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We present a slave-boson formulation for the Hubbard model that preserves the spin-rotation and particle-
hole symmetries of the paramagnetic phase at half filling. Fermion and boson fields are treated on an equal
footing in a functional integral formulation. We show that, while in two and three dimensions there is a
metal-insulator transition as the interactionU increases, in one dimension our approach always gives an
insulating state. Short-range spin-spin correlations are included at the saddle-point level for all values ofU,
giving a good description of the insulating state. We show that the energy gap in the one-particle spectrum
increases from zero as (U2Uc)

a, whereUc is the critical value of the on-site interaction and the exponent
a is 1 and 1/2 for 2 and 3 dimensions, respectively.@S0163-1829~96!04839-4#

I. INTRODUCTION

The Hubbard model, which has been studied for almost
thirty years, is considered one of the simplest models that
contains the essential ingredients for understanding the phys-
ics of correlated metals.1 Despite its simple form, it provides
a physical scenario to describe the metal-insulator transition,
the formation of localized magnetic moments, and the occur-
rence of long-range magnetic order. The discovery of high-
Tc superconductivity2 renewed the interest in this model,
since it provides a natural framework for describing many
properties of the cuprates. Moreover, it has been argued that
superconductivity itself could be a consequence of the local
repulsionU.3

The big effort to obtain solutions to this model—both the
ground state4,5 and the thermodynamic properties—led to
only a few controlled results. Probably the best results in the
regime of interest, near half filling and intermediate cou-
pling, correspond to those obtained by numerical
simulation.6 However, the slave-boson approach7—applied
to the Hubbard model by Kotliar and Ruckenstein~KR! ~Ref.
8! seems to be an attractive starting point for a systematic
study of the model. The KR approach is a functional integral
method that reproduces the Gutzwiller solution4 at the
saddle-point level. The advantage of this method over the
Gutzwiller variational wave function is that it provides a
systematic way to improve the solution. As pointed out by
Li, Wölfle, and Hirschfeld,9 the KR theory does not preserve
the spin-rotation invariance of the original Hamiltonian.
They generalized the theory and provided a way of formu-
lating a functional integral method which naturally preserves
this invariance. In any case, the results at the saddle-point
level are equivalent to Gutzwiller’s solution, and in the Mott
insulating state spin-spin correlations are not included.

In the present work, we introduce slave bosons in the Zou
and Anderson10 scheme to describe the paramagnetic phase
of the Hubbard model. We devise a functional integral
method which presents the following advantages over previ-
ous theories:

~i! It explicitly preserves the full spin-rotation invariance
and particle-hole symmetry~charge-rotation invariance! of
the original half-filled Hubbard Hamiltonian.

~ii ! The insulating state includes short-range spin-spin
correlations already at the saddle-point level.

One disadvantage of our approach is that theU50 limit
is not exactly reproduced, since we do not renormalize the
hopping matrix elements as in the KR formulation. However,
this renormalization is inconvenient when fluctuations are
incorporated above the saddle-point results.11

The rest of the paper is organized as follows: In Sec. II we
give a detailed description of the formalism, in Sec. III we
present the results for one, two, and three dimensions~3D!,
and in Sec. IV we summarize our conclusions.

II. SLAVE-BOSON APPROACH

In this section we present the method starting from a func-
tional integral theory that makes apparent the spin-rotation
and particle-hole symmetries of the original model. We con-
sider the Hubbard Hamiltonian written in the usual notation:

H52t (
^ i j &s

cis
† cjs1U(

i
~ni↑ni↓2

1
2 ni !2m(

i
ni . ~1!

Here cis
† creates an electron at sitei with spin s,

nis5cis
† cis and ni5ni↑1ni↓ . Note that we have included

an on-site energyU/2. In this notation the chemical potential
m is zero for the half-filled case. In the following, we will
measure the energy in units oft51.

In order to make apparent the global symmetries of the
model, we introduce the following operators:

C i5S ci↑ 2ci↓
†

ci↓ ci↑
† D , C i

†5S ci↑
† ci↓

†

2ci↓ ci↑
D . ~2!

In this representation the Hamiltonian reads
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Global spin rotations are equivalent to the following trans-
formations:C̃i5gsC i , whereg

s is a SU~2! matrix. Rota-
tions in the charge sector~particle-hole transformations! cor-
respond toC̃i5C igi

c , where gi
c5(sz)

ig(sz)
i with sz a

Pauli matrix andg a SU~2! matrix. Then, it is straightfor-
ward to show that the Hamiltonian~3! is invariant under
these transformations form50, i.e., one particleper site.

We introduce slave bosons in the Zou and Anderson10

scheme, where the fermion operators are written in the fol-
lowing way:

cis5sisei
†1ssi2s

† di . ~4!

Heresis
† is the single-occupancy fermionic operator, andei

†

anddi
† are the empty and double-occupancy slave-boson cre-

ation operators, respectively. The electron operatorC i is
then given by

C i5C i
sC i

c† , ~5!

where the spin and charge fields are

C i
s5S si↑ 2si↓

†

si↓ si↑
† D , C i

c†5S ei
† di

†

2di ei
D . ~6!

Under spin rotations and particle-hole transformations these
operators change asC̃i

s5gsC i
s and C̃i

c†5C i
c†gi

c , respec-
tively, with gs andgi

c as above.
The Hamiltonian written in terms of these field operators

takes the form

Hcs52
1

2(̂i j &
Tr@~C i

s†C j
ssz!~szC j

c†szC i
c!#

2S m1
U

2 D(
i

~ 1
2 Tr@C i

s†C i
ssz#11!22m(

i
di
†di ,

~7!

and becomes equivalent to~1! provided the following con-
straint is satisfied:

1
2 Tr@C i

s†C i
ssz#1 1

2 Tr@C i
c†C i

c#51. ~8!

The partition functionZ is given as a coherent-state func-
tional integral of a LagrangeanL(t) :

Z5E @Ds#@De#@Dd#@Dl#expF2E
0

b

dt L~t!G , ~9!

with

L~t!5
1

2 (
i
Tr@~C i

s†]tC i
s!1~C i

c†]tC i
csz!#1Hcs

1 i(
i

l i$
1
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s†C i
ssz!1~C i

c†C i
c!#21%.

~10!

Here l i is a Lagrange multiplier introduced to enforce the
constraint~8!.

In order to go beyond the standard saddle-point approxi-
mation we introduce Hubbard-Stratonovich fieldsx i j (t), in
terms of which the partition function reads

Z5E @Dx#@Ds#@De#@Dd#@Dl#

3expF2E
0

b

dtS (̂
i j &

x i j
†x i j1Ls~t!1Lc~t! D G . ~11!

The charge and spin Lagrangeans are given by

Ls~t!5
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U

2 D ~ 1
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s†C i
ssz#11!, ~12!

and
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1(
i
il i~
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i
di
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~13!

In ~9! fermions and bosons can be exactly integrated out,
leaving an effective partition function in terms of the
Hubbard-Stratonovich fieldsx i j and Lagrange multipliers
l i . Up to this point everything is exact. To proceed further,
we perform a saddle-point approximation for the fieldsx i j
and l i . This procedure presents the following advantages
over the standard one:~i! fermions and bosons are treated on
equal footing;~ii ! the saddle-point approximation preserves
both the global spin-rotation invariance and particle-hole
symmetries of the paramagnetic phase at half filling, regard-
less of thex i j values; and~iii ! the saddle point includes
short-range antiferromagnetic correlations~through the inte-
grated boson dynamics! even in the large-U insulating state.
The disadvantage is that theU50 limit is not as well repro-
duced as in KR’s approach, where the hopping term includes
normalization operators introduced precisely to reproduce
the noninteracting case.

The saddle-point approximation corresponds to replacing
the Hubbard-Stratonovich fields and Lagrange multipliers by
c numbers and minimizing the effective action
Seff(x j i

sp* ,x j i
sp,l i

sp). The saddle-point equations for thex
numbers are
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x i j
sp5^szC i

c†szC j
c&sp

and

x i j
sp*5^C i

s†C j
ssz&sp.

The value of the Lagrange multiplierl i
sp is obtained by sat-

isfying the constraint~8! ~details will be discussed in the
next section!.

Note that in the homogeneous state, where both thex
numbers and the Lagrange multiplierl are site independent,
the formalism is equivalent to a self-consistent diagonaliza-
tion of the following spin and charge Hamiltonians:

Hs5(
ks

~ek
s1lsp!sks

† sks2(
k
gk
s@sk↑

† s2k↓
† 1s2k↓sk↑#,

~14!

and

Hc5(
k

@~ek
e1lsp!ek

†ek1~ek
d1lsp!dk

†dk#

2(
k
gk
c@ekdk1ek

†dk
†#. ~15!

Here the operators with subindexk are the Fourier transform
of site operators,ek

s522Agk2U/22m , gk
s52Bgk for fer-

mions, ek
e522Cgk , ek

d52Cgk22m, gk
c52Dgk for

bosons, andgk5(acoska , with ka thea component of the
wave vectork. The parametersA, B, C, andD are obtained
from the self-consistency equationsA5^ei

†ej&2^di
†dj&,

B5^eidj&1^ejdi&, C5(s^sis
† sjs&, and D5^si↓sj↑&

1^sj↓si↑&.
The energy is given by

E52
1

2 (̂
i j &

Tr@x i j
sp*x i j

sp#1U(
i

^di
†di&,

while the nearest-neighbor isotropic spin-spin correlation
function can be calculated as

^Si .Sj&52 3
8 D

2.

In the next section we present the results for 1D, 2D, and 3D.

III. RESULTS

We first discuss the results for the half-filling case, which
corresponds tom50. For this case, in 2D and 3D two dif-
ferent phases—corresponding to the metallic phase for weak
coupling and the insulating phase for strong coupling—are
obtained. The metallic phase is characterized by a condensa-
tion of the charge bosons.12 As U increases the density of
condensed bosons decreases, and at a critical value of the
interactionUc it goes to zero. The insulating phase is char-
acterized by the absence of a boson condensate, i.e., the Mott
transition occurs when the effective chemical potential for
the bosons (2lsp) is depinned from the bottom of the
bosonic excitation band. In 1D only the insulating phase oc-
curs since there is no Bose condensation.

In the metallic phase the number of empty and double-
occupancy bosons—which are equal due to the electron-hole
symmetry form50—can be separated into two contribu-
tions: the condensed and the uncondensed ones. In this way
the constraint takes the form

^e&21^d&21 (
kÞ0

~^ek
†ek&1^dk

†dk&!1(
ks

^sks
† sks&51.

~16!

The Lagrange multiple is pinned at the bottom of the boson
bands. The self-consistent solution of~14! and~15! gives for
this caseA5C50 andlsp5zD, wherez is the lattice coor-
dination number. The density of the condensed bosons is
then given by the constraint ~16!. For U.Uc ,
^e&25^d&250, andlsp.zD, and its value is obtained by
satisfying the constraint. With this parameter and the self-

FIG. 1. Energyper siteas a function of the
on-site interactionU, for 1D, 2D, and 3D. The
arrows indicate the point where the metal-
insulator transition occurs in 2D and 3D. In the
inset the energy of the 1D case obtained with the
saddle-point approximation (S-P) is compared to
the exact result.

54 11 209SPIN- AND CHARGE-ROTATION INVARIANT APPROACH . . .



consistent solutions forB andD, the energy and different
expectation values can be calculated.

In Fig. 1 we plot the energy as a function ofU for 1D,
2D, and 3D. The inset shows the 1D result and the exact
energy obtained by the Betheansatzfor comparison. The
following points deserve a comment:

~i! For U50 the exact results are not reproduced as an-
ticipated above.

~ii ! In the large-U limit the energy is lower than zero due
to the antiferromagnetic correlations present for any finite
value of the on-site interaction.

~iii ! While for 2D and 3D there is a critical valueUc at
which the Mott transition occurs, in 1D the present approach
gives an insulating state for all values ofU.

~iv! The energy and itsU derivative are continuous at the
Mott transition. As we will show below, the same occurs for
the spin-spin, double occupation, and other correlation func-
tions.

In our approximation the double occupation is always dif-
ferent from zero, as shown in Fig. 2. In particular, for
U.Uc the double occupation is due to the fluctuations of the
vacuum, which are present because we have introduced the
boson dynamic effects already at saddle-point order. These
fluctuations are responsible for the antiferromagnetic corre-
lations of the insulating state. ForU,Uc , the condensate
contributes with a macroscopic number of empty and
double-occupancy bosons.

The nearest-neighbor isotropic spin-spin correlation func-
tions are shown in Fig. 3. For smallU they decrease as the
dimension increases, as expected for uncorrelated electrons
in a lattice. This tendency is maintained for all values of
U. For largeU the correlations saturate and becomeU inde-
pendent, like in the true antiferromagnetic ground state. No-
tice, however, that we are describing a paramagnetic~Mott!
insulating phase, so that in 2D and 3D these correlations do
not correspond to the standard Heisenberg correlations. In

FIG. 2. Double occupation as a function of
U for 1D, 2D, and 3D. Arrows indicate the points
where metal-insulator transitions occur.

FIG. 3. Nearest-neighbor isotropic spin-spin
correlation for 1D, 2D, and 3D as indicated.
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1D our result is sensibly smaller than the Betheansatzresult,
since at saddle-point order our approach introduces the short-
range spin-spin correlations only partially. This quantitative
aspect can be corrected by the inclusion of Gaussian fluctua-
tions.

Away from half-filling the electron-hole symmetry must
be broken. Since according to~15! the zero-point excitations
of the e and d fields are paired, the number of empty and
double-occupancy condensed bosons must be different. The
saddle-point equations force their densities to be related by

^e&

^d&
5

zD

zC2m1A~zC2m!21~zD!2
.

Using this relation and adjusting the chemical potential to fix
the number of electrons, we can calculate all the self-
consistent parametersA, B, C, andD.

The one-particle gapEg of the Mott insulating phase is
calculated as the jump in the chemical potential when the
total number of particles changes from 12e to 11e, and is
given by

Eg52A~lsp!22~zD!2.

This expression has to be evaluated numerically. The results
are shown in Fig. 4, where the gap is plotted as a function of
U for 1D, 2D, and 3D. In the 2D and 3D cases we found
Eg;(U2Uc)

a for U→Uc , the exponenta being 1 and
1/2 for 2D and 3D, respectively. In 3D it is easy to obtain an
analytical expression for the gap whenU→Uc , and the KR
dependence is reproduced, i.e.,Eg}A(U2Uc). For the 2D
case the expansion is cumbersome; however, the exponent
a can be obtained numerically from Fig. 5, where lnEg vs
ln(U2Uc) is shown with the best numerical fit giving
a51.0 within our numerical accuracy. In 1D our approach

FIG. 4. GapEg as a function ofU. In the 1D
case the gap obtained for small values ofU is
plotted with a dashed line.

FIG. 5. ln(Eg) vs ln(U2Uc) for the 2D case.
The line is the best fit of the points withU close
to Uc giving an exponenta51.0.
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gives a nonzero gap for all values ofU, includingU50. This
is a consequence of the fact that our approximation does not
reproduce the uncorrelated case. In order to overcome this
difficulty fluctuations should be included. However, an inter-
esting point is that, contrary to what happens in the KR treat-
ment, our approach makes apparent the differences between
1D, 2D, and 3D due to the dynamics of the boson fields.
Clearly, our results are better than KR’s for largeU since
spin-spin correlations are present even forU→`, and are
less accurate for smallU ~notice, however, that we do not
includead hocrenormalization factors in this limit!.

We have also evaluated the kinetic energy in 2D as a
function of doping forU56, that is, above the critical value
for the Mott transition at half filling~Fig. 6!. There is a cusp
at d512n50 and a steep drop as soon as we dope the
system. In particular, the behavior near half filling is given
by EK(0)2EK(d);da(U), with a(U).0.6 forU56. In the
inset to Fig. 6, we show the expected linear behavior of
EK(0) as a function of 1/U.

IV. CONCLUSIONS

We presented a functional integral formulation for the
Hubbard model in terms of boson and fermion fields. Bosons
are associated with empty and double-occupancy configura-
tions, while fermions describe single-occupancy states. The
formalism preserves the spin-rotation invariance for all oc-
cupations and the particle-hole symmetry for one electron
per site. Furthermore, bosons and fermions are treated on
equal footing. In this work we studied the saddle-point ap-
proximation of the corresponding functional integral theory.

We found that in 2D and 3D for one electronper site
there is a metal-insulator transition at a critical valueUc of
the on-site interaction. The gap in the one-particle spectrum
behaves asEg}(U2Uc)

a for U→Uc , with an exponent
a51 and 1/2 for 2D and 3D, respectively. In our approxi-
mation, for the half-filling case the double occupation is al-
ways different from zero. ForU,Uc there is a condensation
of bosons with a macroscopick50 contribution to the num-
ber of empty and double occupancy. ForU.Uc the double
occupancy occurs due to the fluctuations of the vacuum,
which are responsible for the antiferromagnetic correlations
of the insulating state. These short-range magnetic correla-
tions give a correction to the ground state energy which is
always lower than zero. For largeU the spin-spin correlation
saturates and becomesU independent; in this limit the en-
ergy goes as 1/U in agreement with the canonical transfor-
mation that maps the Hubbard Hamiltonian onto the Heisen-
berg model.

In order to treat fermions and bosons in an equivalent
way, we did not introduce a renormalization of the hopping
matrix elements with an operatorz as in the KR formalism.
The price we paid is that the noninteracting case is not re-
produced exactly. However, our results give a better descrip-
tion in the intermediate and largeU limit.

We expect the introduction of Gaussian fluctuations
above the saddle-point values should bring our results more
in line with the exact ones. In particular, preliminary calcu-
lations in 1D give a remarkable good agreement with the
exact energy shown in the inset of Fig. 1, especially for large
U. These results will be presented in a forthcoming publica-
tion.
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