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We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using
pseudopotentials and a plane-wave basis set. In the first part the application of Pulay’s DIIS (de#wid
inversion in the iterative subspac® the iterative diagonalization of large matrices will be discussed. Our
approach is stable, reliable, and minimizes the number of M@@g‘soperations. In the second part, we will
discuss an efficient mixing scheme also based on Pulay’s scheme. A special “metric” and a special “precon-
ditioning” optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in
detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations
required to obtain a specific precision is almost independent of the system size. Altogether aNg%qLer
scaling is found for systems containing up to 1000 electrons. If we take into account that the nurkber of
points can be decreased linearly with the system size, the overall scaling can apNtagh We have
implemented these algorithms within a powerful package called VASEhnaab initio simulation package
The program and the techniques have been used successfully for a large number of different (§igsiems
and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces,
phonons in simple metals, transition metals, and semiconductrd turned out to be very reliable.
[S0163-182606)00440-1

I. INTRODUCTION pseudopotentialésee, e.g., Vanderbfitand the introduction
of the projector-augmented-plane-wave mefhibeé applica-

In the past few yearsb initio calculations based on bility of plane waves has increased even further. Now also
Kohn-Sham(KS) density functional theofyhave gained an transition metals and first row elements no longer pose any
enormous interest not only among solid state physicists bugerious difficulty and can be treated almost as efficiently as
also among chemists. In part, this is due to the great successnventional “simple” elements.
of the local density approximatiofi.DA) (see, for instance, For the calculation of the KS ground state it is possible to
Ref. 2 which — although originally intended only for the distinguish two methods(i) Methods for determining the
application to solids — seems to be reasonably accurate faninimum of the KS total-energy functional direct(in the
molecules and the adsorption of molecules on surfaces toduture simply called direct methogand (ii) iterative meth-

In addition, taking into account generalized gradient correcods for the diagonalization of the KS Hamiltonian in con-
tions has removed one of the most problematic deficiencieginction with an iterative improvemerite., mixing of the
of the LDA, the strong overbinding of isolated molecules. charge density or the potentiphe will refer to these meth-

The biggest advantage of the KS density functional apods as self-consistency cyd8C) methods.
proach is definitely its simplicity. Forces, for instance, can be Both methods require no explicit storage of the Hamilton
evaluated in principle and in practice using the well knownmatrix and should therefore show similar “efficiency.” The
Hellmann-Feynman theoref’nAIthough different basis sets direct methods (i) have been pioneered by Car and
can be used, plane waves in the broadest sense seem cBarrinello® They are based on the fact that the Kohn-Sham
rently to be most advantageous. This basis set is completnergy functional is minimal at the electronic ground state.
and allows an easy analytical evaluation of the forces and ofherefore, minimization with respect to the variational de-
the stress tensor. Its biggest disadvantage is probably that tigeees of freedom leads to a convenient scheme for calculat-
number of plane waveN;, which must be included is usu- ing the electronic ground state. The only problem to be
ally an order of magnitude larger than the number of basisolved is the inclusion of the orthonormality constraints on
functions(centered at atomic sitesised for “minimal” nu-  the wave functions, which is done with a Lagrange formal-
merical basis sets; but this is more than made up by the faésm in the original work of CP. Generally the standard CP
that the action of the Hamiltonian onto trial wave functionsalgorithm is relatively slow if it is applied to the electrons
can be evaluated very efficiently. Using modern iterative al-only. Small improvements might be obtained by integrating
gorithms the explicit calculation and storage of thethe equations of motion analyticalfyby introducing an im-
Npw X Ngy, Hamilton matrix can be avoided, allowing the proved preconditioning for the gradiérar by replacing the
use of very large basis set8l,~10 000) even on simple second-order CP equations by first-order steepest-dés€ent
workstations. With the recent introduction of efficient equations. Recently Tassone, Mauri, and®Gsrowed that
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the most efficient algorithm is a preconditioned dampedsemiconductor by rapid quenching of &> and the metal-
second-order equation of motion for the electrons, a schemeonmetal transition in expandéeHg.2® One advantage of an
first proposed in Ref. 7. It is interesting to point out that theefficient electronic minimization is that the relaxation of the
damped second-order equation of motion used in Ref. 8 i#ns to their instantaneous equilibrium position is much
closely related to an acceleration scheme for slowly convergfaster. Successful calculations for clean and hydrogenated
ing series by Tchebycheff which has been used for the mixC(100) surfaces;” the site-selective adsorption of C atoms
ing of charge densities by Akai and DederichsThe only ~ ©n Al(11D) surfaces) and Rh surface propertf@sdemon-

drawback of this method is that it requires the determinatiorptrate the feasibility of our method in this respect. Finally,
of two parameters to obtain fast convergence. we have also performed calculations of phonon dispersion

relations in insulators and metdlsubic diamond and graph-
ét.e see Ref. 2§ indicating that forces can be evaluated effi-
iently and very accurately within the SC methods.

Our paper is organized as follows: In Sec. Il, we will
discuss the Kohn-Sham energy functional if partial occupan-
gies are allowed, our self-consistency cycle will be outlined

Within these schemes the KS functional is minimized alongc
a given search direction exact{yhich is usually not done
within the techniques mentioned abgyvand in successive
steps the new search direction is conjugated to previou ; . . )
search directions. The main problem within the CG methog@nd an improved way for the calculation of interatomic
is that the orthonormality constraints are not easy to incorl®fCes will be discussed. In Sec. Ill, we discuss an iterative

porate. For semiconductors and insulators Teter, Payne, aﬁHatEX diagonalization ,SChﬁm? based on Pula%/’s DIIS
Allan** proposed a reliable algorithm which optimizes themet od(direct inversion in the iterative subspac€harge

total energy for a single orbital within the subspace ortho-dénsity mixing will be discussed in Sec. IV. Finall_y, We ap-
ly our scheme to several test systef8sc. V). In this part,

normal to the current set of trial wave functions. Despite the? . - .
advantage of small storage requirements, the algorithm &€ Will mainly concentrate on the scaling aspects of the
relatively slow because only a limited number of CG stepsTethod.
per orbital can be done, and because the charge density and
the potential must be recalculated after each single update of  |I. THE KOHN-SHAM ENERGY FUNCTIONAL
each orbital. Therefore, algorithms which update all orbitals FOR PARTIAL OCCUPANCIES
simultaneously should be superior. These algorithms were
pioneered independently by Stich, Car, Parrinello, and
Baronit® and by Gillan'® The most systematic and elegant  In general, the Kohn-Sham free energy functional for an
way to incorporate the orthonormality constraints in this casailtrasoft(US) Vanderbilt pseudopotentidPP at finite tem-
is to generalize the KS functional to nonorthogonalperature can be written ‘a¥-3
orbitalsl’ but successful applications of this approach are
still rare8-20 _

In contrast to the direct methods the traditional methods ~ Frs[{#}.{f}{RN =2 fo{bal T+ Vil én) +EMp]
(i) try to split the evaluation of the KS ground state into the "
determination of a self-consistent charge dengity poten- _
tial) and the diagonalization of the KS Hamiltonian for a +EXC[P]+f d®rVied(r)p(r)
fixed potential. Mathematically this is definitely less elegant,
and especially in the solid state community a tendency to-
wards girect )r/ninimization of the KS functi)c/mal is visib%e. +7Ewald({R})_; oS(fy), (D
But on the other hand, SC methods have been used for a long
time and in addition they have proved to be qUite reliable an%hereS(fn) is the entropy of noninteracting e|ectr0%?rs'l'he
efficient in most cases. We will show in this paper that anpartia| Occupanciesfn are fn:]_ for occupied bands and
efficient matrix diagonalization and an efficient mixing f =0 for unoccupied bands, at finite temperattifeis al-
scheme result in a method which is highly competitive withjowed to vary continuously between 0 and 1. To simplify the
direct minimization schemes. For metals our implementatiototation we have dropped thepoint index. The first sum
seems to outperform any other scheme which we are awagins over all bandsl, included in the calculatiorE" is the

of our algorithm in terms of computer time and in terms of ¢, nctional N the  local ionic pseudopotential

the necessary number of iterations for increasing systerﬁrz_(hz/Zm )'Vocz the kinetic energy operator, ang,qsthe

sizes. We will demonstrate that the matrix diagonalizationy;, jejyng eﬁergy of the ions. It is clear that the KS func-

_scher_ne p_roposed here requires alwa_ys the same numbe_r ﬂﬁlal depends on the positioR, of the ions, the electronic

iterations independent of the system size. In addition, we wil ave functionsé,,, and the partial occupancids only

demonstrate that our impler_nentgtion scales IEN?) _(‘!1 For US-PP’s t?le nonlocal part of the PP can be written as

terms of computer time per iteratipfor systems containing

up to 1000 electrons, indicating that quite large systems can

be treated efficiently. on—>" DB\ B| 2
We want to point out that the method discussed here has NLA T (B

been used successfully for different systems, including liquid ,

simple metals (Na, Ge,?! liquid transiton metals(vV,  whereDj"is the strength of the nonlocal part of the pseudo-

Cu),*>?3the transition from a liquid metal to an amorphous potential. The charge densip(r) is given by

A. The Kohn-Sham energy functional
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The situation differs significantly in metallic systems;
p(1)=2 foldn(D)2+ 2 Folbal Bi)(Bild)Qi(r), (3 here, one can take two different approaches: It is possible to
" i insist on calculating the occupied orbitals only, but as cor-
whereg; are localized projection states a@q (r) localized  rectly pointed out by Annett the number of iterations which
augmentation function&3%3! The total energy has to be are necessary to converge to a specific precision will increase
minimized subject to the generalized orthonormality con-with the square root of the system size even for non-self-
straints consistent calculations. The main problem lies in the deter-
mination of the highest occupied orbital which will be very
(b0l Sl dm) = Snm. (4)  close in energy to the lowest unoccupied orbitalge to the
finite system size, level spacing will always be finitEor
any minimization or matrix diagonalization algorithm it will
become progressively harder to determine the correct occu-
S=1+2, qijlB)Bil. (5)  pied orbitals if the virtual energy gap at the Fermi level de-
. creases. Keep in mind that this problem also occurs in semi-
with conductors and molecules with a very small or zero gap.
Because of this behavior, it is generally an advantage to
_ 3 include unoccupied orbitals above the Fermi level in practi-
q”_f Qij(r)dr. 6 cal calculations. For non-self-consistent calculations, we will

. . . oo show in Sec. Ill D that our method requires always the same
Ultrasoft pseudopotentials are discussed in detail in Refq1urnber of iterations, independent of the system size. To en-

4,30,31,33. Their general advantage is that they reduce thﬁire good energy-stability partial occupancies have to be in-

hecessary energy Cutoff for transition me_tals an(_j first 'OW:luded at the same time. This avoids that the crossing of two
elements by a factor of 2—4. The resulting basis sets ar

ble in si ith the basi ts for tvpical d Sigenvalues at the Fermi level causes discontinu{tiéshe
comparaplé in S'Z?, wi € basis sets lTor typical “pseudoy, gy occupationguring a self-consistent calculation. In ad-
potential elements” like Na, Al, Si, and Ge.

. . . dition, partial occupancies also solve the level crossing prob-
The most important property of the KS functional is to be P b gp

" Lin th d state with ¢ 10 arbit ~~lem for molecular dynamics or ionic relaxations. One disad-
extremal In the ground state with respect to aroitrary Va”a'vantage of including additional unoccupied orbitals above
tions of the wave functions. Under the constraints of or-

th lizati iati ith t to th f the Fermi level is that it is necessary to calculate the KS
honormatization, variation with respect 1o the wave Tunc-q iia15 exactly[Eq. (7)], making the calculation of the elec-
tions leads to the generalized KS eigenvalue equafibns,

tronic ground state slightly more complex.

where the overlap matri$ is defined as

H| b)) = €nSl br) @) Another problem which occurs only for self-consistent
neoomnmene calculations is the charge sloshing. Charge sloshing arises
whereH is the Kohn-Sham Hamiltonian from the quadratic divergence of the dielectric matrix with
< s the cell length in metals. We will discuss this problem in
H:T'i_vloc"_ VNLv (8) Sec. IV.
with
sc V182+VH[p]+VX°[p], (9) C. Partial occupancies

The first one to study the influence of partial occupancies
on the KS functional was Mermitf,who extended the LDA
Yo finite temperatures. This approach becomes physically sig-
nificant if the temperature of the system is comparable to
Ceharacteristic excitation energies. The impact of partial occu-
pancies on the forces has probably been first discussed inde-
pendently by Weinert and Davenporand by Wentzcovitch,
ij.¢:|3}?”+j Qi (NVSEdr. (100  Martins, and Allert®
The second approach to the introduction of partial occu-
pancies concentrates on the evaluation of the energy at zero
B. Semiconducting systems versus metallic systems temperature: In this case, partial occupancies are introduced

For the calculation of semiconducting and insulating sys2S & tool for reducing the number bfoints in the Brillouin
tems it is an usual practice to calculate the occupied orbitaldone Which are necessary to evaluate the band-structure en-
only, i.e.,Ny=Ngjecrod2 andf, =1 for all calculated bands. ©€rgy. One of the most successful approaches in this respect is
In this case it can be shown that the total energy is invarianthe linear tetrahedror(LT) method, in which the one-
under any unitary transformation of the wave functions€lectron energieg,, are interpolated linearly between the

#,, and it is sufficient to calculate a set of wave functionsK Points defining the corners of the elementary tetrahedra
which fulfills the less stringent equation filling the BZ, and the integrals—for instance, for the band-

structure energy—are performed analytically within each
tetrahedrori’ Blochl®® has recently revised the linear tetra-
Hdn) =2 YnmS| dm). (1) hedron method to give effective weight§{e,,}) for each
" band andk point. This new formulation gives strictly the
where y,, is a Hermitian matrix. same results as the conventional tetrahedron method but it is

where VH[p] is the Hartree potential and/*{p] the
exchange-correlation potential. For ultrasoft pseudopote
tials the nonlocal part of the pseudopotentgf depends
also on the total local potential and must be calculated a
cordingly via[compare Eq(2)]
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easier to implement in existing plane-wave codes like the _ 1

Vienna ab initio simulation packagéVASP). In a second Er—0~E(0)= [Nt DF(0) +E(0)]. (19

step, Blahl was also able to derive a correction formula

which removes the quadratic error inherent in the LT methodrhis shows that the difference between the physically mean-
by going beyond the linear approximation and by includingingful quantity E,_, and F(o) is proportional to

the effects of the curvature of the bands at the Fermi surface- 3,0 Sy[ (e,— »)/ o]. For the MP method, the entropy term
(we will refer to this method as LT-C, whereas LT is the is a simple error estimate for the difference between the free
standard linear tetrahedron metho@ihe LT-C method con- energyF and the “physically” correct energ§,—_o. o can
verges very fast with the number &fpoints, and we con- be increased until this error estimate becomes larger than an
sider this method to be the most accurate and most unanallowed thresholdusually 1 meV. Because the free energy
biguous method for calculating the total energy of bulkand the “physical” energ,— are the same except for this
materials containing a small number of atoms. Neverthelessmall error the forces calculated as a derivative of the free
the method is not applicable to large supercells because usenergy are also correct and can be used to determine the
ally only a very small number df points is used in this case. zero- “temperature” ground state. For more details we refer
In addition, one can show that the method is not variationato Ref. 39.

with respect to the partial occupancies making the exact

evaluation of forces at least inconveni¢ste Refs. 38,39if D. Self-consistency loop and iterative methods

not impossible.

Because of this we usually use a variant of the so called 1N€ basic idea of the methods based on the self-
“smearing methods,” which were first introduced by Fu and consistency loop is to split the calculation of the KS-ground-

Ho™ in the context of plane-wave pseudopotential calcula-State into two independent subproblems: one is the determi-

tions. These methods are, in principle, closely related to th@ation of ~the —eigenfunctions and  eigenvaludse.,
finite-temperature approach of Mernifibut their main aim minimization of the band-structure energy for a fixed charge

is the evaluation of zero-temperature properties; i.e., thd€nsity or potentig) the other the calculation of the self-
consistent charge densitior potential. One reason why

broadening of the one-electron energy levels is only intro- . o ; X

duced as a mathematical tool to improve the convergencﬁ-ﬂese algorithms are more efficient lies probably in the fact
with respect to the number d€ points. Currently we are Nal both subproblems are now rather easy to solve and can
mainly using the method of Methfessel and Paxtbtp):#t D€ prﬁcondmon'ed Sfepar?telly.. ) .
They expanded the step functiéthe zero-temperature limit At the beginning of a calculation we choose an appropri-
of the Fermi-Dirac occupation probabiljtin a complete or-  &t€ Set of trial wave function@isually seeded with a random
thonormal set of functions. Within this approach the widely"UmPer generator ¢,;n=1,... Ny} and a reasonable in-

used error functiofiintegral of the Gaussian functipis only ~ Put charge density;,. The initial charge density corre-
the lowest order approximatiomNE 0) of the step function, sponds to the superposition of the atomic pseudocharge den-

further successive approximations<1,2, ...) can be ob- sities of the constituents. From the input charge density, the

tained easily. In analogy to Mermin's finite-temperature!ocal potential
method, the total energy is no longer variational with respect o \sH G
to the partial occupancies and has to be replaced by a gen- Vioe=™Viee TV Lpin] VL pin] (16
eralized free energy functional with the correct form for thegnd the corresponding double counting corrections
entropy termS(f,,) (one feature missing in the original work

of Methfessel and PaxtonThe free energy is now given by
E ol pnl= ~E¥ L]+ ETpnl— [ drV0)pa(n)

F=E-> USN( n M) (12) 7
n o are evaluated. For ultrasoft pseudopotentials the nonlocal
part of the pseudopotential depends also on the local poten-
tial and must be calculated accordindligq. (10)]. In the
. o next step theN, trial wave functions are improved using an
Sn(X)= 3 AyHon(X)E™ ™. (13 iterative method, and the new eigenenergies are used to cal-
) . ~_ culate a new Fermi energy and new partial occupancies. The
Hp, are the Hermite polynomials of degree and explicit  total free energy for the current iteration is calculated as the

formulas forAp, can be found in Ref. 41. sum of the band-structure energy plus the entropy term plus
In contrast to the standard Gaussian methie-0) orto  double counting corrections,

Mermin’s finite-temperature approach the entropy term
S.0S\[(ep— )/ o]  for  higher-order  approximants
(N=1,2,...)will be very small for a reasonable choice of F:; frep®- 2 oS

whereS, is defined by

€n—

= - +Eq.clpin] + Yewaid-

o, and the deviations fronk, _, are only of the order (18)
(2+N) in o

Conceptually, the calculated energy corresponds to the en-

F(0)=E,_o+0(c?N). (14)  ergy evaluated from the Harris-FoulkésF) functional;®~*°

which is non-self-consistent—in contrast to the KS func-
It is interesting to note that an analytical extrapolation totional: the HF functiona[defined in Eq.(18)] requires the
=0 is possibl&®*? by using calculation of the band-structure energy for a fixed charge
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densityp;,. With our code it is easy to evaluate this energy

keeping the initial charge density fixdtbr instance, to the
superposition of atomic pseudocharge densitisl iterating
only the eigenvectors until they are converged.

To get the exact KS-ground-state energy, self-consistencgp

with respect to the input charge density requires that th
charge density residual vectBy p;,],

R[pin] = Pout— Pin (19

is zero where the output charge density, is calculated
from the wave functions using E¢3). The residual vector
R[ pin] — and possibly information from previous mixing
steps — allows one to calculate a new charge densitfor
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qu’:<q,|H|q>- (23

In Eq. (21) changes of the Hamiltoniad due to changes in
the self-consistent charge densitf mustnot be calculated
ecause of the augmentation charges the charge density
‘?SC depends explicitly on the ionic positions for US)PPor
urther details we refer to Refs. 30 and 31.

One complication arises from the fact that we are using
the Harris-Foulkes functional instead of the exact Kohn-
Sham functional, but looking carefully at the Harris-Foulkes
functional it is possible to obtain a correction formula for the
forces. If the input charge densipy, for the Harris-Foulkes
functional is calculated from the atomic charge densities of
the constituentsi.e., for non-self-consistent calculations

the next self-consistency loop. In principle, it is necessary tqyjay-like additional term arises that accounts for the fact

evaluate the eigenfunctiong,, exactly for each new input
charge density, making, and the residual vectd® func-
tionals of the input charge densigy, only. Nevertheless,
even in conjunction with elaborated Broyden-type mixing
techniques, our results indicate that this is not necessary
the final (approximatg¢ wave functions of the previous mix-
ing iteration are used as new initial trial wave functions. In

this case a few steps in the iterative matrix diagonalization

are sufficient to get a reliable result for the charge densit
residual vectoR. Mind that the HF energy functional has a
saddle point at the KS-ground-state, i.e., itnist minimal
Therefore, it is not possible to use a standard conjugate gr
dient algorithm for the determination of the optimal..
In Sec. Ill, we will concentrate on different iterative

methods for the diagonalization of the KS Hamiltonian, Sec
IV will discuss algorithms for the charge density mixing.

E. Forces

Forces for the finite-temperature KS functional can be ob
tained easily, and are, in principle, just given by

Fn= oF | 20

N IRy (20)

ground state,

whereF is the free energy of the systelq. (1)] plus the
orthonormality constraints added with appropriate Lagrang
multipliers.

This formula is exact and contains Hellmann-Feynfnan
as well as Pulay contributioffs(for a plane-wave basis set
no Pulay contributions exist, but mind that the term Pula
force is used quite ambiguously in literaturé similar for-
mula also holds for the stress tensor, and derivatives wit

respect to the basis set are implicitly contained in this defi-
nition. It is now easy to show that the forces can be rewritter}
as(for the self-consistent case this equation was first derived

in Ref. 47
Fu=2> fcr, 2L ’{R};F:NG”S[{R}D“'“CW (21)
nqq

whereC,,q is the expansion coefficient @, for the plane-
wave componend, i.e.,

|¢n>=% qu|Q>a (22

and

that the input charge density depends explicitly on the atomic
coordinates. In this casekl in Eq. (21) has to be replaced by
the Hamiltonian calculated from the superposition of the
atomic charge densitiesl[ p40om,{R} ], and the term

if
d3r aVH(patom) +Vpatom
IRN

(r)[Pout(r)_Patom(r)]>
(24)

¥1as to be added to the forces. In E81) changes of the

HamiltonianH due to changes in the input charge density
fatom have to be omitted as in the self-consistent case.
We have found that the analogous correction formula
(r)[Pout(r)_Pin(r)])

f a3 aVH(Paton'1)+ch(Pat0m)
(29

IRy

also improves the convergence of the forces during a self-
consistent calculatiofthis formula is very much in the spirit
of Ref. 48. In this caseH in Eq. (21) has to be replaced by
H[ pin,{R}], wherep;, is the charge density obtained in the
previous iteration. In principle, it is necessary to evaluate the
change ofp, if the ions move(i.e., the first term in Eq(25)
should be d[V™(pi) +V*(pi) 1/dRy); it is not possible.
However, simply replacing the change @f, by the change
é)f a superposition of atomic chargeg,mleading to Eq(25)
provides an excellent approximation. This correction formula
improves the precision of the forces by almost two orders of
magnitude and allows the self-consistency cycle to stop

uch earlier.

This is demonstrated in Fig. 1, where the convergence of
I11he forces is compared for different algorithms for a long cell
containing 16 Fe atomsee Sec. V A 2 It can be seen that
he optimized schem@pt) explained here results in the best
verall performance. Mind, that a similar convergence rate
might be obtained by using the mixed charge density
(mix) (Sec. IV for the calculation of the local contribution to
the forces, i.e.,

ion

ﬁvloc
IRy

ion

N
IRy

2, fnCrgs Cog— f d3r
naq

Especially this part of the forces is very sensitive to changes
in the charge density. The use of the output charge density
(out—i.e., the left side of Eq(26)—without the correction
term[Eqg. (25)] makes the forces worse by a factor 1@ee

Fig. 2).

(1) Pmixed ) - (26)



11174 G. KRESSE AND J. FURTHMULER 54

N o 900m)= g~ 13 160 (00lS| K(H=
F A mix
— b o Opt (29)
“ ok with K= 1. Minimization is done along this gradient vector,
- o respectively, the conjugated gradient vector.
- F . To improve the efficiency we have adopted the precondi-
@ -2 N tioning function proposed by Tetet al:'* In this caseK is
2 1 TNy given by
-4 Eun.nm,!.|.|||-|.g.|.|.|.|.! K — E 2|q><C]| 27+18X+1Z(2+8X3
0 5 10 15 20 T 4 32EM(R) 27+ 18+ 123+ 8x3+ 16x*
fteration
ﬁZ q2
FIG. 1. Convergence of the forcéis eV/A) for different algo- with  x= Z_me 3EMR)” (30)

rithms for fcc-Fe(four cellg. “out”—output charge density was
used for the calculation, “mix"—mixed charge density was used,where Eki”(R) is the kinetic energy of the residual vector.
and “opt"—is the optimized scheme explained in the text. There are only two minor changes with respect to Ref. 14:
First, we use 3/2X"(R) instead ofEX"(R) in the definition
of x, resulting in a slightly improved convergence for most
elements. Second, we multiply the preconditioning function
by a factor 2/3/2EK"(R)]. Using this factor the diagonal

It is clear that a fast iterative matrix diagonalization is onePart of the preconditioning matrik converges towards
of the key points within our algorithm. We have tested sev-
eral methods(i) the blocked Davidson scheme, which was % (31)
first proposed by Davids8hand later modified by Liu for a g
simultaneous update of all bands(ii) the sequential CG
algorithm proposed by Tetast al,'* and later used by By-
lander, Kleinman, and L&&for the iterative diagonalization
of the KS Hamiltonian, andii ) a new variant of the residual
vector minimization scheme—direct inversion in the itera
tive subspace RMM-DIIS).>*%* We have found that our
variant of the RMM-DIIS scheme is generally most efficient

fqr Ielllrge SySte?;SZ w?(fareas thl? seo:uenna\iVCG Flfl‘e:{]“’d :cs ma(ril)] of the exact KS eigenstates. As already mentioned this
ginally more etficient for small Systems. We will, INerelore, ;o ¢ ¢icient for semiconductors and insulators if one calcu-

concent'rate on these two approaches. Eor a more elaborat’adqes only occupied bands. But for metals we need the true
comparison of different matrix diagonalization schemes WEohn—Sham eigenstates. In this case it is convenient to add

refer to Ref. 39. one additional step, which is called subspace rotation. In this

step the final improved wave functiofg,;m=1,... Ny}

are unitarily transformed in such a way that the Hamiltonian
This algorithm proposed by Tetet al** was originally ~ matrix becomes diagonal in the subspace spanned by the

used to minimize the total energy directly. It is straightfor- transformed wave functiongthis is in the spirit of the

ward to apply this algorithm to the diagonalization of large Rayleigh-Ritz schentd). This requires first the evaluation of

matrices>® The algorithm is strictly sequential, i.e., one bandthe Hamilton matrixand possibly the overlap matjixn the

is optimized usually several times and then a move to theubspaceg ¢}

next band is done. For the optimization of each band a stan- — —

dard CG(Refs. 12 and 1Balgorithm is used in which the Hom=(bnlHldm),  Sam={(¢nlS dm), (32

expec_tat:jgn value of the Hamiltonian for one specific band is, then the diagonalization of this small Hamiltonian, using
optimized: a conventional matrix diagonalization scheme, i.e.,

lll. ITERATIVE METHODS
FOR THE DIAGONALIZATION
OF THE KS HAMILTONIAN

for large g resulting in a more convenient “length” of the
correction vectotg(¢m))-

The CG scheme is actually very stable and reasonably
efficient, but there is one minor complication. The sequential
“algorithm described here leads to ground-state eigenvalues
and eigenvectors which represent only an arbitrary linear
combination[in the sense of an unitary transformation, Eq.

A. Sequential conjugate gradient(CG) minimization

__{DulHldw - _ _
WP (bl S ) 2 HonBri= 2 €SBk (33
This quantity is called Rayleigh quotient. Variation of the

Rayleigh quotient with respect tap,,,| leads to the residual
vector defined as

|R( ¢dm))=(H— eapps)| dm) (28

if (pmlS édm)=1. To ensure that orthonormality to all other correspond to the best approximation of the exact lowest
bands is maintained, Lagrange multipliers must be introeigenvalues and eigenvectors within the subspace spanned
duced resulting in the following gradient vector: by {¢m}-

The lowest eigenvalue-eigenvector pairs

eﬁ"p,@:; Bkl b (34)
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Mind, that there is at least one alternative to the subspacgreconditioned residual vectdﬁ|R%)=K|R( ¢0m)> for a se-

rotation: If the orthonormalization of the search vector isjected bandn. Then a Jacobi-like trial step along this direc-
restricted to those bands which dosver or equal in energy tion is done

than the actual banghis is sufficient to ensure stability of

the algorithm, but it requires of course a global reorthonor- | ) =)+ NK|RY) (39
maIizgtion of all ba.nds_ afterwards, e.g., applying a Gram—and the new residual VeCthrln>=|R(¢rln)> is evaluated.
Schmidt orthogonalization we would ‘.""30 observe conver- Next a linear combination of the initidkﬁ%} and the trial
gence towards the real Kohn-Sham eigenstates. The reason is . function| ¢1>

simple: Here no constraint is imposed on the lowest state m
guaranteeing that it converges to the absolute minimal eigen- o M

value, i.e., the true lowest KS eigenstate. The second-lowest oMY= aj|¢l) with M=1 (36)
state is only constrained to be orthonormal to the lowest state 1=0

but again no further restrictions are applied, guaranteeings searched which minimizes the norm of the residual vector.
convergence towards the exact second-lowest KS state, agsuming linearity in the residual vector, i.e.,

so on. Nevertheless, considering Sec. Il D it becomes clear

M
that this algorithm requires more and more iterations if the Ty VIR i
system size increasése., if the spacing of the eigenvalues IR")=IR(¢ )>_i20 i Rpn), (37)
decreases

this requires the minimization of

M

B. Residual minimization method—direct inversion i 1Di

i T 2 af aj(Ry|RE)
in the iterative subspace(RMM-DIIS ) j,ii=0

38
The only remaining drawback of the CG algorithm is the % N i j 8
necessity for an explicit orthonormalization of the precondi- o g “i<¢m|5| bm)
tioned residual vectoK|R(¢,,)) to the current set of trial _ ) )
wave functiondEq. (29)]. This operation is the most time Th|,s stgp is us_ually called DI.IS anq lies at the he_art of Pu-
consuming part for large-size problems because one sing'%ys minimization scheme?® It is, for instance, possible that
vector must be orthonormalized to a large number of othef€ trial step moves towards a band with lower energy low-
vectorsfor each single band updat&his requires a very ermg’]’ th_e Raylelg_h quotient. In this case the DIIS “corrector
high bandwidth from the main computer memory to the Cen_step will recognlze_the false move because the norm of the
tral processing unitCPU), i.e., the peak bandwidth from the residual veptor has mcrt_eased and will correct the wrong trial
main memory to the CPU and not the peak ﬂoating-poinlStep' _The final move might even have a reversed sign from
performance of the CPU becomes often the limiting factor. the trial move. ) ) ) ,
Unfortunately avoiding the orthonormalization is not pos-, 1he Problem stated in EG38) is equivalent to determin-
sible applying the CG algorithm discussed above. Ukme- ing the lowest eigenvector/eigenvalue from the Hermitian
stricted CG scheme applied to the minimization of the Ray-€i9envalue problem,
leigh quotient will always determine the lowest possible M M
eigen_value,_ i.e., if the orthonormalization i_s not done the E (Rim|RL1>aj=62 <¢im|3| ¢£n>aj' (39)
algorithm will converge from any starting point towards the j=0 =0
lowest eigenvector of the Hamiltonian. Ultimately, this prop- . M L
erty is connected with the fact that the Rayleigh quotient iSThe_Mnext trial step stqrts fromg™) along the d|rect|_on
stationary at each eigenvector but it does possess a mini- KIR"). In_each iterationM+1 a new wave function
mum except for the lowest eigenvaldee., the Rayleigh |#m =|#")+AK|R™) and a new residual vector
quotient can be lowered by moving towards lower eigenval{R(¢n 1)) are added to the “iterative” subspace. The size
ues. Only the explicit orthonormalization makes it possible of the trial step\ is a critical value for the stability of the
to achieve a stable and efficient convergence to a selecteadgorithm. We have found that a reasonable choice for the
eigenvalue. trial step can be obtained from the minimization of the Ray-
Fortunately, a solution to this problem exists which wasleigh quotient along the search directiontire first stepthis
first proposed by Wood and Zung¥rMinimizing the norm  optimalX is used until a move to the next band is performed.
of the residual vectothence the name residual minimization The line minimization can be done without additional com-
method instead of the Rayleigh quotient makes the or-putational requirements. Usually the optimal step size is be-
thonormalization unnecessaf@at least, in principlebecause tween 0.3xA=<1 for the preconditioning function given in
the norm of the residual vector has anconstrainedocal  Eg. (30). In rare cases—especially if the minimization of the
minimum at each eigenvectéthe norm of the residual vec- Rayleigh quotient starts to go for the wrong band—the trial
tor is clearly positive definife step might become very large. Therefore, we restrict the size
In our implementation we use the original minimization of the trial step to a value between &1 <1. Usually we
method proposed by Pulfyand not the variant proposed by perform several DIIS steps and one final trial step. The rea-
Wood and Zunge? Wood'’s algorithm requires the addi- son for finishing with the trial step is that the trial step is very
tional calculation and storage df¢), and is therefore cheap in comparison with the DIIS step, so even if the im-
slower than our algorithm. We start with an evaluation of theprovement in the trial step is small it is “economical” to do
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it (for the majority of bands the trial step is already close toconverge to the same eigenvector, and the subspace rotation
the exact position of the minimal residual vegtor suppresses all “unstable” search directions towards wrong
The scheme explained in this section requires approxibands. Actually without thes®(N®) steps it can easily oc-
mately the same number of iterations as the CG algorithmgur that the RMM-DIIS algorithm incorrectly overcomes the
but it avoids any explicit orthonormalization of the searchsmall barrier between close eigenvectors making the whole
vectors and is therefore much faster for very large problemscheme highly instabléorthonormalization to a number of
where the orthonormalization is the leading factor. Everbands in an energy window around the selected band might
more important is the fact that the residual minimization isbe another possible solution to this probjerilso mind that
inherently local and it is, therefore, very easy to implementwe get a reasonable trial step only because we use the
the algorithm on a parallel machine. For instance, each prosubspace rotation, i.e., in the first step the residual vector is
cessor might handle a certain number of bands, informatiothe same as the exact orthogonalized gradient ve&qr
about other bands is not requiréske, also, Sec. Il P (29)] making the initial steepest-descent step efficient and
A remaining drawback of the RMM-DIIS method is that rather stabldin the first steepest-descent step the danger to
it always finds the vector which is closest to the initial trial go for the wrong band is negligibleWe want to point out
vector. This leads, in principle, to serious problems becauskere that the subspace rotation was missing in the original
we have no guarantee to convergence to the correct groundork of Wood and Zungéf and we suspect that their algo-
state at all. Therefore initialization becomes a critical steprithm will be unstable for large systems with a small level
i.e., if the initial set of wave functions does not “span” the spacing.
real ground state it might happen that in the final solution
some eigenvectors are “missing:” To avoid this the initial- C. The complete algorithm

ization must be done with great care. We usually start witha 1,4 complete self-consistency loop consists of several

set of random trial vectors and perform five sweeps over allyohqthe section where the algorithm has been discussed is

bands. Each initial sweep consists of one subspace rotaticbqven in brackets (i) subspace rotationlll A), (i) CG
and twosteepestdescensteps into the direction of the pre- (Il A) or RMM-DIIS (Il B) minimization, (iii) orthonor-

conditioned residual vectoriEEq. (35)] per band(see also

Sec. lll . During this initial phase the Hamiltonian is also the RMM-DIIS schemg (iv) u ; .

. - . ; - pdate of partial occupancies
kept fixed, after this “delay” we switch to the RMM-DIIS and charge density for a self-consistent calculation.
scheme and start to update the potential. For problematic In each iteration the initial trial sété,).n=1,. .. Ny} is

cases(for instance, if we use no ur)occupied bandes . equivalent to the final set of the previous iteration, initializa-
sometimes use the CG scheme described above for three IMon is done with a random number generator. This loop is
tial steps. . repeated until self-consistency is reached, for a non-self-
. quential URgsistent calculation no charge density update is done.
date of the bands alternate. In the residual minimization \y/a have found that the subspace rotation should be per-
scheme the final vectors are no longer orthogonal, we the_r%rmed between the update of the charge density and the
fore reorthonormalize the vectors at the end after sweeping\n1-DIIS or CG step, especially at the beginning of a self-
Oﬁlzﬂagltl)ands. r\wNeél V\;]antktjo :amphasuze, that., r']n principle, th%onsistent calculation. In this case the calculated residual
RMM-DIIS method shouldalso converge without any ex- vectors|R(¢m)) agree with the exact gradienty ¢,,)). For
plicit subspace rotation or orthonormalization, but we havey,is yeason and because the wave functions should be ortho-
found thgt Fhe subspace 3rotat|on ;peeds up the calculationg, .o\ for a recalculation of the charge density, it is neces-
although it is an orde®(N”) operation(see Sec. Il . The o5y 45 separate the orthonormalization of all wave functions

main problem is that the “ba_rner” In th? norm of the_ '€ and the diagonalization of the subspace Hamilton matrix
sidual vector between two neighboring eigenvectors with €ivhich is done at once in the Rayleigh-Ritz scheme.

genvaluese ande+ de is only of the orderse.*” Into direc- In addition it is necessary to find an optimal break condi-
tions of eigenvectors which differ significantly in energy thetion for the sequential RMM-DIIS and CG algorithms. A
barrier will be very high. Therefore two eigenvectors which g criterion, for example two or three steps per band, is
are close in energy are lying in one long steep valley and\i 5 go0d choice, because lower bands converge usually
only a shallow hill separates them—a typical example of &y,,c faster than higher bands. Therefore, we have adopted
badly conditioned minimization problem. The subspace rotaghq following dynamic criterion{which is inspired by Ref.
tion sol_ves this problem because after the subspace_ rotaticgb): (i) Both algorithms are stopped if the change in the total
the residual vectors are orthonormal to the current trial Set’eigenvalue becomes smaller thacyrae/Ny/4, Where
— EaccuracyiS the required accuracy of the calculation agis
(¢nlR(¢m)=0, Vm,n (40 the nur}hber of bands included in the calculatidin) The
and search vectors parallel to the long valleys are effectivelRMM-DIIS method is stopped if the squared norm of the
suppressed. In this case the residual vector is exactly equiveesidual vector gets smaller than 30% of its initial value, and
lent to the gradient defined in ER9). (Another more rig-  the minimization always stops with the trial stefii) The
orous way to look at this problem is given in Sec. ll)D. CG method is stopped if the change in the eigenvalue gets
In several tests for large systems we have found that themaller than 30% of the change in the first, i.e., the steepest-
subspace rotation and the reorthonormalization not only imeescent stepiiv) The maximum number of steps is always
prove convergence but are indeed the only way to get gootbur. For the RMM-DIIS the residual vector is minimized
stability (especially if the spacing of the eigenvalues isthree times and finally a fourth trial step is performéa).
smal). The orthonormalization strictly avoids that two statesEmpty bands are optimized only twice.

malization using a Gram-Schmidt meth@hly required for



54 EFFICIENT ITERATIVE SCHEMES FORAB INITIO. .. 11177

By now, these criteria have been used for a large numbethat each band is optimized twiceFor the RMM-DIIS
of system and are very robust. In most cases two CG or twecheme, we have found a nearly quadratic scaling for sys-
RMM-DIIS steps are done per band, but problematictems containing up to 1000 electrons. This means that cells
eigenvalue/eigenvector pairs are iterated more frequentlywith approximately 200 “simple” atomsgAl, Si, C) and 100
Usually more iterations are done for the higher bands, anttansition metal atoms can be treated efficiently, for these
the total speed of convergence for all bands is very good. system sizes the RMM-DIIS scheme is twice as fast as the

CG scheme.
D. Computational costs, convergence, At this point we want to comment on the number of itera-
and number of iterations tions required in the iterative matrix diagonalization. With

“number of iterations” we always refer to the number of

outer loops, the number of iterations in the inner loop is kept
%ixed, and we have discussed the break criterion for the inner
loop previously. Let us assume for the moment that the
Hamiltonian is kept fixed. The convergence behavior for

To make a fair comparison between the CG and RMM-
DIIS scheme it is necessary to count the number of oper
tions for each algorithm carefully. The CG minimization of
the Rayleigh quotient requires always slightly less evalua
tions of the Hamiltonian multiplied with a wave function " 1e \was discussed recently by Ahatid Tas-
than the RMM-DIIS method, but for large systems the MOSKoneet al® and a similar analysis can be done in our case
e_xpensive part is th_e orthonorm_alization of the wave funC'The conv.ergence depends mainly on the eigenvalue spe.c—
tions. For our implementation  the evaluation  of trum of the Hamilton matrix. Assuming that the trial wave
(H—€,9)|#y) is an order function ¢, is close to the real eigenvectéy, it is possible

TH =N Ny, NNy, N2INN (41) to expande; in terms of the real eigenvectoés

plw plw

operation, whereN qualifies the system size. The limiting Noiw

factors are to a smaller degree the fast Fourier transforma- lpi)=1&)+ 2«1 cil&), (45

tions (Npr,WIan,WochlnN) and the evaluation of the non-

local projection operators. For large systems we calculate thehere c; is small. To second order the residual vector is
nonlocal projection operators in real spacand therefore given by
the number of operations per band increases Iinzearly with the
system size{l). For all bands this is only a®(N<) opera-

tion. We want to point out that this fact is of considerable IR(¢))= ZJ (€j—€)ciSlg)). (46)
importance for the speed of the RMM-DIIS methodTlt is

an O(N®) operation the improvement of the RMM-DIIS The required number of iterations depends only on the range
method over other minimization methods would be negli-of y=¢€;— €; and for a simple steepest-descent approach it is
gible. The main advantage of the RMM-DIIS method is to given by Ymax/ Ymin, for the CG and RMM-DIIS scheme it is
reduceO(N?) operationglike orthonormalizationto an ab-  given BY VYmax! Ymin—" Actually our algorithm is some mix-

NpIW

solute minimum. ture in between because we do a quite small number of CG
The Gram-Schmidt orthonormalization takes and RMM-DIIS steps for each band.
The value ofyax is clearly independent of the system
TS5=NZX Npj,,cN* (42 size and mainly determined by the plane-wave cutoff. Be-

gause of the dominance of the kinetic energy pgihy IS
equal toyma=%2G2,/2m,. The preconditionindaccording
to Eq. (30)] limits ymax, it effectively removes the kinetic
energy dominance from the residual vector and makes the
TortzzNﬁx NplwoczN3_ (43) convergence practically independent of the chosen cutoff.
The effect of the subspace rotation is to limij;,. After the
But even worse, the explicit orthogonalization makes anysypspace rotation, each trial wave functigpndoes not con-
efficient memory caching impossible. The CG algorithm istzjp any component of eigenvectdig ;j=1,... Ny;j#i}
strictly sequential and at each iteration the new gradient musfp to second order and the residual vector is not pointing into
be orthogonalized to all other bands, requiring a large bandne direction of another band included in the trial basis set
width from the main memory. For the Gram-Schmidt or-[see Eq.(40)]. In other words, only components resulting
thonormalization a routine with good data locality which from the bands above the highest band included in the cal-
avoids this problem can be found easily arftf is therefore,  cylation can contribute in EG46), i.e., the smallesy is then
depending on the computer system, 4—8 times larger thagetermined by e —¢. The band which converges
TSS (see Appendix A Efficient routines with good data lo- Mo+ d) =
slowest is evidently the highest bamnek Ny, and vy, for

cality can also b? fou_nd for the subspace rotation, and thﬁwis band is determined by the spacing of the eigenvalues at
number of operations is the top of the included number of banffer a lower band
Tdi=TH L 1 BN2X N, . (44) index the en_ergt_atical distance to the bardN,+1 will l_:)e

b el larger resulting in a faster convergeihc# only occupied
For large systems, where the orthogonalization is the leadingands are taken into account in the calculation of a metal
factor, one RMM-DIIS step is clearly much faster than onethen vy,,;, will depend on the system size and the larger the
CG step, if we consider onl@(N®) operations the improve- system is the slower the convergence of the highest band
ment is close to a factor of @ssuming thaT®'=4T®S and  (and hence of the total energy and the fojoesl be. Mind

steps, whereas the explicit orthogonalization of the gradient
of each band to all other bands in EQ9) takes twice as
many steps,
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that a smally means that the energy is varying very slowly then it can be shown that the convergence depends only on
in the corresponding direction, and actually these “soft” the eigenvalue spectruin of the Jacobian matrid, respec-
modes are also the reason why CP-MD's are inherently ingjyely, on the eigenvalue spectrufi= 1/ of the inverse of
stable for metals, i.e., because of the weak curvature of thge jacobian matrid—1. A thorough analysis of the linear
total energy the modes are oscillating with a very low _frejmixing approach was done by Dederichs and Z&ller they
quency in the CP approach and couple strongly to the ionighowed that the maximal linear mixing parameeis deter-
degrees of freedom. mined by A<2/Ta= 2T min, and the number of iterations

The key point is the inclusion of a sufficient number of ired t h ified s . . b
empty bands so that for all occupied bangs;, is suffi- required fo reach a speciiied precision 1S given by

; ) IT min=T max! T min -
ciently large. If the unoccupied bands span an energy ranglémax. min- = max: = min . . .
E unocoupiectN€N Vi Will have a lower bound o yoccpiedfor It is easy to show that the matrikis the charge dielectric

all occupied bandsresulting in a convergence of the total matrix which describes the total self-consistent change of the

energy and of the forces which is independent of the syste hzti_rge density o= pexct pind fOr an extemal charge pertur-
sizg. In this case the problematic region where the conver- alionpex, 1.€.,

gence is slow and system size dependent is moved upwards pei=d " pext.
to the unoccupied bands, which are of no importance for the ot ext
total energy and forces. Following Vanderbilt and Loui&® J is given by
It is now rather clear that, bott) the subspace rotation
(no matter which system typeand (ii) a reasonable number J=1-xU, (50)

of hemptyf bandf Iarel req_uin_adl in_tord_e[]tto get fm ﬁgiCienR/vhereX is the dielectric susceptibility and is an operator
scheme for metals. In principle, it might seem tH@(N")  yocribing the change of the potential due to a change of the

operations can be omitted totally but this is shortsighted. NOEharge density; considering the Hartree potential ¢nlyich
only the overall stability will degrade without these opera-q usually of n,1uch higher importance than the exchange-

.tlons'(see Sec. Il 4, but also the savings n CPU tinper correlation potentiaJ this operator is given bysee, also,
iteration would be overcompensated by an increased numb efs. 58, 11, and 34

of iterations needed to achieve a certain accurgleg real

important quantity is the product of CPU time per iteration A1

times the number of necessary iteratior®@nly for rather (qlU|a") = 64q' ——- (51

small cells with a large spacing of the eigenvalues merely q

any algorithm works reliably. For metals the dielectric matrix diverges quadratically for
We will demonstrate that our approach is very stable evesmall q; this behavior is usually called “charge sloshing.”

for transition metalswith a small level spacingand we will  Mind that the dielectric matrix does not diverge in insulators

demonstrate that the number of iterations is independent ghaking self-consistent calculations much easier in insulators.
the system size. Overall the scaling of the CPU-time require- Recently, Anneff discussed some aspects of the conver-
ments of our iterative matrix diagonalization scheme isgence of the charge density mixing approach. He points out
nearly quadratic with respect to the system size, i.e.that accelerated Broyden-like meth®t®xist, but incor-
O(N?), for systems containing up to 1000 electrons. Forrectly states that they should not have an improved scaling
self-consistent calculations things are more complicated angver the steepest-descent approach. There is at least one
in this case the number of iterations is often mainly determethod (Tchebycheff acceleration schemeroposed by
mined by the convergence of the charge density mixingakai and Dederichd for which it was shown explicitly that

scheme. This topic will be addressed in Sec. IV B. the .n.umber. of iterations is proportiona| tﬂ maX/Fmin- In
addition, Bligef® has demonstrated for several examples
IV. CHARGE DENSITY MIXING that Broyden-like methods are even more efficient than the

o _ _ ~_ Tchebycheff acceleration scheme and it is well known that
The second key step within our algorithm is an efficienta|| Broyden or quasi-Newton schenfiéshow also a qua-
mixing of the input and output charge densities. The centragiratic convergenc® We therefore assume that for these
quantity, which has to be minimized in this case is the chargenethods the number of iterations necessary to converge to a

density residual vectdR[ pin] [see Eq(19)], specific accuracy is proportional tQI ma/T min (We will
come back to this topic in Sec. IV B and Sec. VB 2
Rlpin] = poul Pin] = Pin - (47 In practice, we are again resorting to the DIIS scheme

proposed by Pula}® Recently we were able to shdtthat
Linear mixing (or one might call it steepest-descent miXing this scheme is closely related to the charge density mixing
a_dds a certain amount & to the current input charge den- gcheme proposed by John€Brlohnson’s scheme is a vari-
sity, ant of the well known Broyden algorithnié.These algo-
rithms try to build up an approximation of the Jacobian ma-
pitl=pht AR pIM]. (48)  trix J or the inverse of the Jacobian matr&=J"1 by
updating an approximation of the Jacobian matrix at each
This is usually a quite slow approach. If it is assumed thaiteration and were pioneered for electronic structure calcula-
R[p] can be linearized around its rop{, tions by Bendt and Zung® and Ho, Ihm, and
Joannopoulo2® Storing the fullNXN Jacobian matrix is
Rlpl=—3(p—pso, (490  rarely possible for large self-consistency problems, but in the
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past few years several authors were able to derive modified Ap'=piy = ply AR'=Rp}; 1= Rlp},], (59)
algorithms which require only the storage of a few

N-dimensional vectors for each iterati&h?® Johnson’s ap-  with i <m. Having an explicit formula for the inverse of the
proach is such a reformulation of a modified BroydenJacobian matrix is convenient because it has some physical
scheme proposed by Vanderbilt and Lotieén which all meaning(it is the inverse of the charge dielectric matrix
information obtained in previous steps is kept during thediscussed aboyelt is easy to see th&@™ defined in Eq(57)
update of the inverse of the Jacobian matrix. It was demonfulfills the equation

strated, for instance, in Ref. 59 that this scheme is superior to , A

Broyden’s second method, and in several tests we have seen GMAR)=—[Ap"), Vi<m. (60)

that especially for surfaces the improvement of Pulay’
method over Broyden’'s second method can be substanti
(see also our recent wotk.

Ihis indicates thaG™ is the best approximation of the exact
inverse of the Jacobian matrik ! in the subspace searched
up to now. This can be seen by subtracting Ep) for
iterationi andi+1 and multiplying on the left withJ~!

A. Pulay mixing giving J—1|ARi>: _ |Api>.
In this section we will shortly review Pulay’s approach,
using a notation which is more natural for the problem of B. Preconditioning, metric, and convergence

charge density mixing. In the scheme of Pdfathe input _ , ,
charge density and the residual vectors are stored for a num- 1 "€ré are some subtle details which can help to improve
ber of mixing steps. A new optimal input charge density isCONVErgence: The choice of the trial step, which is deter-
obtained in each step as a linear combination of the inpuflined by G*, and an optimized metric for evaluating the

charge densities of all previous steps, scalar pr0duct$ | ) are important. . o
Regarding Eq(57) we can see thaB- is the initial ap-

opt : proxi_n_1ati_on forJ‘_l. It has the same “me_anin_g” as the pre-
Pin :2 &iPin - (52) conditioning matrix in the iterative matrix diagonalization,

' the closerG? is to the exact inverse of the Jacobian matrix,
Assuming linearity of the residual vector with respect to thethe faster the convergence will be. For bulk materials we
input charge density;,, the residual vector g’ is given  usually resort to a matrix proposed by Kerker,

n

by ,

q
2 a’ip;n

. q 2 2
=2 aRlphl. (53 4%

' which is a simple diagonal model for the inverse of the di-
The optimal new charge density must minimize the norm ofelectric matrix in metallic systems and can be derived easily
the residual vector, combining Eqs(50) and (51). For largeq (rapid variations

of the charge densijythe exact dielectric matrix converges
(RIpIIRLpD), (54 to 1, thereforeA should be close to ongapid oscillations in
the potential are not screenethis matrix has the advantage
of correctly damping the oscillations in the logveompo-
nents of the charge density, i.e., for small wave vectors the
E a;=1, (55  function behaves Iiké\qzlqﬁ and mixes only a small amount
‘ of the output charge density to the input charge density. For
which conserves the number of electrons. These equatiod@'9e wave vectorg, a simple linear mixing with the linear
are very similar to those given in Sec. Il B, only the func- MiXing parameteA is done. Pulay’s method is rather insen-
tional form of the constraint has changed. The optimais sitive to the choice of the parameters for the initial mixing:

Gl=A——— (61
R{piPI=R| 2
I

with respect taw; subject to the constraint

now given by A=0.8 andgy=1.5 A"! is usually satisfactory. For mag-
netic systems, molecules, and surfaces an initial linear mix-

ngj—il ' J_ i ing with A.‘.: 0.2 i§ somgtimes faster. o _

aiZEkJA[jl with A;; =(R[p,]IR[pi])- (56) In addition, it is relatively easy to optimize the precondi-

tioning matrix if optimal performance is required. As stated

We were able to shot® that this update is equivalent to a Previously the convergence depends strongly on the eigen-
quasi-Newton scheme in which the inverse of the JacobiaMalue spectrum of the Jacobian mat#). To be more pre-
matrix is given in each iteration by cise, for a preconditioned algorithm it depends on the eigen-
. -1 . .
value spectrum ofGlJ, respectively, Gt J~1. This is

S 1 ion . ‘ equivalent to determining the eigenvalues of the generalized
G"=G _k%l A (GHARM) +[Ap™)(ARY, (57 non-Hermitian eigenvalue problem,

m-1

where G|x"y=T"GY|x'). (62)

A= (AR"ARK During the.self'-consistency steps we get a steadily improv-
= | ) (58) ing approximation foiG and for each iteration we solve the
and (m—1) dimensional eigenvalue problem,
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(G™-GY)|x)=(I'"-1)Gx), (63) : ~ 8 cells
to get the power spectrui. G! is optimal if the mean ] s g ngZ
eigenvalue is 1, and if the width of the eigenvalue spectrum - o 1cell
is minimal. For an initial linear mixing an optimal setting for Ld "2 E
A can be found easily by settingon=AcyrentI'mean The L :
optimal A, is always orders of magnitudes larger than that = il
one used in a straight linear mixing without an update of ©° £
G. For the Kerker scheme we usually optimize oglyand -6 E
keepA fixed to 0.8. But we want to emphasize once again 3
that the optimization of the mixing parameter is rarely nec- -8 hwtinnuatngna R

0

essary as we have demonstrated also in Ref. 39. For an initial 2 4 6 8 1o
linear mixing the linear mixing parameter can vary by a fac- iteration
tor of 10 without significantly changing the convergence.

Only very small mixing parametersA&0.02) usually used ) :
in a straight mixing should be avoided because this wouldgmzlc‘)g”bs g:gor:m]mbeffgftgfo;‘:ia:obg:s'Sg?fgi':tigh,,Cg(zrﬂ_)
result in a significantly slower search of the Hilbert space y

responds to a cubic supercell containing eight atoms, for “x cells”

and then rapid oscillations, which are not screened, will Ccmfhe cell has been multiplied in one direction x times. The symmetry
verge very slowly.

i ik . . . was destroyed by adding random vectors to the positises te
The second thing which is usually important is the intro- yed by 9 posi XL

duction of a reasonable metric. We have found that the in- m+1

FIG. 2. Convergence of the total free enefgyin eV) for the

— .m
clusion of a weighting factor Pin- a7~ Poutrq (66
by 2 without any loss of efficiency, and only a relatively small
¢ _9°+a; (64) number of grid points must be treated with Pulay’s method,;
a q2 usually we take all grid points which are also contained in
_ _ _ the plane-wave basis g6t%|q|%/(2m,) <E,. for reasons of
in the evaluation of the scalar products, i.e., simplicity we take a box instead of this spheria Sec. V B,
we will demonstrate for two cases that the number of itera-
<A|B>1:2 qu; By, (65) tions required to converge to a specific precision is almost
q independent of the system size.

can improve the convergence considerably for complex me-

tallic systems. This function is inspired by the fact that due

to the Hartree potential the contributions for small wave vec-

tors are more important and critical than contributions for A. Convergence behavior

large wave vectors. The choice qf is relatively unimpor- of the iterative matrix diagonalization method

tant and we set]; in a way that the shortest wave vector is . . . .
In this section, we will demonstrate that for our matrix

weighted 20 times stronger than the longest wave vector. ngagonalization scheme the required number of iterations

have checked that the metric and the initial approximation .
. . g does not depend on the system size. We have chosen one
for the inverse of the Jacobian matrix improve the conver-

ence independently. Anvway the introduction of a metricmetallic and one insulating example. For all calculations pre-
9 P y. Anyway : ... sented in Sec. V A the charge density and hence the Hamil-
seems to be more important than the setting for the initial

matrix G1. onian were kept fixed.

At this point, we also want to make clear that a consider-
able difference between charge density mixing and potential

mixing exists. Taking into account only the Hartree term the ~ The first system is cubic diamor(dd), our smallest test
potential is given by cell consists of eight atoms in a cubic supercell. We in-

creased the system size by multiplying the cell in one direc-
1 tion twice, four times, and eight times. All symmet(in-
V(q)e ?P(Q), cluding the translational symmetry due to the replication of
the original cell was destroyed by randomizing the initial
therefore the metric for the evaluation of scalar products difpositions by 2% of the lattice parameter. For all cells only
fers by a factor of If* in both cases. the I’ point was used and a cutoff of 280 eV was chosen.
Finally, we are frequently confronted with very large sys-With an US-PP this cutoff is sufficient to obtain an excellent
tems with FFT grids containing up to 8%64X 64 points, description of the equilibrium ground-state properties of cu-
which are necessary to describe the rather hard augmentatibic diamond?® Only occupied bands were used in the calcu-
charges of transition metals. Storage of all information fromlation. As already stated this is not our usgahd also not
all previous steps would exceed the central memory capacthe generally recommendegractice—normally we include
ties even for the new efficient mixing schemes. A rathera certain number of empty bands even for semiconductors
simple solution to this problem exists: Because the dielectri@and insulators. To show that our method also works for the
matrix converges to 1 for largg, no mixing is necessary for minimum number of bands, we have changed the setup ac-
large wave vectors, i.e., it is possible to set cordingly. Nevertheless, due to this setup we had some dif-

V. CONVERGENCE FOR INSULATING
AND METALLIC SYSTEMS

1. Insulating system
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FIG. 3. Convergence of the total free enefgyin eV) for the
RMM-DIIS algorithm (full curve) and for the CGa schenferoken
curve for fcc-Fe, non-self-consistent case. “one cell” corresponds
to a cubic supercell containing four atoms, for “x cells” the cell
has been multiplied in one direction x times. The symmetry was
destroyed by adding random vectors to the positises text The
RMM-DIIS algorithm is a band-by-band algorithm, whereas the
CGa scheme optimizes all wave functions at the same tsee
Sec. VB 2.

|I|I|I|I|!|||I|I|I|!| ) I|I||!I|I|I]JJ|

0 5 10 15 20
iteration

ficulties in the initialization of the wave functions. For the
RMM-DIIS method it is much safer to include a certain  FIG. 4. Top panel—convergence of the total free endEg§n
number of empty bands, because this guarantees that the cef) for the RMM-DIIS (full curve) and the CGa algorithrtbroken
rect ground state is spanned by the initial wave functions. curve for cd-C, self-consistent case. The RMM-DIIS algorithm

In Fig. 2 the convergence for different system sizes isuses a self-consistency cycle, whereas the CGa algorithm mini-
shown, and it is clearly visible that there is no dependence omizes the KS functional directly. Lower panel—convergence of the
the length of the cell. For this calculation the initial elec- forces(in eV/A) for both methods.
tronic configuration was calculated using a random initializa-

tion and 3 CG sweeps over all bands on the wave function see Fig. 4 The charge sloshing is rather weak in this sys-
(i.e., three subspace rotations, three sweeps over all ban 9. * 9 9 y

two optimizations of each wave function per sweep with the €m, so the overall convergence is mainly determined by the
CG algorithm convergence progress of the band-structure term. We used

the Kerker matrix for the initial approximation of the inverse
2. Open-shell transition metals Jacobian matrix61) and found an optimal mixing parameter

The second test system is an open-shell transition metaff Go=1.0 A™*. Mind that the Kerker matrix does not pos-
We have chosen paramagnetic fcc-Fe and a cutoff of 250 e\PESS the correct limit for smadj for |n§ulat|ng systems,_but
The smallest test cell contains four atoms in a cubic super@s long as the length of the system is not too large this does
cell. The system size was increased by multiplying the cell if’ot pose a problertfor very large system a lower bound for
one direction twice, four times, and eight times. For thethe model d!elect_rlc function might be reqwred for insulating
smallest cell &-point mesh with 4 4x 4 Monkhorst Pack ~SyStems With this setup the range of eigenvalues of Eq.
special poin® was used. The number & points was de- (63) remained practically unchanged with the system size,
creased to & 4X 2 for the double cell, x4 1 for the four anld ranged between 0.5-1.4. We also tested a setup in which
times repeated cell, and>2x1 for the largest cell, a G* was mmally set to a linear mixing wittA=1.0. In this
smearing ofr=0.3 was used in the calculatidfor the large ~ CaS€ the obtained elgenval_ue spectrum corres_ponds_ to the
cell we used thisk-point setting to get results reasonably el_genl/fllue spectrum of the inverse _of the real dielectric ma-
fasp. As previously all symmetry was destroyed by random-{fix 3~ . We found a spectrum ranging between 0.35 and 1
izing the initial positions by 5% of the lattice parameter. Thefor the smallest cell and 0.15-1 for the largest ¢le mini-
initial wave functions were chosen in the same way as abovénal eigenvalue of5 clearly converged to a finite value of
To get a reasonable convergence it was necessary to included-15). The convergence remained quite good. Instead of
15N, empty bands above the Fermi level. It can be seen if2 iterations, 17 iterations were required for the largest cell
Fig. 3 that the convergence is once again practically indeperf® 0btain an accuracy of 16 eV. In accordance with the
dent of the system sizéhe results for the CGa calculation '@nge of eigenvalues the maximum linear mixing parameter

will be discussed later in Sec. V B2 for a straight mixing without an update & was 0.7 for the
smallest cell and 0.3 for the largest c@le., twice the mini-
B. Convergence behavior for self-consistent calculations mum eigenvalue of3), the convergence remained reason-

able even with a simple straight mixing without an update of
G!. We have also done calculations for & 3x 3 cell con-

For the insulating system, the number of iteration stepgaining 216 atoms. For this large cell also only 12 iterations
does not increase seriously if self-consistency is switched owere required to converge to the same precision.

1. Insulating system
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TABLE I. Time necessary to perform one iteration for a carbon >
ensemble containindl.e cells, respectivelyN;,,s ions for several £ X g gg} Ilg
algorithms on an IBM RS 6000/Model 59@ CRAY C90 is ap- 0 : ey, & 2 cells
proximately four times fastgrThe timing is given for a code which } - “°~\-+Lf“ !
takes into account thmq:Ciq, if the I' point only is used for the 5 3 e T,
k-point sampling. RMM refers to the residual minimization band- o E AAAAA
by-band scheme with mixin@Sec. Ill B), CG to the conjugate gra- n E s Mhasy
dient band-by-band scheme with mixiri§ec. Il A), CGa is the L -4 3 e A“MAAA
conjugate gradient scheme applied directly to all degrees of free- Df E °°q°
dom of the KS functional. o B %q%
E o,
Neell Nions RMM CG CGa -8 ' R
1 8 1.0 1.0 1.2 ,
2 16 3.0 3.0 3.2 _ 0%
4 32 10.0 10.0 9.0 LS F
8 64 35.0 50.0 32.0 N
3X3X3 216 410.0 800.0 - 5 o
s 3L
To show that our method compares very well with meth- p S W\ T

ods which minimize the Kohn-Sham functional directly, we
have included results for a method which optimizes all de-
grees of freedom simultaneously using a conjugate gradient fteration
algorithm (we will call this algorithm CGa not to be mixed
up with the CG algorithm discussed in Sec. Il). A detailed

discussion of our “direct” algorithm can be found in Ref.
39. It is very similar to the algorithms proposed by Giflan

0 10 20 30 40

FIG. 5. Top panel—convergence of the total free endfgn
eV) for the RMM-DIIS (full curve) and the CGa algorithrtbroken
curve for fcc-Fe, self-consistent case. The RMM-DIIS algorithm

and Arias, Payne, and JoannopOLﬂZ)but it includes a con- uses a self-con&s_tency pycle, whereas the CGa algorithm mini-
izes the KS functional directly. Lower panel—convergence of the

sistent update of the partial occupancies and performs a Su%rces(in eV/A) for both methods
space rotation at each step so that metallic systems can be '
treated too(all degrees of freedom are treated with the CG

algorithm). One big advantage of this CGa algorithm over To demonstrate that our scheme also gives very accurate

several other direct algorithntfor instance, that one of Tas- forces we have included one panel in Fig. 4 which shows the
convergence of the forces for both methods. It can be seen

soneet al®) is that it is entirely parameter free. . :
: : . . . that the convergence of the forces is extraordinary for our
In Fig. 4 it can be seen that the direct algorithm requires : . -
. . . . . method. After ten iterations more than three digits after the
approximately twice to three times as many iterations as the
X i S c¢omma are correct. To get the same accuracy from the CGa
algorithm based on the self-consistency cycle. The initial er- 2 .
o ..~ scheme, the number of iterations has to be at least doubled.
ror for the CGa method is slightly larger than for the mixing
methods because the initial charge density has to be set equal
to the charge density calculated from the initial wave func-
tions. In the mixing methods we can start with the linear For the transition metal, the charge sloshing is definitely
superposition of the atomic pseudocharge densities of thmuch stronger. Once again the parametgwas optimized,
constituents. In Table | we show the timing for both in this case we found,=4.0 A~! to be the optimal choice,
schemes. It can be seen that the scaling is better than qutine range of the eigenvalues of H§3) was, except for the
dratic, and that both schemes take approximately the samsmall cell, between 0.2 and 3.0 and remained almuost
time. The reason for the “super’-quadratic behavior for changedwhen the system size was increased.
small cells lies in the fact that all operations related to the For the open-shell transition met@ee Fig. % it can be
augmentation part scale linearly with the system size, andeen that the convergence slows down slightly when the size
dominate for very small systems. Because the CGa schenwf the system is increased. Going from the smallest system to
has to evaluate the augmentation terms twice, it is slower fothe largest system the number of iterations increases by a
small systems and takes approximately 90% of the time ofactor of two. The smallest cell actually shows only very
the RMM algorithm for large systems. We want to point outweak charge sloshing, difficulties with the sloshing start in
that using thd” point only for small systems containing only the two times repeated celsee the strong increase of the
8-32 atoms is rather unrealistic. If sevekaboints are used error of the energy and the forces in the second iteratién
or if the system size is sufficiently large the costs for thewe compare this cell with the largest cell, we can see that the
treatment of the augmentation part are negligible. In Table Increase in the number of iterations is very small. We also
we have also included the timing for the sequential CGperformed a calculation for aX33Xx 3 cell containing 108
scheme. For small cells it requires the same CPU time as thetoms using thd” point only. In this case, the convergence
RMM scheme because the costs for the orthonormalizatiowas similar to the eight times repeated cell.
are negligible, whereas for the>x3x3 cell the RMM Our results differ significantly from the theoretical predic-
scheme is faster by a factor two. tions of Annet?* who stated that the number of iterations

2. Open-shell transition metal
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should increase quadratically with the length of the system TABLE Il. Time necessary to perform one iteration for the Fe
for SC methods. The main reasons for the difference betweegnsembles containing,s atoms for several algorithms on an IBM

our observed convergence behavior and the theoretical pr&S 6000/ Model 59Qa CRAY C90 is approximately four times

dictions of Annett have their origin in the following two faSted- Nee is the number of fcc supercellilions is the number of

ints: Eirst. w raticall nvergent meth ons, ande points i_s the number ok points. RMM refers_ to tl_we_
points st, we use a quadratically convergent method, Seere5|dual minimization method band-by-band scheme with mixing,

ond, we use a diagonal approximation for the dielectric maCGa is the conjugate gradient scheme applied directly to the KS

trix, Wh'_Ch’ _m practice, removes problems_ arising from thefunctional. The timing for the 3X 3 cell (I' point only) is given
quadratic divergence of the Hartree termlin _ for a version which takes into account ti@g=C* ;. The sequen-
To illustrate this, we tried a simple mixing without an tja| cG algorithm with mixing would require 900 sfiteration. For
update ofG for this system. For the smallest cell the maxi- the eight times repeated cell one iteration with Thepoint only
mum linear mixing parameter is 0.08 and 80 iterations argyould take 27 s for the RMM scheme.
required to converge to an accuracy of £0eV. For the
double cell the mixing parameter has to be decreased by a N Nions Nk points RMM CGa
factor of 2 to 0.04 and now almost 160 iterations are re-

quired. For the four times repeated cell, the mixing param- 4 32 21.0 16.0
eter must be less than 0.015 and more than 500 iterations ar 8 16 39.0 32.0
necessary. This scenario is indeed similar to that discussed in® 16 8 80.0 65.0
Ref. 34. The situation already improves if a fixed Kerker-like 8 32 2 92.0
approximation is used fo& (no update ofG). Optimal per- 3X3x3 108 1 360.0

formance is found witlgy=6.0 andA~0.8—1, now 24 and
34 iterations are necessary to converge to the required preci-
sion for the small, respectively, the doubled cell. included because the convergence was to9.btke optimal

We have also checked the magnitude of the maximunstep size for the line minimization becomes gradually
linear mixing parameter by performing calculations with ansmaller with the system lengttit decreases approximately
update ofG for an initial linear mixing G'=A). The ob- by a factor of two if the cell length is doublgdThe number
tained eigenvalue spectrum & was in agreement with the of required steps is almost proportional to the system length,
maximal linear mixing parameter. We found an eigenvaluemaking the scheme generally much slower than our scheme
spectrum of 0.045-1 for the small cell, 0.025-1 for thebased on the SC cyclghe scaling is the same as that one
doubled cell, 0.008-1 for the four times repeated cell, angredicted in Ref. 3 We have checked that the only reason
0.0025-1 for the largest cell. This behavior can be explainedor the slow convergence is the charge sloshing, i.e., if we
assuming an asymptotic behavior ! according to Eq. use the CGa algorithm to determine the eigenvalues for a
(61). The number of iterations in this case was 17 for thefixed Hamiltonian then the required number of steps is inde-
smallest and 35 for the largest cell. One might expect in thipendent of the system sizeee Fig. 2 But even in this case
case that the number of iterations increases with the squatbe band-by-band RMM-DIIS or band-by-band CG scheme
root of the eigenvalue spectrum and therefore linearly withis superior. This is not astonishing and the reason for this is
system length{see Sec. IV B but this is not the case, since that the RMM-DIIS (or band-by-band CG schemgerates
the eigenvalue spectrum is not continuous, i.e., doubling théhe highest occupied bands usually four times per step,
cell creates only two additional small eigenvectéesrre-  whereas the CGa scheme optimizes each band only once per
sponding to the new shortest reciprocal wave vector of thetep.
cell). All other new eigenvectors remain within the range of To solve the charge-sloshing problem in the CGa scheme,
the eigenvalue spectrum already found for the nondoubled is necessary to build in a similar “charge preconditioning”
cell. as in the methods based on the SC cycle. But because a

At this point we also want to make a comment on why theseparate treatment and preconditioning of the input charge
introduction of the metric improves the performance. In prin-density would destroy the extremal properties of the KS
ciple, we are dealing with a rather ill-conditioned problem —functional (see Sec. Il ) this could be done, for instance,
the eigenvalue spectrum & can be very broad. The metric only within a steepest-descent scheme or Tchebycheff's ac-
forces the mixing algorithm to converge the charge densitieseleration schemémerely a combination of Ref. 8 and Ref.
for short wave vectors (long range oscillations— 11). The main problem within this approach would be the
corresponding to small eigenvectpfsst. If the progress of determination of all convergence parameters, and therefore
the eigenvalue spectrum is monitored carefully it can be seewe have not tested this approach yet. On the other hand, it
that the eigenvalue spectrum is indeed built up from thewould be very easy to implement the required changes in an
smallest(and most critical eigenvalues, these eigenvalues existing Car-Parrinello code.
are converged after a few steps, and after modeling this com- Finally, it must be realized that the SC methods allow us
plicated “charge-sloshing” part of the dielectric matrix the to store the change of the charge density for a large number
short range behavior where no sloshing occurs is determinedf steps, whereas the CGa method stores only the gradient
If no metric is included all eigenvalues converge more or lessind the search direction of the last step. If the line minimi-
at the same time, resulting in a significantly slower conver-=zation is not done with very high accuracy the net conver-
gence for large cells. gence will slow down considerably. A scheme which over-

We have also tested the CGa algorithm for metallic syscomes this difficulty was introduced by Hutter, thij and
tems and found a quite bad performance especially when tharrinello®’ but it requires the storage of a large set of wave
cell length was increasedesults for the largest cell are not functions making it rather inconvenient for large systems.
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charge density mixing scheme. Both schemes are based on
the residual minimization method—direct inversion in the
iterative subspacéRMM-DIIS). The advantage of the matrix
diagonalization based on the RMM-DIIS scheme over the
minimization of the Rayleigh quotient with a standard con-
jugate gradient scheme lies in the fact that@{N®) opera-
tions can be reduced to their absolute minimum. Altogether
our scheme scales almost quadratically with the system size
up to systems containing 1000 electrons. At this point
y . O(N?®) operations become important. The application of the
0 5 10 15 50 diagonalization scheme is of course not limited to a plane-
iteration wave basis set only, whenever the evaluation of
(H—€9)|¢) is anO(N?) operation the RMM-DIIS scheme
FIG. 6. Convergence of the total free enei§yin eV) for the  should outperform other techniques. For instance, testing this
RMM-DIIS (full curve) and the CGgbroken curvg algorithm for  technique for the diagonalization of large sparse matrices
fcc-Al, self-consistent case. The RMM-DIIS algorithm uses a self-might be interesting.
consi_stency_ cycle, whereas the CGa algorithm minimizes the KS gy the charge density mixing we have discussed the use
functional directly. of Pulay’s DIIS minimization method and the importance of
In Table Il, the timings for the calculations presented herdncluding a reasonable model for the dielectric matrix. It was
are shown. Once again the RMM-DIIS scheme is onlyshown for three examplgsne insulating, two metalljcthat
slightly slower than the CGa scheme. The scaling of outhe number of iterations does not increase dramatically with
code is quadratic and if we take into account that the numbethe length of the supercell. This result contradicts the theo-
of k points can be decreased linearly with the system sizeetical investigation of Annett—the main reasons for the
then we can clearly see an almost linear scaling. contradiction are given by the following points: First, Annett
3. Simple metals hgs. done an analysis at zero temperature or)ly, we are using
“finite temperature” LDA. Second, Annett did not realize
that Broyden-like methods are indeed quadratically conver-

logyy E-E,

The mixing scheme of Kerker is especially efficient for

nearly free-electron metals. Here, accurate models for thge . g it is relatively easy to deal with the#/diver-
dielectric matrix exist which, for instance, allow us to calcu- ) '

late accurate pair potentials using a second-order perturb ence of th? Ha”““fe te_rm by using an appropriate modellfor
tion theory®® Because the functional form of the inverse of the diélectric function in the update of the charge density.
the dielectric function of a nearly free-electron gas closelyWe think that our findings have also significant impact on
resembles Eq(61), it is not surprising that a fast conver- order O(N) methods because we have demonstrated that
gence can be reached even without an updat®.dith an ~ methods relying on the determination of the self-consistent
update ofG, the convergence is at least as good as that focharge density can be very competitive to methods doing a
the insulating C systertalthough charge sloshing is consid- direct minimization of the KS functional: at finite tempera-
erable in simple metals We have found such a favorable ture an ordeO(N) algorithm relying on SC methods should
scaling for Al, I-Si, I-Ge, |-Te, and |-Se, and even for Cu or be possible even for metals.

Ag we obtained a very rapid convergence to the ground state We have also compared our SC method with methods
(the density of states at the Fermi level seems to be th@oing a direct minimization of the KS functional. Especially
_Cl’itical quantlty T_O demonstrate the feaS|b|I|ty of the mix- for metals we have found that the SC methods are 5|gn|f|-
ing scheme in this respect, we show the convergence fagantly faster and show a much better scaling with the system
fcc-Alin Fig. 6. The cells and thi-point sets are the same gjze than methods doing a direct minimization using, for in-
as for fcc-Fe(all symmetry was once again destroyed by gtance, a CG algorithm. This is not only true for the conver-
displacing the atoms by random vectors, compare S€gance of the total energy but also for the convergence of the

VA2). iny eight iterations are required to converge to theforces. We have not done a comparison of our method with
electronic ground state, and the convergence is mdependemt

f th tem size. Mind on in. that one of the k e recent formulation of the Car-Parrinello technique given
of the system size. once again, that one of the eBby Tassoné but we expect that Tassone’s algorithm behaves
points for fast convergence is in this case the use of thg/

Kerk trix for GL. Th ts sianificantly "7 similar to the CGa scheme used here. Indeed the CGa
Ierwe: ifma r||r):1 Iorlin' ; € iogi\’rﬁr%err‘]cie g€ ‘Z f'??ﬁ'cﬁnﬁyl algorithm and Tassone’s algorithm both show a quadratic
slower It a simple finear approximation 1S used for the Intial ., o r4anc81134 the disadvantage of Tassone’s algorithm

aggr_ozlm?)tlon of t;}he lnvltlerste .Of thei‘ Ja‘}f‘iﬁ'aﬂ MatniXis that it requires the determination of two parameters to
(G*=A), ecause the smallest eigenvalue of tne INVErse o,;, optimal performance. Finally, if we consider that all
the charge dielectric matrix decreases for simple metals a

: ; “direct methods also require much more storage capacity, it
most strictly with the square of the length of the system. Th'soecomes questionable why these approaches have been em-

rBhasized so strongly during the past few years. Our program
can be used efficiently for systems containing up to 100 tran-
VI. CONCLUSION sition metals or 200 simple elements on.workstations with

256 Mbytes. Finally, we want to emphasize at the end that

We have presented a detailed description of an efficienthe algorithms discussed here are extremely reliable and have
iterative matrix diagonalization scheme and an efficientbeen used for more than two years; up to now we have not

drops significantly if the system size is increased.
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found a system where no convergence to the correct groundansfer bandwidth from the main computer memory to the

state was obtained. central processing un{CPU).
The solution is straightforward: We first calculate the
ACKNOWLEDGMENTS overlap matrixs,
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work and he has supplied invaluable help in a lot of discus-
sions. We also have to thank M.C. Payne, who has supplie% o
a copy of his earlyab initio plane-wave programlocal S=LU. (A2)
pseudopotentials only, version July 198%he final stage of ) . . .

this work has been undertaken within the “GdR DynamiqueThe final orthonormalized orbitals are then given by
Moléculaire Quantique Applique a la Catalyse,” a joint —
project of CNRS, Technical University Vienna, and Institut [y=20 Ut ). (A3)
Fran@is du P&ole.

nd then we perform a Choleski decompositiorgof.e.,

For the matrix-matrix operation@nd patrtially also for the
APPENDIX: FAST GRAM-SCHMIDT Igss expensive _Choleski decomposition®and the i_n\_/er—
ORTHONORMALIZATION sion of the matrixJ) the cache can be used very efficiently,
using “blocked” schemes. Mind that such optimizations are
Usually the Gram-Schmidt orthonormalization is done byimpossible for the sequential CG scherievolving only
sequentially orthogonalizing all bands to one selected bandiector-vector operationsEfficient use of the cache allows
The outer loop starts with the first band, normalizes that onéhe CPU to run almost at its peak floating-point performance.
and then orthogonalizes all other bands to the current band’he performance improvement over the standard sequential
The second band is then normalized and all remaining bandSram-Schmidt scheme is usually considerable and ranges
are orthogonalized to the second band and so on. For thisetween a factor of twgfor IBM/RS6000 workstation and
algorithm the limiting factor is not the maximum number of CRAY C90 supercomputersand four (for SGI, DEC
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