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We study electron localization of quasi-one-dimensional random-potential and random-magnetic-field sys-
tems with and without a uniform external magnetic field. We find that in a random-magnetic-field~RMF!
system the localization length is not a monotonic decreasing function of magnetic-field randomnessd in
contrast to a random-potential system in which the localization length is a monotonic decreasing function of
the randomnessw. We observed that, in both random-potential and RMF systems, the localization length can
both increase and decrease with a uniform external magnetic field depending on the energy of a state. The
crossover occurs when the electron energy is close to the band edge in a random-potential system. In a RMF
system, the magnetoproperty of the localization length is complicated. A band edge effect is proposed to
explain the anomalous numerical results. We also find that the inverse of the localization length of a quasi-
one-dimensional disordered system peaks at certain energies inside the energy band. These peaks can be
understood by the branch edge effect.@S0163-1829~96!09039-X#

I. INTRODUCTION

Recently there has been considerable interest in studying
the problem of noninteracting two-dimensional electrons
propagating in the presence of random magnetic flux.1–7

First, this problem arises in the study of the quantum Hall
systems near even denominator filling fractions.1,8 Second,
the problem is believed to be relevant to the theoretical stud-
ies of the high-Tc models where gauge field fluctuations play
an important role.9 Third, this problem has a pure academic
interest of its own. It is well known that a usual random-
potential system with the time-reversal symmetry has the
coherent backward scattering which results in the weak lo-
calization effect. A system with random magnetic flux disor-
der does not have the time-reversal symmetry; nevertheless,
localized states also exist.1–7,10One of the interesting ques-
tions is to study differences of the localization properties of
these two systems. We now know that the mobility edges can
only exist in a space above two dimensions for a random-
potential system, provided that disorders do not break the
time-reversal symmetry. Another essential and controversial
issue of the random magnetic flux problem~RMF! is the
existence of mobility edges in a two-dimensional space.

A number of numerical investigations have been per-
formed with conflicting results on the random field problem
in a two-dimensional~2D! system. Pryor and Zee11 were the
first to study the tight-binding model with the nearest-
neighbor and the next-nearest-neighbor interactions in a ran-
dom magnetic field by direct diagonalization. They showed
that in the presence of a strong random magnetic field in two
dimensions most of the states are extended and only those
states near the band edge are localized. Sugiyama and
Nagaosa4 studied the same problem on a rectangular~strip!

sample of sizeL3M with a periodic boundary condition by
using the relation

j21~L,E!52 lim
L→`

1

2L
ln(

i , j

M

uG1i ,L j~E!u2, ~1!

wherej is the localization length of a state with energyE,
G1i ,L j is the Green’s function which connects two end points
(1,i ) and (L, j ) of the long strip. They used MacKinnon’s
method12 to calculate the Green’s function on the lattice. The
result is that all states are localized and as the electron en-
ergy approaches band center, the localization length in-
creases rapidly. Kalmeyeret al.3 used both MacKinnon’s
method and the Landauer formula to study the same problem
with hard-wall boundary conditions. Their studies suggest
that there exist mobility edges in two dimensions when flux
disorder breaks the time-reversal symmetry. Avishaiet al.5

also used Landauer formula to study the same problem nu-
merically. Their results are also consistent with the existence
of extended states, and hence mobility edges in two dimen-
sions. Liu et al.7 calculated localization length using the
finite-size scaling method and also concluded that there is a
metal-insulator transition in two dimensions. Recently,
Avishai and Bar-Touv10 studied the interplay between poten-
tial and magnetic disorder in a double-chain ladder.

In this paper, we study a simple problem that noninteract-
ing electrons propagate in a random potential and/or a ran-
dom magnetic field in a quasi-one-dimensional lattice. Our
focus is on the differences between the localization due to a
random potential and that due to a random magnetic field in
quasi-one-dimensional systems. In particular, we study the
magnetoresponses and the phase randomness dependence of
the localization length. It is believed that the localization
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length will increase in a weak magnetic field in the usual
Anderson localization model because the field will destroy
the time-reversal symmetry, thus it suppresses the coherent
backward scattering. A magnetic field has, however, other
effects on a wave function, such as changing phases of for-
ward scatterings. To our knowledge, there is no detailed
analysis of the energy dependence of the localization length
in a weak magnetic field even for the Anderson localization
model. Therefore, it will also be interesting to see to what
extent one can say that the localization length will increase
in a weak magnetic field. One of our results of the Anderson
model is that the localization length of a state increases with
a weak magnetic field if the state is near the band center.
However, the localization length can also decrease when the
state is close to band edge. This paper is organized as fol-
lows: In the next section, we will describe the model, its
transfer matrix formulation, and the numerical method used
to calculate the localization length~through Lyapunov expo-
nents of a product of random matrices!. The numerical re-
sults and their discussions are given in Sec. III.

II. MODEL AND THEORETICAL METHOD

A. Model

We consider a tight-binding model on a strip ofL3M

H5(
i

(
m51

M

« imu im&^ imu

1 (
^ im; jn&

@ t im; jnu im&^ jnu1t im; jn
† u jn&^ imu#, ~2!

where^ im; jn& indicates nearest neighbors on the lattice. The
model is used to describe a noninteracting electron system in
a random potential and/or random magnetic field with and
without an external uniform magnetic field.« im is the on-site
energy and is assumed to be uniformly distributed in
@2w/2,w/2#. A magnetic field is introduced through the
‘‘Peierls ansatz,’’13 namely, the only effect of a magnetic
field on a tight-binding model is to add a phase to the hop-
ping coefficient. We will choose a gauge in such a way that
all phases are only acquired in the horizontal bonds, i.e.,
t im,i11m5heif i ,m/2 andt im,im115t for the intrachain and the
interchain hopping coefficients, respectively.f i ,m is as-
sumed to be uniformly distributed in@f2dp,f1dp#,
wheref corresponds to the uniform magnetic field. In this
model, we have two disorder parametersw andd. w is the
usual Anderson randomness, andd is the phase randomness.
The amplitude of the intrachain hopping coefficient is chosen
as the unit of the energyh51. It is interesting to point out
that a magnetic field can always be gauged out in a one-chain
system. In order to study the magnetic-field effects, the sim-
plest quasi-one-dimensional system is the one with two
chains,M52. For a specific energyE, a transfer matrixTi
which maps the wave-function amplitudes at columni21
and i to those at columni11 can be easily set up. The
asymptotic behavior of the wave functionc can be derived
from the limit of the product of the transfer matrices

PL[)
i51

L

T~ i !. ~3!

It is known that Eq.~3! has a set ofM pairs of Lyapunov
exponents,2 (g i ,2g i)$ i51,2, . . . ,M %, which can be related
to physical quantities. The inverse of the localization length
is given by the smallest positive Lyapunov exponent2 of the
product of the random matricesT( i ). As M increases from
1 to `, the system changes from a one-dimensional to a
two-dimensional system. Therefore, the multichain system
can also be used to investigate how the localization property
of noninteracting particles changes from a 1D to a 2D sys-
tem.

The energy of a pure double-chain system in the present
of a uniform magnetic field can be solved exactly and is
given by

E5cos~ka1f!1cos~ka!6A@cos~ka1f!2cos~ka!#211.
~4!

The above expression shows that the energy band shrinks
with the magnetic fieldf. This effect will be important to
understand how the magnetoproperties of the localization
length depend on the energy.

B. Numerical method

As we have mentioned, the localization length is related
to the smallest positive Lyapunov exponent of Eq.~3!. How-
ever, if the product of random matricesT( l ) is computed
directly, the information associated with the smallest positive
Lyapunov exponent is lost when the ratio of the contribution
from the smallest positive Lyapunov exponent to that of the
largest Lyapunov exponent becomes comparable with the
machine accuracy.12 In order to compute all Lyapunov expo-
nents of the product ofT( l ), we employ the following
technique.12,14,15

DenoteBn as thenth column of the productP( l ) of the
transfer matricesT( i ). We perform the following Gram-
Schmidt orthonormalization transformation onBn :

B̄n5SBn2(
i,n

~Bi•Bn!Bi D /b~n!, ~5!

where

b~n!5UBn2(
i,n

~Bi•Bn!BiU. ~6!

This transformation has to be performed regularly but not
necessarily at each step. After the transformation, each col-
umn of the transfer matrix is orthogonal to the other. The
first column converges to the eigenvector corresponding to
the maximum eigenvalue. The second column converges to
the eigenvector corresponding to the second maximum ei-
genvalue and so forth. Since the system is symplectic, the
eigenvalues occur in reciprocal pairs. The logarithm of these
eigenvalues are the Lyapunov exponents, thus the Lyapunov
exponents of the product ofT( l ) appear in pairs (g i ,2g i)
$ i51,2, . . . ,M %.

From the transformation equations~5! and ~6!, it is not
difficult to recognize thatb(n) is a measure of divergence of
the norm of the column vector, resulting in the Lyapunov
exponents. Therefore, for a system withM -chain system
with lengthL, the localization length is given by
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j215
cL

~M !

L
, ~7!

where

cL
~M !5 lnbL

~M !1cL21
~M ! . ~8!

In our numerical calculations, all thec0
( i )’s are initialized to

zero. Other Lyapunov exponents can be found by computing
bL
( i )’s, andcL

( i )’s. Since the Lyapunov exponents of a product
of random matrices are self-averaging quantities, the average
procedure is granted for largeL systems. In general, if the
matrix elements diverge very fast, one needs to reduce the
number of steps between the sequential transformations. In
the case of the localization problem we are studying, the
optimal steps can be found easily in the following way. Since
the random matrices are symplectic, the Lyapunov exponents
appear in pairs. If the number of transformation is inad-
equate, no paired exponents can be obtained.

The above numerical technique is applied to both random-
potential and random flux problems with the hard wall
boundary conditions~HBC!. The localization length is cal-
culated with and without a uniform external magnetic field.
The random matrices are generated by assigning a random
number in the corresponding matrix element inT( l ). In our
numerical calculation, we perform the transformation proce-
dure for every 10 steps. The lengthL of double-chain and
triple-chain systems is 106 and the lengthL of a 20-chain
system is 105. The numerical error is about 1024 for the
double-chain and triple-chain calculations. The detailed nu-
merical results are as follows.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Peaks of the localization length at the branch edges

We study the energy dependence of the localization
length for both random-potential and random magnetic flux
systems. The two curves withf50.0 in Fig. 1 are the plots
of inverse of the localization length versus energy in the
absence of an external magnetic field,w51.0, d50, and
t51 is the curve for the random-potential problem, and
w50, d51/4, and t51 is the curve for the random flux
problem. Since, without an external magnetic field, the band
center is atE50 and the localization length is an even func-
tion of energyE, only the positive energy part is plotted in
Fig. 1. From Fig. 1, we can see that both random potential
and random flux system have similar general features. There
are peaks atE51.0 and the inverse of the localization length
increases rapidly as energy approachesE53.0. Peaks at
uEu51.0 can be understood from the energy band structure
of a pure double-chain system. From Eq.~4!, the energy
spectrum has two branches which areE52coska61 when
the interchain coupling ist51. These two branches are cen-
tered atE561.0, respectively. There are two major effects
when disorder~random potential or random flux! is added to
the system:~i! Translational symmetry is destroyed and
states become localized;~ii ! Disorder also couples these two
branches together. SinceW/uE2Ebu ~whereEb is the energy
at the band bottom! is bigger for energies close to band edges
for a given disorder strengthW, one expects that the states
near the edges of each branch will be affected more than

those around the band center. Therefore, the inverse of the
localization length is larger at the band center. If this argu-
ment is correct, it should work for multiple-chain systems as
well. Figure 2 is the numerical results of the inverse of the
localization length for a triple-chain random-potential system
with t51 andw51.0 and for a triple-chain random flux

system witht51 andd5 1
4 . It is easy to see that the energy

spectrum of the triple-chain systems have three branches
with branch edges atE56(22A2), 62, 6(21A2). In-
deed, there are two peaks in Fig. 2 around these edges as
predicted by our argument. When the degree of the random-
ness is increased, one should expect that all states in each
branch will be affected equally strongly, and the peaks at
branch edges should diminish accordingly. Figure 3 is the
inverse of the localization length vs energy for a double-

FIG. 2. The inverse of the localization lengthj21 vs energyE
for a triple-chain system in the presence of random potential
w51.0 and random magnetic fieldsd51/4, respectively.

FIG. 1. The inverse of the localization lengthj21 vs energyE
for a double-chain system~i! in the presence of random potential
w51.0 with uniform magnetic fieldf50.0 andf50.5 (1/4p
quantum flux per plauette!, respectively;~ii ! in the presence of ran-
dom magnetic fieldd51/4 with uniform magnetic fieldf50.0 and
f50.5, respectively.
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chain RMF system witht51 and strong randomnessd51. It
is clear that there is no obvious peak in this figure atE51.
As the number of chainsM increases, the number of
branches will increase. Thus, the number of peaks also in-
creases. However, whenM→`, the branches edges distrib-
ute continuously betweenE5@24,4# for t51. Therefore, no
peak will appear in a two-dimensional system.

It is interesting to notice that random potential and ran-
dom flux systems behave differently near the band center.
From Fig. 1, random potential system is structureless at the
band center. However, random flux system has a peak at the
band centerE50 while Fig. 2 has a dip at the band center.
Numerically, we cannot be sure that the inverse of the local-
ization length at band centerE50 is equal to 0 for a triple-
chain random flux system though there is indication that it is
so. Even more interesting, the dip at the band center seems
always to exist for an odd-chain RMF system while a peak
occurs at the band center for an even-chain RMF system. We
do not have a good explanation for the observed even-odd
behavior yet.

B. Energy dependence of magnetoproperties
of the localization length

In a random system with the time-reversal symmetry,
there is so-called weak localization effect. According to this
effect, the coherent backward scattering will be suppressed
by a uniform external magnetic field which destroys the
time-reversal symmetry. This effect has been used to explain
the positive magnetoconductance observed in a dirty metal.
A magnetic field, however, has other effects on a wave
function,16,13 such as changing phases of forward scatterings
which may become important on an electron in a state not
too close to a band center. In order to see to what extent one
can say that the localization length will increase in a weak
magnetic field, we studied the energy dependence of the
magnetoproperties of the localization length for both
random-potential and RMF systems. We find that the local-
ization length can both increase and decrease with a mag-
netic field for the tight-binding Hamiltonian we have studied.

From Fig. 1, we can see the comparison of the inverse of
the localization length for a double-chain random-potential
system ofw51, d50, andt51 with and without a uniform
magnetic field. From Fig. 1, we can see that the magnetore-
sponse can be divided into two regions. When the electron
energy is near the band center, the localization length in-
creases with magnetic field. As the electron energy increases
beyond E52.0, the magnetoresponse of the localization
length reverses. Therefore, whether the localization length of
a given state increases with a magnetic field depends on the
energy of the state. This result disagrees clearly with that of
weak localization17,10 theory, which predicts that for a given
energy the localization lengthj(f) obeys the relation

j~f!

j~0!
5
4

3
, ~9!

for a double-chain system. Figure 4 is the plot of
j(f)/j(0) vsE. Equation~9! holds well for uEu,1, but is
incorrect outside that energy range. In order to look at the
dependence of the localization length on a magnetic field, we
plot j(0)/j(f) againstf. Figure 5 is a such graph for vari-
ous energies in the same system as that in Fig. 1. It is clear
that the localization length increases with magnetic field for
those states near the band center, and decreases for the states
near the band edges.

This magnetoresponse can be explained by the competi-
tion of the two effects of magnetic field. The first effect is
that the magnetic field destroys the time-reversal symmetry;
thus it suppresses the coherent backward scattering. This ef-
fect weakens the localization, thus, increases the localization
length. The second effect can be understood from Hamil-
tonian ~2! in the pure case. Equation~4! gives the energy
band in the presence of a uniform field. According to the
formula, the uniform magnetic field shrinks the energy band.
It is equivalent to say that a magnetic field tends to push
states near band edges to the localized gap states. We will
call it the band-edge effect. These two effects compete with
each other, and lead to a nontrivial magnetoresponse of the
localization length. As the electron energy is closed to the
band edge, the band-edge effect dominates the magnetore-

FIG. 3. The inverse of the localization lengthj21 vs energyE
for a double-chain strong random-magnetic-field system with
w50, d51, andt51.

FIG. 4. A plot of j(f)/j(0) vs energyE for a double-chain
random-potential system withw51.0,f50.5, d50, andt51.
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sponse and leads to a decrease in the localization length. On
the other hand, for states in the band center, the first effect
dominates, and the increase of the localization length is ex-
pected. We have to point out that to discuss the magnetore-
sistance, one has to consider the change of density of states
with magnetic field. However, such change can be ignored if
weak field is considered. Although Fig. 1 and Fig. 4 showed
the results with relative big field (f50.5), we found similar
behaviors for the weak-field case, namely, the localization
length increases for states near band center and decreases for
states near band edge. The same result can also be seen in
Fig. 5. Therefore, similar to the localization length, both the
negative and positive magnetoresistance are possible in the
weak-field limit where the field effect on the density of states
can be neglected.

Since there is no time-reversal symmetry in a RMF sys-
tem, there is no coherent backward scattering. Thus, a weak
magnetic field does not have an effect on the backward scat-

tering anymore. One should expect that the magnetoresponse
of a RMF model is very different from that of random-
potential system. We studied a double-chain system in the
presence of random magnetic flux. From Fig. 1~a double-
chain random flux system withw50, d51/4, andt51 in an
external uniform magnetic fieldf50 andf50.5, respec-
tively! and Fig. 6, a plot ofj(0)/j(f) vs f for states of
various energies in the same system, we can see that the
localization length of a RMF system in general decreases
with a uniform external magnetic field except for states in a
region of width of;0.2 aroundE51. This feature is con-
sistent with the band-edge effect.

C. The localization length vs the randomness strength

It is well known that, in a quasi-one-dimensional random-
potential system, the inverse of the localization lengthj21

scales as the square of Anderson randomnessw for small

FIG. 6. j(0)/j(f) vs magnetic fieldf for states of various
energiesE50, 0.5, 1, 1.5, 2, 2.5 in a double-chain random-
magnetic-field system withw50, d51/4, andt51.

FIG. 7. A log-log plot of the inverse of the localization length vs
the randomnessw for states of various energiesE50, 0.5, 1.5, 2,
2.5 in a double-chain random-potential system withd50 and
t51.

FIG. 8. The inverse of the localization length vs randomnessd
for states of various energiesE50, 1, 2 in a double-chain random-
magnetic-field system withw50 andt51.

FIG. 5. j(0)/j(f) vs magnetic fieldf for states of various
energiesE50, 0.5, 1, 1.5, 2, 2.5, 3 in a double-chain random-
potential system withw51.0, d50, andt51.
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w. Figure 7 is a log-log plot of the inverse of localization
length versusw for a double-chain random-potential system
for states of various energies. The randomness dependence
of j21 can be described well by scaling relationw2. For a
RMF system, the randomness is on the phases of the hopping
coefficients. Because of the periodic condition in the phase,
one will expect that the localization length of a given state
should saturate when the phase randomnessd is larger than
certain value. Figure 8 shows the inverse of localization
length versus the phase randomness for a double-chains
RMF system oft51 and for states of energiesE50, 1, 2.
Surprisingly, the localization length is not a monotonic func-
tion of the randomnessd in a RMF system. In order to see
whether this is a general behavior of a RMF system, we also
did calculations on a 20-chain system witht51 and the re-
sults are shown in Fig. 9~a!. Again, the inverse of localiza-
tion length is not monotonic ind, and it saturated at large
d for some states. Even more surprising, the inverse of the
localization length of stateE53 has a sharp peak around

d50.03. The peak height indicates that the localization
length is about 5 lattice constants. The detailed studies show
that the peak has a finite width and is not a single point as
shown in Fig. 9~b!. One of the possible explanations of this
behavior is thatE53 around randomnessd50.03 is a for-
bidden state, but it becomes an allowed state for otherd. It is
known that the energy spectrum of a two-dimensional lattice
in an incommensurate magnetic field is a Cantor set which
has a zero measure.18 In a disordered system, however, it is
difficult to explain why there exists discrete forbidden states
in a RMF system. The physical explanation for this peak is
still unclear.
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