
system the localization length is not a monotonic decreasing function of magnetic-field randafimess
contrast to a random-potential system in which the localization length is a monotonic decreasing function of
the randomnesw. We observed that, in both random-potential and RMF systems, the localization length can
both increase and decrease with a uniform external magnetic field depending on the energy of a state. The
crossover occurs when the electron energy is close to the band edge in a random-potential system. In a RMF
system, the magnetoproperty of the localization length is complicated. A band edge effect is proposed to
explain the anomalous numerical results. We also find that the inverse of the localization length of a quasi-
one-dimensional disordered system peaks at certain energies inside the energy band. These peaks can be
understood by the branch edge eff¢§&0163-182806)09039-X]

I. INTRODUCTION sample of size&. X M with a periodic boundary condition by
using the relation
Recently there has been considerable interest in studying

the problem of noninteracting two-dimensional electrons 1 M
propagating in the presence of random magnetic ‘fitx. EYLE)=—lim Z'”Z |Gli,Lj(E)|2, QD
First, this problem arises in the study of the quantum Hall Lo h

systems near even denominator filling fractiofisSecond, ) o )
the problem is believed to be relevant to the theoretical studnere¢ 'i the Ioca,hzfatlon_ Iengtt]h Ef a state with en(ejrﬁy_
ies of the hight . models where gauge field fluctuations play Gy; L IS the Green's function which connects two end points

; : ; (1)) and (,j) of the long strip. They used MacKinnon’s
n important role. Third, this problem h r mi ( . .
ﬁ\tereg'? ;? itts (())\in It ?s tnglpkcr)ltt;v(\a/n th?l? : El;uZIafaar?;omc— method® to calculate the Green's function on the lattice. The

. . . result is that all states are localized and as the electron en-
potential system with the time-reversal symmetry has the

. i . h he localization | h in-
coherent backward scattering which results in the weak o 9Y 8PProacnes band center, the localization length ‘in

lizati foct. A Svst h rand ic flux di creases rapidly. Kalmeyeet al® used both MacKinnon's
calization eftect. A system with random magnetic Tux diSor ety 64 and the Landauer formula to study the same problem

der does not have the t!m;ai(r)eversal symmetry; neverthelesg;, nhard-wall boundary conditions. Their studies suggest
localized states also exist"'°One of the interesting ques- hat there exist mobility edges in two dimensions when flux
tions is to study differences of the localization properties ofgisorder breaks the time-reversal symmetry. Avishial
these two systems. We now know that the mobility edges cag|so used Landauer formula to study the same problem nu-
only exist in a space above two dimensions for a randommerically. Their results are also consistent with the existence
potential system, provided that disorders do not break thef extended states, and hence mobility edges in two dimen-
time-reversal symmetry. Another essential and controversiadions. Liu et al.” calculated localization length using the
issue of the random magnetic flux probleiRMF) is the finite-size scaling method and also concluded that there is a
existence of mobility edges in a two-dimensional space. metal-insulator transition in two dimensions. Recently,
A number of numerical investigations have been per-Avishai and Bar-Tout’ studied the interplay between poten-
formed with conflicting results on the random field problemtial and magnetic disorder in a double-chain ladder.
in a two-dimensional2D) system. Pryor and Z&kwere the In this paper, we study a simple problem that noninteract-
first to study the tight-binding model with the nearest-ing electrons propagate in a random potential and/or a ran-
neighbor and the next-nearest-neighbor interactions in a ralom magnetic field in a quasi-one-dimensional lattice. Our
dom magnetic field by direct diagonalization. They showedfocus is on the differences between the localization due to a
that in the presence of a strong random magnetic field in tweandom potential and that due to a random magnetic field in
dimensions most of the states are extended and only thospiasi-one-dimensional systems. In particular, we study the
states near the band edge are localized. Sugiyama amdagnetoresponses and the phase randomness dependence of
Nagaosé studied the same problem on a rectangirip)  the localization length. It is believed that the localization
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length will increase in a weak magnetic field in the usuallt is known that Eq.(3) has a set oM pairs of Lyapunov
Anderson localization model because the field will destroyexponentg,(y;,— ¥){i=1,2,...,M}, which can be related
the time-reversal symmetry, thus it suppresses the coheretd physical quantities. The inverse of the localization length
backward scattering. A magnetic field has, however, otheis given by the smallest positive Lyapunov expoRiasftthe
effects on a wave function, such as changing phases of foproduct of the random matricégi). As M increases from
ward scatterings. To our knowledge, there is no detailed to «, the system changes from a one-dimensional to a
analysis of the energy dependence of the localization lengttwo-dimensional system. Therefore, the multichain system
in a weak magnetic field even for the Anderson localizationcan also be used to investigate how the localization property
model. Therefore, it will also be interesting to see to whatof noninteracting particles changes from a 1D to a 2D sys-
extent one can say that the localization length will increaseem.

in a weak magnetic field. One of our results of the Anderson The energy of a pure double-chain system in the present
model is that the localization length of a state increases witlof a uniform magnetic field can be solved exactly and is
a weak magnetic field if the state is near the band centegiven by

However, the localization length can also decrease when the

state is close to band edge. This paper is organized as foE=cogka+ ¢)+ cogka) = J[cogka+ ¢)—cogka)]>+ 1.
lows: In the next section, we will describe the model, its 4

transfer matrix formulation, and the numerical method used he ab . h hat th band shrink
to calculate the localization lengftthrough Lyapunov expo- | € above expression shows that the energy band shrinks

nents of a product of random matri¢ge3he numerical re- With the magnetic field. This effect will be important to.
sults and their discussions are given in Sec. IIl. understand how the magnetoproperties of the localization

length depend on the energy.

Il. MODEL AND THEORETICAL METHOD
B. Numerical method

A. Model . o .
. _ o _ As we have mentioned, the localization length is related
We consider a tight-binding model on a striplok M to the smallest positive Lyapunov exponent of E). How-
M ever, if the product of random matricd41) is computed
_ T . directly, the information associated with the smallest positive
H Z mz:l gimlim)(im| Lyapunov exponent is lost when the ratio of the contribution

from the smallest positive Lyapunov exponent to that of the
largest Lyapunov exponent becomes comparable with the
machine accuraclf In order to compute all Lyapunov expo-

where(im;jn) indicates nearest neighbors on the lattice. The?eecnhtﬁicheltzl?ﬁ,lgrowm off (1), we employ the following

model is used to describe a noninteracting electron system in
a random potential and/or random magnetic field with anc{ra
without an external uniform magnetic fielel,, is the on-site
energy and is assumed to be uniformly distributed in
[—w/2w/2]. A magnetic field is introduced through the _
“Peierls ansatz,™® namely, the only effect of a magnetic Bn=(Bn—E (Bi-Bn)Bi>/b(”), (5)
field on a tight-binding model is to add a phase to the hop- i<n

ping coefficient. We will choose a gauge in such a way tha(Nhere

all phases are only acquired in the horizontal bonds, i.e.,

tim.i+1m= 7€ #.2 andt;y, im+ 1=t for the intrachain and the

interchain hopping coefficients, respectively; , is as- b(”)=Bn—2 (Bi~Bn)Bi‘. (6)
sumed to be uniformly distributed ifip— 8w, ¢+ 6], t=n

where ¢ corresponds to the uniform magnetic field. In this 1ps transformation has to be performed regularly but not

model, we have two disorder parametersand 5. w is the  acessarily at each step. After the transformation, each col-
usual Anderson randomness, ahé the phase randomness. ,mn of the transfer matrix is orthogonal to the other. The

The amplitude of the intrachain hopping coefficient is choseRjst column converges to the eigenvector corresponding to
as the unit of the energy=1. It is interesting to point out e maximum eigenvalue. The second column converges to
that a magnetic field can always be gauged out in a one-chaie gigenvector corresponding to the second maximum ei-
system. In order to study the magnetic-field effects, the simyenyalue and so forth. Since the system is symplectic, the
plest quasi-one-dimensional system is the one with tWQsgenvalues occur in reciprocal pairs. The logarithm of these
chains,M=2. For a specific energl, a transfer matrix;  gjgenvalues are the Lyapunov exponents, thus the Lyapunov
wh|c_h maps the Wave—functlon amplltudes_ at columnl exponents of the product Gf(1) appear in pairs §;,— ;)
andi to those at column+1 can be easily set up. The {i=1,2,... M}
asymptotic behavior of the wave functighcan be derived From the transformation equatiors) and (6), it is not
from the limit of the product of the transfer matrices difficult to recognize thab™ is a measure of divergence of

L the norm of the column vector, resulting in the Lyapunov

PLEH T(). 3) e>_<ponents. Therefore,_ for_ a system_ wiM—chain system
i=1 with lengthL, the localization length is given by

+ 2 ) [tim;jn|im><jn|+tiTm;jn|jn><im|]1 (2)

(im;jn

DenoteB,, as thenth column of the producP(l) of the
nsfer matricesT(i). We perform the following Gram-
Schmidt orthonormalization transformation Bp:
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G
3 1:T’ (7)

0.10

=—=a ¢=0.0, w=1.0
= $=0.5, w=1.0
where 0.08 - —e ¢=0.0, 8=1/
o—o ¢=0.5,3=14

cM=Inb™ +cM), . (8

In our numerical calculations, all the}”’s are initialized to

zero. Other Lyapunov exponents can be found by computing .
b{"’s, andc{"’s. Since the Lyapunov exponents of a product 4, |
of random matrices are self-averaging quantities, the average
procedure is granted for larde systems. In general, if the
matrix elements diverge very fast, one needs to reduce the g |
number of steps between the sequential transformations. In

the case of the localization problem we are studying, the
optimal steps can be found easily in the following way. Since g0
the random matrices are symplectic, the Lyapunov exponents ' ’ E

appear in pairs. If the number of transformation is inad-
P P FIG. 1. The inverse of the localization lengh® vs energyE

equate, no paired exponents can be obtained. for a double-chain systerti) in the presence of random potential
The above numerical technique is applied to both random- 4 b P

. . w=1.0 with uniform magnetic fieldp=0.0 and $=0.5 (1/4r
otential and random flux problems with the hard wall , .
Eoundar conditiongHBC) Tﬁe localization length is cal- guantum flux per plauetterespectively{ii) in the presence of ran-
y_ ) ' ) g T dom magnetic fields= 1/4 with uniform magnetic fields=0.0 and
culated with and without a uniform external magnetic ﬂeld.d):(l5 respectively.
The random matrices are generated by assigning a random '

number in the corresponding matrix elementTifl). In our .
numerical calculation, we perform the transformation proce-those around the band center. Therefore, the inverse of the

dure for every 10 steps. The lengthof double-chain and localization length is larger at the band center. If this argu-
triple-chain systems is annd the lengtr_ of a 20-chain ment is correct, it should work for multiple-chain systems as

system is 10, The numerical error is about 10 for the well. Figure 2 is the numerical results of the inverse of the

double-chain and triple-chain calculations. The detailed nu[o_calization length for a triple-chain .random?potential system
merical results are as follows with t=1 andw=1.0 and for a triple-chain random flux

system witht=1 andé=%. It is easy to see that the energy
spectrum of the triple-chain systems have three branches
with branch edges aE=*(2—2), =2, =(2+/2). In-

A. Peaks of the localization length at the branch edges deed, there are two peaks in Fig. 2 around these edges as
We study the energy dependence of the localizatiorPredicted by our argument. When the degree of the random-

length for both random-potential and random magnetic fluX'€SS IS increased, one should expect that all states in each
systems. The two curves widh=0.0 in Fig. 1 are the plots branch will be affected equally strongly, and the peaks at

of inverse of the localization length versus energy in thePranch edges should diminish accordingly. Figure 3 is the
absence of an external magnetic fieWl=1.0, 5=0, and Inverse of the localization length vs energy for a double-

t=1 is the curve for the random-potential problem, and

IIl. NUMERICAL RESULTS AND DISCUSSIONS

w=0, §=1/4, andt=1 is the curve for the random flux 010

problem. Since, without an external magnetic field, the band

center is aE=0 and the localization length is an even func- Tyl
tion of energyE, only the positive energy part is plotted in 008 | B

Fig. 1. From Fig. 1, we can see that both random potential
and random flux system have similar general features. There
are peaks dE=1.0 and the inverse of the localization length 0.06 |-
increases rapidly as energy approaclies3.0. Peaks at
|E|=1.0 can be understood from the energy band structure >
of a pure double-chain system. From H¢), the energy 0.04 |
spectrum has two branches which &e 2coka+1 when
the interchain coupling is=1. These two branches are cen-
tered atE= = 1.0, respectively. There are two major effects 002 | j

when disordefrandom potential or random flyxs added to
the system:(i) Translational symmetry is destroyed and
states become localize(li) Disorder also couples these two 0.00¢ o 20 20 20
branches together. Sin¥&/|E—E,| (whereE, is the energy E

at the band bottoiris bigger for energies close to band edges FIG. 2. The inverse of the localization lenggh® vs energyE

for a given disorder strengtV, one expects that the states for a triple-chain system in the presence of random potential

near the edges of each branch will be affected more thaw=1.0 and random magnetic fields=1/4, respectively.
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FIG. 3. The inverse of the localization length* vs energyE FIG. 4. A plot of £(#)/£(0) vs energyE for a double-chain

for a double-chain strong random-magnetic-field system with"andom-potential system witv=1.0, $=0.5, §=0, andt=1.
w=0, =1, andt=1.

From Fig. 1, we can see the comparison of the inverse of
chain RMF system with=1 and strong randomness-1. It the localization length for a dogble-chain random-potential
is clear that there is no obvious peak in this figur&€atl.  System ofw=1, 6=0, andt=1 with and without a uniform
As the number of chaindVl increases, the number of magnetic field. From Fig. 1, we can see that the magnetore-
branches will increase. Thus, the number of peaks also inSPONSe can be divided into two regions. When the electron
creases. However, whevl o, the branches edges distrib- €N€ray is near the t_Jan_d center, the localization Ie_ngth in-
ute continuously betweeB=[ — 4,4] for t=1. Therefore, no  C'€ases with magnetic field. As the electron energy increases
peak will appear in a two-dimensional system. beyond E=2.0, the magnetoresponse of the .Iocallzatlon

It is interesting to notice that random potential and ran_Iength reverses. Therefore_z, whether thg Io_cahzann length of
dom flux systems behave differently near the band centef 9iVen state increases with a magnetic field depends on the
From Fig. 1, random potential system is structureless at thENeray of the state. This result disagrees clearly with that of
band center. However, random flux system has a peak at tH4eak Iocahzatloﬁ " theory, which predicts that for a given
band centeE=0 while Fig. 2 has a dip at the band center. €N€rgy the localization lengt(#) obeys the relation
Numerically, we cannot be sure that the inverse of the local-
ization length at band cent&=0 is equal to O for a triple- @: f 9)
chain random flux system though there is indication that it is £&0) 3
so. Even more interesting, the dip at the band center seems
always to exist for an odd-chain RMF system while a peafor a double-chain system. Figure 4 is the plot of
occurs at the band center for an even-chain RMF system. W& ¢)/£(0) vs E. Equation(9) holds well for|[E[<1, but is
do not have a good explanation for the observed even-odiicorrect outside that energy range. In order to look at the
behavior yet. dependence of the localization length on a magnetic field, we
plot £(0)/¢(#) againste. Figure 5 is a such graph for vari-
ous energies in the same system as that in Fig. 1. It is clear
that the localization length increases with magnetic field for
those states near the band center, and decreases for the states

In a random system with the time-reversal symmetry,near the band edges.
there is so-called weak localization effect. According to this This magnetoresponse can be explained by the competi-
effect, the coherent backward scattering will be suppressetion of the two effects of magnetic field. The first effect is
by a uniform external magnetic field which destroys thethat the magnetic field destroys the time-reversal symmetry;
time-reversal symmetry. This effect has been used to explaithus it suppresses the coherent backward scattering. This ef-
the positive magnetoconductance observed in a dirty metafect weakens the localization, thus, increases the localization
A magnetic field, however, has other effects on a wavdength. The second effect can be understood from Hamil-
function®'3such as changing phases of forward scatteringsonian (2) in the pure case. Equatio) gives the energy
which may become important on an electron in a state noband in the presence of a uniform field. According to the
too close to a band center. In order to see to what extent orfermula, the uniform magnetic field shrinks the energy band.
can say that the localization length will increase in a wealt is equivalent to say that a magnetic field tends to push
magnetic field, we studied the energy dependence of thstates near band edges to the localized gap states. We will
magnetoproperties of the localization length for bothcall it the band-edge effect. These two effects compete with
random-potential and RMF systems. We find that the localeach other, and lead to a nontrivial magnetoresponse of the
ization length can both increase and decrease with a magdpcalization length. As the electron energy is closed to the
netic field for the tight-binding Hamiltonian we have studied. band edge, the band-edge effect dominates the magnetore-

B. Energy dependence of magnetoproperties
of the localization length
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FIG. 5. £(0)/&(¢) vs magnetic fieldg for states of various FIG. 7. Alog-log plot of the inverse of the localization length vs
energiese=0, 0.5, 1, 1.5, 2, 2.5, 3 in a double-chain random- the randomnesw for states of various energi€&s=0, 0.5, 1.5, 2,
potential system witw=1.0, =0, andt=1. 2.5 in a double-chain random-potential system wik0 and
t=1.

sponse and leads to a decrease in the localization length. On .
the other hand, for states in the band center, the first effedErng anymore. On_e should expect that the magnetoresponse
dominates, and the increase of the localization length is exc-)'c a RMF model is very .d|fferent from th‘f"t of randqm-
potential system. We studlec_i a double-cha[n system in the

sistance, one has to consider the change of density of statBEESence of random magne;tlc flux. From F|g(a1do.uble-
with magnetic field. However, such change can be ignored ifnain random flux system with=0, 5=1/4, andt=1 in an
weak field is considered. Although Fig. 1 and Fig. 4 showecEXtémnal uniform magnetic fiel¢=0 and $=0.5, respec-
the results with relative big fieldk=0.5), we found similar Uvely) and Fig. 6, a plot 0f(0)/é(¢) vs ¢ for states of
behaviors for the weak-field case, namely, the localizatioy2(0US energies in the same system, we can see that the
length increases for states near band center and decreases Rg2lization length of a RMF system in general decreases
states near band edge. The same result can also be seenif? @ uniform external magnetic field except for states in a
Fig. 5. Therefore, similar to the localization length, both the'€9ion of width of~0.2 arounde=1. This feature is con-
negative and positive magnetoresistance are possible in tf&Stent with the band-edge effect.
weak-field limit where the field effect on the density of states
can be neglected. C. The localization length vs the randomness strength

Since there is no time-reversal symmetry in a RMF sys-
tem, there is no coherent backward scattering. Thus, a we
magnetic field does not have an effect on the backward scaag-<O

It is well known that, in a quasi-one-dimensional random-
tential system, the inverse of the localization lengttt
cales as the square of Anderson randommedsr small

8.0 0.40

o—o E=0.0
o—a E=1.0
——o E=2.0

6.0 - 0.30 -

4.0 + 7., 020

E(0)E(0)

20 B 0.10 r
M
S Aaas = o - o0d
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FIG. 6. £(0)/&(¢) vs magnetic fieldg for states of various FIG. 8. The inverse of the localization length vs randomngss

energiese=0, 0.5, 1, 1.5, 2, 2.5 in a double-chain random- for states of various energi&=0, 1, 2 in a double-chain random-
magnetic-field system wittw=0, §=1/4, andt=1. magnetic-field system witw=0 andt=1.
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(b) 5

FIG. 9. The inverse of the localization length vs randomnr&gs a 20-chain random-magnetic-field system witk 0 andt= 1. (a) For
states of energieE=0, 0.51, 1.5, 2, 2.5, 3b) For stateE=3 arounds=0.03.

w. Figure 7 is a log-log plot of the inverse of localization §=0.03. The peak height indicates that the localization
length versusv for a double-chain random-potential system length is about 5 lattice constants. The detailed studies show
for states of various energies. The randomness dependenttet the peak has a finite width and is not a single point as
of ¢! can be described well by scaling relatiarf. For a  shown in Fig. b). One of the possible explanations of this
RMF system, the randomness is on the phases of the hoppifghavior is thaE=3 around randomnes$=0.03 is a for-
coefficients. Because of the periodic condition in the phasehidden state, but it becomes an allowed state for ofhéris

one will expect that the localization length of a given stateknown that the energy spectrum of a two-dimensional lattice
should saturate when the phase randomidesslarger than in an incommensurate magnetic field is a Cantor set which
certain value. Figure 8 shows the inverse of localizatiorhas a zero measut®ln a disordered system, however, it is
length versus the phase randomness for a double-chaimsfficult to explain why there exists discrete forbidden states
RMF system oft=1 and for states of energids=0, 1, 2. in a RMF system. The physical explanation for this peak is
Surprisingly, the localization length is not a monotonic func-still unclear.
tion of the randomnes§ in a RMF system. In order to see

whether this is a general behavior of a RMF system, we also

did calculations on a 20-chain system with 1 and the re-

sults are shown in Fig.(8). Again, the inverse of localiza- One of the authorgW.L.C.) would like to thank Z.Q.
tion length is not monotonic i, and it saturated at large Zhang and T.K. Ng for their useful discussions. This work
6 for some states. Even more surprising, the inverse of thevas supported by UGC, Hong Kong, though RGC, DAG,
localization length of stat&=3 has a sharp peak around and RTG grants.
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