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We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using
pseudopotentials and a plane-wave basis set. In the first part the application of Pulay’s DIIS method~direct
inversion in the iterative subspace! to the iterative diagonalization of large matrices will be discussed. Our
approach is stable, reliable, and minimizes the number of orderNatoms

3 operations. In the second part, we will
discuss an efficient mixing scheme also based on Pulay’s scheme. A special ‘‘metric’’ and a special ‘‘precon-
ditioning’’ optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in
detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations
required to obtain a specific precision is almost independent of the system size. Altogether an orderNatoms

2

scaling is found for systems containing up to 1000 electrons. If we take into account that the number ofk
points can be decreased linearly with the system size, the overall scaling can approachNatoms. We have
implemented these algorithms within a powerful package called VASP~Viennaab initio simulation package!.
The program and the techniques have been used successfully for a large number of different systems~liquid
and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces,
phonons in simple metals, transition metals, and semiconductors! and turned out to be very reliable.
@S0163-1829~96!00440-7#

I. INTRODUCTION

In the past few yearsab initio calculations based on
Kohn-Sham~KS! density functional theory1 have gained an
enormous interest not only among solid state physicists but
also among chemists. In part, this is due to the great success
of the local density approximation~LDA ! ~see, for instance,
Ref. 2! which — although originally intended only for the
application to solids — seems to be reasonably accurate for
molecules and the adsorption of molecules on surfaces too.
In addition, taking into account generalized gradient correc-
tions has removed one of the most problematic deficiencies
of the LDA, the strong overbinding of isolated molecules.

The biggest advantage of the KS density functional ap-
proach is definitely its simplicity. Forces, for instance, can be
evaluated in principle and in practice using the well known
Hellmann-Feynman theorem.3 Although different basis sets
can be used, plane waves in the broadest sense seem cur-
rently to be most advantageous. This basis set is complete
and allows an easy analytical evaluation of the forces and of
the stress tensor. Its biggest disadvantage is probably that the
number of plane wavesNplw which must be included is usu-
ally an order of magnitude larger than the number of basis
functions~centered at atomic sites! used for ‘‘minimal’’ nu-
merical basis sets; but this is more than made up by the fact
that the action of the Hamiltonian onto trial wave functions
can be evaluated very efficiently. Using modern iterative al-
gorithms the explicit calculation and storage of the
Nplw3Nplw Hamilton matrix can be avoided, allowing the
use of very large basis sets (Nplw'10 000) even on simple
workstations. With the recent introduction of efficient

pseudopotentials~see, e.g., Vanderbilt4! and the introduction
of the projector-augmented-plane-wave method5 the applica-
bility of plane waves has increased even further. Now also
transition metals and first row elements no longer pose any
serious difficulty and can be treated almost as efficiently as
conventional ‘‘simple’’ elements.

For the calculation of the KS ground state it is possible to
distinguish two methods:~i! Methods for determining the
minimum of the KS total-energy functional directly~in the
future simply called direct methods! and ~ii ! iterative meth-
ods for the diagonalization of the KS Hamiltonian in con-
junction with an iterative improvement~i.e., mixing! of the
charge density or the potential@we will refer to these meth-
ods as self-consistency cycle~SC! methods#.

Both methods require no explicit storage of the Hamilton
matrix and should therefore show similar ‘‘efficiency.’’ The
direct methods ~i! have been pioneered by Car and
Parrinello.6 They are based on the fact that the Kohn-Sham
energy functional is minimal at the electronic ground state.
Therefore, minimization with respect to the variational de-
grees of freedom leads to a convenient scheme for calculat-
ing the electronic ground state. The only problem to be
solved is the inclusion of the orthonormality constraints on
the wave functions, which is done with a Lagrange formal-
ism in the original work of CP. Generally the standard CP
algorithm is relatively slow if it is applied to the electrons
only. Small improvements might be obtained by integrating
the equations of motion analytically,7 by introducing an im-
proved preconditioning for the gradient8 or by replacing the
second-order CP equations by first-order steepest-descent9,10

equations. Recently Tassone, Mauri, and Car8 showed that
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the most efficient algorithm is a preconditioned damped
second-order equation of motion for the electrons, a scheme
first proposed in Ref. 7. It is interesting to point out that the
damped second-order equation of motion used in Ref. 8 is
closely related to an acceleration scheme for slowly converg-
ing series by Tchebycheff which has been used for the mix-
ing of charge densities by Akai and Dederichs.11 The only
drawback of this method is that it requires the determination
of two parameters to obtain fast convergence.

In this respect, conjugate gradient~CG! schemes12,13 are
more promising because they are entirely parameter free.
Within these schemes the KS functional is minimized along
a given search direction exactly~which is usually not done
within the techniques mentioned above!, and in successive
steps the new search direction is conjugated to previous
search directions. The main problem within the CG methods
is that the orthonormality constraints are not easy to incor-
porate. For semiconductors and insulators Teter, Payne, and
Allan14 proposed a reliable algorithm which optimizes the
total energy for a single orbital within the subspace ortho-
normal to the current set of trial wave functions. Despite the
advantage of small storage requirements, the algorithm is
relatively slow because only a limited number of CG steps
per orbital can be done, and because the charge density and
the potential must be recalculated after each single update of
each orbital. Therefore, algorithms which update all orbitals
simultaneously should be superior. These algorithms were
pioneered independently by Stich, Car, Parrinello, and
Baroni15 and by Gillan.16 The most systematic and elegant
way to incorporate the orthonormality constraints in this case
is to generalize the KS functional to nonorthogonal
orbitals,17 but successful applications of this approach are
still rare.18–20

In contrast to the direct methods the traditional methods
~ii ! try to split the evaluation of the KS ground state into the
determination of a self-consistent charge density~or poten-
tial! and the diagonalization of the KS Hamiltonian for a
fixed potential. Mathematically this is definitely less elegant,
and especially in the solid state community a tendency to-
wards direct minimization of the KS functional is visible.
But on the other hand, SC methods have been used for a long
time and in addition they have proved to be quite reliable and
efficient in most cases. We will show in this paper that an
efficient matrix diagonalization and an efficient mixing
scheme result in a method which is highly competitive with
direct minimization schemes. For metals our implementation
seems to outperform any other scheme which we are aware
of. In this paper, we will also discuss the scaling properties
of our algorithm in terms of computer time and in terms of
the necessary number of iterations for increasing system
sizes. We will demonstrate that the matrix diagonalization
scheme proposed here requires always the same number of
iterations independent of the system size. In addition, we will
demonstrate that our implementation scales likeO(N2) ~in
terms of computer time per iteration! for systems containing
up to 1000 electrons, indicating that quite large systems can
be treated efficiently.

We want to point out that the method discussed here has
been used successfully for different systems, including liquid
simple metals ~Na, Ge!,21 liquid transition metals ~V,
Cu!,22,23 the transition from a liquid metal to an amorphous

semiconductor by rapid quenching of Ge,24,23and the metal-
nonmetal transition in expandedl -Hg.25 One advantage of an
efficient electronic minimization is that the relaxation of the
ions to their instantaneous equilibrium position is much
faster. Successful calculations for clean and hydrogenated
C~100! surfaces,26 the site-selective adsorption of C atoms
on Al~111! surfaces,27 and Rh surface properties28 demon-
strate the feasibility of our method in this respect. Finally,
we have also performed calculations of phonon dispersion
relations in insulators and metals~cubic diamond and graph-
ite see Ref. 29!, indicating that forces can be evaluated effi-
ciently and very accurately within the SC methods.

Our paper is organized as follows: In Sec. II, we will
discuss the Kohn-Sham energy functional if partial occupan-
cies are allowed, our self-consistency cycle will be outlined
and an improved way for the calculation of interatomic
forces will be discussed. In Sec. III, we discuss an iterative
matrix diagonalization scheme based on Pulay’s DIIS
method~direct inversion in the iterative subspace!. Charge
density mixing will be discussed in Sec. IV. Finally, we ap-
ply our scheme to several test systems~Sec. V!. In this part,
we will mainly concentrate on the scaling aspects of the
method.

II. THE KOHN-SHAM ENERGY FUNCTIONAL
FOR PARTIAL OCCUPANCIES

A. The Kohn-Sham energy functional

In general, the Kohn-Sham free energy functional for an
ultrasoft ~US! Vanderbilt pseudopotential~PP! at finite tem-
perature can be written as4,30,31

FKS@$f%,$ f %,$R%#5(
n

f n^fnuT1VNL
ionufn&1EH@r#

1Exc@r#1E d3rVloc
ion~r !r~r !

1gEwald~$R%!2(
n

sS~ f n!, ~1!

whereS( f n) is the entropy of noninteracting electrons.
32 The

partial occupanciesf n are f n51 for occupied bands and
f n50 for unoccupied bands, at finite temperaturef n is al-
lowed to vary continuously between 0 and 1. To simplify the
notation we have dropped thek-point index. The first sum
runs over all bandsNb included in the calculation.E

H is the
Hartree energy, Exc the exchange-correlation energy
functional, Vloc

ion the local ionic pseudopotential,
T52(\2/2me)¹

2 the kinetic energy operator, andgEwald the
Madelung energy of the ions. It is clear that the KS func-
tional depends on the positionsRN of the ions, the electronic
wave functionsfn , and the partial occupanciesf n only.

For US-PP’s the nonlocal part of the PP can be written as

VNL
ion5(

i j
Di j
ionub j&^b i u, ~2!

whereDi j
ion is the strength of the nonlocal part of the pseudo-

potential. The charge densityr(r ) is given by
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r~r !5(
n

f nufn~r !u21(
n,i j

f n^fnub j&^b i ufn&Qi j ~r !, ~3!

whereb i are localized projection states andQi j (r ) localized
augmentation functions.4,30,31 The total energy has to be
minimized subject to the generalized orthonormality con-
straints

^fnuSufm&5dnm , ~4!

where the overlap matrixS is defined as

S511(
i j

qi j ub j&^b i u, ~5!

with

qi j5E Qi j ~r !d
3r . ~6!

Ultrasoft pseudopotentials are discussed in detail in Refs.
4,30,31,33. Their general advantage is that they reduce the
necessary energy cutoff for transition metals and first row
elements by a factor of 2–4. The resulting basis sets are
comparable in size with the basis sets for typical ‘‘pseudo-
potential elements’’ like Na, Al, Si, and Ge.

The most important property of the KS functional is to be
extremal in the ground state with respect to arbitrary varia-
tions of the wave functions. Under the constraints of or-
thonormalization, variation with respect to the wave func-
tions leads to the generalized KS eigenvalue equations,31

Hufn&5enSufn&, ~7!

whereH is the Kohn-Sham Hamiltonian

H5T1Vloc
sc1VNL

sc , ~8!

with

Vloc
sc5Vloc

ion1VH@r#1Vxc@r#, ~9!

where VH@r# is the Hartree potential andVxc@r# the
exchange-correlation potential. For ultrasoft pseudopoten-
tials the nonlocal part of the pseudopotentialVNL

sc depends
also on the total local potential and must be calculated ac-
cordingly via @compare Eq.~2!#

Di j
sc5Di j

ion1E Qi j ~r !V loc
sc d3r . ~10!

B. Semiconducting systems versus metallic systems

For the calculation of semiconducting and insulating sys-
tems it is an usual practice to calculate the occupied orbitals
only, i.e.,Nb5Nelectron/2 and f n51 for all calculated bands.
In this case it can be shown that the total energy is invariant
under any unitary transformation of the wave functions
fn , and it is sufficient to calculate a set of wave functions
which fulfills the less stringent equation

Hufn&5(
m

gnmSufm&, ~11!

wheregnm is a Hermitian matrix.

The situation differs significantly in metallic systems;
here, one can take two different approaches: It is possible to
insist on calculating the occupied orbitals only, but as cor-
rectly pointed out by Annett34 the number of iterations which
are necessary to converge to a specific precision will increase
with the square root of the system size even for non-self-
consistent calculations. The main problem lies in the deter-
mination of the highest occupied orbital which will be very
close in energy to the lowest unoccupied orbitals~due to the
finite system size, level spacing will always be finite!. For
any minimization or matrix diagonalization algorithm it will
become progressively harder to determine the correct occu-
pied orbitals if the virtual energy gap at the Fermi level de-
creases. Keep in mind that this problem also occurs in semi-
conductors and molecules with a very small or zero gap.

Because of this behavior, it is generally an advantage to
include unoccupied orbitals above the Fermi level in practi-
cal calculations. For non-self-consistent calculations, we will
show in Sec. III D that our method requires always the same
number of iterations, independent of the system size. To en-
sure good energy-stability partial occupancies have to be in-
cluded at the same time. This avoids that the crossing of two
eigenvalues at the Fermi level causes discontinuities~of the
band occupations! during a self-consistent calculation. In ad-
dition, partial occupancies also solve the level crossing prob-
lem for molecular dynamics or ionic relaxations. One disad-
vantage of including additional unoccupied orbitals above
the Fermi level is that it is necessary to calculate the KS
orbitals exactly@Eq. ~7!#, making the calculation of the elec-
tronic ground state slightly more complex.

Another problem which occurs only for self-consistent
calculations is the charge sloshing. Charge sloshing arises
from the quadratic divergence of the dielectric matrix with
the cell length in metals. We will discuss this problem in
Sec. IV.

C. Partial occupancies

The first one to study the influence of partial occupancies
on the KS functional was Mermin,32 who extended the LDA
to finite temperatures. This approach becomes physically sig-
nificant if the temperature of the system is comparable to
characteristic excitation energies. The impact of partial occu-
pancies on the forces has probably been first discussed inde-
pendently by Weinert and Davenport35 and by Wentzcovitch,
Martins, and Allen.36

The second approach to the introduction of partial occu-
pancies concentrates on the evaluation of the energy at zero
temperature: In this case, partial occupancies are introduced
as a tool for reducing the number ofk points in the Brillouin
zone which are necessary to evaluate the band-structure en-
ergy. One of the most successful approaches in this respect is
the linear tetrahedron~LT! method, in which the one-
electron energiesenk are interpolated linearly between the
k points defining the corners of the elementary tetrahedra
filling the BZ, and the integrals—for instance, for the band-
structure energy—are performed analytically within each
tetrahedron.37 Blöchl38 has recently revised the linear tetra-
hedron method to give effective weightsf ($enk%) for each
band andk point. This new formulation gives strictly the
same results as the conventional tetrahedron method but it is
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easier to implement in existing plane-wave codes like the
Vienna ab initio simulation package~VASP!. In a second
step, Blöchl was also able to derive a correction formula
which removes the quadratic error inherent in the LT method
by going beyond the linear approximation and by including
the effects of the curvature of the bands at the Fermi surface
~we will refer to this method as LT-C, whereas LT is the
standard linear tetrahedron method!. The LT-C method con-
verges very fast with the number ofk points, and we con-
sider this method to be the most accurate and most unam-
biguous method for calculating the total energy of bulk
materials containing a small number of atoms. Nevertheless
the method is not applicable to large supercells because usu-
ally only a very small number ofk points is used in this case.
In addition, one can show that the method is not variational
with respect to the partial occupancies making the exact
evaluation of forces at least inconvenient~see Refs. 38,39!, if
not impossible.

Because of this we usually use a variant of the so called
‘‘smearing methods,’’ which were first introduced by Fu and
Ho40 in the context of plane-wave pseudopotential calcula-
tions. These methods are, in principle, closely related to the
finite-temperature approach of Mermin,32 but their main aim
is the evaluation of zero-temperature properties; i.e., the
broadening of the one-electron energy levels is only intro-
duced as a mathematical tool to improve the convergence
with respect to the number ofk points. Currently we are
mainly using the method of Methfessel and Paxton~MP!:41

They expanded the step function~the zero-temperature limit
of the Fermi-Dirac occupation probability! in a complete or-
thonormal set of functions. Within this approach the widely
used error function~integral of the Gaussian function! is only
the lowest order approximation (N50) of the step function,
further successive approximations (N51,2, . . . ) can be ob-
tained easily. In analogy to Mermin’s finite-temperature
method, the total energy is no longer variational with respect
to the partial occupancies and has to be replaced by a gen-
eralized free energy functional with the correct form for the
entropy termS( f n) ~one feature missing in the original work
of Methfessel and Paxton!. The free energy is now given by

F5E2(
n

sSNS en2m

s D , ~12!

whereSN is defined by

SN~x!5 1
2 ANH2N~x!e2x2. ~13!

Hm are the Hermite polynomials of degreem and explicit
formulas forAm can be found in Ref. 41.

In contrast to the standard Gaussian method (N50) or to
Mermin’s finite-temperature approach the entropy term
(nsSN@(en2m)/s# for higher-order approximants
(N51,2, . . . ) will be very small for a reasonable choice of
s, and the deviations fromEs50 are only of the order
(21N) in s

F~s!5Es501O~s21N!. ~14!

It is interesting to note that an analytical extrapolation to
s50 is possible16,42 by using

Es50'Ẽ~s!5
1

N12
@~N11!F~s!1E~s!#. ~15!

This shows that the difference between the physically mean-
ingful quantity Es50 and F(s) is proportional to
'(nsSN@(en2m)/s#. For the MP method, the entropy term
is a simple error estimate for the difference between the free
energyF and the ‘‘physically’’ correct energyEs50. s can
be increased until this error estimate becomes larger than an
allowed threshold~usually 1 meV!. Because the free energy
and the ‘‘physical’’ energyEs50 are the same except for this
small error the forces calculated as a derivative of the free
energy are also correct and can be used to determine the
zero- ‘‘temperature’’ ground state. For more details we refer
to Ref. 39.

D. Self-consistency loop and iterative methods

The basic idea of the methods based on the self-
consistency loop is to split the calculation of the KS-ground-
state into two independent subproblems: one is the determi-
nation of the eigenfunctions and eigenvalues~i.e.,
minimization of the band-structure energy for a fixed charge
density or potential!, the other the calculation of the self-
consistent charge density~or potential!. One reason why
these algorithms are more efficient lies probably in the fact
that both subproblems are now rather easy to solve and can
be ‘‘preconditioned’’ separately.

At the beginning of a calculation we choose an appropri-
ate set of trial wave functions~usually seeded with a random
number generator! $fn ;n51, . . . ,Nb% and a reasonable in-
put charge densityr in . The initial charge density corre-
sponds to the superposition of the atomic pseudocharge den-
sities of the constituents. From the input charge density, the
local potential

Vloc5Vloc
ion1VH@r in#1Vxc@r in# ~16!

and the corresponding double counting corrections

Ed.c.@r in#52EH@r in#1Exc@r in#2E d3rVxc~r !r in~r !

~17!

are evaluated. For ultrasoft pseudopotentials the nonlocal
part of the pseudopotential depends also on the local poten-
tial and must be calculated accordingly@Eq. ~10!#. In the
next step theNb trial wave functions are improved using an
iterative method, and the new eigenenergies are used to cal-
culate a new Fermi energy and new partial occupancies. The
total free energy for the current iteration is calculated as the
sum of the band-structure energy plus the entropy term plus
double counting corrections,

F5(
n

f nen
app2(

n
sSS en2m

s D1Ed.c.@r in#1gEwald.

~18!

Conceptually, the calculated energy corresponds to the en-
ergy evaluated from the Harris-Foulkes~HF! functional,43–45

which is non-self-consistent—in contrast to the KS func-
tional: the HF functional@defined in Eq.~18!# requires the
calculation of the band-structure energy for a fixed charge
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densityr in . With our code it is easy to evaluate this energy
keeping the initial charge density fixed~for instance, to the
superposition of atomic pseudocharge densities! and iterating
only the eigenvectors until they are converged.

To get the exact KS-ground-state energy, self-consistency
with respect to the input charge density requires that the
charge density residual vectorR@r in#,

R@r in#5rout2r in , ~19!

is zero where the output charge densityrout is calculated
from the wave functions using Eq.~3!. The residual vector
R@r in# — and possibly information from previous mixing
steps — allows one to calculate a new charge densityr in for
the next self-consistency loop. In principle, it is necessary to
evaluate the eigenfunctionsfn exactly for each new input
charge density, makingrout and the residual vectorR func-
tionals of the input charge densityr in only. Nevertheless,
even in conjunction with elaborated Broyden-type mixing
techniques, our results indicate that this is not necessary if
the final ~approximate! wave functions of the previous mix-
ing iteration are used as new initial trial wave functions. In
this case a few steps in the iterative matrix diagonalization
are sufficient to get a reliable result for the charge density
residual vectorR. Mind that the HF energy functional has a
saddle point at the KS-ground-state, i.e., it isnot minimal.
Therefore, it is not possible to use a standard conjugate gra-
dient algorithm for the determination of the optimalrsc.

In Sec. III, we will concentrate on different iterative
methods for the diagonalization of the KS Hamiltonian, Sec.
IV will discuss algorithms for the charge density mixing.

E. Forces

Forces for the finite-temperature KS functional can be ob-
tained easily, and are, in principle, just given by

FN5
]F̄

]RN
U
ground state,

~20!

whereF̄ is the free energy of the system@Eq. ~1!# plus the
orthonormality constraints added with appropriate Lagrange
multipliers.

This formula is exact and contains Hellmann-Feynman3

as well as Pulay contributions46 ~for a plane-wave basis set
no Pulay contributions exist, but mind that the term Pulay
force is used quite ambiguously in literature!. A similar for-
mula also holds for the stress tensor, and derivatives with
respect to the basis set are implicitly contained in this defi-
nition. It is now easy to show that the forces can be rewritten
as~for the self-consistent case this equation was first derived
in Ref. 47!

FN5 (
nqq8

f nCnq8
*

]~Hsc@r,$R%#2enS†ˆR%]) q8q
]RN

Cnq , ~21!

whereCnq is the expansion coefficient offn for the plane-
wave componentq, i.e.,

ufn&5(
q

Cnquq&, ~22!

and

Hqq85^q8uHuq&. ~23!

In Eq. ~21! changes of the HamiltonianH due to changes in
the self-consistent charge densityrsc mustnot be calculated
~because of the augmentation charges the charge density
rsc depends explicitly on the ionic positions for US-PP!. For
further details we refer to Refs. 30 and 31.

One complication arises from the fact that we are using
the Harris-Foulkes functional instead of the exact Kohn-
Sham functional, but looking carefully at the Harris-Foulkes
functional it is possible to obtain a correction formula for the
forces. If the input charge densityr in for the Harris-Foulkes
functional is calculated from the atomic charge densities of
the constituents~i.e., for non-self-consistent calculations!, a
Pulay-like additional term arises that accounts for the fact
that the input charge density depends explicitly on the atomic
coordinates. In this case,H in Eq. ~21! has to be replaced by
the Hamiltonian calculated from the superposition of the
atomic charge densities,H@ratom,$R%#, and the term

E d3r S ]VH~ratom!1Vxc~ratom!

]RN
~r !@rout~r !2ratom~r !# D

~24!

has to be added to the forces. In Eq.~21! changes of the
HamiltonianH due to changes in the input charge density
ratom have to be omitted as in the self-consistent case.

We have found that the analogous correction formula

E d3r S ]VH~ratom!1Vxc~ratom!

]RN
~r !@rout~r !2r in~r !# D

~25!

also improves the convergence of the forces during a self-
consistent calculation~this formula is very much in the spirit
of Ref. 48!. In this case,H in Eq. ~21! has to be replaced by
H@r in ,$R%#, wherer in is the charge density obtained in the
previous iteration. In principle, it is necessary to evaluate the
change ofr in if the ions move„i.e., the first term in Eq.~25!
should be ]@VH(r in)1Vxc(r in)#/]RN!; it is not possible.
However, simply replacing the change ofr in by the change
of a superposition of atomic chargesratom leading to Eq.~25!
provides an excellent approximation. This correction formula
improves the precision of the forces by almost two orders of
magnitude and allows the self-consistency cycle to stop
much earlier.

This is demonstrated in Fig. 1, where the convergence of
the forces is compared for different algorithms for a long cell
containing 16 Fe atoms~see Sec. V A 2!. It can be seen that
the optimized scheme~opt! explained here results in the best
overall performance. Mind, that a similar convergence rate
might be obtained by using the mixed charge density
~mix! ~Sec. IV! for the calculation of the local contribution to
the forces, i.e.,

(
nqq8

f nCnq8
*

]Vloc
ion

q8q

]RN
Cnq→E d3r

]Vloc
ion

]RN
~r !rmixed~r !. ~26!

Especially this part of the forces is very sensitive to changes
in the charge density. The use of the output charge density
~out!—i.e., the left side of Eq.~26!—without the correction
term @Eq. ~25!# makes the forces worse by a factor 100~see
Fig. 1!.
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III. ITERATIVE METHODS
FOR THE DIAGONALIZATION
OF THE KS HAMILTONIAN

It is clear that a fast iterative matrix diagonalization is one
of the key points within our algorithm. We have tested sev-
eral methods:~i! the blocked Davidson scheme, which was
first proposed by Davidson49 and later modified by Liu for a
simultaneous update of all bands,50 ~ii ! the sequential CG
algorithm proposed by Teteret al.,14 and later used by By-
lander, Kleinman, and Lee51 for the iterative diagonalization
of the KS Hamiltonian, and~iii ! a new variant of the residual
vector minimization scheme—direct inversion in the itera-
tive subspace~RMM-DIIS!.53,54 We have found that our
variant of the RMM-DIIS scheme is generally most efficient
for large systems, whereas the sequential CG method is mar-
ginally more efficient for small systems. We will, therefore,
concentrate on these two approaches. For a more elaborated
comparison of different matrix diagonalization schemes we
refer to Ref. 39.

A. Sequential conjugate gradient„CG… minimization

This algorithm proposed by Teteret al.14 was originally
used to minimize the total energy directly. It is straightfor-
ward to apply this algorithm to the diagonalization of large
matrices.51 The algorithm is strictly sequential, i.e., one band
is optimized usually several times and then a move to the
next band is done. For the optimization of each band a stan-
dard CG~Refs. 12 and 13! algorithm is used in which the
expectation value of the Hamiltonian for one specific band is
optimized:

eapp5
^fmuHufm&

^fmuSufm&
. ~27!

This quantity is called Rayleigh quotient. Variation of the
Rayleigh quotient with respect tôfmu leads to the residual
vector defined as

uR~fm!&5~H2eappS!ufm&, ~28!

if ^fmuSufm&51. To ensure that orthonormality to all other
bands is maintained, Lagrange multipliers must be intro-
duced resulting in the following gradient vector:

ug~fm!&5ugm&5S 12(
n

ufn&^fnuSDK ~H2eappS!ufm&,

~29!

with K51. Minimization is done along this gradient vector,
respectively, the conjugated gradient vector.

To improve the efficiency we have adopted the precondi-
tioning function proposed by Teteret al.:14 In this caseK is
given by

K52(
q

2uq&^qu
3/2Ekin~R!

27118x112x218x3

27118x112x218x3116x4
,

with x5
\2

2me

q2

3/2Ekin~R!
, ~30!

whereEkin(R) is the kinetic energy of the residual vector.
There are only two minor changes with respect to Ref. 14:
First, we use 3/2Ekin(R) instead ofEkin(R) in the definition
of x, resulting in a slightly improved convergence for most
elements. Second, we multiply the preconditioning function
by a factor 2/@3/2Ekin(R)#. Using this factor the diagonal
part of the preconditioning matrixK converges towards

2me

\2q2
~31!

for largeq resulting in a more convenient ‘‘length’’ of the
correction vectorug(fm)&.

The CG scheme is actually very stable and reasonably
efficient, but there is one minor complication. The sequential
algorithm described here leads to ground-state eigenvalues
and eigenvectors which represent only an arbitrary linear
combination@in the sense of an unitary transformation, Eq.
~11!# of the exact KS eigenstates. As already mentioned this
is sufficient for semiconductors and insulators if one calcu-
lates only occupied bands. But for metals we need the true
Kohn–Sham eigenstates. In this case it is convenient to add
one additional step, which is called subspace rotation. In this
step the final improved wave functions$fm ;m51, . . . ,Nb%
are unitarily transformed in such a way that the Hamiltonian
matrix becomes diagonal in the subspace spanned by the
transformed wave functions~this is in the spirit of the
Rayleigh-Ritz scheme52!. This requires first the evaluation of
the Hamilton matrix~and possibly the overlap matrix! in the
subspace$fm%

H̄nm5^fnuHufm&, S̄nm5^fnuSufm&, ~32!

and then the diagonalization of this small Hamiltonian, using
a conventional matrix diagonalization scheme, i.e.,

(
m

H̄nmBmk5(
m

ek
appS̄nmBmk . ~33!

The lowest eigenvalue-eigenvector pairs

ek
app,uf̄k&5(

m
Bmkufm& ~34!

correspond to the best approximation of the exact lowest
eigenvalues and eigenvectors within the subspace spanned
by $fm%.

FIG. 1. Convergence of the forces~in eV/Å) for different algo-
rithms for fcc-Fe~four cells!. ‘‘out’’—output charge density was
used for the calculation, ‘‘mix’’—mixed charge density was used,
and ‘‘opt’’—is the optimized scheme explained in the text.
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Mind, that there is at least one alternative to the subspace
rotation: If the orthonormalization of the search vector is
restricted to those bands which arelower or equal in energy
than the actual band~this is sufficient to ensure stability of
the algorithm, but it requires of course a global reorthonor-
malization of all bands afterwards, e.g., applying a Gram-
Schmidt orthogonalization!, we would also observe conver-
gence towards the real Kohn-Sham eigenstates. The reason is
simple: Here no constraint is imposed on the lowest state
guaranteeing that it converges to the absolute minimal eigen-
value, i.e., the true lowest KS eigenstate. The second-lowest
state is only constrained to be orthonormal to the lowest state
but again no further restrictions are applied, guaranteeing
convergence towards the exact second-lowest KS state, and
so on. Nevertheless, considering Sec. III D it becomes clear
that this algorithm requires more and more iterations if the
system size increases~i.e., if the spacing of the eigenvalues
decreases!.

B. Residual minimization method—direct inversion
in the iterative subspace„RMM-DIIS …

The only remaining drawback of the CG algorithm is the
necessity for an explicit orthonormalization of the precondi-
tioned residual vectorK uR(fm)& to the current set of trial
wave functions@Eq. ~29!#. This operation is the most time
consuming part for large-size problems because one single
vector must be orthonormalized to a large number of other
vectors for each single band update. This requires a very
high bandwidth from the main computer memory to the cen-
tral processing unit~CPU!, i.e., the peak bandwidth from the
main memory to the CPU and not the peak floating-point
performance of the CPU becomes often the limiting factor.

Unfortunately avoiding the orthonormalization is not pos-
sible applying the CG algorithm discussed above. Anunre-
strictedCG scheme applied to the minimization of the Ray-
leigh quotient will always determine the lowest possible
eigenvalue, i.e., if the orthonormalization is not done the
algorithm will converge from any starting point towards the
lowest eigenvector of the Hamiltonian. Ultimately, this prop-
erty is connected with the fact that the Rayleigh quotient is
stationary at each eigenvector but it doesnot possess a mini-
mum except for the lowest eigenvalue~i.e., the Rayleigh
quotient can be lowered by moving towards lower eigenval-
ues!. Only the explicit orthonormalization makes it possible
to achieve a stable and efficient convergence to a selected
eigenvalue.

Fortunately, a solution to this problem exists which was
first proposed by Wood and Zunger.54 Minimizing the norm
of the residual vector~hence the name residual minimization
method! instead of the Rayleigh quotient makes the or-
thonormalization unnecessary~at least, in principle! because
the norm of the residual vector has anunconstrainedlocal
minimum at each eigenvector~the norm of the residual vec-
tor is clearly positive definite!.

In our implementation we use the original minimization
method proposed by Pulay53 and not the variant proposed by
Wood and Zunger.54 Wood’s algorithm requires the addi-
tional calculation and storage ofSuf&, and is therefore
slower than our algorithm. We start with an evaluation of the

preconditioned residual vectorK uRm
0 &5K uR(fm

0 )& for a se-
lected bandm. Then a Jacobi-like trial step along this direc-
tion is done

ufm
1 &5ufm

0 &1lK uRm
0 & ~35!

and the new residual vectoruRm
1 &5uR(fm

1 )& is evaluated.
Next a linear combination of the initialufm

0 & and the trial
wave functionufm

1 &

uf̄M&5(
i50

M

a i ufm
i & with M51 ~36!

is searched which minimizes the norm of the residual vector.
Assuming linearity in the residual vector, i.e.,

uR̄M&5uR~f̄M !&5(
i50

M

a i uRm
i &, ~37!

this requires the minimization of

(
j ,i50

M

a i*a j^Rm
i uRm

j &

(
j ,i50

N

a i*a j^fm
i uSufm

j &

. ~38!

This step is usually called DIIS and lies at the heart of Pu-
lay’s minimization scheme.53 It is, for instance, possible that
the trial step moves towards a band with lower energy low-
ering the Rayleigh quotient. In this case the DIIS ‘‘corrector
step’’ will recognize the false move because the norm of the
residual vector has increased and will correct the wrong trial
step. The final move might even have a reversed sign from
the trial move.

The problem stated in Eq.~38! is equivalent to determin-
ing the lowest eigenvector/eigenvalue from the Hermitian
eigenvalue problem,

(
j50

M

^Rm
i uRm

j &a j5e(
j50

M

^fm
i uSufm

j &a j . ~39!

The next trial step starts fromuf̄M& along the direction
K uR̄M&. In each iterationM11 a new wave function
ufm

M11&5uf̄M&1lK uR̄M& and a new residual vector
uR(fm

M11)& are added to the ‘‘iterative’’ subspace. The size
of the trial stepl is a critical value for the stability of the
algorithm. We have found that a reasonable choice for the
trial step can be obtained from the minimization of the Ray-
leigh quotient along the search direction inthe first step, this
optimall is used until a move to the next band is performed.
The line minimization can be done without additional com-
putational requirements. Usually the optimal step size is be-
tween 0.3<l<1 for the preconditioning function given in
Eq. ~30!. In rare cases—especially if the minimization of the
Rayleigh quotient starts to go for the wrong band—the trial
step might become very large. Therefore, we restrict the size
of the trial step to a value between 0.1<l<1. Usually we
perform several DIIS steps and one final trial step. The rea-
son for finishing with the trial step is that the trial step is very
cheap in comparison with the DIIS step, so even if the im-
provement in the trial step is small it is ‘‘economical’’ to do
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it ~for the majority of bands the trial step is already close to
the exact position of the minimal residual vector!.

The scheme explained in this section requires approxi-
mately the same number of iterations as the CG algorithm,
but it avoids any explicit orthonormalization of the search
vectors and is therefore much faster for very large problems
where the orthonormalization is the leading factor. Even
more important is the fact that the residual minimization is
inherently local and it is, therefore, very easy to implement
the algorithm on a parallel machine. For instance, each pro-
cessor might handle a certain number of bands, information
about other bands is not required~see, also, Sec. III D!.

A remaining drawback of the RMM-DIIS method is that
it always finds the vector which is closest to the initial trial
vector. This leads, in principle, to serious problems because
we have no guarantee to convergence to the correct ground
state at all. Therefore initialization becomes a critical step,
i.e., if the initial set of wave functions does not ‘‘span’’ the
real ground state it might happen that in the final solution
some eigenvectors are ‘‘missing:’’ To avoid this the initial-
ization must be done with great care. We usually start with a
set of random trial vectors and perform five sweeps over all
bands. Each initial sweep consists of one subspace rotation
and twosteepest–descentsteps into the direction of the pre-
conditioned residual vectors@Eq. ~35!# per band~see also
Sec. III C!. During this initial phase the Hamiltonian is also
kept fixed, after this ‘‘delay’’ we switch to the RMM-DIIS
scheme and start to update the potential. For problematic
cases~for instance, if we use no unoccupied bands! we
sometimes use the CG scheme described above for three ini-
tial steps.

As already explained subspace rotation and sequential up-
date of the bands alternate. In the residual minimization
scheme the final vectors are no longer orthogonal, we there-
fore reorthonormalize the vectors at the end after sweeping
over all bands. We want to emphasize, that, in principle, the
RMM-DIIS method should also converge without any ex-
plicit subspace rotation or orthonormalization, but we have
found that the subspace rotation speeds up the calculations
although it is an orderO(N3) operation~see Sec. III D!. The
main problem is that the ‘‘barrier’’ in the norm of the re-
sidual vector between two neighboring eigenvectors with ei-
genvaluese ande1de is only of the orderde.55 Into direc-
tions of eigenvectors which differ significantly in energy the
barrier will be very high. Therefore two eigenvectors which
are close in energy are lying in one long steep valley and
only a shallow hill separates them—a typical example of a
badly conditioned minimization problem. The subspace rota-
tion solves this problem because after the subspace rotation
the residual vectors are orthonormal to the current trial set,

^fnuR~fm!&50, ;m,n ~40!

and search vectors parallel to the long valleys are effectively
suppressed. In this case the residual vector is exactly equiva-
lent to the gradient defined in Eq.~29!. ~Another more rig-
orous way to look at this problem is given in Sec. III D.!

In several tests for large systems we have found that the
subspace rotation and the reorthonormalization not only im-
prove convergence but are indeed the only way to get good
stability ~especially if the spacing of the eigenvalues is
small!. The orthonormalization strictly avoids that two states

converge to the same eigenvector, and the subspace rotation
suppresses all ‘‘unstable’’ search directions towards wrong
bands. Actually without theseO(N3) steps it can easily oc-
cur that the RMM-DIIS algorithm incorrectly overcomes the
small barrier between close eigenvectors making the whole
scheme highly instable~orthonormalization to a number of
bands in an energy window around the selected band might
be another possible solution to this problem!. Also mind that
we get a reasonable trial stepl only because we use the
subspace rotation, i.e., in the first step the residual vector is
the same as the exact orthogonalized gradient vector@Eq.
~29!# making the initial steepest-descent step efficient and
rather stable~in the first steepest-descent step the danger to
go for the wrong band is negligible!. We want to point out
here that the subspace rotation was missing in the original
work of Wood and Zunger54 and we suspect that their algo-
rithm will be unstable for large systems with a small level
spacing.

C. The complete algorithm

The complete self-consistency loop consists of several
steps~the section where the algorithm has been discussed is
given in brackets!: ~i! subspace rotation~III A !, ~ii ! CG
~III A ! or RMM-DIIS ~III B ! minimization, ~iii ! orthonor-
malization using a Gram-Schmidt method~only required for
the RMM-DIIS scheme!, ~iv! update of partial occupancies
and charge density for a self-consistent calculation.

In each iteration the initial trial set$ufn&,n51, . . . ,Nb% is
equivalent to the final set of the previous iteration, initializa-
tion is done with a random number generator. This loop is
repeated until self-consistency is reached, for a non-self-
consistent calculation no charge density update is done.

We have found that the subspace rotation should be per-
formed between the update of the charge density and the
RMM-DIIS or CG step, especially at the beginning of a self-
consistent calculation. In this case the calculated residual
vectorsuR(fm)& agree with the exact gradientsug(fm)&. For
this reason and because the wave functions should be ortho-
normal for a recalculation of the charge density, it is neces-
sary to separate the orthonormalization of all wave functions
and the diagonalization of the subspace Hamilton matrix
which is done at once in the Rayleigh-Ritz scheme.

In addition it is necessary to find an optimal break condi-
tion for the sequential RMM-DIIS and CG algorithms. A
static criterion, for example two or three steps per band, is
not a good choice, because lower bands converge usually
much faster than higher bands. Therefore, we have adopted
the following dynamic criterion~which is inspired by Ref.
56!: ~i! Both algorithms are stopped if the change in the total
eigenvalue becomes smaller thanEaccuracy/Nb/4, where
Eaccuracyis the required accuracy of the calculation andNb is
the number of bands included in the calculation.~ii ! The
RMM-DIIS method is stopped if the squared norm of the
residual vector gets smaller than 30% of its initial value, and
the minimization always stops with the trial step.~iii ! The
CG method is stopped if the change in the eigenvalue gets
smaller than 30% of the change in the first, i.e., the steepest-
descent step.~iv! The maximum number of steps is always
four. For the RMM-DIIS the residual vector is minimized
three times and finally a fourth trial step is performed.~v!
Empty bands are optimized only twice.
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By now, these criteria have been used for a large number
of system and are very robust. In most cases two CG or two
RMM-DIIS steps are done per band, but problematic
eigenvalue/eigenvector pairs are iterated more frequently.
Usually more iterations are done for the higher bands, and
the total speed of convergence for all bands is very good.

D. Computational costs, convergence,
and number of iterations

To make a fair comparison between the CG and RMM-
DIIS scheme it is necessary to count the number of opera-
tions for each algorithm carefully. The CG minimization of
the Rayleigh quotient requires always slightly less evalua-
tions of the Hamiltonian multiplied with a wave function
than the RMM-DIIS method, but for large systems the most
expensive part is the orthonormalization of the wave func-
tions. For our implementation the evaluation of
(H2enS)ufn& is an order

TH5NbNplwlnNplw}N2lnN ~41!

operation, whereN qualifies the system size. The limiting
factors are to a smaller degree the fast Fourier transforma-
tions (NbNplwlnNplw}N2lnN) and the evaluation of the non-
local projection operators. For large systems we calculate the
nonlocal projection operators in real space57 and therefore
the number of operations per band increases linearly with the
system size (N). For all bands this is only anO(N2) opera-
tion. We want to point out that this fact is of considerable
importance for the speed of the RMM-DIIS method. IfTH is
an O(N3) operation the improvement of the RMM-DIIS
method over other minimization methods would be negli-
gible. The main advantage of the RMM-DIIS method is to
reduceO(N3) operations~like orthonormalization! to an ab-
solute minimum.

The Gram-Schmidt orthonormalization takes

TGS5Nb
23Nplw}N3 ~42!

steps, whereas the explicit orthogonalization of the gradients
of each band to all other bands in Eq.~29! takes twice as
many steps,

Tort52Nb
23Nplw}2N3. ~43!

But even worse, the explicit orthogonalization makes any
efficient memory caching impossible. The CG algorithm is
strictly sequential and at each iteration the new gradient must
be orthogonalized to all other bands, requiring a large band-
width from the main memory. For the Gram-Schmidt or-
thonormalization a routine with good data locality which
avoids this problem can be found easily andTort is therefore,
depending on the computer system, 4–8 times larger than
TGS ~see Appendix A!. Efficient routines with good data lo-
cality can also be found for the subspace rotation, and the
number of operations is

Tdiag5TH11.5Nb
23Nplw . ~44!

For large systems, where the orthogonalization is the leading
factor, one RMM-DIIS step is clearly much faster than one
CG step, if we consider onlyO(N3) operations the improve-
ment is close to a factor of 4~assuming thatTort'4TGS, and

that each band is optimized twice!. For the RMM-DIIS
scheme, we have found a nearly quadratic scaling for sys-
tems containing up to 1000 electrons. This means that cells
with approximately 200 ‘‘simple’’ atoms~Al, Si, C! and 100
transition metal atoms can be treated efficiently, for these
system sizes the RMM-DIIS scheme is twice as fast as the
CG scheme.

At this point we want to comment on the number of itera-
tions required in the iterative matrix diagonalization. With
‘‘number of iterations’’ we always refer to the number of
outer loops, the number of iterations in the inner loop is kept
fixed, and we have discussed the break criterion for the inner
loop previously. Let us assume for the moment that the
Hamiltonian is kept fixed. The convergence behavior for
some methods was discussed recently by Annett34 and Tas-
soneet al.8 and a similar analysis can be done in our case.
The convergence depends mainly on the eigenvalue spec-
trum of the Hamilton matrix. Assuming that the trial wave
functionf i is close to the real eigenvectorj i , it is possible
to expandf i in terms of the real eigenvectorsj j

uf i&5uj i&1 (
iÞ j

Nplw

cj uj j&, ~45!

where cj is small. To second order the residual vector is
given by

uR~f i !&5 (
iÞ j

Nplw

~e j2e i !cjSuj j&. ~46!

The required number of iterations depends only on the range
of g5e j2e i and for a simple steepest-descent approach it is
given bygmax/gmin , for the CG and RMM-DIIS scheme it is
given byAgmax/gmin.

34 Actually our algorithm is some mix-
ture in between because we do a quite small number of CG
and RMM-DIIS steps for each band.

The value ofgmax is clearly independent of the system
size and mainly determined by the plane-wave cutoff. Be-
cause of the dominance of the kinetic energy partgmax is
equal togmax'\2Gcut

2 /2me . The preconditioning@according
to Eq. ~30!# limits gmax, it effectively removes the kinetic
energy dominance from the residual vector and makes the
convergence practically independent of the chosen cutoff.
The effect of the subspace rotation is to limitgmin . After the
subspace rotation, each trial wave functionf i does not con-
tain any component of eigenvectors$j j ; j51, . . . ,Nb ; jÞ i %
up to second order and the residual vector is not pointing into
the direction of another band included in the trial basis set
@see Eq.~40!#. In other words, only components resulting
from the bands above the highest band included in the cal-
culation can contribute in Eq.~46!, i.e., the smallestg is then
determined bye (Nb11)2e i . The band which converges

slowest is evidently the highest bandi5Nb , and gmin for
this band is determined by the spacing of the eigenvalues at
the top of the included number of bands~for a lower band
index the energetical distance to the bandi5Nb11 will be
larger resulting in a faster convergence!. If only occupied
bands are taken into account in the calculation of a metal
thengmin will depend on the system size and the larger the
system is the slower the convergence of the highest band
~and hence of the total energy and the forces! will be. Mind
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that a smallg means that the energy is varying very slowly
in the corresponding direction, and actually these ‘‘soft’’
modes are also the reason why CP-MD’s are inherently in-
stable for metals, i.e., because of the weak curvature of the
total energy the modes are oscillating with a very low fre-
quency in the CP approach and couple strongly to the ionic
degrees of freedom.

The key point is the inclusion of a sufficient number of
empty bands so that for all occupied bandsgmin is suffi-
ciently large. If the unoccupied bands span an energy range
Eunoccupiedthengmin will have a lower bound ofEunoccupiedfor
all occupied bands~resulting in a convergence of the total
energy and of the forces which is independent of the system
size!. In this case the problematic region where the conver-
gence is slow and system size dependent is moved upwards
to the unoccupied bands, which are of no importance for the
total energy and forces.

It is now rather clear that, both~i! the subspace rotation
~no matter which system type! and ~ii ! a reasonable number
of empty bands are required in order to get an efficient
scheme for metals. In principle, it might seem thatO(N3)
operations can be omitted totally but this is shortsighted. Not
only the overall stability will degrade without these opera-
tions ~see Sec. III A!, but also the savings in CPU timeper
iterationwould be overcompensated by an increased number
of iterations needed to achieve a certain accuracy~the real
important quantity is the product of CPU time per iteration
times the number of necessary iterations!. Only for rather
small cells with a large spacing of the eigenvalues merely
any algorithm works reliably.

We will demonstrate that our approach is very stable even
for transition metals~with a small level spacing! and we will
demonstrate that the number of iterations is independent of
the system size. Overall the scaling of the CPU-time require-
ments of our iterative matrix diagonalization scheme is
nearly quadratic with respect to the system size, i.e.,
O(N2), for systems containing up to 1000 electrons. For
self-consistent calculations things are more complicated and
in this case the number of iterations is often mainly deter-
mined by the convergence of the charge density mixing
scheme. This topic will be addressed in Sec. IV B.

IV. CHARGE DENSITY MIXING

The second key step within our algorithm is an efficient
mixing of the input and output charge densities. The central
quantity, which has to be minimized in this case is the charge
density residual vectorR@r in# @see Eq.~19!#,

R@r in#5rout@r in#2r in . ~47!

Linear mixing~or one might call it steepest-descent mixing!
adds a certain amount ofR to the current input charge den-
sity,

r in
m115r in

m1AR@r in
m#. ~48!

This is usually a quite slow approach. If it is assumed that
R@r# can be linearized around its rootrsc,

R@r#52J~r2rsc!, ~49!

then it can be shown that the convergence depends only on
the eigenvalue spectrumḠ of the Jacobian matrixJ, respec-
tively, on the eigenvalue spectrumG51/Ḡ of the inverse of
the Jacobian matrixJ21. A thorough analysis of the linear
mixing approach was done by Dederichs and Zeller11— they
showed that the maximal linear mixing parameterA is deter-
mined byA,2/Ḡmax52Gmin , and the number of iterations
required to reach a specified precision is given by
Ḡmax/Ḡmin5Gmax/Gmin .

It is easy to show that the matrixJ is the charge dielectric
matrix which describes the total self-consistent change of the
charge densityr tot5rext1r ind for an external charge pertur-
bationrext, i.e.,

r tot5J21rext.

Following Vanderbilt and Louie,59 J is given by

J512xU, ~50!

wherex is the dielectric susceptibility andU is an operator
describing the change of the potential due to a change of the
charge density; considering the Hartree potential only~which
is usually of much higher importance than the exchange-
correlation potential!, this operator is given by~see, also,
Refs. 58, 11, and 34!

^quUuq8&5dqq8
4pe2

q2
. ~51!

For metals the dielectric matrix diverges quadratically for
small q; this behavior is usually called ‘‘charge sloshing.’’
Mind that the dielectric matrix does not diverge in insulators
making self-consistent calculations much easier in insulators.

Recently, Annett34 discussed some aspects of the conver-
gence of the charge density mixing approach. He points out
that accelerated Broyden-like methods62 exist, but incor-
rectly states that they should not have an improved scaling
over the steepest-descent approach. There is at least one
method ~Tchebycheff acceleration scheme! proposed by
Akai and Dederichs11 for which it was shown explicitly that
the number of iterations is proportional toAGmax/Gmin. In
addition, Blügel60 has demonstrated for several examples
that Broyden-like methods are even more efficient than the
Tchebycheff acceleration scheme and it is well known that
all Broyden or quasi-Newton schemes62 show also a qua-
dratic convergence.13 We therefore assume that for these
methods the number of iterations necessary to converge to a
specific accuracy is proportional toAGmax/Gmin ~we will
come back to this topic in Sec. IV B and Sec. V B 2!.

In practice, we are again resorting to the DIIS scheme
proposed by Pulay.53 Recently we were able to show39 that
this scheme is closely related to the charge density mixing
scheme proposed by Johnson.61 Johnson’s scheme is a vari-
ant of the well known Broyden algorithms.62 These algo-
rithms try to build up an approximation of the Jacobian ma-
trix J or the inverse of the Jacobian matrixG5J21 by
updating an approximation of the Jacobian matrix at each
iteration and were pioneered for electronic structure calcula-
tions by Bendt and Zunger63 and Ho, Ihm, and
Joannopoulos.58 Storing the fullN3N Jacobian matrix is
rarely possible for large self-consistency problems, but in the
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past few years several authors were able to derive modified
algorithms which require only the storage of a few
N-dimensional vectors for each iteration.64,60 Johnson’s ap-
proach is such a reformulation of a modified Broyden
scheme proposed by Vanderbilt and Louie,59 in which all
information obtained in previous steps is kept during the
update of the inverse of the Jacobian matrix. It was demon-
strated, for instance, in Ref. 59 that this scheme is superior to
Broyden’s second method, and in several tests we have seen
that especially for surfaces the improvement of Pulay’s
method over Broyden’s second method can be substantial
~see also our recent work39!.

A. Pulay mixing

In this section we will shortly review Pulay’s approach,
using a notation which is more natural for the problem of
charge density mixing. In the scheme of Pulay53 the input
charge density and the residual vectors are stored for a num-
ber of mixing steps. A new optimal input charge density is
obtained in each step as a linear combination of the input
charge densities of all previous steps,

r in
opt5(

i
a ir in

i . ~52!

Assuming linearity of the residual vector with respect to the
input charge densityr in , the residual vector atr in

opt is given
by

R@r in
opt#5RF(

i
a ir in

i G5(
i

a iR@r in
i #. ~53!

The optimal new charge density must minimize the norm of
the residual vector,

^R@r in
opt#uR@r in

opt#&, ~54!

with respect toa i subject to the constraint

(
i

a i51, ~55!

which conserves the number of electrons. These equations
are very similar to those given in Sec. III B, only the func-
tional form of the constraint has changed. The optimala i is
now given by

a i5
( jAji

21

(k jAk j
21 with Ai j5^R@r in

j #uR@r in
i #&. ~56!

We were able to show39 that this update is equivalent to a
quasi-Newton scheme in which the inverse of the Jacobian
matrix is given in each iteration by

Gm5G12 (
k,n51

m21

Ākn
21~G1uDRn&1uDrn&)^DRku, ~57!

where

Ākn5^DRnuDRk& ~58!

and

Dr i5r in
i112r in

i DRi5R@r in
i11#2R@r in

i #, ~59!

with i,m. Having an explicit formula for the inverse of the
Jacobian matrix is convenient because it has some physical
meaning ~it is the inverse of the charge dielectric matrix
discussed above!. It is easy to see thatGm defined in Eq.~57!
fulfills the equation

GmuDRi&52uDr i&, ; i,m. ~60!

This indicates thatGm is the best approximation of the exact
inverse of the Jacobian matrixJ21 in the subspace searched
up to now. This can be seen by subtracting Eq.~49! for
iteration i and i11 and multiplying on the left withJ21

giving J21uDRi&52uDr i&.

B. Preconditioning, metric, and convergence

There are some subtle details which can help to improve
convergence: The choice of the trial step, which is deter-
mined byG1, and an optimized metric for evaluating the
scalar productŝ u & are important.

Regarding Eq.~57! we can see thatG1 is the initial ap-
proximation forJ21. It has the same ‘‘meaning’’ as the pre-
conditioning matrix in the iterative matrix diagonalization,
the closerG1 is to the exact inverse of the Jacobian matrix,
the faster the convergence will be. For bulk materials we
usually resort to a matrix proposed by Kerker,65

Gq
15A

q2

q21q0
2 , ~61!

which is a simple diagonal model for the inverse of the di-
electric matrix in metallic systems and can be derived easily
combining Eqs.~50! and ~51!. For largeq ~rapid variations
of the charge density! the exact dielectric matrix converges
to 1, thereforeA should be close to one~rapid oscillations in
the potential are not screened!. This matrix has the advantage
of correctly damping the oscillations in the low-q compo-
nents of the charge density, i.e., for small wave vectors the
function behaves likeAq2/q0

2 and mixes only a small amount
of the output charge density to the input charge density. For
large wave vectorsq, a simple linear mixing with the linear
mixing parameterA is done. Pulay’s method is rather insen-
sitive to the choice of the parameters for the initial mixing:
A50.8 andq051.5 Å21 is usually satisfactory. For mag-
netic systems, molecules, and surfaces an initial linear mix-
ing with A50.2 is sometimes faster.

In addition, it is relatively easy to optimize the precondi-
tioning matrix if optimal performance is required. As stated
previously the convergence depends strongly on the eigen-
value spectrum of the Jacobian matrix~49!. To be more pre-
cise, for a preconditioned algorithm it depends on the eigen-
value spectrum ofG1J, respectively,G121

J21. This is
equivalent to determining the eigenvalues of the generalized
non-Hermitian eigenvalue problem,

Guxi&5G iG1uxi&. ~62!

During the self-consistency steps we get a steadily improv-
ing approximation forG and for each iteration we solve the
(m21) dimensional eigenvalue problem,
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~Gm2G1!uxi&5~G i21!G1uxi&, ~63!

to get the power spectrumG. G1 is optimal if the mean
eigenvalue is 1, and if the width of the eigenvalue spectrum
is minimal. For an initial linear mixing an optimal setting for
A can be found easily by settingAopt5Acurrent/Gmean. The
optimalAopt is always orders of magnitudes larger than that
one used in a straight linear mixing without an update of
G. For the Kerker scheme we usually optimize onlyq0 and
keepA fixed to 0.8. But we want to emphasize once again
that the optimization of the mixing parameter is rarely nec-
essary as we have demonstrated also in Ref. 39. For an initial
linear mixing the linear mixing parameter can vary by a fac-
tor of 10 without significantly changing the convergence.
Only very small mixing parameters (A,0.02) usually used
in a straight mixing should be avoided because this would
result in a significantly slower search of the Hilbert space
and then rapid oscillations, which are not screened, will con-
verge very slowly.

The second thing which is usually important is the intro-
duction of a reasonable metric. We have found that the in-
clusion of a weighting factor

f q5
q21q1

2

q2
~64!

in the evaluation of the scalar products, i.e.,

^AuB&:5(
q

f qAq*Bq , ~65!

can improve the convergence considerably for complex me-
tallic systems. This function is inspired by the fact that due
to the Hartree potential the contributions for small wave vec-
tors are more important and critical than contributions for
large wave vectors. The choice ofq1 is relatively unimpor-
tant and we setq1 in a way that the shortest wave vector is
weighted 20 times stronger than the longest wave vector. We
have checked that the metric and the initial approximation
for the inverse of the Jacobian matrix improve the conver-
gence independently. Anyway the introduction of a metric
seems to be more important than the setting for the initial
matrixG1.

At this point, we also want to make clear that a consider-
able difference between charge density mixing and potential
mixing exists. Taking into account only the Hartree term the
potential is given by

V~q!}
1

q2
r~q!,

therefore the metric for the evaluation of scalar products dif-
fers by a factor of 1/q4 in both cases.

Finally, we are frequently confronted with very large sys-
tems with FFT grids containing up to 64364364 points,
which are necessary to describe the rather hard augmentation
charges of transition metals. Storage of all information from
all previous steps would exceed the central memory capaci-
ties even for the new efficient mixing schemes. A rather
simple solution to this problem exists: Because the dielectric
matrix converges to 1 for largeq, no mixing is necessary for
large wave vectorsq, i.e., it is possible to set

r in
m11,q5rout

m ,q ~66!

without any loss of efficiency, and only a relatively small
number of grid points must be treated with Pulay’s method;
usually we take all grid points which are also contained in
the plane-wave basis set@\2uqu2/(2me),Ecut, for reasons of
simplicity we take a box instead of this sphere#. In Sec. V B,
we will demonstrate for two cases that the number of itera-
tions required to converge to a specific precision is almost
independent of the system size.

V. CONVERGENCE FOR INSULATING
AND METALLIC SYSTEMS

A. Convergence behavior
of the iterative matrix diagonalization method

In this section, we will demonstrate that for our matrix
diagonalization scheme the required number of iterations
does not depend on the system size. We have chosen one
metallic and one insulating example. For all calculations pre-
sented in Sec. V A the charge density and hence the Hamil-
tonian were kept fixed.

1. Insulating system

The first system is cubic diamond~cd!, our smallest test
cell consists of eight atoms in a cubic supercell. We in-
creased the system size by multiplying the cell in one direc-
tion twice, four times, and eight times. All symmetry~in-
cluding the translational symmetry due to the replication of
the original cell! was destroyed by randomizing the initial
positions by 2% of the lattice parameter. For all cells only
the G point was used and a cutoff of 280 eV was chosen.
With an US-PP this cutoff is sufficient to obtain an excellent
description of the equilibrium ground-state properties of cu-
bic diamond.26 Only occupied bands were used in the calcu-
lation. As already stated this is not our usual~and also not
the generally recommended! practice—normally we include
a certain number of empty bands even for semiconductors
and insulators. To show that our method also works for the
minimum number of bands, we have changed the setup ac-
cordingly. Nevertheless, due to this setup we had some dif-

FIG. 2. Convergence of the total free energyE ~in eV! for the
RMM-DIIS algorithm for the cd-C, non-self-consistent case~no
division by the number of atoms has been done!. ‘‘one cell’’ cor-
responds to a cubic supercell containing eight atoms, for ‘‘x cells’’
the cell has been multiplied in one direction x times. The symmetry
was destroyed by adding random vectors to the positions~see text!.
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ficulties in the initialization of the wave functions. For the
RMM-DIIS method it is much safer to include a certain
number of empty bands, because this guarantees that the cor-
rect ground state is spanned by the initial wave functions.

In Fig. 2 the convergence for different system sizes is
shown, and it is clearly visible that there is no dependence on
the length of the cell. For this calculation the initial elec-
tronic configuration was calculated using a random initializa-
tion and 3 CG sweeps over all bands on the wave functions
~i.e., three subspace rotations, three sweeps over all bands,
two optimizations of each wave function per sweep with the
CG algorithm!.

2. Open-shell transition metals

The second test system is an open-shell transition metal.
We have chosen paramagnetic fcc-Fe and a cutoff of 250 eV.
The smallest test cell contains four atoms in a cubic super-
cell. The system size was increased by multiplying the cell in
one direction twice, four times, and eight times. For the
smallest cell ak-point mesh with 43434 Monkhorst Pack
special points66 was used. The number ofk points was de-
creased to 43432 for the double cell, 43431 for the four
times repeated cell, and 23231 for the largest cell, a
smearing ofs50.3 was used in the calculation~for the large
cell we used thisk-point setting to get results reasonably
fast!. As previously all symmetry was destroyed by random-
izing the initial positions by 5% of the lattice parameter. The
initial wave functions were chosen in the same way as above.
To get a reasonable convergence it was necessary to include
1.5Nions empty bands above the Fermi level. It can be seen in
Fig. 3 that the convergence is once again practically indepen-
dent of the system size~the results for the CGa calculation
will be discussed later in Sec. V B 2!.

B. Convergence behavior for self-consistent calculations

1. Insulating system

For the insulating system, the number of iteration steps
does not increase seriously if self-consistency is switched on

~see Fig. 4!. The charge sloshing is rather weak in this sys-
tem, so the overall convergence is mainly determined by the
convergence progress of the band-structure term. We used
the Kerker matrix for the initial approximation of the inverse
Jacobian matrix~61! and found an optimal mixing parameter
of q051.0 Å21. Mind that the Kerker matrix does not pos-
sess the correct limit for smallq for insulating systems, but
as long as the length of the system is not too large this does
not pose a problem~for very large system a lower bound for
the model dielectric function might be required for insulating
systems!. With this setup the range of eigenvalues of Eq.
~63! remained practically unchanged with the system size,
and ranged between 0.5–1.4. We also tested a setup in which
G1 was initially set to a linear mixing withA51.0. In this
case the obtained eigenvalue spectrum corresponds to the
eigenvalue spectrum of the inverse of the real dielectric ma-
trix J21. We found a spectrum ranging between 0.35 and 1
for the smallest cell and 0.15–1 for the largest cell~the mini-
mal eigenvalue ofG clearly converged to a finite value of
'0.15). The convergence remained quite good. Instead of
12 iterations, 17 iterations were required for the largest cell
to obtain an accuracy of 1028 eV. In accordance with the
range of eigenvalues the maximum linear mixing parameter
for a straight mixing without an update ofG was 0.7 for the
smallest cell and 0.3 for the largest cell~i.e., twice the mini-
mum eigenvalue ofG), the convergence remained reason-
able even with a simple straight mixing without an update of
G1. We have also done calculations for a 33333 cell con-
taining 216 atoms. For this large cell also only 12 iterations
were required to converge to the same precision.

FIG. 3. Convergence of the total free energyE ~in eV! for the
RMM-DIIS algorithm ~full curve! and for the CGa scheme~broken
curve! for fcc-Fe, non-self-consistent case. ‘‘one cell’’ corresponds
to a cubic supercell containing four atoms, for ‘‘x cells’’ the cell
has been multiplied in one direction x times. The symmetry was
destroyed by adding random vectors to the positions~see text!. The
RMM-DIIS algorithm is a band-by-band algorithm, whereas the
CGa scheme optimizes all wave functions at the same time~see
Sec. V B 2!.

FIG. 4. Top panel—convergence of the total free energyE ~in
eV! for the RMM-DIIS ~full curve! and the CGa algorithm~broken
curve! for cd-C, self-consistent case. The RMM-DIIS algorithm
uses a self-consistency cycle, whereas the CGa algorithm mini-
mizes the KS functional directly. Lower panel—convergence of the
forces~in eV/Å) for both methods.
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To show that our method compares very well with meth-
ods which minimize the Kohn-Sham functional directly, we
have included results for a method which optimizes all de-
grees of freedom simultaneously using a conjugate gradient
algorithm ~we will call this algorithm CGa not to be mixed
up with the CG algorithm discussed in Sec. III A!. A detailed
discussion of our ‘‘direct’’ algorithm can be found in Ref.
39. It is very similar to the algorithms proposed by Gillan16

and Arias, Payne, and Joannopoulos,17 but it includes a con-
sistent update of the partial occupancies and performs a sub-
space rotation at each step so that metallic systems can be
treated too~all degrees of freedom are treated with the CG
algorithm!. One big advantage of this CGa algorithm over
several other direct algorithms~for instance, that one of Tas-
soneet al.8! is that it is entirely parameter free.

In Fig. 4 it can be seen that the direct algorithm requires
approximately twice to three times as many iterations as the
algorithm based on the self-consistency cycle. The initial er-
ror for the CGa method is slightly larger than for the mixing
methods because the initial charge density has to be set equal
to the charge density calculated from the initial wave func-
tions. In the mixing methods we can start with the linear
superposition of the atomic pseudocharge densities of the
constituents. In Table I we show the timing for both
schemes. It can be seen that the scaling is better than qua-
dratic, and that both schemes take approximately the same
time. The reason for the ‘‘super’’-quadratic behavior for
small cells lies in the fact that all operations related to the
augmentation part scale linearly with the system size, and
dominate for very small systems. Because the CGa scheme
has to evaluate the augmentation terms twice, it is slower for
small systems and takes approximately 90% of the time of
the RMM algorithm for large systems. We want to point out
that using theG point only for small systems containing only
8–32 atoms is rather unrealistic. If severalk points are used
or if the system size is sufficiently large the costs for the
treatment of the augmentation part are negligible. In Table I
we have also included the timing for the sequential CG
scheme. For small cells it requires the same CPU time as the
RMM scheme because the costs for the orthonormalization
are negligible, whereas for the 33333 cell the RMM
scheme is faster by a factor two.

To demonstrate that our scheme also gives very accurate
forces we have included one panel in Fig. 4 which shows the
convergence of the forces for both methods. It can be seen
that the convergence of the forces is extraordinary for our
method. After ten iterations more than three digits after the
comma are correct. To get the same accuracy from the CGa
scheme, the number of iterations has to be at least doubled.

2. Open-shell transition metal

For the transition metal, the charge sloshing is definitely
much stronger. Once again the parameterq0 was optimized,
in this case we foundq054.0 Å21 to be the optimal choice,
the range of the eigenvalues of Eq.~63! was, except for the
small cell, between 0.2 and 3.0 and remained almostun-
changedwhen the system size was increased.

For the open-shell transition metal~see Fig. 5! it can be
seen that the convergence slows down slightly when the size
of the system is increased. Going from the smallest system to
the largest system the number of iterations increases by a
factor of two. The smallest cell actually shows only very
weak charge sloshing, difficulties with the sloshing start in
the two times repeated cell~see the strong increase of the
error of the energy and the forces in the second iteration!. If
we compare this cell with the largest cell, we can see that the
increase in the number of iterations is very small. We also
performed a calculation for a 33333 cell containing 108
atoms using theG point only. In this case, the convergence
was similar to the eight times repeated cell.

Our results differ significantly from the theoretical predic-
tions of Annett,34 who stated that the number of iterations

FIG. 5. Top panel—convergence of the total free energyE ~in
eV! for the RMM-DIIS ~full curve! and the CGa algorithm~broken
curve! for fcc-Fe, self-consistent case. The RMM-DIIS algorithm
uses a self-consistency cycle, whereas the CGa algorithm mini-
mizes the KS functional directly. Lower panel—convergence of the
forces~in eV/Å) for both methods.

TABLE I. Time necessary to perform one iteration for a carbon
ensemble containingNcell cells, respectively,Nions ions for several
algorithms on an IBM RS 6000/Model 590~a CRAY C90 is ap-
proximately four times faster!. The timing is given for a code which
takes into account thatCq5C2q* , if the G point only is used for the
k-point sampling. RMM refers to the residual minimization band-
by-band scheme with mixing~Sec. III B!, CG to the conjugate gra-
dient band-by-band scheme with mixing~Sec. III A!, CGa is the
conjugate gradient scheme applied directly to all degrees of free-
dom of the KS functional.

Ncell Nions RMM CG CGa

1 8 1.0 1.0 1.2
2 16 3.0 3.0 3.2
4 32 10.0 10.0 9.0
8 64 35.0 50.0 32.0
33333 216 410.0 800.0
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should increase quadratically with the length of the system
for SC methods. The main reasons for the difference between
our observed convergence behavior and the theoretical pre-
dictions of Annett have their origin in the following two
points: First, we use a quadratically convergent method, sec-
ond, we use a diagonal approximation for the dielectric ma-
trix, which, in practice, removes problems arising from the
quadratic divergence of the Hartree term inJ.

To illustrate this, we tried a simple mixing without an
update ofG for this system. For the smallest cell the maxi-
mum linear mixing parameter is 0.08 and 80 iterations are
required to converge to an accuracy of 1028 eV. For the
double cell the mixing parameter has to be decreased by a
factor of 2 to 0.04 and now almost 160 iterations are re-
quired. For the four times repeated cell, the mixing param-
eter must be less than 0.015 and more than 500 iterations are
necessary. This scenario is indeed similar to that discussed in
Ref. 34. The situation already improves if a fixed Kerker-like
approximation is used forG ~no update ofG). Optimal per-
formance is found withq056.0 andA'0.821, now 24 and
34 iterations are necessary to converge to the required preci-
sion for the small, respectively, the doubled cell.

We have also checked the magnitude of the maximum
linear mixing parameter by performing calculations with an
update ofG for an initial linear mixing (G15A). The ob-
tained eigenvalue spectrum ofG was in agreement with the
maximal linear mixing parameter. We found an eigenvalue
spectrum of 0.045–1 for the small cell, 0.025–1 for the
doubled cell, 0.008–1 for the four times repeated cell, and
0.0025–1 for the largest cell. This behavior can be explained
assuming an asymptotic behavior ofJ21 according to Eq.
~61!. The number of iterations in this case was 17 for the
smallest and 35 for the largest cell. One might expect in this
case that the number of iterations increases with the square
root of the eigenvalue spectrum and therefore linearly with
system length~see Sec. IV B!, but this is not the case, since
the eigenvalue spectrum is not continuous, i.e., doubling the
cell creates only two additional small eigenvectors~corre-
sponding to the new shortest reciprocal wave vector of the
cell!. All other new eigenvectors remain within the range of
the eigenvalue spectrum already found for the nondoubled
cell.

At this point we also want to make a comment on why the
introduction of the metric improves the performance. In prin-
ciple, we are dealing with a rather ill-conditioned problem —
the eigenvalue spectrum ofG can be very broad. The metric
forces the mixing algorithm to converge the charge densities
for short wave vectors ~long range oscillations—
corresponding to small eigenvectors! first. If the progress of
the eigenvalue spectrum is monitored carefully it can be seen
that the eigenvalue spectrum is indeed built up from the
smallest~and most critical! eigenvalues, these eigenvalues
are converged after a few steps, and after modeling this com-
plicated ‘‘charge-sloshing’’ part of the dielectric matrix the
short range behavior where no sloshing occurs is determined.
If no metric is included all eigenvalues converge more or less
at the same time, resulting in a significantly slower conver-
gence for large cells.

We have also tested the CGa algorithm for metallic sys-
tems and found a quite bad performance especially when the
cell length was increased~results for the largest cell are not

included because the convergence was too bad!. The optimal
step size for the line minimization becomes gradually
smaller with the system length~it decreases approximately
by a factor of two if the cell length is doubled!. The number
of required steps is almost proportional to the system length,
making the scheme generally much slower than our scheme
based on the SC cycle~the scaling is the same as that one
predicted in Ref. 34!. We have checked that the only reason
for the slow convergence is the charge sloshing, i.e., if we
use the CGa algorithm to determine the eigenvalues for a
fixed Hamiltonian then the required number of steps is inde-
pendent of the system size~see Fig. 2!. But even in this case
the band-by-band RMM-DIIS or band-by-band CG scheme
is superior. This is not astonishing and the reason for this is
that the RMM-DIIS ~or band-by-band CG scheme! iterates
the highest occupied bands usually four times per step,
whereas the CGa scheme optimizes each band only once per
step.

To solve the charge-sloshing problem in the CGa scheme,
it is necessary to build in a similar ‘‘charge preconditioning’’
as in the methods based on the SC cycle. But because a
separate treatment and preconditioning of the input charge
density would destroy the extremal properties of the KS
functional ~see Sec. II D! this could be done, for instance,
only within a steepest-descent scheme or Tchebycheff’s ac-
celeration scheme~merely a combination of Ref. 8 and Ref.
11!. The main problem within this approach would be the
determination of all convergence parameters, and therefore
we have not tested this approach yet. On the other hand, it
would be very easy to implement the required changes in an
existing Car-Parrinello code.

Finally, it must be realized that the SC methods allow us
to store the change of the charge density for a large number
of steps, whereas the CGa method stores only the gradient
and the search direction of the last step. If the line minimi-
zation is not done with very high accuracy the net conver-
gence will slow down considerably. A scheme which over-
comes this difficulty was introduced by Hutter, Lu¨thi, and
Parrinello,67 but it requires the storage of a large set of wave
functions making it rather inconvenient for large systems.

TABLE II. Time necessary to perform one iteration for the Fe
ensembles containingNions atoms for several algorithms on an IBM
RS 6000/ Model 590~a CRAY C90 is approximately four times
faster!. Ncell is the number of fcc supercells,Nions is the number of
ions, andNk points is the number ofk points. RMM refers to the
residual minimization method band-by-band scheme with mixing,
CGa is the conjugate gradient scheme applied directly to the KS
functional. The timing for the 33333 cell (G point only! is given
for a version which takes into account thatCq5C2q* . The sequen-
tial CG algorithm with mixing would require 900 s/iteration. For
the eight times repeated cell one iteration with theG point only
would take 27 s for the RMM scheme.

Ncell Nions Nk points RMM CGa

1 4 32 21.0 16.0
2 8 16 39.0 32.0
4 16 8 80.0 65.0
8 32 2 92.0
33333 108 1 360.0
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In Table II, the timings for the calculations presented here
are shown. Once again the RMM-DIIS scheme is only
slightly slower than the CGa scheme. The scaling of our
code is quadratic and if we take into account that the number
of k points can be decreased linearly with the system size,
then we can clearly see an almost linear scaling.

3. Simple metals

The mixing scheme of Kerker is especially efficient for
nearly free-electron metals. Here, accurate models for the
dielectric matrix exist which, for instance, allow us to calcu-
late accurate pair potentials using a second-order perturba-
tion theory.68 Because the functional form of the inverse of
the dielectric function of a nearly free-electron gas closely
resembles Eq.~61!, it is not surprising that a fast conver-
gence can be reached even without an update ofG. With an
update ofG, the convergence is at least as good as that for
the insulating C system~although charge sloshing is consid-
erable in simple metals!. We have found such a favorable
scaling for Al, l-Si, l-Ge, l-Te, and l-Se, and even for Cu or
Ag we obtained a very rapid convergence to the ground state
~the density of states at the Fermi level seems to be the
critical quantity!. To demonstrate the feasibility of the mix-
ing scheme in this respect, we show the convergence for
fcc-Al in Fig. 6. The cells and thek-point sets are the same
as for fcc-Fe~all symmetry was once again destroyed by
displacing the atoms by random vectors, compare Sec.
V A 2!. Only eight iterations are required to converge to the
electronic ground state, and the convergence is independent
of the system size. Mind once again, that one of the key
points for fast convergence is in this case the use of the
Kerker matrix forG1. The convergence gets significantly
slower if a simple linear approximation is used for the initial
approximation of the inverse of the Jacobian matrix
(G15A), because the smallest eigenvalue of the inverse of
the charge dielectric matrix decreases for simple metals al-
most strictly with the square of the length of the system. This
is also the reason why the performance of the CGa algorithm
drops significantly if the system size is increased.

VI. CONCLUSION

We have presented a detailed description of an efficient
iterative matrix diagonalization scheme and an efficient

charge density mixing scheme. Both schemes are based on
the residual minimization method—direct inversion in the
iterative subspace~RMM-DIIS!. The advantage of the matrix
diagonalization based on the RMM-DIIS scheme over the
minimization of the Rayleigh quotient with a standard con-
jugate gradient scheme lies in the fact that allO(N3) opera-
tions can be reduced to their absolute minimum. Altogether
our scheme scales almost quadratically with the system size
up to systems containing 1000 electrons. At this point
O(N3) operations become important. The application of the
diagonalization scheme is of course not limited to a plane-
wave basis set only, whenever the evaluation of
(H2eS)uf& is anO(N2) operation the RMM-DIIS scheme
should outperform other techniques. For instance, testing this
technique for the diagonalization of large sparse matrices
might be interesting.

For the charge density mixing we have discussed the use
of Pulay’s DIIS minimization method and the importance of
including a reasonable model for the dielectric matrix. It was
shown for three examples~one insulating, two metallic! that
the number of iterations does not increase dramatically with
the length of the supercell. This result contradicts the theo-
retical investigation of Annett34—the main reasons for the
contradiction are given by the following points: First, Annett
has done an analysis at zero temperature only, we are using
‘‘finite temperature’’ LDA. Second, Annett did not realize
that Broyden-like methods are indeed quadratically conver-
gent. Third, it is relatively easy to deal with the 1/q2 diver-
gence of the Hartree term by using an appropriate model for
the dielectric function in the update of the charge density.
We think that our findings have also significant impact on
order O(N) methods because we have demonstrated that
methods relying on the determination of the self-consistent
charge density can be very competitive to methods doing a
direct minimization of the KS functional: at finite tempera-
ture an orderO(N) algorithm relying on SC methods should
be possible even for metals.

We have also compared our SC method with methods
doing a direct minimization of the KS functional. Especially
for metals we have found that the SC methods are signifi-
cantly faster and show a much better scaling with the system
size than methods doing a direct minimization using, for in-
stance, a CG algorithm. This is not only true for the conver-
gence of the total energy but also for the convergence of the
forces. We have not done a comparison of our method with
the recent formulation of the Car-Parrinello technique given
by Tassone,8 but we expect that Tassone’s algorithm behaves
very similar to the CGa scheme used here. Indeed the CGa
algorithm and Tassone’s algorithm both show a quadratic
convergence,8,11,34 the disadvantage of Tassone’s algorithm
is that it requires the determination of two parameters to
obtain optimal performance. Finally, if we consider that all
direct methods also require much more storage capacity, it
becomes questionable why these approaches have been em-
phasized so strongly during the past few years. Our program
can be used efficiently for systems containing up to 100 tran-
sition metals or 200 simple elements on workstations with
256 Mbytes. Finally, we want to emphasize at the end that
the algorithms discussed here are extremely reliable and have
been used for more than two years; up to now we have not

FIG. 6. Convergence of the total free energyE ~in eV! for the
RMM-DIIS ~full curve! and the CGa~broken curve! algorithm for
fcc-Al, self-consistent case. The RMM-DIIS algorithm uses a self-
consistency cycle, whereas the CGa algorithm minimizes the KS
functional directly.
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found a system where no convergence to the correct ground
state was obtained.
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Français du Pe´trole.

APPENDIX: FAST GRAM-SCHMIDT
ORTHONORMALIZATION

Usually the Gram-Schmidt orthonormalization is done by
sequentially orthogonalizing all bands to one selected band.
The outer loop starts with the first band, normalizes that one
and then orthogonalizes all other bands to the current band.
The second band is then normalized and all remaining bands
are orthogonalized to the second band and so on. For this
algorithm the limiting factor is not the maximum number of
floating-point operations per second but the maximum data

transfer bandwidth from the main computer memory to the
central processing unit~CPU!.

The solution is straightforward: We first calculate the
overlap matrixS̄,

S̄i j5^f i uSuf j&, ~A1!

and then we perform a Choleski decomposition ofS̄, i.e.,

S̄5LU . ~A2!

The final orthonormalized orbitals are then given by

uf̄ j&5( Ui j
21uf i&. ~A3!

For the matrix-matrix operations~and partially also for the
less expensive Choleski decomposition ofS̄ and the inver-
sion of the matrixU) the cache can be used very efficiently,
using ‘‘blocked’’ schemes. Mind that such optimizations are
impossible for the sequential CG scheme~involving only
vector-vector operations!. Efficient use of the cache allows
the CPU to run almost at its peak floating-point performance.
The performance improvement over the standard sequential
Gram-Schmidt scheme is usually considerable and ranges
between a factor of two~for IBM/RS6000 workstation and
CRAY C90 supercomputers! and four ~for SGI, DEC
ALPHA, and SUN workstations!.
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