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Spin- and charge-rotation invariant approach to the Hubbard model
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We present a slave-boson formulation for the Hubbard model that preserves the spin-rotation and patrticle-
hole symmetries of the paramagnetic phase at half filling. Fermion and boson fields are treated on an equal
footing in a functional integral formulation. We show that, while in two and three dimensions there is a
metal-insulator transition as the interactidh increases, in one dimension our approach always gives an
insulating state. Short-range spin-spin correlations are included at the saddle-point level for all vdlyes of
giving a good description of the insulating state. We show that the energy gap in the one-particle spectrum
increases from zero adJ(—U.)%, whereU. is the critical value of the on-site interaction and the exponent
a is 1 and 1/2 for 2 and 3 dimensions, respectivg§0163-182006)04839-4

I. INTRODUCTION (i) It explicitly preserves the full spin-rotation invariance
and particle-hole symmetr{charge-rotation invariangeof
The Hubbard model, which has been studied for almosthe original half-filled Hubbard Hamiltonian.

thirty years, is considered one of the simplest models that (i) The insulating state includes short-range spin-spin
contains the essential ingredients for understanding the phy§orrelations already at the saddle-point level.
ics of correlated metafsDespite its simple form, it provides ~ One disadvantage of our approach is thattheO limit
a physical scenario to describe the metal-insulator transitiordS Not exactly reproduced, since we do not renormalize the
the formation of localized magnetic moments, and the occurbopping matrix elements as in the KR formulation. However,
rence of long-range magnetic order. The discovery of highihis renormalization is inconvenient when fluctuations are
T, superconductivify renewed the interest in this model, incorporated above the saddle-point restilts.
since it provides a natural framework for describing many The rest of the paper is organized as follows: In Sec. Il we
properties of the cuprates. Moreover, it has been argued théive a detailed description of the formalism, in Sec. Ill we
superconductivity itself could be a consequence of the locaPresent the results for one, two, and three dimensiaDs,

repulsionU.3 and in Sec. IV we summarize our conclusions.
The big effort to obtain solutions to this model—both the
ground statd® and the thermodynamic properties—led to Il. SLAVE-BOSON APPROACH

only a few controlled results. Probably the best results in the

regime of interest, near half filling and intermediate cou- In this section we present the method starting from a func-
pling, correspond to those obtained by numericaltional integral theory that makes apparent the spin-rotation
simulation® However, the slave-boson approaekapplied  and particle-hole symmetries of the original model. We con-
to the Hubbard model by Kotliar and RuckenstéfiR) (Ref.  sider the Hubbard Hamiltonian written in the usual notation:
8) seems to be an attractive starting point for a systematic

study of the model. The KR approach is a functional integral

method that reproduces the Gutzwiller solufioat the H=—t2 ciT(,cJ-(,JrUE (n”nil—%ni)—,uz ni. (1)
saddle-point level. The advantage of this method over the (i) : :

Gutzwiller variational wave function is that it provides a : o ]
systematic way to improve the solution. As pointed out byHere C;, creates an electron at site with spin o,

Li, Wolfle, and Hirschfeld the KR theory does not preserve Niy=Ci,Ci, andn;=n;;+n;; . Note that we have included
the spin-rotation invariance of the original Hamiltonian. an on-site energy/2. In this notation the chemical potential
They generalized the theory and provided a way of formu-u is zero for the half-filled case. In the following, we will
lating a functional integral method which naturally preservesneasure the energy in units bf 1.

this invariance. In any case, the results at the saddle-point In order to make apparent the global symmetries of the
level are equivalent to Gutzwiller's solution, and in the Mott model, we introduce the following operators:

insulating state spin-spin correlations are not included.

In the present work, we introduce slave bosons in the Zou c.. —cf b of
and Andersolf scheme to describe the paramagnetic phase \pi:( ' T'l), IT_< i 'i)_ 2)
of the Hubbard model. We devise a functional integral G, Cp —Ciy Cip
method which presents the following advantages over previ-
ous theories: In this representation the Hamiltonian reads
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Global spin rotations are equivalent to the following trans-

formations: ¥;=g°V¥; , whereg® is a SU2) matrix. Rota-
tions in the charge sectgparticle-hole transformationgor-
respond toW;=W,g°, where g°=(0,)'g(0c,)" with o, a
Pauli matrix andg a SU2) matrix. Then, it is straightfor-
ward to show that the Hamiltonia(B) is invariant under
these transformations far=0, i.e., one particlger site

We introduce slave bosons in the Zou and Andet%on

scheme, where the fermion operators are written in the fol-

lowing way:

Ciy=Si,e +os_.d. (4)

|—0

Heres is the single-occupancy fermionic operator, aﬂd
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1
L(n)=5 2 TLWo 07+ (W9, ¥ 0, | +Hes

+i X N T (P50, + (U FTE)] - 1).

(10

Here \; is a Lagrange multiplier introduced to enforce the
constraint(8).

In order to go beyond the standard saddle-point approxi-
mation we introduce Hubbard-Stratonovich fielgs(7), in
terms of which the partition function reads

- | ioxipsipelpaloA]

B
XeX[{—J dr(z X;rj)(ij-FLS(T)-I-LC(T)H. (11
0 (i)

The charge and spin Lagrangeans are given by

andd’r are the empty and double-occupancy slave-boson cre- | (T)_ ! 2 T w9 \ps]_ z E T ( \PST\I/SO.Z)X“]

ation operators, respectively. The electron opera¥oris
then given by

U =wspet (5)
where the spin and charge fields are
+ T t
ST e d
‘P?=( T'), «vf*:( i o ©
S| Siy —d e

Under spin rotations and particle-hole transformations these

operators change a¥’=gs¥? and W'=w°g®, respec-
tively, with g°> andg as above.

The Hamiltonian written in terms of these field operators

takes the form

E T (V"¥0,) (0, ¥ o, )]

Flos™ 263

5 2 GTI¥ o ) +1)-2u2, did;,

()

and becomes equivalent t&) provided the following con-
straint is satisfied:

STV Wio, ]+ 3T WiTwe]=1. (8)

The partition functiorZ is given as a coherent-state func-
tional integral of a Lagrangedn(r) :

B
Z=f[Ds][De][Dd][D)\]exr{—J drL(7)|, (9
0

with

(ij)

+2

iN— Y arqwstes
I /‘L 2 (ZTr[‘Pl \P|Uz]+1)1 (12)

and

1
Lo(n) =35 2 T¥{0,%0,]

1
~ 3 & T (o] o))
ij

+ 2 INGTIWETWE—2)— 24> did,.
(13

In (9) fermions and bosons can be exactly integrated out,
leaving an effective partition function in terms of the
Hubbard-Stratonovich fieldy;; and Lagrange multipliers
\i. Up to this point everything is exact. To proceed further,
we perform a saddle-point approximation for the fiejls
and \;. This procedure presents the following advantages
over the standard oné) fermions and bosons are treated on
equal footing;(ii) the saddle-point approximation preserves
both the global spin-rotation invariance and particle-hole
symmetries of the paramagnetic phase at half filling, regard-
less of they;; values; and(iii) the saddle point includes
short-range antiferromagnetic correlatidiisrough the inte-
grated boson dynamiggven in the largéJ insulating state.
The disadvantage is that tle=0 limit is not as well repro-
duced as in KR’s approach, where the hopping term includes
normalization operators introduced precisely to reproduce
the noninteracting case.

The saddle-point approximation corresponds to replacing
the Hubbard-Stratonovich fields and Lagrange multipliers by
¢ numbers and minimizing the effective action
Serl(XjT X7 A"). The saddle-point equations for the
numbers are
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FIG. 1. Energyper siteas a function of the
on-site interactiorJ, for 1D, 2D, and 3D. The
arrows indicate the point where the metal-
insulator transition occurs in 2D and 3D. In the
inset the energy of the 1D case obtained with the
saddle-point approximatiors{P) is compared to
the exact result.

Xisj'):((Tz‘I’iCTUz‘I’jC)sp While_ the nearest-neighbor isotropic spin-spin correlation
function can be calculated as
and

(S.5)=-§D2

Xisjpk :<\PiST\I’};Uz>sp- .
In the next section we present the results for 1D, 2D, and 3D.

The value of the Lagrange multiplier® is obtained by sat-

isfying the constraint(8) (details will be discussed in the Ill. RESULTS

next section ] ) . )

Note that in the homogeneous state, where bothxthe — We first discuss the results for the half-filling case, which
numbers and the Lagrange multiplierare site independent, corresponds tqu=0. For this case, in 2D and 3D two dif-
the formalism is equivalent to a self-consistent diagonalizaferent phases—corresponding to the metallic phase for weak

tion of the following spin and charge Hamiltonians: coupling and the insulating phase for strong coupling—are
obtained. The metallic phase is characterized by a condensa-

tion of the charge bosort8.As U increases the density of
He=2 (&g NSl S~ > GRlsk;Sh, +5 i Scr]s condensed bosons decreases, and at a critical value of the
ko k interactionU,, it goes to zero. The insulating phase is char-
(14 acterized by the absence of a boson condensate, i.e., the Mott
and transition occurs when the effective chemical potential for
the bosons £\ is depinned from the bottom of the
bosonic excitation band. In 1D only the insulating phase oc-
Ho=2 [(ef+N*Pefe+ (ef+APdidy] curs since there is no Bose condensation.
K In the metallic phase the number of empty and double-
occupancy bosons—which are equal due to the electron-hole
-2 giledc+eld]]. (15  symmetry foru=0—can be separated into two contribu-
K tions: the condensed and the uncondensed ones. In this way

Here the operators with subind&are the Fourier transform e constraint takes the form

of site operatorsey = —2Ay,—U/2—u , gp=2By, for fer-

mions, eg=—2Cy, e=2Cy—2u, gg=2Dy for (€)2+(d)2+ >, ((efe) +(did )+ > (st ske)=1.
bosons, andy, =% ,co¥k, , with k, the « component of the k#0 ko
wave vectok. The parameterd, B, C, andD are obtained (16)

from the self-consistency $quat|onA=(e?ej>—<df“dj>, The Lagrange multiple is pinned at the bottom of the boson
B=(edj)t(edi), C=Zu(s,Sj,), and D=(syS;)  pands. The self-consistent solution(a#) and(15) gives for
+(SjSi7)- o this caseA=C=0 and\S’=zD, wherez is the lattice coor-
The energy is given by dination number. The density of the condensed bosons is
1 theg gi\gen by the constraint(16). For U>U,,
__= Spr S Ty (e)*=(d)*=0, and\*">zD, and its value is obtained by
E=-3 % Trixi X”p]+u§i: (did), satisfying the constraint. With this parameter and the self-
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FIG. 2. Double occupation as a function of
1 U for 1D, 2D, and 3D. Arrows indicate the points
1 where metal-insulator transitions occur.

d® + <d*d>

8 10

U
consistent solutions foB and D, the energy and different In our approximation the double occupation is always dif-
expectation values can be calculated. ferent from zero, as shown in Fig. 2. In particular, for

In Fig. 1 we plot the energy as a function bf for 1D,  U>U, the double occupation is due to the fluctuations of the
2D, and 3D. The inset shows the 1D result and the exactacuum, which are present because we have introduced the
energy obtained by the Bethensatzfor comparison. The boson dynamic effects already at saddle-point order. These

following points deserve a comment: fluctuations are responsible for the antiferromagnetic corre-
(i) For U=0 the exact results are not reproduced as anfations of the insulating state. F&f<U., the condensate
ticipated above. contributes with a macroscopic number of empty and

(i) In the largeY limit the energy is lower than zero due double-occupancy bosons.
to the antiferromagnetic correlations present for any finite The nearest-neighbor isotropic spin-spin correlation func-
value of the on-site interaction. tions are shown in Fig. 3. For small they decrease as the

(iii) While for 2D and 3D there is a critical valug, at ~ dimension increases, as expected for uncorrelated electrons
which the Mott transition occurs, in 1D the present approachn a lattice. This tendency is maintained for all values of
gives an insulating state for all values 0Of U. For largeU the correlations saturate and becohénde-

(iv) The energy and itt) derivative are continuous at the pendent, like in the true antiferromagnetic ground state. No-
Mott transition. As we will show below, the same occurs fortice, however, that we are describing a paramagri®fiott)
the spin-spin, double occupation, and other correlation funcinsulating phase, so that in 2D and 3D these correlations do

tions. not correspond to the standard Heisenberg correlations. In
0.16 i L} ' 1 ' 1 v I
- 1D
0.12 -

A o -

) 008 | . . . . .
g_ 2D FIG. 3. Nearest-neighbor isotropic spin-spin
v 1 correlation for 1D, 2D, and 3D as indicated.

00s / _
3D
0.00 L | 1 i . 1 .
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o | ] FIG. 4. GapE, as a function oU. In the 1D
L al - case the gap obtained for small valueslbfis
plotted with a dashed line.
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1D our result is sensibly smaller than the Betimsatzresult, The one-particle gaj, of the Mott insulating phase is

since at saddle-point order our approach introduces the shortalculated as the jump in the chemical potential when the

range spin-spin correlations only partially. This quantitativetotal number of particles changes from-% to 1+ ¢, and is

aspect can be corrected by the inclusion of Gaussian fluctugiven by

tions.

Away from half-filling the electron-hole symmetry must E,=2J(\?2—(zD)2.

be broken. Since according (5) the zero-point excitations g

of the e andd fields are paired, the number of empty and Thjs expression has to be evaluated numerically. The results

double-occupancy condensed bosons must be different. Thge shown in Fig. 4, where the gap is plotted as a function of

saddle-point equations force their densities to be related byy for 1D, 2D, and 3D. In the 2D and 3D cases we found
Eg~(U—-Uc)“* for U—U,, the exponenta being 1 and

(e) 2D 1/2 for 2D and 3D, respectively. In 3D it is easy to obtain an
— = > . analytical expression for the gap whel-U,., and the KR
(d)  zC—pu+\(zC—p)?+(zD) dependence is reproduced, i.E4\(U—U,). For the 2D

case the expansion is cumbersome; however, the exponent
Using this relation and adjusting the chemical potential to fixa can be obtained numerically from Fig. 5, wheré{nvs
the number of electrons, we can calculate all the selfin(U-U.) is shown with the best numerical fit giving
consistent parameters, B, C, andD. a=1.0 within our numerical accuracy. In 1D our approach

1.0 | -

FIG. 5. In€y) vs InU—-U,) for the 2D case.
- The line is the best fit of the points witll close
to U, giving an exponentr=1.0.

In(Eg)

0.5 1.0
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IV. CONCLUSIONS

0.0 ' . T T .
0.1 We presented a functional integral formulation for the
< Hubbard model in terms of boson and fermion fields. Bosons
are associated with empty and double-occupancy configura-
tions, while fermions describe single-occupancy states. The
formalism preserves the spin-rotation invariance for all oc-
cupations and the particle-hole symmetry for one electron
per site Furthermore, bosons and fermions are treated on
equal footing. In this work we studied the saddle-point ap-
proximation of the corresponding functional integral theory.
We found that in 2D and 3D for one electrqrer site
there is a metal-insulator transition at a critical valuig of
the on-site interaction. The gap in the one-particle spectrum
1.0 . L . ! , behaves af£yx(U—-Ug)* for U—U., with an exponent
0.00 0.05 0.10 0.15 a=1 and 1/2 for 2D and 3D, respectively. In our approxi-
o mation, for the half-filling case the double occupation is al-
ways different from zero. FdU <U. there is a condensation
FIG. 6. Kinetic energyEx as a function of the hole dopingin of bosons with a macroscopkc=0 contribution to the num-
2D for U=6. Inset: Kinetic energy at half filling as a function of ber of empty and double occupancy. Rér- U, the double
1. occupancy occurs due to the fluctuations of the vacuum,
which are responsible for the antiferromagnetic correlations
gives a nonzero gap for all valuesf includingu=0. This  Of the insulating state. These short-range magnetic correla-
is a consequence of the fact that our approximation does n&Ons give a correction to the ground state energy which is
reproduce the uncorrelated case. In order to overcome thlWays lower than zero. For large the spin-spin correlation

difficulty fluctuations should be included. However, an inter-S&turates and becomes independent; in this limit the en-

esting point is that, contrary to what happens in the KR treat®'9y 90€s as U in agreement with f[he panonical transfor-
gp Y bp tion that maps the Hubbard Hamiltonian onto the Heisen-

ment, our approach makes apparent the differences betwe T a model
1D, 2D, and 3D due to the dynamics of the boson fields. 9 ) . : .
In order to treat fermions and bosons in an equivalent

Clearly’. our resul_ts are better than KR's for largesince way, we did not introduce a renormalization of the hopping
spin-spin correlations are present even e, and are matrix elements with an operataras in the KR formalism.
less accurate for small (notice, however, that we do not The price we paid is that the noninteracting case is not re-
includead hocrenormalization factors in this limit produced exactly. However, our results give a better descrip-
We have also evaluated the kinetic energy in 2D as &jgn in the intermediate and larde limit.

function of doping fortU=6, that is, above the critical value e expect the introduction of Gaussian fluctuations
for the Mott transition at half fillingFig. 6). There is a cusp above the saddle-point values should bring our results more
at 6=1-n=0 and a steep drop as soon as we dope thén line with the exact ones. In particular, preliminary calcu-
system. In particular, the behavior near half filling is givenlations in 1D give a remarkable good agreement with the
by Ex(0)— Ek(8)~ 6*(Y), with «(U)=0.6 forU=6. Inthe  exact energy shown in the inset of Fig. 1, especially for large
inset to Fig. 6, we show the expected linear behavior oU. These results will be presented in a forthcoming publica-

Ek(0) as a function of 1. tion.
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