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The Born effective charge Z* and dielectric tensore` of KNbO3 are found to be very sensitive to the
atomic geometry, changing by as much as 27% between the paraelectric cubic and ferroelectric tetragonal and
rhombohedral phases. Subtracting the bare ionic contribution reveals changes of the dynamic component of
Z* as large as 50%, for atomic displacements that are typically only a few percent of the lattice constant.
Z* , e` , and all phonon frequencies at the Brillouin zone center were calculated using theab initio linearized
augmented plane-wave linear response method with respect to the reference cubic, experimental tetragonal, and
theoretically determined rhombohedral ground-state structures. The ground-state rhombohedral structure of
KNbO3 was determined by minimizing the forces on the relaxed atoms. In contrast to the cubic structure, all
zone-center phonon modes of the rhombohedral structure are stable, and their frequencies are in good agree-
ment with experiment. In the tetragonal phase, one of the soft zone-center modes in the cubic phase is
stablized. In view of the small atomic displacements involved in the ferroelectric transitions, it is evident that
not only the soft-mode frequencies but also the Born effective charge and dielectric constants are very sensitive
to the atomic geometry.@S0163-1829~96!01939-X#

I. INTRODUCTION

Potassium niobate~KNbO3) is one of the most studied
members in the important class of perovskite structure ferro-
electrics. Like BaTiO3, KNbO3 undergoes three successive
ferroelectric phase transitions as the temperature is
decreased.1 It transforms from a cubic to a tetragonal phase
at 701 K, to an orthorhombic phase at 488 K, and finally to
a rhombohedral phase at 210 K. Despite decades of studies
on these perovskite systems, there is still controversy as to
the structure of the high-temperature phases and the related
character of the phase transitions, with contradictory evi-
dence for order-disorder2 versus soft-mode3 behavior. The
phase transitions and macroscopic polarization are strongly
sensitive to chemical compositions, defects, details of do-
main structure, and stresses, which complicates both theo-
retical and experimental studies. Nevertheless, considerable
insight has been gained in the past few years into the micro-
scopic mechanism for the ferroelectric instability from first-
principles calculations, based on the local-density-functional
theory.4–9 Cohen and Krakauer4 performed a series of total-
energy calculations on BaTiO3 and showed that the cubic
phase is unstable against zone-center distortions. They also
showed that hybridization between oxygen 2p and
transition-metal titanium 3d electrons is an important feature
in explaining the ferroelectric instabilities in BaTiO3 and
PbTiO3.

5 King-Smith and Vanderbilt7 carried out systematic
total-energy calculations for zone-center distortions for eight
perovskite oxides. Using an effective Hamiltonian con-
structed from first-principles calculations, Monte Carlo simu-
lations for BaTiO3 by Zhong, Vanderbilt, and Rabe8 ob-
tained the phase sequence, transition temperatures, latent
heats, and spontaneous polarizations, which are in good

agreement with experiments. With the use of a linear-
response density-functional method, Yu, Krakauer, and
Wang9 obtained a complete mapping in the Brillouin zone of
the structural instability for cubic KNbO3, revealing a pro-
nounced two-dimensional character, corresponding, in real
space, to chains along the@1 0 0# directions of atoms coher-
ently displaced along the chain direction.

In this paper, we determine the zero-temperature ground-
state rhombohedral structure of KNbO3 by minimizing the
forces acting on the relaxed atoms. Results are then pre-
sented for linear-response calculations of zone-center phonon
spectra, Born effective charges, and dielectric constants for
the cubic, experimental tetragonal, and theoretical ground-
state rhombohedral structures, demonstrating that not only
the soft-mode frequencies but also the Born effective charges
and dielectric constants are very sensitive to the atomic
geometry.

II. METHODS

Total-energy and force calculations were performed
within the local-density approximation~LDA !, using the
LAPW ~linearized-augmented-plane-wave! method.10 The
ground state structure was determined by minimizing the
forces11 on the relaxed atoms. Phonon spectra, Born effective
charge, and dielectric tensors were obtained with the recently
developed LAPW linear-response method.9,12,13We refer the
reader to Ref. 12 for details regarding this method. The dy-
namical matrix at a wave vectorq is calculated from the
first-order changes in the wave functions due to a phononlike
perturbationwia(R)5wiae

iq•R, wherewia(R) indicates the
Cartesiana component of the displacement of atomi in the
unit cell specified by the direct lattice vectorR; the phonon
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frequencies are then obtained by standard matrix diagonal-
ization. The Born effective charge and dielectric tensors are
obtained in the long-wavelength limit as

q̂•e`•q̂5 lim
q˜0

F12
Vind~q!

Vtotal~q!G , ~1!

Za,b* ~ i !5Zi1V
]Pa

]v ib
U
E50

, ~2!

whereq̂ is the unit vector in the direction of the wave vector,
Vind is the induced potential when the macroscopic field is
applied,Zi is the bare ionic charge of thei th ion, V is the
volume of the unit cell, andPa is the Cartesiana component
of the macroscopic electronic polarization under the phonon-
like perturbation while constraining the macroscopic electric
field to be zero. We calculated the Born effective charge and
dielectric tensors at very small values ofq ; 0.01 2p/a,
where a is the lattice constant. Kerker-type pseudo-
potentials14 were used to bypass the need to treat the chemi-
cally inert localized inner core states. The shallow semicore
states K~3s) and Nb~4s,4p) were pseudized and included in
a lower-energy window of a two-window variational calcu-
lation. The Wigner interpolation formula15 was used for the
exchange-correlation potential. A uniform~6 6 6! k-point
set16 was used in most calculations to sample the Brillouin
zone ~BZ! integration, yielding ten special-k points in the
irreducible BZ wedge for the cubic structure, 18 special-k
points for the tetragonal structure, and 28 special-k points for
the rhombohedral structure. The muffin-tin radii were chosen
as 2.50 a.u.~atomic units! for K, 1.92 a.u. for Nb, and 1.58
a.u. for O. The kinetic-energy cutoff was 22.5 Ry, yielding
approximately 810 LAPW basis functions at eachk point.

For cubic KNbO3, we obtained the theoretical equilib-
rium lattice constanta054.00 Å, with bulk modulus
B05194 GPa, and pressure derivative,B0854.3, by fitting the
LAPW total-energy calculations to the Birch-Murnaghan
equation of state.17 This lattice constant is only 0.4% smaller
than the experimental value 4.016 Å.1 The change in total
energy due to ferroelectric distortions is very sensitive to
volume,4,6 so despite this small difference the experimental
lattice constant was used in all the calculations described

below. Our lattice constant is slightly larger than previous
LDA calculations.7,18 This difference is probably due to the
use of different forms for exchange-correlation potential. As
also seen in other systems,19,20 the Wigner form tends to
yield slightly larger equilibrium lattice constants than other
forms, and as expected the bulk modulus is accordingly
slightly smaller.

III. GROUND-STATE STRUCTURE

To determine the lowest-energy geometry, the atomic po-
sitions were relaxed, minimizing the forces on all atoms
while constraining the system to have at least rhombohedral
symmetry. This was done using a cubic unit cell, based on
the experimental observation that the rhombohedral strains
are extremely small@the sheer strain angle is merely 118
~Ref. 21!#. We checked that distorting the cubic cell with the
experimentally observed rhombohedral strain results in only
slightly larger residual forces on the atoms, indicating that
the strain has little effect on the relative atomic displace-
ments.

In units of the lattice constant~4.016 Å!, the atomic po-
sitions in the reference cubic perovskite structure were taken
as ~0.5, 0.5, 0.5! for K, ~0, 0, 0! for Nb, and ~0.5, 0, 0!,
~0, 0.5, 0!, and~0, 0, 0.5! for the three O atoms O1, O2, and
O3, respectively. Without any loss of generality, the Nb
atom was chosen as a fixed reference point, with respect to
which the K atom was displaced to~0.51dK , 0.51dK , 0.51
dK) and the oxygen atoms to~0.51d I , d II , d II ) and sym-
metric permutations, wheredK , d I , andd II are three inde-
pendent parameters. The process of structural optimization
was terminated when the maximum residual force was less
than;0.3 m Ry/a.u., i.e., 8 meV/Å.

Table I presents our results for ground state structures
with three differentk-point sets. The energy difference be-
tween the ground and cubic states are also shown. Previous
LDA calculations with the LMTO ~linearized-muffin-tin-
orbitals! method22 and experimental measurements are also
included for comparison. Table I reveals that the structural
parameters are essentially converged using a~6 6 6!
k-point set. Use of the~6 6 6! set increases the difference
between the rhombohedral ground state and the ideal cubic
structure energy, (Eg2Ec), by 200% compared with~4 4 4!

TABLE I. Ground-state structures determined by calculations and experiment for KNbO3. The displace-
mentsd are in unit of the lattice constant of the cubic structure. The energy difference (Eg2Ec) is in mRy.

k-point set dK d I d II (Eg2Ec)

~4 4 4! 0.008 0.023 0.021 -0.63

~6 6 6! 0.009 0.026 0.025 -1.86

~8 8 8! 0.010 0.026 0.025 -1.99

LMTO ;0.018a ;0.018a ;0.018a ; -1.0a

;0.026b ;0.027b ;0.027b ; -3.0b

Expt.c 0.01306 81 0.03336 15 0.03016 9

aEstimated from Postnikov, Neumann, and Borstel’s calculations at lattice constanta53.93 Å ~Ref. 22!.
bEstimated from Postnikov, Neumann, and Borstel’s calculations at lattice constanta54.00 Å ~Ref. 22!.
cMeasurement for the rhombohedral phase atT5 230 K by Hewat~Ref. 21!.
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set. Increasing the BZ sampling to an~8 8 8! set changes the
energy difference by just 7% compared with the~6 6 6! set,
suggesting that the~6 6 6! set would be adequate in many
calculations. This is confirmed by the fact that the ground-
state structural parameters determined with~6 6 6! and
~8 8 8! sets exhibit little difference. Negative values of
(Eg2Ec) mean that the cubic structure is unstable against
zone-center distortions.

It should be emphasized that the ground-state structure is
not simply a displacement of the Nb atoms against the rigid
sublattices of K and O. The relaxation of these sublattices
significantly affects the stability of the rhombohedral struc-
ture. For example, with the use of the~8 8 8! k-point set,
moving the Nb atom from the origin to~0.025, 0.025, 0.025!
~in units of the lattice constant!, while keeping other atoms
fixed, causes the total energy of the system to decrease, but
only by 0.45 m Ry. Relaxing the K- and O-atom sublattices
causes the energy to decrease by 1.99 m Ry. Thus the dis-
placement of the Nb sublattice against the rigid lattice of all
the other atoms is not the lowest energy configuration. This
conclusion contradicts the results of Postnikov, Neumann,
and Porstal.22 As shown in Table I, Postnikov, Neumann,
and Porstel determined the ground-state structure of
KNbO3 at two lattice parameters, 3.93 and 4.00 Å, using the
LMTO method.22 In both cases, they find K-atom displace-
ments that are essentially the same as rigid oxygen octahe-
dron displacements (dK'd I5d II ), which means that the
ground-state structure corresponds to an essentially pure dis-
tortion of the Nb sublattice against the rigid lattice of all the
other atoms. This result is strikingly different from our cal-
culations. This discrepancy cannot be fully ascribed to the
approximation of rigid oxygen octahedra used in their calcu-
lations, since we find that the distortion of the oxygen octa-
hedra~i.e., the difference betweend I andd II ) is small. Fur-
thermore, their calculated zone-center phonon eigenvectors
for the cubic structure with the same method are quite dif-
ferent from the results of our calculations and other’s~see
discussion in V!. Table I also lists experimental values, with
the measured displacementsdK , d I , and d II ,

21 all about
20% larger than our calculations. This level of agreement is
satisfactory, given the sensitive dependence of atomic posi-
tions on the volume.

IV. CALCULATIONS FOR Z* AND e`

The Born effective charge tensor Z* characterizes the
influence of long-range Coulomb interactions on the vibra-
tional and optical properties of ionic insulators. First-
principles calculations of these charges in perovskite ferro-
electrics have become available only very recently.9,23–25

Here we report on calculations of Z* ande` , the electronic
component of the static dielectric constant, for the theoretical
ground-state rhombohedral structure and experimental te-
tragonal structure26 of KNbO3. Cubic phasesZ* were pre-
viously reported.9 We find that the eigenvalues of these ten-
sors are quite different from their counterparts in the cubic
structure. To ensure the reliability of the comparison, we
recalculated these quantities for the cubic structure with the
denserk-point sampling in the BZ, i.e., the~6 6 6! set that is
used for rhombohedral and tetragonal structures. We have
examined the convergence of the Born effective charges with

respect tok-point sampling. The~6 6 6! set reduces the vio-
lation of the acoustic sum rule by an order of magnitude
compared with the~4 4 4! set.9 Specifically, with the use of
the ~6 6 6! k-point set,( iZ* ( i ) is reduced from 0.35 using
the ~4 4 4! set to 0.03 for the cubic structure; for the rhom-
bohedral structure, the diagonal and off-diagonal terms are
reduced from 0.11 and 0.56 to20.07 and 0.02, respectively.
For the tetragonal structure, the three diagonal terms of
( iZ* ( i ) are20.02,20.02, and 0.07 with the use of the~6 6
6! k-point set. This level of convergence is comparable to
that obtained in simple semiconductors.19 The errors due to
the use of a small but finite wave vector were checked and
found to be negligible. For example, in the calculations of
Z* in the experimental tetragonal structure, the use of a
smaller wave vectorq5~0, 0, 0.002!2p/c yields theẑ com-
ponent of Z* ~O3) to be25.350, very close to25.348, the
value obtained withq5~0, 0, 0.01!2p/c.

In the cubic structure, the Born effective charge tensors
Z* ~K! and Z* ~Nb! are both isotropic due to the high site
symmetry. At the O sites, however, there exist two inequiva-
lent directions: one along the Nb-O bond and the other per-
pendicular to this bond, denoted byi and', respectively.
Thus Z* ~O! is diagonal but with two distinct values,
Z* ~O! i and Z* ~O!' . In the tetragonal structure, all Born
effective charge tensors are diagonal, andZ* of K, Nb, and
O3 each have two distinct values, whereasZ* of the equiva-
lent O1 and O2 atoms have three distinct values. In the
rhombohedral phase, the Born effective charge tensors no
longer have a simple diagonal form due to the lower sym-
metry, and we have found

Z* ~K!5S 1.14 20.01 20.01

20.01 1.14 20.01

20.01 20.01 1.14
D , ~3!

Z* ~Nb!5S 8.16 20.35 20.35

20.35 8.16 20.35

20.35 20.35 8.16
D , ~4!

and

Z* ~O1!5S 26.27 0.14 0.14

0.24 21.55 0.00

0.24 0.00 21.55
D . ~5!

For purpose of comparison, it is convenient to focus on the
eigenvalues of these tensors, presented in Table II. The Berry
phase calculations for the cubic structure24 and the tetragonal
structure23,24 are also included for comparison.

There is no requirement that the Born effective charge
tensor be symmetric, because it is a mixed second derivative
of the total energy,Etotal, with respect to macroscopic
electric-field componentEa and atomic displacement com-
ponentt i ,b : Z * ( i ) 5 ]2Etotal/]Ea]t i ,b . Thus the Born ef-
fective charge can either be regarded as the derivative of the
polarization with respect to atomic displacement at zero
macroscopic field, or as the derivative of the force on an
atom with respect to the macroscopic field at zero atomic
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displacement. The Born effective charge tensors for K and
Nb in the rhombohedral structure are symmetric, and the
macroscopic polarization direction@1 1 1# is an obvious prin-
cipal axis, with corresponding eigenvalues ofZ* ~K!51.13
andZ* ~Nb!57.47, respectively. The other two perpendicular
eigenvectors with degenerate eigenvalues may be chosen as
@1 1̄ 0# and @1 1 2̄#. For the three equivalent oxygen atoms,
the three eigenvectors of the Born effective charge tensors
are no longer perpendicular to each other since the tensors
are no longer symmetric. For example, for the O1 atom at
~0.51d I , d II , d II ) in the rhombohedral structure,@0 1 1̄# is
an eigenvector direction and the corresponding eigenvalue is
Z* ~O1)5 -1.55, as shown in Table II, but the other two
eigenvectors cannot be determined by symmetry alone and
depend on the details of interactions in the material. Never-
theless, we still useZ* ~O! i andZ* ~O!' to denote the eigen-
values for convenience, although the corresponding eigen-
vectors deviate slightly from their counterparts in the cubic
structure.

All LDA calculations in Table II show unusually large
Born effective chargesZ* ~Nb! and Z* ~O! i . These values
are by far larger than their corresponding nominal ionic
charges15 and22, revealing large dynamic charge trans-
fers along the Nb-O bond as the length of the bond is varied.
These large Born effective charges result from the strong
covalent interactions between the transition metal and the
oxygen atoms in these materials.4 This has been demon-
strated recently by Posternak, Resta, and Baldereschi,27 who
observed that the unusually large Born effective charges are
reduced to their nominal values when the covalence between
Nb 4d and O 2p orbitals is artificially suppressed. These
large Born effective charges give rise to strong long-range
ionic interactions, which favor the ferroelectric instability.4 It

is not surprising, therefore, that ferroelectricity is sensitive to
the size and formation of domains as well as electric bound-
ary conditions.

Our calculations show that the eigenvalues of the Born
effective charge tensors, especiallyZ* ~O! i and the compo-
nent ofZ* ~Nb! along the macroscopic polarization direction,
are quite sensitive to the changes in atomic geometry. The
atomic displacements involved in the transformation from
the cubic to the tetragonal and ground-state rhombohedral
structures are rather small, typically only a few percent of the
lattice constant. Nevertheless, the values ofZ* ~Nb! and
Z* ~O! i are reduced by up to 23% in the rhombohedral struc-
ture and by about 27% in the tetragonal structure. Subtract-
ing the bare ionic charges associated with the atoms~15 for
Nb and22 for O! shows that the change of the dynamic
charge component ofZ* can be as large as 50%. This sen-
sitivity originates from the strong dependence27 of the Nb
4d and O 2p hybridization on the ferroelectric distortion,
which changes the Nb-O bond length and site symmetry of
atoms in crystal. As shown in Table II, Zhonget al.’s Berry
phase calculations agree with our results within a few per-
cent for the cubic structure. It should be noted that in their
calculation for the tetragonal phase,24 they used an ideal te-
tragonal structure with experimental lattice constants but
without observed internal strains. Restaet al.23 extracted
Born effective charges for the tetragonal phase from the fi-
nite differences of polarization and argued that the Born ef-
fective charges are approximately independent of the atomic
displacements and that the macroscopic polarization is there-
fore linear with the internal strain. Our results differ from
this. We find that the Born effective charges depend strongly
on the structural details. Recently Ghosezet al.25 calculated
the Born effective charge tensors for different phases of

TABLE II. Eigenvalues of Born effective charge tensors for KNbO3 in the cubic, experimental tetrago-
nal, and theoretical ground-state rhombohedral structures.Z* ~O1) is presented as representative of the three
equivalent oxygen atoms in the rhombohedral structure. In the experimental tetragonal structure, we show
only the eigenvalues ofZ* ~O1) andZ* ~O3), since O2 is equivalent to O1 by symmetry. The eigenvectors
for Z* ~K! andZ* ~Nb! of tetragonal and rhombohedral structures are shown as subscripts~see text!.

Present Present Present PW-BPa PW-BPa LAPW-BPc

Cubic Tetragonal Rhombohedral Cubic Tetragonalb Tetragonal

Z* ~K! 1.12 1.12@100# 1.16@1 1̄0# 1.14

1.12 1.12@010# 1.16@112̄# 1.14

1.12 1.17@001# 1.13@111# 1.14 1.14@001# 0.82@001#

Z* ~Nb! 9.67 9.17@100# 8.51@1 1̄0# 9.23

9.67 9.17@010# 8.51@112̄# 9.23

9.67 7.05@001# 7.47@111# 9.23 9.36@001# 9.13@001#

Z* ~O! i -7.28 -6.99~O1) -5.35~O3) -6.28~O1) -7.01 -7.10~O3! -6.58~O3!

Z* ~O!' -1.74 -1.77~O1) -1.55~O3) -1.54~O1) -1.68 -1.70~O1! -1.68~O1!

-1.74 -1.40~O1) -1.55~O3) -1.55~O1) -1.68 -1.70~O1! -1.68~O1!

aPlane wave-Berry phase calculation by Zhong, King-Smith, and Vanderbilt~Ref. 24!.
bNote an ideal tetragonal structure~without observed internal strains! was used~private communication with
Zhong and Vanderbilt!.
cLAPW Berry phase calculation by Restaet al. ~Ref. 23!.
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BaTiO3, and found that they are also strongly dependent on
the atomic positions, in agreement with the present calcula-
tions for KNbO3.

In the absence of macroscopic strain, symmetry requires
that the changes in the Born effective charge are even func-
tions of the amplitude of the internal displacements, when
expanded about the cubic structure. In the absence of internal
displacements, the volume dependence and macroscopic
strain, which are important in minimizing the total energy,
are found to have little influence on the Born effective
charges. Reducing the lattice constant by 0.47% in the cubic
structure~from 4.016 to 3.997 Å!, Z* ~Nb! decreases by only
0.85%. The effect of a pure tetragonal strain is examined in
a calculation in whicha5b5 3.997 Å, and all atoms are
kept at their ideal positions, i.e., there are no internal strains.
For c/a ratios of 0.9835, 1.0, and 1.0165~the last being the
strain in the observed tetragonal structure!, the values of the
z component ofZ* ~Nb! are 9.626, 9.586, and 9.556, respec-
tively, with the overall change being only 0.7%. Thus the
variation of the Born effective charges between different
atomic geometries reported above are almost entirely due to
the internal strains.

The polarization change is defined as

DP5P~t!2P~0!5(
i
E
0

t e

V
Z* ~ i ,u!du, ~6!

whereu is a symbolic parameter characterizing the structure,
and 0 andt correspond to the starting and ending structures;
i is the atomic index andV is the volume of unit cell. In
order to estimate the integral in Eq.~6!, we consider two
approximations to estimate the range of macroscopic polar-
ization for the experimental tetragonal structure. This is done
by ignoring theu dependence of Born effective charge ten-
sors and instead using our calculated values of Z* for ~i! the
cubic structure, and~ii ! the tetragonal structure, yielding two
different values ofDP, 0.44 and 0.33 C/m2, respectively.
The measured value is 0.37 C/m2,28 close to the average of
the two estimates above. The large difference between the
two estimated values demonstrates that the ferroelectricity is
essentially a nonlinear phenomenon.

We have calculated the dielectric tensorse` for the cubic,
experimental tetragonal, and theoretical ground-state rhom-
bohedral structures and presented the eigenvalues in Table
III. The cubic structure has an isotropic dielectric tensor,
e` 5 6.63. The tetragonal structure has a diagonal dielectric
tensor, and the eigenvalue in the direction of polarization
@001# is 5.07, about a 24% reduction from the cubic phase.
For the rhombohedral structure, the dielectric tensor has a
symmetric form and e`,115e`,225e`,3355.79 and
e`,125e`,135e`,23520.15. The three eigenvalues are 5.93,

5.93, and 5.49, with eigenvectors along@1 1̄ 0#, @1 1 2̄#, and
@1 1 1#, respectively. Compared to the cubic phase, the larg-
est reduction of eigenvalues is 17%, also along the direction
of polarization. Both the tetragonal and rhombohedral cases
show that the dielectric tensors also strongly depend on
atomic geometry.

V. ZONE-CENTER PHONON CALCULATIONS

Due to the lower symmetry of the reference rhombohedral
and tetragonal structures, the linear-response calculations
take significantly longer compared to similar calculations us-
ing the cubic phase as the reference structure. For each pho-
non wave vectorq, the first-order change in the wave func-
tions must be calculated at many morek points in the
Brillouin zone due to the lower symmetry. For this reason,
we have limited our calculations of the dynamical matrix in
the rhombohedral and tetragonal phases to the zone center,
q50. Table IV compares our zone-center phonon frequen-
cies of the cubic structure with the frozen phonon LAPW
calculations of Singh and Boyer,6 plane-wave pseudopoten-
tial calculations of Zhong, King-Smith, and Vanderbilt,24 and
LMTO calculations of Postnikov, Neumann, and Borstel.29

In the cubic phase the 12 optical phonons atq5 0 are clas-
sified as threeF1u and oneF2u modes, each of which is
triply degenerate. TheF2u mode is labeled 4, whereas the
other threeF1u modes are labeled 1, 2, and 3 in order of
increasing frequency. All the calculations find unstable TO
modes at the zone center with similar imaginary frequencies
corresponding to the observed soft mode. The longitudinal-
optic ~LO!-phonon frequencies were obtained from a dy-
namical matrix which is a combination of a zone-center dy-
namical matrix without macroscopic field,DTO, and a term
arising from the long-range Coulomb interaction

TABLE III. Eigenvalues of calculated dielectric tensorse` of
KNbO3 in the cubic, experimental tetragonal, and theoretical
ground-state rhombohedral structures.

cubic 6.63 6.63 6.63
tetragonal 6.28@100# 6.28@010# 5.07@001#

rhombohedral 5.93@1 1̄0# 5.93@112̄# 5.49@111#

TABLE IV. Calculated zone-center optic-phonon frequencies
(cm21) in cubic KNbO3.

Mode Present LAPWc LMTOd PWe Experimentf

TO1 197i 115i 203i 143i soft

TO2 170 168 193 188 198

TO3 473 483 483 506 521

TO4 243 266 234 280g

LO1 393a 403b 407b 418

LO2 167a 167b 183b 190

LO3 757a 888b 899b 826

aObtained with calculatede`56.63.
bObtained withe`54.69, extracted~Ref. 24! from experiment.
cLAPW frozen-phonon calculations by Singh and Boyer~Ref. 6!.
dLMTO frozen-phonon calculations by Postnikov, Neumann, and
Borstel ~Ref. 29!.
ePlane-wave frozen-phonon calculations by Zhong, King-Smith,
and Vanderbilt~Ref. 24!.
fInfrared reflectivity spectroscopy at 710 K by Fontanaet al. ~Ref.
1!.
gMeasured in the tetragonal phase,T5585 K.
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Dia, jb
LO 5Dia, jb

TO 1
4pe2

VAMiM j

„q–Z* ~ i !…a„q–Z* ~ j !…b
q•e`•q

, ~7!

whereMi andZ * ( i ) are the mass and Born effective charge
tensor of atomi , e` is the dielectric tensor,V is the volume
of unit cell, anda andb are Cartesian indices. This parti-
tioning of the dynamical matrix is necessary precisely at the
zone center,q50, because the distinction between transverse
and longitudinal modes becomes delicate. At finite wave
vectors, we can directly calculate the full dynamical matrix
from the first-order forces on the atoms. Frequencies calcu-
lated this way for very small wave vectors q; 0.01
2p/a agree with Eq.~7!, showing the internal consistency of
our linear response calculations. All LO modes are stable due
to the contribution of the macroscopic field. The TO4 mode
with frequency 243 cm21 is both Raman and infrared inac-
tive, and thus does not exhibit LO-TO splitting. Zhong,
King-Smith, and Vanderbilt obtained their LO frequencies
by usinge`54.69, extracted from experiment, whereas we
used bothe`54.69 and our larger calculated dielectric con-
stante`56.63. The highest LO3 frequency increases by 131
cm21 when the smaller dielectric constante`54.69 is used.
Compared to our previous results with the~4 4 4! k-point
set,9 the soft-mode frequencies are found to be more unstable
by about 50i cm21, consistent with the observation in Table
I that the~6 6 6! k-point set yields a deeper well depth. The
other modes are relatively unaffected.

We present the eigenvectors of zone center optic phonon
modes in the cubic structure in Table V. Note that the eigen-
vectors are the actual displacements weighted by the square
root of the atomic mass. The basic features of the TO-
phonon eigenvectors are as follows. In the soft TO1 mode,
Nb vibrates against three oxygen atoms with K essentially
unmoved. In the TO2 mode, K vibrates against all of the
other atoms. The TO3 mode is dominated by the vibration of
one O atom against the other two O atoms, whereas Nb and
K atoms oscillate with only slight amplitudes. In the TO4
mode, K and Nb are exactly at rest, and the oscillations in-
volve only O atoms. When the TO4 mode is viewed along
the ẑ direction as shown in Table V, the O1 at ~0.5a, 0, 0!
and O2 at ~0, 0.5a, 0! move with the same amplitudes but in

opposite directions, and O3 at ~0, 0, 0.5a) is undisplaced.
This mode has no instantaneous dipole moment, so the
TO4 phonon is infrared inactive. LO and TO modes have
quite different eigenvectors, as previously noted by Zhong,
King-Smith, and Vanderbilt.24 The correlation between the
infrared active modes may be characterized by the eigenvec-
tor overlap matrix Ai j 5 ^ui

TOuuj
LO&, and we have

A5S 0.63 0.13 0.77

0.10 0.99 0.10

0.78 0.02 0.62

D . ~8!

Matrix A indicates that there exists no one-to-one correspon-
dence between the TO and LO modes in the perovskite fer-
roelectrics, and that the soft TO1 mode is most closely
coupled with the highest-frequency mode LO3.

24

Our zone-center optical-phonon modes agree well with
the LAPW frozen-phonon calculations by Singh and Boyer,6

but differ significantly from those by Postnikov, Neumann,
and Borstel29 using the LMTO method. One of the striking
differences lies in the eigenvectors of the soft TO1 modes.
We observed that K is essentially unmoved in the soft
modes, while Postnikov, Neumann, and Borstel29 observed
that the K atom tends to move with the oxygen octahedron.
Table VI displays the relative atomic displacements in the
soft mode from LDA calculations, as well as the experimen-
tal values from the observed tetragonal structure. Frozen-
phonon calculations of the soft TO1 mode with both LAPW
~Ref. 6! and plane-wave methods30 yield results similar to
the present linear-response results; the minor differences
may be due in part to the the use of small but finite distor-
tions in the frozen-phonon calculations to extract the dy-
namical matrix. Due to the anharmonic interactions, the ob-
served atomic displacements in the tetragonal structure
cannot strictly correspond to the soft-phonon TO1 mode in
the cubic phase. This accounts in part for the difference be-
tween the LDA eigenvectors and the experimental values
extracted from the observed tetragonal structure.

TABLE V. Calculated eigenvectors of the zone-center optic-
phonon modes in cubic KNbO3. O1, O2, and O3 refer to oxygen
atoms at~0.5, 0, 0!a, ~0, 0.5, 0!a, and ~0, 0, 0.5!a, respectively.
Note that we have chosen the representative modes in which the
atoms move in theẑ direction.

Modes Frequency~cm21) K Nb O1 O2 O3

TO1 197i 0.01 -0.59 0.42 0.42 0.55

TO2 170 0.88 -0.37 -0.18 -0.18 -0.15

TO3 473 0.02 -0.08 0.46 0.46 -0.76

TO4 243 0 0 1 -1 0

LO1 393 -0.06 -0.38 0.63 0.63 -0.23

LO2 167 0.88 -0.45 -0.11 -0.11 -0.09

LO3 757 0.09 0.37 -0.06 -0.06 -0.92

TABLE VI. Relative atomic displacements in the soft TO1
mode of cubic KNbO3. Note that the K atom is taken as the refer-
ence point and the magnitude of the displacement of the Nb atom is
taken as the displacement unit. The experimental values are ex-
tracted from the observed tetragonal structure. See text.

K Nb O1 O2 O3

Present 0 -1 1.6 1.6 2.2

LAPWa 0 -1 1.4 1.4 1.9

PWb 0 -1 1.5 1.5 2.0

LMTOc 0 -1 0.18 0.18 0.67

Experiment 0 -1 1.1 1.1 1.3

aLAPW frozen-phonon calculation by Singh and Boyer~Ref. 6!.
bPlane-wave frozen-phonon calculation~Ref. 30!.
cLMTO frozen-phonon calculation~Ref. 29!.
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We also performed zone-center phonon calculations for
the experimental tetragonal structure. The phonon frequen-
cies are presented in Table VII. In the tetragonal phase, each
triply degenerateF1u phonon in the cubic phase splits into
A11E modes, and theF2u mode splits intoB11E modes,
where the doubly degenerateE modes are polarized in
@1 0 0# and @0 1 0# axes, and theA1 and B1 modes are
polarized along the@0 0 1# direction. Compared to the cubic
phase, one of the TO1 modes~TO1-A1) is stablized due to
the tetragonal distortions, resulting in large spatial anisotropy
among the three TO1 components. Again we used Eq.~7!
and the calculated Born effective charge and dielectric ten-
sors to obtain the frequencies of LO modes. Since the LO
frequencies are no longer isotropic, we display the calculated
values in two different directions,@0 0 1# and @1 0 0#, to
present the magnitude of this effect. Except for the soft
mode, the calculated frequencies are in good agreement with
the measurements.

The linear-response calculations for the zone center pho-
non modes of the theoretical ground state rhombohedral
structure are presented in Table VIII. The most notable fea-
ture is that there are no unstable modes in the rhombohedral
phase. In fact none of the modes is especially soft either.
This is consistent with the observed ground-state structure of
KNbO3. It is also consistent with the disappearance of two-
dimensional x-ray diffuse intensities in the rhombohedral
phase.32 As in the tetragonal phase, the LO frequencies de-
pend on the direction along which they are measured, and
LO frequencies along two directions,@1 1 1# and@1 1̄ 0#, are
displayed. The experimental frequencies shown in Table

VIII are from quasi-mode Raman scattering in the rhombo-
hedral phase.33 Nevertheless, they are in reasonable agree-
ment with our calculations. The eigenvectors of the TO1
modes with frequencies 208 and 237 cm21 in Table VIII
correspond most closely to the unstable phonon modes in the
cubic structure.

VI. SUMMARY

By minimizing the forces acting on the relaxed atoms, we
have determined the ground-state rhombohedral structure of
KNbO3, and the calculated atomic positions compare well
with measurement. We find that all zone-center phonon
modes in the rhombohedral structure are stable, and that their
frequencies are in good agreement with experiment. In the
tetragonal phase, one of the soft zone-center modes in the
cubic phase is stablized. We have calculated the Born effec-
tive charge tensors for KNbO3 in the cubic, experimental
tetragonal, and theoretical ground-state rhombohedral struc-
tures. The Born effective charges are found to exhibit great
sensitivity to the small atomic displacements in the ferroelec-
tric phase transitions. The dielectric tensors are also calcu-
lated, revealing about a 20% reduction compared the cubic
phase of the component in the direction of macroscopic po-
larization.
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TABLE VII. Calculated zone-center phonon frequencies of te-
tragonal KNbO3. Note that in allA andB modes, atoms move in
the ẑ direction, i.e.,@0 0 1#.

Mode Frequency~cm21)

Present Expt.a Expt.b

TO1 E 134i soft soft
A 306 295 280

TO2 E 174 199 190
A 171 190 200

TO3 E 479 518 590
A 613 600 600

TO4 E 253 280 285
B 262 290

LO1 @100# 391 418
@001# 401 423 430

LO2 @100# 171 191 185c

@001# 178 192
LO3 @100# 764 822 835

@001# 834 835 840
LO4 @100# 253 279 285c

@001# 262 290

aInfrared reflectivity spectroscopy at 585 K by Fontanaet al. ~Ref.
1!.
bRoman scattering measurement at 543 K by Fontanaet al. ~Ref.
31!.
cMeasured in the@110# direction.

TABLE VIII. Calculated zone-center optic-phonon frequencies
~cm21) for the theoretical ground-state rhombohedral KNbO3

structure. Note that the listed experimental frequencies are from
quasimode Raman scattering in the rhombohedral phase.

Mode Present Experimenta b

TO1E 208 220
A 1 237 265

TO2 E 170 198
A 1 176 198

TO3 E 519 536
A 1 570 602

TO4 E 265 301
A 2 238 301

LO1 @111# 404 423

@11̄0# 389

LO2 @111# 177 198

@11̄0# 172

LO3 @111# 794 837

@11̄0# 803

LO4 @111# 265 301

@11̄0# 265

aFontanaet al., Ref. 1.
bKugel et al., Ref. 33.
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